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. Abstract

In this paper, we review several recent developments centering upon the appli-
cation of multiscale basis methods for the numerical solution of operator equations
with special emphasis on complexity questions. In particular, issues like precon-
ditioning, matrix compression, construction of special wavelet bases and adapted
error estimators are addressed.

1 Introduction

An obvious byproduct of the enormous increase of computing power is the likewise
tremendeous increase of greed for handling even more complex tasks. As a result nu-
" merical analysis has developed a number of new exciting facets. One of them is the
intertwinement of linear algebra tasks with analytical concepts and complexity.

The objective of this article is to highlight some of the recent developments in this regard.
The material presented here covers essentially the contents of the lecture given by the
first author as well as the topics addressed in the subsequent workshop on “Multiscale
Techniques” held on August 4, 1995, by all authors. Due to the survey nature of the
article the material covers joint work with others as well and the close collaboration with
S. Dahlke, R. Hochmuth, and S. Préssdorf deserves to be credited explicitely.

1.1 A General Mbdel Pi'oblem

A classical and central task in numerical simulation is the solution of systems of (even-
tually) linear equations. When these systems stem from discretizing some continuous
problem their size N may become very large involving several millions of unknowns. In
this range the amount of storage and the number of floating point operations needed to
solve such a problem are reasonable complexity measures. In fact, computability essen-
tially requires that both quantities remain proportional to the problem size N, i.e., the
number of unknowns. Of course, this can generally not be achieved for arbitrary linear
systems unless the system matrices are ‘essentially’ diagonal. The point is that for a wide
class of problems the matrices are essentially diagonal in a sense to be made more precise
‘below. In fact, at this point some analytical background of the problem comes into play.
In order to bring out the main ideas we will consider therefore the following (admittedly
oversimplified) model class of problems. Given two Hilbert spaces H;, Hs, let

A:Hy — Hy
be a linear operator which is boundedly invertible, i.e.,
|Aullg, ~ lully, , v € H. (1.1)

Here Hy, H, typically stand for Sobolev spaces on various types of domains or manifolds
and a ~ b will always mean that a and b can be bounded by constant multiples of each
other where the constants are independent of any parameters a and b may depend on.
Given f € H,, find u € H; such that

Au=f. ' (1.2)



In the course of the discussion we will add more information about A.

1.2 Discretization

To keep matters as simple as possible we will focus on Galerkin schemes for solving
(1.2) approximately. Denoting by (-,-) the inner product for some Hilbert space H,
H, C H C H,, we fix a finite dimensional space S, C H; and seek for u, € Sy such that

(Aun, vn) = (f, Uh), Up € Sh. v - (1.3)

Here we assume for simplicity that Hy = Hj, the dual of H; relative to the dual form
(-,+) on Hy x Hy. Fixing a basis for Sj then leads to a linear system of equations

Ahuh = fh. (14)

When one tries to minimize the complexity of solving (1.2) approximately one faces es-
sentially two issues:

e Solve (1.4) in (almost) linear time.

By this we mean that when ¢, is the discretization error achieved by the Galerkin scheme
and N = dim Sj, then the amount of storage and the number of floating point operations
needed to solve (1.4) with accuracy O(ey,) is O(Ny) for Ny — oo (or O(Nx(log Ni)%),
N, — 00). Such solvers will be referred to as asymptotically optimal (a.0.).

Note that asymptotic optimality refers only to the dzscrete problem. A completely differ-
ent but likewise important question is:

e Find (nearly) optimal discretizations.

The probably most practicable approach to this problem is to choose the trial spaces Sy
adaptively. This already suggests working with sequences of trial spaces Sh; = Sj, J € INo,
" where Sj;; is a refinement of S;, i.e., S; C S;j41. Thus, a key step is to study a whole
sequence S = {S;}jem, of trial spaces and exploit the interaction of different scales of
discretization to extract as much as possible (asymptotic) information about the object
one is trying to recover. This by itself is a familiar concept represented e.g. by multigrid
methods [H]. Here we will focus on a variant which has been strongly influenced and
partly initiated by recent developments in the theory and applications of wavelets. It will
be shown that such a suitably extended basis orientated approach allows one to handle
both of the above problems in a rather unified fashion for a wide range of problems.

The paper is organized as follows. In Section 2 we present several types of operator
equations and identify the principal difficulties obstructing the realization of a.o. schemes.
This covers scalar elliptic partial differential equations, saddle point problems arising e.g.
from Stokes’ equations as well as boundary integral equations.

