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Abstract. The focus of this work is the introduction of some computable a posteriori
error control to the now widely popular Multilevel Monte Carlo sampling for PDE with
stochastic data. We are especially interested in applications where some quantity of
interest should be estimated accurately. This is a typical question in the geosciences,
when e.g. groundwater flow with rather rough stochastic fields for the conductive
permeability is examined. Based on a spatial discretisation by the finite element
method, a goal functional is defined which encodes the quantity of interest. The
devised goal-oriented a posteriori error estimator enables to determine guaranteed
path-wise a posteriori error bounds for this quantity. An adaptive algorithm is proposed
which employs the computed error estimates and adaptive meshes in order to control
the approximation error and the stochastic error in probability likewise. Moreover, it also
allows for the adaptive refinement of the mesh hierarchy used in the Multilevel Monte
Carlo simulation which we use for a problem-dependent construction of discretisation
levels.

Numerical experiments illustrate the performance of the presented method for a
posteriori error control in Monte Carlo and Multilevel Monte Carlo Methods with
respect to localised goals. Moreover, the computational efficiency of the multilevel and
classical Monte Carlo approaches are compared. It is illustrated that adaptively refined
meshes can yield significant benefits when combined with Monte Carlo methods. In
particular, with a problem-adapted mesh hierarchy, the efficiency gains of the Multilevel
Monte Carlo method in terms of computational cost can also be exploited in the
context of error control.

1. Introduction

Simulations of PDE with stochastic data have become an indispensable tool in many
application areas. We are especially concerned with groundwater flow models with limited
knowledge about the geological media. A common approach for these problems is to
assume some random field for the conductive permeability. The parameters for such a
field can e.g. be based on a set of actual sample measures of the real structure of the
ground. Since the feasible number of measurements is limited, this modelling is subject
to a large amount of uncertainty which propagates to any computed solution based on
this data. Typically, the media is assumed to be rough due to small correlation lengths
with large contrast, rendering it challenging to simulate efficiently. The usual stochastic
models are based on lognormal conductivity fields. Its logarithm is a (stationary) Gaussian
field. For other applications, fields which are expanded in a finite set of uniform random
variables are common. Then, the task is to compute some stochastic solution field
and related statistics or a (stochastic) quantity of interest depending on the solution.
Such a dependent goal functional is often localised to a certain region of interest, i.e. a
subdomain of the physical domain D ⊂ Rd (d = 1, 2, 3). In particular, one commonly is
interested in the expected value or the variance of the solution in some subdomain.
There are different conceptual approaches for this kind of uncertainty quantification for
PDE with stochastic data. The properties of the stochastic data considered here, namely
the dependence on a large number of random variables (which means many stochastic
dimensions) due to the low regularity of the fields, are rather problematic for numerical
methods which rely on the stochastic discretisation in orthogonal polynomials, the so
called (generalised) polynomial chaos. Typically, the usage of stochastic Galerkin [25]
and stochastic collocation methods [4] is most beneficial if some higher regularity of the
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solution can be expected. Otherwise, the number of stochastic dimensions may cause
the algebraic system to become prohibitively large. Recent reviews of numerical methods
and their analytical properties can be found in [31, 19].
For this reason, for their apparent simplicity and straightforward parallelisation, Monte
Carlo (MC) methods enjoy a great popularity with this type of problem. However, in the
classical form, in order to achieve sufficient accuracy, the well-known slow convergence
necessitates the generation of a huge number of samples where for each sample path the
solution of a PDE with a realisation of the stochastic data has to be calculated. The
common variance reduction techniques are only able to reduce the constant factor of
the error but can not improve the convergence rate. Under certain assumptions on the
solution, this can be achieved by using systematically generated sets of correlated sample
points which is done in Quasi Monte Carlo (QMC) methods [23, 18].
Another approach (which can also be combined with QMC sampling) is to employ a
nested set of discrete spaces. With this, it is possible to exploit the fact that the solution
of the problem PDE on the coarsest space is relatively cheap and, since only components
of increasing frequency but with decreasing importance (so-called corrections) are added
subsequently on finer spaces, a rather small number of solutions is required on the finest
space. A crucial observation then is that most of the uncertainty is already captured by
the coarse space solutions. This multilevel idea is quite common in the theory of algebraic
solvers for PDE and can be transferred beneficially to the problem at hand. The resulting
Multilevel Monte Carlo (MLMC) method has the advantage to scale proportionally with
the complexity of a single PDE solution on the finest level, at least asymptotically. It thus
can be highly superior to standard MC sampling in terms of computational efficiency.
While the complexity of MLMC and the possible convergence rates in dependence on the
regularity of the stochastic conductivity have been studied extensively in [7, 13, 12, 32],
to our knowledge, a problem dependent spatial adaptivity of the discretisation based on
some a posteriori error estimation has not been considered yet. However, an adaptive
approach yields the potential to substantially reduce the complexity of MLMC calculations
by focusing the computational effort on the quantity of interest, neglecting areas of the
domain which do not contribute in a relevant way to this quantity.
Other recent ideas for adaptive MLMC methods can for instance be found in [20, 3]
and [15].
Our approach is based on the derivation of a guaranteed goal-oriented a posteriori error
estimator which leads to exact error bounds in the deterministic setting, i.e. the error
of the solution for a single realisation of the stochastic data. The evaluation of this
type of error estimator requires the solution of some adjoint problem to determine the
spatial dependence with regard to the quantity of interest. Our specific construction only
contains explicit constants which enables the favourable property that the computable
error bounds are guaranteed path-wise. Since the overall MLMC error decomposes into
a deterministic part (controlled by the spatial error estimator) and a stochastic part
which depends on the variance of the data and the number of computed samples, we
also suggest how to control the stochastic error of the goal and the error estimator in
probability.
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The practical application of the results is shown with two numerical examples. They
specifically demonstrate the efficiency of the derived a posteriori error estimator. Moreover,
we illustrate a significant computational efficiency gain when using a localised goal
functional. In this common situation, the influence of the solution on the quantity of
interest is restricted to its vicinity. Thus, the derived adaptive algorithm generates meshes
which are predominantly refined in a small part of the domain and additionally in areas
where the approximation quality is low due to reduced regularity of the solution. This
problem-dependent approach can lead to substantial computational savings in comparison
to uniformly refined MLMC methods which can make the adaptive MLMC approach
highly efficient.
The outline of the paper is as follows. In Section 2, the model problem and data
requirements are introduced. Moreover, the variational formulation and the discretisation
with the first order primal and mixed finite element method (FEM) is described. In
Section 3, we recall the classical Monte Carlo (MC) method and the more efficient
Multilevel Monte Carlo (MLMC) algorithm. Section 4 describes the notion of error
estimates for goal functionals. Guaranteed a posteriori lower and upper goal error bounds
for the path-wise deterministic problem based on the solution of some dual problem is
derived. Moreover, an approach to control the stochastic error with a prescribed probability
is presented. In Section 5, an algorithm for the problem-dependent construction of an
adapted hierarchy of meshes for MLMC is formulated and tested computationally. It is
based on the previously derived a posteriori error estimation of the deterministic error
of the goal which is then used for mesh refinement of the different discretisation levels.
Benchmark examples illustrate the efficiency of the proposed adaptive MLMC method.
In particular, we demonstrate numerically that the computed goal-oriented error bounds
are guaranteed and efficient. Moreover, we compare the computational complexity of
adaptivity for the classical and multi level MC.
The depicted experiments provide a clear justification for the proposed novel adaptive
MLMC algorithm which can lead to a significant reduction of computational complexity by
problem-dependent mesh hierarchies with guaranteed overall error control (in probability).