In Section 3 we describe a general multiresolution framework for sequences of trial spaces
and associated multiscale bases. The main issues in this context are inverse and approxi-
mation properties resulting in norm equivalences. Furthermore, we sketch some principles
of constructing multiscale bases with these properties.



Section 4 is devoted to applying these concepts to the problem types introduced in Section
2. In particular, we will indicate in which way the analysis of the respective problem
class specifies particular demands on the corresponding tools in terms of appropriate
multiscale bases. A brief discussion of the realization of such demands and corresponding
construction principles is contained in Section 5. This concerns e.g. the construction of
pairs of trial spaces for pressure and velocity on bounded domains in IR* which satisfy the
Lady$enskaja-Babuska-Brezzi condition as well as Riesz bases defined on closed manifolds
satisfying certain regularity and moment conditions.

Finally, in Section 6 we address adaptive strategies based on reliable and efficient a-
posteriori local error estimates. In principle, these concepts apply to elliptic problems
both for differential and integral operators.

2 More about the Scope of Problems

In this section we describe several types of model problems and their intrinsic features
hampering an efficient numerical solution.

(I) Scalar elliptic problems

Suppose that a(-,-) : H™ x H™ — IR is a bilinear symmetric form such that
: ) o
ab) | e

'Here H™ stands for a Sobolev space over some bounded domain Q C RR", e.g. H™(Q) or
H7(Q). Given f € (H™)* (the adjoint of H™), find u € HT such that

a(u,v) = (f,v)q, ve€H", o (2.2)
- where (u,v)q = [u(z)v(z)dz. Here the operator A : H™ — (H")* is defined by

Q
(Au,v)e = a(u,v). Typical examples are A = —A = -3 77 a%zg, A = —div(A grad)

where A = A(z). is a positive definite matrix, and Hy = Hi(Q), H, = H™1(Q), or
A= —A+AI,A\>0,onQand Hy = H\(Q), Hy = H\(Q)*.

When S;, is a trial space spanned by compactly supported functions such that the diam-
eter of their supports is O(h) the matrix Ay in (1.4) is symmetric positive definite and
sparse, i.e., when refining the meshsize the number of nonzero entries in each row remains
uniformly bounded. Thus the storage needed for the matrix and right hand side is O(N).
However, when the spatial domain Q has dimension larger than one a direct method for
solving (1.4) would cause expanding the storage by an additional positive power of N, due
to fill in. On the other hand, the speed of convergence of an iterative method for symmet-
ric positive definite problems depends on the spectral condition number of the matrix. A
necessary condition for an a.o. scheme is that any fixed error reduction requires a finite
number of iterations independent of the problem size Nj.. Unfortunately, in the present
situation it is well known that

cond(Ar) = [[Aall |45 ~ B2 (2.3)



Thus the central objective in this case is to precondition (1.4), i.e., to find a positive
‘definite matrix Cj such that the apphcatlon of Chc, ¢ € R, requlres only O(N4)

operations and ,
cond(CrA}) = cond(CY2A,CY?) ~ 1. (2.4)

(IT) Saddle point problems

Consider the following simplified model for an instationary viscous incompressible fluid
flow '
& _pyAu+gradp = f inQx(0,7)
dive = 0 inQx(0,T)
u(,0) = u inQ | (2.5)
u = 0 ondx(0,T)
[p(z,t)dr = 0 forte (0,T)
Q

known as Stokes equation which may be viewed as the linearized version of the Navier-
Stokes equations for small velocities u € Hi (Q)", n = 2, 3. Here p stands for the pressure.
Defining

n

a(u, ’U) = Z(grad Ui,y grad ’Ui)gz, b(ua Q) = (le u, Q)Qa

i=1

the weak formulation of (2.5) for the stationary case reads: find (u,p) € H, 1(Q) X
(L2(€2)/IR) such that

va(u, 'U) + b(’v,p) = (f) 'U)Q, vE H&(Q)na

buq) = O, g€ Ly(Q)/R. - (26)

Choosing finite dimensional trial spaces Vi, C H3 ()", My, C Ly(Q) /R (2-6) gives rise to
the linear system of equations

(a5 ) (m)=(%) | 27)

Here A} is positive definite and symmetric and corresponds to the matrices arising in (I).
The whole system (2.7) is indefinite though and it is well-known that the stable solvability
of (2.7) is equivalent to the validity of the Ladysenskaja-Babuska-Brezzi condition (LBB)
[BF, GR]

inf sup b(v.9)

9€EMp yev;, “U“H&(Q)" ”qHLz(Q)'/R

>8>0, h—0. (2.8)

This condition seriously constrains the choice of trial spaces. For n = 3 the list of known
admissible pairs of finite element trial spaces is significantly shorter than that for n = 2.
Thus the first issue is the construction of admissible discretizations. Next, given admis-
sible pairs of trial spaces the indefinite system (2.7) has to be solved efficiently. Several
approaches have been proposed in the literature, e.g. [BP, BWY]. Roughly speaking,
(2.7) can be efficiently solved iteratively whenever good preconditioners for Ay and for
the Schur complement Ky := BhA,ler;f are available. As mentioned above any good pre-
conditioner from (I) works for Ay, here as well. Moreover, in the stationary case Kj is a



boundedly invertible operator on Ly(Q2)/IR which is therefore well conditioned. However,
when using a fully implicit scheme for the time dependent case, the condition number of
K, deteriorates when vAt¢ becomes small. It will be seen that both issues constructing
admissible discretizations and preconditioning can be handled in a unified fashion by a
multiscale basis approach.

" Similar saddle point problems arise through mixed formdlationskof the second order prdb—
lems from (I) where, in particular, the same form b(u, ¢) = (div u, ¢)q appears motivating
the study of divergence free basis functions [DKU1, U].

(III) Boundary integral equations

The computation of electrostatic fields or scattering from obstacles are typical problems
where a boundary value problem is to be solved on the exterior of some bounded domain.
For example, consider

AU=0 on R*\Q, U=f on T'=0Q. (2.9)

‘There are several ways of transforming (2.9) into an integral equation over I'. For instance,
the so-called indirect method yields the equivalent operator equation

Au=f
where A =1+ 2K and when Q is a polyhedral domain
| 1 1 [n¥(z—
(Ku)e) = (3 -0 )+ = [EDuy)as, (2.10)
2 am) Jz -yl

- Here 0qo(z) denotes the interior angle between adjacent facets when z lies on an edge and
n, is the exterior normal of the surface at y € I'.

Alternatively, the direct method yields

Au=Vu= (%I%—K) f
where ) |
(Vu)(z) = / ﬁmdsy. (2.11)
r

K and V are called double and single layer potential operators, respectively. Thus in both
cases we observe the following principal advantage:

e A problem defined on an unbounded 3-dimensional domain is reduced to a problem
on a 2-dimensional bounded domain.

An obvious disadvantage is:

e Discretization of (2.10) and (2.11) based on collocation or Galerkin schemes gives
rise to densely populated matrices.



Both formulations have different specific advantages and disadvantages. To explain this
we need the notion of Sobolev spaces H*(I') defined on I'. Depending on the regularity
of the surface they are for a certain range of exponents naturally defined as trace spaces
(see [A, G] for details). For smooth boundaries I', K is known to be a pseudodifferential
operator of order 7 = 0. The order » may be defined as the degree of homogeneity of the
symbol of the operator. Here it means that Lo(I") is mapped boundedly invertible into
itself by K. ’

By contrast V is known to have order 7 = —1. The single layer potential formulation is
- better suited for handling different types of boundary conditions. For coupling boundary
element and finite element techniques, the fact r # 0 has a similar effect as in the case
of differential operators: the matrices A get increasingly ill conditioned when dim Sy
grows.

In summary, one faces two types of obstructions:

e The complexity of conventional methods for such problems is at least
O((dim Sy)?) due to the densely populated matrices.

e When dealing with operators of order r # 0 the efficient solution of the systems of
equation is in addition hampered by growing condition numbers.

Our goal is to describe some general concepts providing a unified platform for dealing
with the above mentioned obstructions, namely preconditioning, construction of good
discretizations (e.g. pairs of trial spaces satisfying (LBB) in (II) or wavelets on T in (III)),
sparsification of densely populated matrices, analysing stability and convergence, and
adaptive construction of trial spaces for a wide range of cases.

3 Multiscale Bases and Wavelets

Wavelets offer a very promising potential for a number of applications such as signal /image
analysis and compression or data smoothing as well as for the treatment of operator equa-
tions. At least that is true when dealing with specific domains like JR" or the torus. This
may change dramatically when dealing with more complex domain geometries which usu-
ally exclude the application of wavelets per se in comparison with other modern methods.
Nevertheless, one can extract a number of promising features which may still work well
when put in a suitably general framework. To identify relevant properties which are not
restricted to the convenient affinely invariant setting on all of IR"™ or to the periodized
case, we will proceed now working first with a general framework of multiresolution in
- some Hilbert space H which may represent e.g. Ly(IR"), Ly(T'), H§(2), H*(T') etc.