2. Problem Setting

Stochastic tools which enable to quantify uncertainty in subsurface flow simulations have
become increasingly popular. In general, the structural composition of the media in the
computational domain D ⊂ Rd (d = 1, 2, 3) is only known at a finite set of measurement
points. However, a complete spatial field is required as model input for computational
calculations which thus usually are subject to a significant degree of uncertainties. Recent
progress in modelling and simulation techniques allows for an incorporation of probabilistic
representations of model data.
The Darcy equation is the model equation for steady-state groundwater flow which is
used in this work. We assume some simply connected polygonal Lipschitz domain D with
given Dirichlet data uD on the closed Dirichlet boundary ΓD ⊆ ∂D of positive surface
measure, Neumann data uN on the Neumann boundary ΓN := ∂D \ ΓD, source function
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f and permeability coefficient κ. We then seek the solution u such that
− div(κ∇u) = f in D,

u = uD on ΓD,
∇u · n = uN on ΓN .

Assuming sufficiently smooth data with bounded coefficient
0 < κmin ≤ κ ≤ κmax <∞,

ellipticity of the operator results in existence and uniqueness of the weak solution u.
In the stochastic setting we assume a complete probability space (Ω,F ,P) and the
problem data consists of random fields κ, f, uN and uD. Thus, the solution u also is
a random field. More details will be discussed in Section 2.1. For this paper only the
coefficient κ is a random field and all other data is supposed to be deterministic. An
extensions to consider other data as random fields should be possible but would make the
analysis and implementation more complicated. In order to determine a random solution
of the problem, we employ the Monte-Carlo approach which gained some popularity due
to recent advances with regard to variance reduction techniques. The foundation of this
classical method is the sampling of realisations of the equation at hand, i.e., a set of
realisations of the data fields is drawn with which the equation is solved. Then, statistical
moments of the solution are evaluated based on the sample set of solutions.
In the application of groundwater flow, lognormal random fields for the permeability
tensor are popular since they exhibit properties observed in the real world such as high
local oscillations on large amplitudes. The logarithm of such a random field is Gaussian.
A Gaussian random field is completely defined by its first two moments, i.e., its mean κ
and some covariance function C : D2 → R.

2.1. Model problem and variational formulation. For the model problem
− div(κ(ω, x)∇u(ω, x)) = f(ω, x) in D

u(ω, x) = uD on ΓD,
∇u(ω, x) · n = uN on ΓN .

(2.1)

we seek the solution u which solves (2.1) P−a.s., i.e., for almost all ω ∈ Ω. The
differential operators are to be understood with respect to x ∈ D. For a fixed ω ∈ Ω, the
variational form of problem (2.1) with solution u ∈ H1

D(D) := {v ∈ H1(D) | v|∂D = uD}
reads
(2.2) bω(u(ω, ·), v) = Lω(v) for all v ∈ V
where V := H1

D(D) := {v ∈ H1(D) | v|∂D = 0 along ΓD} and

bω(u(ω, ·), v) :=
∫
D
κ(ω, x)∇u(x) · ∇v(x) dx,

Lω(v) :=
∫
D
f(ω, x)v(x) dx+

∫
ΓN

uN(ω, s)v(s) ds.

We assume that f(ω, ·) ∈ L2(D), uD(ω, ·) ∈ H1/2(D), 0 < κmin(ω) ≤ κ(ω, x) ≤
κmax(ω) <∞ for all x ∈ D and κ(ω, ·) ∈ L∞(D). We define
(2.3) κmin(ω) := min

x∈D
κ(ω, x) and κmax := max

x∈D
κ(ω, x).



5

Then, (2.2) has a unique solution due to the (extended) Lax-Milgram Lemma, see
e.g. [17, 12].

2.2. FEM discretisation and error. We assume a regular triangulation T of the
domain D which consists of triangles T ∈ T , faces E and nodes N . Any two triangles
are either disjoint or share a common face or up to two nodes. The set of faces along
the Dirichlet boundary is denoted by E(ΓD) := {E ∈ E |E ⊆ ΓD} and the set of faces
along the Neumann boundary is denoted by E(ΓN ) :=

{
E ∈ E |E ⊆ ΓN

}
and we assume

that every boundary face is in exactly one of these two sets. Unit normal vectors are
denoted by n and the diameter of an element T ∈ T is defined by hT := diam(T ). For
the discretisation of (2.2), we employ a conforming finite element space of piecewise
polynomial order k ≥ 1, i.e.,

Vh :=
{
v ∈ H1

D(D) | ∀T ∈ T v|T ∈ Pk(T )
}
⊂ H1

D(D)

where Pk(T ) is the space of polynomials of total degree k on T . With the nodal
interpolation uD,h(ω, ·) of the Dirichlet data uD(ω, ·) ∈ H1(D) ∩ H2(E(ΓD)), the
discrete weak formulation of problem (2.1) reads: Find uh(ω, ·) ∈ uD,h + Vh such that

bω(uh(ω, ·), vh(ω, ·)) = Lω(vh(ω, ·)) for all vh ∈ Vh.(2.4)

For the following sections, we define the Lp and energy (semi-)norms by

||v||Lp(D) :=
(∫

D
|v|p dx

)1/p
,

|||v|||ω := bω(v, v)1/2 =
(∫

D
κ(ω, ·)∇v · ∇v dx

)1/2
.

The introduction of the stress p := κ∇u in equation (2.1) formally leads to the mixed
problem

p = κ∇u & − div p = f

with appropriate boundary conditions. Note that Dirichlet boundary conditions transform
to Neumann conditions and vice versa in the mixed formulation. The definitions

aω((u, p) ,(µ, %)) :=
∫
D
u div(%) dx+

∫
D
κ−1p · % dx+

∫
D

div(p)µ dx,

Lω((µ, %)) :=
∫
ΓD

uD · % · n ds−
∫
D
fµ dx

give rise to the weak mixed formulation of the problem: Find (u, p) ∈ V × W :=
L2(D)×H(div, D) such that p · n = uN along ΓN and
(2.5) aω((u, p) ,(µ, %)) = Lω((µ, %)) for all (µ, %) ∈ V ×W P-a.s..

In a discrete setting, we seek (uRT, pRT) ∈ Vh ×Wh. Care has to be taken to choose
admissible spaces in accordance to the classic theory for mixed problems, c.f. [9]. Here,
we confine to a low-order discretisation with Raviart-Thomas elements defined on T ∈ T
by

RT0(T ) :=
{
v : T → Rd | v(x) = α + βx, α ∈ Rd, β ∈ R

}
.
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The space of broken piecewise RT0 finite element functions is defined by
RT−1(T ) :=

{
v ∈ L2(D)d | ∀T ∈ T : v|T ∈ RT0(T )

}
.

With this the lowest order Raviart-Thomas space Vh is given by
RT0(T ) := {v ∈ RT−1(T ) | ∀E ∈ E : v · nE is continuous across E} .

An admissible choice for the discrete mixed space then is
RT0(T )× P0(T ) =: Vh ×Wh ⊂ V ×W

where in particular div Vh = Wh holds. The Neumann boundary data enters through a
Fortin interpolation, such that uRT satisfies

∫
E uRT ·nEds =

∫
E uNds for all E ∈ E(ΓN ).

In this paper we focus on the computation of some quantity of interest defined by the
linear goal functional Q(v) :=

∫
D gv dx with g ∈ L2(D). This introduces the dual

problem of (2.2): Find z ∈ V such that
bω(v, z) = Q(v) for all v ∈ H1

0 (D).(2.6)

3. Multilevel Monte Carlo

This section recalls some well-known facts for the classical Monte Carlo (MC) and the
multilevel Monte Carlo (MLMC) methods to introduce our notation and setting for the
stochastic estimates, see also [7, 17, 32, 6] for further details.

3.1. Monte Carlo. One usually is interested in the evaluation of the expected value
of some goal functional Q(u) which here depends on the solution u of the model
problem (2.1). Since the exact solution u is in general not available, an approximate
solution uh leads to the approximation Q(uh). Now, in order to compute an estimate of
the quantity

E[Q] :=
∫
Ω

∫
D
g(u) dxdP

with respect to some goal function g, the standard MC estimator can be employed,
i.e., for a given set of samples ω(1), . . . , ω(N) ∈ Ω and the respective sample solutions
u(1), . . . , u(N) with u(i) := u(ωi) (and u(i)

h := uh(ωi)),

EMC
N [Q(u)] := N−1

N∑
i=1

Q
(
u(i)

)
.

This estimator is known to be convergent and unbiased. In particular, it holds
E
[
EMC
N [Q(uh)]

]
= E[Q(uh)] and Var

[
EMC
N [Q(uh)]

]
= N−1 Var[Q(uh)]

where the variance for some random variable X : Ω → R is defined as Var[X] :=
E[(X − E[X])2]. The expected root mean square error (RMSE) of this estimator can
be decomposed into two parts, namely

err
(
EMC
N [Q(uh)]

)2
:= E

[(
EMC
N [Q(uh)]− E[Q(u)]

)2
]

= N−1 Var[Q(uh)] +(E[Q(uh)−Q(u)])2 .(3.1)
The first term on the right-hand side corresponds to the stochastic error, the second
term is the expected value of the FEM discretisation error. Note that on the one hand
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the stochastic error can be controlled by the amount of samples drawn in the course
of the MC method. On the other hand, the FEM discretisation error depends on the
resolution of the underlying mesh with regard to the regularity of the pathwise solutions.

To achieve err
(
EMC
N [Q(uh)]

)
≤ ε with ε > 0, both terms can, e.g., be required to

be smaller than ε/2. Let Var[Q(uh)] be a constant which is independent of the mesh
size h. We then obtain N & ε−2 and h . ε1/β. Here the (deterministic) convergence
rate β in the sense of |E[Q(uh − u)]| . hβ depends on the regularity of the solution u,
see [12, 32] for a detailed analysis in this context.
Often the variance of the quantity has to be computed alongside the expected value. In
the MC Method, this can be easily done with the estimator

VarMC
N [Q(uh)] := EMC

N

[(
Q(uh)− EMC

N [Q(uh)]
)2
]

using the same samples as the estimator for the expectation. This comes at almost no
additional cost.

3.2. Multilevel Monte Carlo. For the MLMC algorithm, we assume a set of (increas-
ingly finer) triangulations T` of the domain D for levels ` = 0, . . . , L with the coarsest
mesh T0. Accordingly, the level mesh sizes are denoted by h` and the discrete solutions by
u`. To improve the efficiency of the classical MC algorithm, the key idea of the MLMC
estimator is to circumvent the costly evaluation of E[Q(u`)] exclusively on the finest
level ` = L. Instead, estimate corrections E[Y`] between the levels are utilised where

Y0 := Q(u0) and Y` := Q(u`)−Q(u`−1).

Note that, by linearity of the expectation,

E[Q(uL)] = E[Q(u0)] +
L∑
`=1

E[Q(u`)−Q(u`−1)] =
L∑
`=0

E[Y`] .

For the unbiased estimator EMC
N [Y`] of E[Y`] computed with N` samples on level `, the

ML estimator for Q(uh) reads

EML
N [Q(uL)] :=

L∑
`=0

EMC
N`

[Y`] =
L∑
`=0

 1
N`

N∑̀
i=i

Y`(ω(i))


with

EMC
N [Y0] := EMC

N [Q(u0)] and EMC
N [Y`] := 1

N`

L∑
`=1

(Q(u`)−Q(u`−1)) for ` ≥ 1.

It is crucial that the same sample ω(i) is used on the two consecutive levels in Y`(ω(i)) =
Q(u`(ω(i)))−Q(u`−1(ω(i))). Since all expectations E[Y`] are estimated independently,
it again holds

E
[
EML

N [Q(uh)]
]

= E[Q(uh)] and Var
[
EML

N [Q(uh)]
]

=
L∑
`=0

N−1
` Var[Y`] .
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The mean square error can be expanded as before, namely

err(EML
N [Q(uL)])2 := E

[(
EML

N [Q(uL)]− E[Q(u)]
)2
]

=
L∑
`=0

N−1
` Var[Y`] +(E[Q(uL)−Q(u)])2 .(3.2)

To bound err by ε, one can choose hL . ε1/β for the second term on the right-hand
side as above. Note that for the first term (which again should be bounded by ε/2) it
holds Var[Y`]→ 0 and N` → 1 for h→ 0 and ` > 0 (or `→∞) if Q(uh)→ Q(u) in
mean square.
The coarsest admissible h0 depends on the regularity of the solution u and thus on the
regularity of the covariance function of the coefficient and its correlation length λ.
To determine (optimal) values for the number of levels L and the sample numbers
{N`}L`=0, we assume a monotone error decay of the form

|E[Q(uL)−Q(u)]| ' hβ for h ≤ h∗.

Then, EMC
N [Y`] ' hβ forN` sufficiently large. Denote by C` := C(Y (i)

` ) the computational
cost of a single sample Y` evaluation on level `. The total MLMC cost is then given by

C(EML
N [Q(uL)]) =

L∑
`=0

N`C`.(3.3)

To minimise the variance of the MLMC estimator for a fixed computational cost, we set

N` '
√

Var[Y`] /C`(3.4)

with the constant of proportionality chosen such that the total variance is ε2/2. The
total cost on level ` is then proportional to

√
Var[Y`]C` and thus

C(EML
N [Q(uL)]) .

L∑
`=0

√
Var[Y`]C`.

In case that the data of the PDE is sufficiently smooth, the convergence for the error of
the expectation of the estimator can be shown, see [7] for detailed assumptions and the
proof, and [12] for generalisations of the cited result.