3.1 Multiresolution in H

S will always denote a sequence of nested closed subspaces S; of H whose union is dense
in H, i.e.,

SOC51C...CH, ClOSH USJ) = H. (31)



The spaces S; will have the form
Sj = S(@J) = closy (span(éj)) , (I)jk= {(,Dj’k ke Aj}, (3.2)

where A; is an (at most countable) index set, and the ®; are stable bases in the sense
that (uniformly in j)

- B
”C“lz(Aj) ~ “(I'J CHH : : (3'3)
2\ 1/2
Here HCHQ(AJ-) = (ZkeAj |cx] ) and
&Tc:= Z CkPj .k (3.4)
keA;

is a convenient short hand notation treating the basis ®; formally as a vector whose
components are the basis functions. Due to the assumed stability the order of summation
in (3.4) when A, is infinite does not matter and every element in S(®;) has the form (3.4)
for a unique c € £2(4;).

In the spirit of wavelets updating a current approximation v; € S; can be facilitated by
identifying a “suitable” complement W; = S(¥;) of S(®;) in S(®;41),

S(®541) = 5(8;) @ S(¥;), (3.5)

where ¥; = {#; : k € V;} may be viewed as “wavelets”. Of course the bases ¥; should
be uniformly stable as well by which we mean that

H\IJTdHH ~ ”d“ez(vj) : | (3.6)

holds uniformly in j. Clearly, there is a continuum of possible complements and it has to
~ be made precise what “suitable” means in this context.

3.2 Multiscale Transformations

A first hint in this regard can be obtained as follows. Thinking of the ¢;, for instance,
as the piecewise linear Courant hat functions relative to some triangulation, it is clear
that the coefficients c¢; in (3.4) reflect “geometric” information on displacements while the
coefficients d in \Il;fd of the j-th update have the character of differences. Thus, writing

S(®;) = () GBS(‘I&

£=0

any v; € S(®,) can be written in single scale representation as

v = (I);FC ) (3f7)
or in multiscale form as
j-1
v; = Z ‘If%-,dl (38)
£=-1



where we set for convenience ¥_; := &,. Trying to exploit the advantages of both
representations brings in the transformation

T;:(d_y,...,d;1)—~c | (3.9)

that takes one set of expansion coeficients into the other one. For this to be of any use
the T; should be

o efficient, i.e., the application of T; should require only the order of #A; operations,

e well conditioned, i.e., ,
I | 71| = 0(1), j € No. (3.10)

Efficiency essentially requires all basis functions in ®; and ¥; to have small compact
support, a point to be addressed later on again in connection with various specifications.

-(3.10) entails some deeper analytic consequences to be addressed next.

3.3 Riesz Bases and Biorthogonality

One can show [D1, D2] that (3.10) holds if and only if the multiscale basis
U= U g (3.11)

is a Riesz basis of H and if there exists another bzorthogonal Riesz basis \If = {Pix
(,k) e VY, V={(,k) : ke V,,j=-1,0,1,2,.. .}, ie,

(i) = B, GoR), (LK) €9, (3.12)

where (-, ) is the scalar product in H, and every v € H has a unique expansion

v= Z <v,'l,5j,k>¢j,k= > (v, hik) Uik (3.13)

(5.k)eV (4,k)ev

such that

ol ~ 32 |(v, w,,>| ~ 3 Il (3.14)

(7.k)eV (4,k)eV

Of course, when ¥ is an orthonormal basis one has ¥ = ¥ and the transformations T}
are orthogonal so that (3.10) is trivially valid. But orthonormal bases are usually hard to
construct. Orthonormality tends to interfere with locality and we will encounter examples
below where orthogonal complements are not the best choice. So it is important to make
use of the flexibility offered by biorthogonality.