Lemma 3.1. For the error of the expectation of the MLMC-FE approximation uL ∈
L2(Ω;uD +H1

D(D)), it holds

∣∣∣∣∣∣E[u]− EML
N [uL]

∣∣∣∣∣∣
L2(Ω,uD+H1

D(D))
≤ C

(
hL +

L∑
`=1

h`N
−1/2
`

)(
||f ||L2(D) + ||uN ||H1/2(ΓN )

)
.

In contrast to the MC context, the variance cannot be computed alongside the expectation
when using the MLMC method. Nevertheless, with W0 = Q(u0)2 and W` = Q(u`)2 −
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Q(u`−1)2 it holds the decomposition of the variance

Var[Q(uL)] = E
[
Q(uL)2

]
− E[Q(uL)]2

=
L∑
`=0

E[W`]−
(

L∑
`=0

E[Y`]
)2

=
L∑
`=0

E[W`]−
L∑
`=0

E[Y`]2 − 2
L∑

`,k=0
`<k

E[Y`] E[Yk] .

In consequence, define the multilevel estimator for the variance as

VarML
N [Q(uL)] :=

L∑
`=0

EMC
N`

[W`]−
L∑
`=0

EMC
N`

[Y`]2 − 2
L∑

`,k=0
`<k

EMC
N`

[Y`] EMC
N`

[Yk] .

Yet again, the additional computational cost is negligible. All terms are already known
except for the W` (` = 0, . . . , L) which can be cheaply sampled alongside the Y`. The
additional memory needed for storage of these values is minimal. Similar decompositions
are possible for higher order central moments and require additional terms as it holds

E[(Q(uL)− E[Q(uL)])n] =
n∑
k=0

(
n

k

)
E
[
Q(uL)n−k

]
E[Q(uL)]k .

4. Estimation of goal functionals

The error in the computational approximation of the quantity of interest is given by
Q(u) − Q(uh). We subsequently assume a fixed ω ∈ Ω to derive guaranteed upper
and lower bounds η± for the deterministic error of this sample. In Section 4.2 these
deterministic bounds are used to compute probabilistic bounds. The following naming
convention is used for the bounds with α 6= 0

u± := αu± z

α
, p± = αp± q

α
,

where u and z are the solutions of Problem (2.4) and Problem (2.6), respectively, whereas
p and q are the corresponding mixed solutions. Due to the linearity and symmetry of the
solution operator, these are the solutions for the primal problem with the right-hand side
f± := αf + g/α. The same naming convention is used for their discrete counterparts.
The oscillations for a function f on some mesh T are defined by osc(f, T )2 := ∑

T∈T osc(f, T )2

where

osc(f, T ) := hT ||f − fT ||L2(T ) with fT := |T |−1
∫
T
f dx.

Analogously, the oscillations for a function uN along the Neumann boundary ΓN are
defined by osc(uN , E(ΓN))2 := ∑

E∈E(ΓN ) osc(uN , E)2 where

osc(uN , E) := h
1/2
E ||uN − (uN)E||L2(E) with (uN)E := |E|−1

∫
E
uN dx.

The functions fT and (uN)E(ΓN ) are defined piecewise for each T ∈ T and E ∈ E(ΓN)
by fT

∣∣∣T := fT and (uN)E(ΓN )
∣∣∣E := (uN)E, respectively.
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4.1. Guaranteed error bounds in the deterministic case. The derivation of guaran-
teed deterministic bounds follows the spirit of [11] and [26]. The residual Res ∈(H1

0 (D))∗
for some right-hand side f and the associated discrete solution uh with discrete stress
ph := κ∇uh reads, for all v ∈ V ,

Res(v) := bω(u− uh, v) =
∫
D
fv dx+

∫
ΓN

uNv ds−
∫
D
ph · ∇v dx.(4.1)

The naming conventions from above also apply for Res by substitution of u, uh and f ,
i.e., Res±(v) := bω

(
u± − u±h , v

)
. The dual norm of a residual Res is given by

|||Res|||∗ = sup
v∈V

|Res(v)|
|||v|||ω

.

Remark 4.1. For homogeneous Dirichlet data uD = 0, Hilbert space theory shows
the identity |||Res|||∗ = |||u− uh|||ω. In case of inhomogeneous Dirichlet boundary data
uD ∈ H1(D) ∩H2(E(ΓD)) along the Dirichlet boundary faces E(ΓD), it holds

|||u− uh|||2ω := |||Res|||2∗ + inf
w∈H1(D)

w=u−uh along ΓD

|||w|||2ω .

The special choice of w from [5] leads to the higher-order upper bound

0 ≤ inf
w∈H1(D)

w=u−uh along ΓD

|||w|||ω ≤ C
∣∣∣∣∣∣h3/2κmax,T∂

2(uD − uh)/∂s2
∣∣∣∣∣∣
L2(ΓD)

=: h.o.t.(uD).

The constant C only depends on the shape of the triangles but not on their size and
is set to 1 in the numerical experiments below. For triangulations into right isosceles
triangles [26] claims C ≤ 0.4980.

The point of departure for the derivation of upper and lower bounds for the quantity of
interest Q is the parallelogram identity

Q(u− uh) = 1
4
∣∣∣∣∣∣∣∣∣u+ − u+

h

∣∣∣∣∣∣∣∣∣2
∗
− 1

4
∣∣∣∣∣∣∣∣∣u− − u−h ∣∣∣∣∣∣∣∣∣2∗(4.2)

= 1
4
∣∣∣∣∣∣∣∣∣Res+

∣∣∣∣∣∣∣∣∣2
∗

+ inf
w+∈H1(D)

w+=u+−u+
h

along ΓD

∣∣∣∣∣∣∣∣∣w+
∣∣∣∣∣∣∣∣∣2
ω

− 1
4
∣∣∣∣∣∣∣∣∣Res−

∣∣∣∣∣∣∣∣∣2
∗
− inf

w−∈H1(D)
w−=u−−u−

h
along ΓD

∣∣∣∣∣∣∣∣∣w−∣∣∣∣∣∣∣∣∣2
ω
.

This follows from basic algebra, the Galerkin orthogonality of the discrete solutions, and
the preceding definitions, also see [2, 30, 11]. All following theorems apply to any of these
residuals Res ∈ {Res+,Res−}. In the sequel CP (T ) := sup{h−1

T ||v − vT ||L2(T ) | v ∈
H1(T ), |||v|||ω = 1} denotes the Poincaré constant on an element T ∈ T . The piecewise
constant CP (T ) is defined by CP (T )|T := CP (T ).

Remark 4.2. Since T is convex, [29, 8] show CP (T ) := 1/π. In 2D, [24] proved the
better constant CP (T ) := 1/j1,1 where j1,1 ≈ 3.8317 is the first positive root of the first
Bessel function J1(x) := 1

π

∫ π
0 cos(ϕ− x sinϕ) dϕ.
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Theorem 4.3. For every r with div r + fT = 0 and r · n = (uN)E(ΓN ) along ΓN , the
quantity

γ(r)2 :=
∑
T∈T

(∣∣∣∣∣∣κ−1/2(ph − r)
∣∣∣∣∣∣
L2(T )

+ CP (T )hTκ−1/2
min,T ||f − fT ||L2(T )

+ C(E)κ−1/2
min,T

∑
E∈E(ΓN )∩E(T )

||uN − (uN)E||L2(E)

)2

satisfies
|||Res|||∗ ≤ γ(r) .

The constants CP (T ) and C(E) depend only on the shape of the elements in T and
E(ΓN) but not on their size.

Proof. For any r ∈ H(div, D) with div r + fT = 0 and r · n = (uN )E(ΓN ) along ΓN , an
integration by parts yields, for any v ∈ H1

0 (D),

Res(v) =
∫
D

(f + div r) v dx+
∫
ΓN

(uN − r · n)v ds−
∫
D

(ph − r) · ∇v dx.

The last integral is bounded by

−
∫
D

(ph − r) · ∇v dx ≤
∣∣∣∣∣∣κ−1/2(ph − r)

∣∣∣∣∣∣
L2(D)

|||v|||ω .

The orthogonality
∫
D(f + div r) vT dx = 0 and elementwise Poincaré and Cauchy in-

equalities bound the first integral by∫
D

(f + div r) v dx =
∑
T∈T

∫
T
(f − fT )(v − vT ) dx

=
∑
T∈T

∫
T
κ
−1/2
min,T (f − fT )κ1/2

min,T (v − vT ) dx

≤
∑
T∈T

∣∣∣∣∣∣κ−1/2
min,T (f − fT )

∣∣∣∣∣∣
L2(T )

κ
1/2
min,T ||v − vT ||L2(T )

≤
∑
T∈T

∣∣∣∣∣∣κ−1/2
min,T (f − fT )

∣∣∣∣∣∣
L2(T )

CP (T )hT
∣∣∣∣∣∣κ1/2∇v

∣∣∣∣∣∣
L2(T )

.(4.3)

The estimation of the second integral is similar and starts with the orthogonality
∫
ΓN

(uN−
r · n)vE ds = 0 and a piecewise Cauchy inequality∫

ΓN

(uN − r · n)v ds =
∑

E∈E(ΓN )

∫
E

(uN − (uN)E)(v − vE) ds

≤
∑

E∈E(ΓN )

∣∣∣∣∣∣κ−1/2
min,TE

h
1/2
E (uN − (uN)E)

∣∣∣∣∣∣
L2(E)

h
−1/2
E

∣∣∣∣∣∣κ1/2
min,TE

(v − vE)
∣∣∣∣∣∣
L2(E)

.

A piecewise trace inequality for every E ∈ E(ΓN) and its neighbouring element TE ∈ T ,
s.t. E ⊂ ∂T shows

h
−1/2
E

∣∣∣∣∣∣κ1/2
min,TE

(v − vE)
∣∣∣∣∣∣
L2(E)

≤ C(E)
∣∣∣∣∣∣κ1/2∇(v − vE)

∣∣∣∣∣∣
L2(TE)

.

The constant C(E) is independent of hE and depends only on the shape of TE, see
e.g. [26] for details and an explicit upper bound of C(E). A Cauchy inequality in R|T |
concludes the proof. �
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Remark 4.4 (Lower Bounds). Lower bounds for |||Res|||∗ are given by any test function
v ∈ V ) by

|||Res|||∗ ≥ ξ(v) := |Res(v)| / |||v||| .(4.4)

Here we employ a design similar to [1, 10]. The original design incorporates the Crouzeix-
Raviart solution ûCR of the corresponding Poisson problem with right-hand side fT and
computes the piecewise quadratic function

v0 := ûCR − κ−1
T fT ψ/2 ∈ P2(T ),(4.5)

with ψ(x) := |x −mid(T )|2/2 − 1
|T |
∫
T |y −mid(T )|2 dy for x ∈ T ∈ T . According to

[1], κT∇v0 = p̂RT equals the solution p̂RT of the mixed problem with κ replaced by κT .
Furthermore, it holds for all T ∈ T

v0|T := argmin
v∈P2(T )

{
||κT∇v − p̂RT ||L2(T ) |

∫
T
v dx/ |T | = p̂RT (mid(T ))

}
.

This means that there are two ways to compute v0 which involve the computation of
either ûCR or p̂RT (which is different from pRT since κ is not piecewise constant in our
applications). We use (4.5) and compute some nearby vA ∈ P2(T ) ∩ C0(D) which
ensures vA = uh along ΓD. Eventually, the test function v = vA − uh ∈ V in (4.4) leads
to the lower bound

|||Res|||∗ ≥ ξ(vA − uh) = |Res(vA − uh)| / |||vA − uh||| .(4.6)

Proposition 4.5. For any r± with div r± + f±T = 0 and r · n = uN E(ΓN ) along ΓN ,
v± ∈ V and α 6= 0, it holds

η−
(
α, r+, r−, v+

)
≤ Q(u− uh) ≤ η+

(
α, r+, r−, v−

)
where η− and η+ are defined as

η− := 1
4 ξ

+
(
v+
)
− 1

4 γ
−
(
r−
)2
, η+ := −1

4 ξ
−
(
v−
)

+ 1
4 γ

+
(
r+
)2
.

Proof. Application of Theorem 4.3 and Remark 4.4 to Equation (4.2) gives the result.
Here, γ+ is the upper bound of

∣∣∣∣∣∣∣∣∣Res+
∣∣∣∣∣∣∣∣∣
∗
and γ− is the upper bound of

∣∣∣∣∣∣∣∣∣Res−
∣∣∣∣∣∣∣∣∣
∗
. �

In the numerical examples below, we employ r± = p±RT and v± = v±A−u±h from Remark 4.4.
A proper choice of α is paramount for the efficiency of the bounds. Similar to [11], it is
α =

∣∣∣∣∣∣κ−1/2(qh − qRT)
∣∣∣∣∣∣1/2

L2(D)
/
∣∣∣∣∣∣κ−1/2(ph − pRT)

∣∣∣∣∣∣1/2

L2(D)
optimal up to oscillations in input

data.

4.2. Error bounds in probability for the stochastic case. Let N0,1 denote the
standard normal distribution. With some stochastic variable X and its standard deviation
σX the central limit theorem by Lindeberg and Lévy (see eg. [16, 21]) states the limit of
the error in the Monte Carlo estimator as

σ−1
X N1/2

(
E[X]− EMC

N [X]
)
→ N0,1 for N →∞.
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The cumulative distribution function of N0,1 is Φ(x) := (2π)−1/2 ∫ x
−∞ exp(−t2/2) dt. It

thus holds the limit of the following probability for any s > 0
p := P

[(
E[X]− EMC

N [X]
)
< σXN

−1/2s
]
→ Φ(s) for N →∞.

For εX(N) := σXN
−1/2s, there exists some sequence(ε∗X(N, p))N∈N such that ε∗X(N, p)→

0 for N →∞ and
εX(N) = σXN

−1/2 Φ−1(p) + ε∗X(N, p).(4.7)
This equation can now be used to control the stochastic error of the Monte Carlo estimator
EMC
N [X].