However, while biorthogonality appears to be necessary the question arises whether it is
- also sufficient for (3.14). It turns out that, in general, this is not the case. Nevertheless, it
is important to note that additional properties needed to ensure (3.14) are not properties



of the complements and their bases but rather properties of the multiresolution sequence
S and of the dual sequence S = {5;} e, where

S;=8 ( O \Ih) ‘(3.15)

which can be phrased as approximation and regularity properties. To describe this, sup-
pose w(-,t) : H = H, t > 0, is a uniformly bounded family of subadditive functionals
such that lim; o w(v, t) =0, v € H. We call such w a modulus. Moreover, note that the
pair of Riesz bases induces canonical truncation operators

Qjv = ]z_i Z <U,%Ze,k> Yok

=-1 kevt

which, by (3.12) and (3.14) are uniformly bounded‘projectors with ranges S; satisfying
Q=@ £Z7. (3.16)

Finally, note that uniform stability of the complement bases ¥; means that

1(@ser = @iJolly ~ 3 | (o[ (3.17)

kev;

so that (3.14) is equivalent to

1/2
[0l ~ (Z (@) — Q- 1)U||H> , vEH, | (3.18)
where @J_; := 0. |

Theorem 3.1 [D2] Suppose @ = {Q;}iem, is a sequence of uniformly H-bounded pro-
jectors with ranges S = {S;}jem, satisfying (3.16). Let S = {5;};em, be the ranges of
the adjoints Q* = {Q}}jem,. If there exists a modulus w(-,t) on H such that

nelgf lv—vllg Sw®,277), veH, (3.19)

J

and
w(vj’t) 5 (min{l’th})’y “Uj“H: v; € V.’?'v (320)

for somey >0 and V; = S;, V; = 5;, then (3.18) holds.

Here a < b (equivalent to b 2 a) means that a can be bounded by a constant multiple of
b independent of parameters a,b may depend on.

A few points are worth mentioning. Typical proofs of the Riesz basis property make
essential use of Fourier techniques and are thus restricted to shift-invariant multiresolution
on the whole Euclidian space or on the torus. Criteria of the above type aim at replacing



Fourier techniques, thereby offering tools for deahng with bounded domains or more
general manifolds.

Secondly, in practice one usually has direct access only to the trial spaces S; = S(®;)
while a suitable biorthogonal basis ¥ is yet to be constructed. The above formulation
suggests a strategy to do that. As a first step, given the {®;}, construct biorthogonal
collections éj for each j such that the corresponding projectors

Q=" (v, Bik) Pi ' (3.21)

keA;

are uniformly bounded and satisfy (3.16) which is easily seen to be equivalent to the ®;
being refinable (see below for details). In a second step one has to identify for each j
stable bases ¥; for the complements

Wj = (Qjsr1 — Q1)Sj41- (3.22)
We will comment later on ways to that as well.

Before doing that we specialize the above results to the characterization of Sobolev spaces.

3.4 Norm Equivalences for Sobolev Spaces

Let us denote by H®, s € IR, a scale of Sobolev spaces either on a bounded domain or on
a sufficiently smooth manifold, where for s < 0 H® is to be understood as (H™*)*.

Specializing the arguments employed in the proof of T heorem 3.1 yields the following
result [DZ}

Theorem 3.2 Suppose that _
inf [v=v,ll;, S2 ollpe, vEH, (323)

J

for s < d when V; = S; and s < d when V; = S;. Moreover, assume that -
il e S 27 Mlvsllz,» w5 €V, (3.24)

for 0 < s <y <d whenV; =S; and’0<s_<_'7_<_c2when1/}=§j. Then

- 1/2
o]l e ~ (Z 227 11(Q; — Q:i—l)””iz) (3.25)

j=0

holds for s € (—7,7).

Furthermore, one can show the validity of the one sided norm estimates [Sch]

1/2 i
“’U”H’ S (222” || QJ 1)v||L2) ) S € (—‘dar)/)a (326)

oo . 1/2
lollg 2 ;(2223" 1(Qj —Qj—l)vlliz) , s € (=%, d).

=0

10



One way to read Theorem 3.2 is that the mapping
Agv =) 29(Q; — Qj1)v (3.27)
§=0 ~

acts like a Bessel potential operator as a shift in the scale H?, i.e
[Asvll e ~ [Vl e, s+t € (=F,7). (3.28)

Similar constructive characterizations can be derived for a wide class of Besov-type spaces
[D3]. Such characterizations may be viewed as an attempt to replace Fourier techniques
by a more flexible tool like multiresolution to facilitate a unified treatment of various cases
with possibly different geometrical background.

Relation (3.28) is a key to the following observations.

4 Preconditioning

4.1 A General Fact

Let H* be as above. The common ground for the problems (I), (II), (III) may be extracted
as follows Suppose that A : H* — H°™" is boundedly invertible, i.e.,

| Av]

wo-r ~ |vllge s v e H. (4.1)

Moreover, suppose that S, S, Q are as above. Note that the Galerkin conditions (1.3)
are equivalent to determining u; € S; such that

QjAu; = Q3f. | | (4.2)
The scheme is said to be (s, s — r)-stable if
Q54 | v ~ N0sllgze, v € S (4.3)

Note that when A is selfadjoint, s = 7, r = 27, and (4.3) is equivalent to (2.1).