In the following theorem we assume that the events

A± := (E
[
η±
]
− EMC

N

[
η±
]
) < Var

[
η±
]1/2

N−1/2 Φ−1
(
p±
)

+ ε∗η±(N, p±),

B := (E[Q(uh)]− EMC
N [Q(uh)]) < Var[Q(uh)]1/2 N−1/2 Φ−1(p∗) + ε∗Q(uh)(N, p∗)

hold with the prescribed probabilities P[A±] ≥ p± and P[B] ≥ p∗ (for a sufficiently large
number of samples such that ε∗η±(N, p±) and ε∗Q(uh)(N, p∗) are negligible).

Corollary 4.6. Let p, p∗, p−, p+ ∈ (0, 1) be some prescribed probabilities with p =
2p∗ + p+ + p− − 3. Then, the bounds

η	
(
p∗, p−, N

)
:= EMC

N

[
η−
]
−Var

[
η−
]1/2

N−1/2 Φ−1
(
p−
)
− ε∗η−(N, p−)

−Var[Q(uh)]1/2 N−1/2 Φ−1(p∗)− ε∗Q(uh)(N, p∗),

η⊕
(
p∗, p+, N

)
:= EMC

N

[
η+
]

+ Var
[
η+
]1/2

N−1/2 Φ−1
(
p+
)

+ ε∗η+(N, p+)

+ Var[Q(uh)]1/2 N−1/2 Φ−1(p∗) + ε∗Q(uh)(N, p∗)
satisfy

P
[
η	
(
p∗, p−, N

)
≤ E[Q(u)]− EMC

N [Q(uh)] ≤ η⊕
(
p∗, p+, N

)]
≥ p.

Proof. Proposition 4.5 leads to the inequality

E[Q(u)]− EMC
N [Q(uh)]

≤ E
[
η+
]

+ E[Q(uh)]− EMC
N [Q(uh)]

= EMC
N

[
η+
]

+ (E
[
η+
]
− EMC

N

[
η+
]
) + (E[Q(uh)]− EMC

N [Q(uh)]).
The terms in brackets define stochastic errors of the Monte Carlo estimators for the
stochastic variables X = η+ and X = Q(uh) and are related to the events A+ and B.
The conditional probability for both events A+ and B to hold can be estimated by

P
[
A+ ∩B

]
= P

[
A+

]
+ P[B]−P

[
A+ ∪B

]
≥ P

[
A+

]
+ P[B]− 1 ≥ p∗ + p+ − 1.

This yields the probabilistic upper bound
P
[
E[Q(u)]− EMC

N [Q(uh)] ≤ η⊕
(
p∗, p+, N

)]
≥ p∗ + p+ − 1.

The lower bound
P
[
η	
(
p∗, p−, N

)
≤ E[Q(u)]− EMC

N [Q(uh)]
]
≥ p∗ + p− − 1
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can be derived similarly as N0,1 is even and its cumulative distribution function is odd.
Another application of the formula for conditional probabilities (for the probability that
both bounds hold) yields the assertion and concludes the proof. �

In the case of the multilevel Monte Carlo approach consider the bounds on each level
η−` ≤ Q(u− u`) ≤ η+

` and consequently Z+
0 := η+

0 as well as Z±` := η±` − η±`−1 for
` = 1, . . . , L. Furthermore, the events

A±` := (E
[
Z±`

]
− EMC

N`

[
Z±`

]
) < Var

[
Z±`

]1/2
N
−1/2
` Φ−1

(
p±`
)

+ ε∗
Z±

`
(N`, p±` ),

B` := (E[Y`]− EMC
N`

[Y`]) < Var[Y`]1/2 N
−1/2
` Φ−1(p∗`) + ε∗Y`

(N`, p∗`)

on each level ` ∈ L are assumed to hold with the probabilities P
[
A±`

]
≥ p±` and

P[B`] ≥ p∗` .

Corollary 4.7. Let p ∈(0, 1), p∗,p−,p+ ∈(0, 1)L be some prescribed probabilities with
p = 2∑L

`=0 p∗` +∑L
`=0 p−` +∑L

`=0 p+
` − 4L− 3. Then, the bounds

η	ML

(
p∗,p−,N

)
:= EML

N

[
η−L
]
−

L∑
`=0

Var
[
Z−`

]1/2
N
−1/2
` Φ−1

(
p−`
)
−

L∑
`=0

ε∗
Z−

`
(N`, p−` )

−
L∑
`=0

Var[Y`]1/2 N
−1/2
` Φ−1(p∗`)−

L∑
`=0

ε∗Y`
(N`, p∗`),

η⊕ML

(
p∗,p+,N

)
:= EML

N

[
η+
L

]
+

L∑
`=0

Var
[
Z+
`

]1/2
N
−1/2
` Φ−1

(
p+
`

)
+

L∑
`=0

ε∗
Z+

`
(N`, p+

` )

+
L∑
`=0

Var[Y`]1/2 N
−1/2
` Φ−1(p∗`) +

L∑
`=0

ε∗Y`
(N`, p∗`)

satisfy

P
[
η	ML

(
p∗,p−,N

)
≤ E[Q(u)]− EML

N [Q(uL)] ≤ η⊕ML

(
p∗,p+,N

)]
≥ p.

Proof. Similarly to Corollary 4.6, Equation (4.7) and Proposition 4.5 and the notation of
Y` and Z+

` from above show the inequality

E[Q(u)]− EML
N [Q(uL)]

= E[Q(u)]−
L∑
`=0

EMC
N`

[Y`]

= E[Q(u)]− E[Q(uL)] +
L∑
`=0

(
E[Y`]− EMC

N`
[Y`]

)

≤ E
[
η+
L

]
+

L∑
`=0

(
E[Y`]− EMC

N`
[Y`]

)

=
L∑
`=0

EMC
N`

[
Z+
`

]
+

L∑
`=0

(
E
[
Z+
`

]
− EMC

N`

[
Z+
`

])
+

L∑
`=0

(
E[Y`]− EMC

N`
[Y`]

)
.
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The probability of the events A±` andB` from above allow to bound the probability that the
upper bound E[Q(u)] − EML

N [Q(uL)] ≤ η⊕ML(p∗,p+,N ) holds by P
[⋂L

`=0

(
A+
` ∩B`

)]
.

Commulative application of the formula for conditional probabilities that was already
used in Corollary 4.6 gives

P
[
E[Q(u)]− EML

N [Q(uL)] ≤ η⊕ML

(
p∗,p+,N

)]
≥

L∑
`=0

P
[
A+
` ∩B`

]
− L

≥
L∑
`=0

P
[
A+
`

]
+ P[B`]− 2L− 1

≥
L∑
`=0

p∗` + p+
` − 2L− 1.

The probability for the lower bound is derived analogously and another application of the
formula for conditional prababilities concludes the proof. �

Remark 4.8. The sharpest bounds in Corollary 4.6 and 4.7 are given for an optimal choice
of p∗, p−, p+ and p∗,p−,p+ respectively and thus it remains to find the minimum of the
bounds under the given constraints. This has to be done numerically (e.g. as in [22]), as
the inverse cumulative distribution function cannot be expressed in terms of elementary
functions. As the variances can differ greatly in size by orders of magnitude it might be
prudent in practical applications to choose the probabilities evenly in order to prevent
blow ups of errors in the approximation of the variances.

5. Experiments

This section describes our adaptive mesh refinement algorithm and reports on two
numerical experiments.

5.1. Adaptive mesh refinement. Quantities of interest with local support lead to slow
convergence rates with uniformly refined meshes. Furthermore, classic FEM adaptivity
might lead to suboptimal convergence or even no convergence at all in the goal quantity
despite improved convergence rates for the energy norm of uh in the primal problem [28].
In the following, we aim to adapt the approach for goal-driven adaptivity from [27] to
the stochastic context based on the Cauchy inequality

E[|Q(u− u`)|] = E[|bω(u− u`, z − z`)|] ≤ E[|||u− u`|||ω |||z − z`|||ω]

≤
(
E
[
|||u− u`|||2ω

]
E
[
|||z − z`|||2ω

])1/2
.(5.1)

The generation of mesh T`+1 now follows in the spirit of [27]. For each realisation u(ω)
of the solution on some mesh T`, classic FEM analysis gives local refinement indicators
for the primal and the dual problem,

ηloc
`,ω(T )2 := h2

T/κmax,T ||f ||2L2(T ) +
∑

E∈E(T )
hT/κmax,E ||[κ∇u` · nE]||2L2(E) ,

η̃loc
`,ω(T )2 := h2

T/κmax,T ||g||2L2(T ) +
∑

E∈E(T )
hT/κmax,E ||[κ∇z` · nE]||2L2(E) .
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Algorithm 1: Generation of MLMC mesh hierarchy
input : initial mesh T0, number of samples N , bulk criterion ϑ
output : hierarchy of meshes (T`)`=0,1,...
for ` = 0, 1, . . . do

solve (ui`)i=0,...,N and (zi`)i=0,...,N on T`
calculate

(
ηloc
`,i (T )

)
i=0,...,N ;T∈T

and
(
η̃loc
`,i (T )

)
i=0,...,N ;T∈T

approximate mean values
(
EMC
N

[
ηloc
` (T )

])
T∈T

and
(
EMC
N

[
η̃loc
` (T )

])
T∈T

markMu,` andMz,` by (5.2)
if |Mu,`| ≤ |Mz,`| then
T`+1 = refine(T`,Mu,`)

else
T`+1 = refine(T`,Mz,`)

end
end

The elementwise mean value of these indicators yields refinement indicators for the adaptive
mesh refinement algorithm as follows. A bulk criterion with parameter 0 < ϑ ≤ 1 chooses
a subsetMu,` ⊆ T` of smallest cardinality such that∑

T∈M
E
[
ηloc
`,ω(T )

]2
≥ ϑ

∑
T∈T

E
[
ηloc
`,ω(T )

]2
(5.2)

andMz,` ⊆ T` accordingly. That is, we get an error reduction property for each ω in
both the primal and the dual problem. The mean indicator represents a refinement,
that propagates optimal error reduction in mean for each problem. Finally, choose the
refinement, that is either primal or dual, that gives this property with the least amount
of marked elements. This will result in the desired error reduction in Equation (5.1).
For the experiments below we set ϑ := 0.5 and N := 100 in Algorithm 1. The refinement
of all elements in the chosen setM` leads to the output triangulation T`+1. Possible
further refinements of a closure step guarantee a shape-regular series of triangulations.
The algorithm for generating an appropriate hierarchy of meshes based on the goal-oriented
error indicators is shown in Algorithm 1.

5.2. On the choice of meshes for the MLMC method. Starting with a coarse
initial mesh, uniform refinement generates a sequence of meshes (T U` )L`=0. The adaptive
algorithm from Section 5.1, on the other side, generates an adaptively refined mesh
sequence (T Ak )Kk=0. Then, for every uniform mesh T U` , we select the coarsest adaptive
mesh T Ak`

that is finer than T U` , i.e.

k` := min
{
k ∈ N |

∣∣∣V (T U` )
∣∣∣ ≤ ∣∣∣V (T Ak )

∣∣∣}
This defines a subsequence of adaptively refined meshes (T Ak`

)L`=0 with a comparable rate
of growth in the number of degrees of freedom as for the uniform meshes.
In the numerical experiments a three level multilevel algorithm is used. Therefore, for each
experiment a tuple of three consecutive meshes is selected from each of these sequences.
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Subsequently, all possible tuples are used and identified through the number of degrees of
freedom on their finest mesh, that is the target mesh on which the solution is computed.

5.3. Notation and parameters. In all experiments, we set p = 0.98 and choose the
parameters p∗,p−,p+ as suggested in Remark 4.8. Furthermore, we always calculate
with N = 105 samples in the Monte Carlo method and with N0 = 105 samples on the
coarsest grid of the multi level Monte Carlo method. The computational cost C` for one
sample on level ` is assumed to be proportional to the number of degrees of freedom
ndof. In Equation (3.4) the equivalence constant is set to N0/

√
C0/Var[Y0] and the

variance on level ` is estimated with 100 samples. The unknown exact mean solutions
were approximated by a fine grid solution on an adaptively refined mesh with 106 degrees
of freedom and with 106 samples. The number of samples is assumed to be large enough
to neglect all the unknown ε∗ quantities in Corollaries 4.6 and 4.7.
The convergence history plots below show the goal error e := |E[Q(u)]− EML

N [Q(uh)] |
and the quantities from Corollary 4.6. The plots also contain the sum of the confidence
interval lengths in the upper and lower bounds, i.e.

c := η⊕ − EML
N

[
η+
]
− (η	 − EML

N

[
η−
]
)

and their limit (for h→ 0)

clim := 2 Var[Q(u)]1/2 N−1/2 Φ−1(p∗) .

Similarly, elim := Var[Q(u)]1/2 N−1/2 denotes the remaining stochastic part of (3.1) and
(3.2) for h → 0. As the number of samples stays constant, elim does not converge to
zero and therefore limits the accuracy for the determination of E[Q(u)]. From this point
of view it is clear that the convergence rate of e near elim breaks down.

5.4. First experiment. The first experiment concerns the slit domain Ω := (0, 1)2 \
([0.5, 1]× {0.5}) and employs the right-hand side data f ≡ 1, homogeneous Dirichlet
data and the goal weight function

g =

C
−1r−2 exp

(
−1

1−||x0−x||2r−2

)
if ||x0 − x|| ≤ r,

0 else
(5.3)

where

C =
∫
D
r−2 exp

(
−1

1− ||x0 − x||2 r−2

)
dx.(5.4)

For this experiment, a relatively large goal domain is chosen with radius r = 0.3 and
center x0 = (0.3, 0.3).
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ndof on L N0 N1 N2
149 10000 19817 5586
553 10000 2699 566
2129 10000 956 182
8353 10000 331 194
33089 10000 387 163

ndof on L N0 N1 N2
166 10000 17620 4257
601 10000 2315 380
2372 10000 647 220
9225 10000 394 104
34929 10000 211 100

Table 1. The number of samples per level in the MLMC algorithm with
uniform (left) and adaptive (right) meshes for the simulation of Section 5.4.

The random field κ is sampled from an expansion similar to that from [14]. The coefficients
of this expansion are defined with σ > 1 and 0 < A < 1/ζ(σ) by

am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2),
αm := Am−σ,

β1(m) := m− k(m)(k(m) + 1)/2,
β2(m) := k(m)− β1(m),

k(m) := b−1/2 +
√

1/4 + 2mc,

where ζ denotes the Riemann zeta function. Now, consider t uniformly distributed random
variables ϕm on the interval [0, 1] with t ∈ N and the minimum αmin = ∑t

m=0 αm of the
sum of the αm. Then, the random field κ is defined as

κ(x) := c

αmin

(
t∑

m=0
am(x)ϕm + αmin

)
+ ε.

The last term in the brackets as well as ε > 0 ensures the positivity of the random field
whereas c > 0 scales the output. In this example the parameters are set to A = 0.6,
σ = 2, t = 5, ε = 5 · 10−6 and c = 10−3. Figure 7 depicts an example realisation.
Figure 1 shows the convergence history of the exact goal error e for a Monte Carlo
simulation as defined in Section 5.3. The adaptive mesh refinement clearly leads to a
faster approach of the elim line and to the optimal quadratic convergence (with respect
to the average mesh width h := ndof−1/2) while the uniform mesh refinement yields only
a reduced convergence order. The upper and lower bounds are guaranteed and efficient.
In the case of adaptive mesh refinement the efficiency becomes slightly worse on the
finest mesh as the stochastic contribution c begins to dominate the bounds. In this case,
the accuracy of the goal error and the efficiency of the bounds can be increased by a
larger number of samples.
Figure 2 shows the convergence history of the quantities under investigation for a multi
level Monte Carlo simulation. There is no significant difference in the efficiency of the
guaranteed bounds compared to MC. Table 1 lists the number of samples for each level
of the MLMC algorithm. As expected, the number of samples on the finer grids ` = 1
and ` = 2 decreases with Y` → 0 for h→ 0. For the adaptively generated meshes this
decrease is even faster than for the uniform refined meshes.
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c (uniform)
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e (uniform)
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elim

Figure 1. Convergence history of the exact goal error, the difference
between upper bound and lower bound of the error estimator and the
estimates for the stochastic error and their limits as defined in Section 5.3
for the MC simulation of Section 5.4.

Figure 3 shows the convergence history were the mentioned quantities for the MLMC
and MC simulations are plotted against the computational costs defined by (3.3). The
MLMC method reaches the same error level with much less effort than the MC method.
In fact, the costs of MC to reach a certain accuracy are about 10 times higher than the
costs for MLMC to reach the same accuracy. Moreover, the adaptive multilevel algorithm
outperforms the uniform Monte Carlo method by two to three orders of magnitude.
In fact, the uniform convergence rates with respect to the computational cost impede
practical applications whereas the adaptive Algorithms render it practically computable.
In the latter case, multilevel Monte Carlo reduces the computational cost by an additional
order of magnitude.
Figure 8 depicts an adaptive mesh generated by the algorithm from Section 5.1.

5.5. Second experiment. The second experiment considers the problem from Sec-
tion 5.4 with a different random field κ. Real world examples usually contain high
amplitude variations at small scales. Lognormal random fields mimic this behaviour in
a suitable fashion. We consider the correlation function with scale σκ and correlation
length λκ,

C(x, y) := σ2
κ exp(− ||x− y||L2(D) /λ

2
κ).

The aim is to create a lognormal random field on some triangulation Tκ where the under-
lying normal random field is generated from the covariance matrix C = (C(zi, zj))Ni,j=1
for the vertices zi ∈ Nκ of Tκ. For a vector of N normally distributed random variables
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Figure 2. Convergence history of the exact goal error, the difference
between upper bound and lower bound of the error estimator and the
estimates for the stochastic error and their limits as defined in Section 5.3
for the MLMC of Section 5.4.
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e (uniform MLMC)

e (adaptive MLMC)

Figure 3. Comparison of computational costs vs. exact goal error and
error bounds for MC and MLMC simulations of Section 5.4.



21

ndof on L N0 N1 N2
149 10000 6049 3004
553 10000 4591 1529
2129 10000 2502 842
8353 10000 1431 389
33089 10000 858 230

ndof on L N0 N1 N2
153 10000 6453 2640
627 10000 3579 1186
2295 10000 2086 656
9306 10000 1529 396
36258 10000 722 170

Table 2. The number of samples per level in the MLMC algorithm with
uniform (left) and adaptive (right) meshes for the simulation of Section 5.5.

x and the Cholesky decomposition C = LLT , it holds Cov[Lx] = C. Thus, the P1(Tκ)
interpolation of κ(z1, . . . , zN ) := κ+ cκ exp(Lx) satisfies the desired properties with any
function κ > 0 on D. Here, we set σκ = 1, λκ = 0.3, cκ = 10−4 and κ = 10−3. Figure 7
depicts an example realisation.
Figure 4 shows the convergence history of the exact goal error e for a Monte Carlo
simulation as defined in Section 5.3. Also, for this rough stochastic field, the error for
adaptive mesh refinement shows the optimal convergence rate. Moreover, the upper and
lower goal error bounds are as efficient as in the first example.
The conclusions are similar in case of a multi level Monte Carlo simulation as depicted in
Figure 5. For the present random field κ, the numbers of samples N1 and N2 decrease
not as fast as in the first example (see Table 2).
The comparison of both simulations in terms of computational costs in Figure 3 again
renders the multi level Monte Carlo method superior to the standard Monte Carlo method
in both the uniform and the adaptive case. With this rough field, the adaptive Monte
Carlo method performs just as well as the uniform multilevel Monte Carlo method. The
combination of the multilevel method with the adaptive mesh generation leads to an error
reduction of one order of magnitude at one tenth of the computational cost compared to
uniform Monte Carlo.
Figure 8 depicts an adaptive mesh generated by the algorithm from Section 5.1. Both
meshes show refinement at the singularity in the center (mainly induced by refinement
indicators for the primal problem) and in the support of the goal functional (mainly
induced by refinement indicators for the dual problem).
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Figure 4. Convergence history of the exact goal error, the difference
between upper bound and lower bound of the error estimator and the
estimates for the stochastic error and their limits as defined in Section 5.3
for the MC simulation of Section 5.5.

102 103 104 105

ndof on L

10−2

10−1

100

101 η⊕ − η	 (uniform)

η⊕ − η	 (adaptive)

c (uniform)

c (adaptive)

e (uniform)

e (adaptive)

clim
elim

Figure 5. Convergence history of the exact goal error, the difference
between upper bound and lower bound of the error estimator and the
estimates for the stochastic error and their limits as defined in Section 5.3
for the MLMC of Section 5.5.
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Figure 6. Comparison of computational costs vs. exact goal error and
error bounds for MC and MLMC simulations of Section 5.5.
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Figure 7. Example realisation for the random field κ from Section 5.4
(left) and Section 5.5 (right).
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Figure 8. Adaptive mesh with approximately 5000 degrees of freedom
from Section 5.4 (left) and Section 5.5 (right).
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