- To see how (4.3) relates to the class of problems described in (III) it is convenient to employ
the framework of pseudo-differential operators. Classmal pseudo-differential operators of
class ¥ (/R") on IR™ have the form

(Au)(z) = / / TV o(z Hu(y)dyde, ue CO(R™),
R™ R" '
where the symbol o € C’°°(1R" x IR™) belongs to the class ST o(/R" x R™) and satisfies, in

particular,
{afaga 2,8)| < cap(l+ €)1, z,6€ R, o,f€ Z%.

Corresponding classes ¥ (T") of operators on other domains or manifolds can be defined
by requiring that their transports relative to an atlas and partition of unity belong to
T (R™). It is known that if the following conditions (A1) hold,

11



o Ais strongly elliptic, i.e., the Garding inequality
Re 00(337 5) Z l£|r7 € € Rn)
holds uniformly for the principal parts oy of the symbols of all transports of A,

e A is injective,

then (4.1) is valid for all s € IR (see e.g. [DPS]). It is known that for smooth surfaces T’
in (III) the single and double layer potential opera.tors are pseudo-differential operators
in UO)(I), r = —1,0, respectively.

It follows from [HW] that under the assumptions (A1) the Galerkin scheme is (7, —7)-
stable where we always use 27 = r. Moreover, one can then show under the previous
assumptions on S that the scheme is (s, s — 27)-stable for 2r — d < s < 7 and that the
‘deviation of the solution u; of (4.2) from the solution u of (1.2) can be estimated by

e (4.4)

where —d +27 <t <7, t<s, 7<s <d, giving (9(2‘5(24“7)) as optimal convergence
rate.

I = gl e S 277

[ad

To solve (4.2) we will assume in the following that

- T r
v > —5, Y >5§. ‘ (45)

Denoting by ¥/ the multiscale bases U_L, Wy of ;, let

i-1

A\IH' = (<A¢j',k'7¢j,k>)(j’k),(jl,kl)evj y vj - U ({.7} X vj) :

=-1

be the stiffness matrix of A relative to ¥J.

Theorem 4.1 [DPS] Let D, be the diagonal matriz with entries
2Sunyery,  (6K), (€, k) € Vi

Then 4
cond (D_;/2AgD_,2) = O(1), j— o0, (4.6)

where cond(B) = || B|| HB Y| and ||-|| is the spectral norm.

The proof is an immediate application of the above norm equivalences. In fact, puttmg
= A, /pv; one has by (4.5), (4.3) and (3.28) '

lwill o ~ [|Ar/2vi]] go ~ llus] |

540 s ~ A2 @ QA rtslpe
Where we have used that A]! = A_,. It is not hard to verify that the matrixfepresentation
of Bj := A*_,Q5AQ;A_, /s relative to the basis U7 is D_,/2Ag;D_r/5. Since (4.7) says

that the B; are uniformly bounded and boundedly invertible operators on H 0 the assertlon
follows. :

12
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A few comments on the above results are in order:

e Neither need the operators B; = A* /2Q;AQJ-A_, /2 be symmetric nor is the order
of A to be nonnegative.

e When A is a partial differential operator and the bases ®; consist of compactly
supported functions the matrices As, would be sparse while the Ag; would generally
be more densely populated because of the basis functions from low levels. In this
case the original goal of designing a.o. schemes can not be met when computing and
storing Ag;. Noting that

Aqu‘ = T;Aq>].Tj (48)

where T; is the multiscale transformation from (3.9) one only has to store Asg,.
Consequently, one can apply Ay; by successively applying T;, Ag; and T} which
is a process of order dim S; occupying only storage of that same order. If A has
positive order and is self-adjoint it should be noted that closely related alternative
preconditioners referred to as BPX preconditioners or multilevel Schwarz schemes
[BPX, DK, O1, 02, GO] are available. These techniques do not require explicit
knowledge of the complement bases ¥;. '

Moreover, when dealing with adaptively refined finite element spaces, it can be
shown that although direct estimates of the form (3.19) or (3.23) are no longer
available, the BPX scheme still gives rise to uniformly bounded condition numbers
[DK].

Remark 4.1 In this case, either of these techniques as well as any multigrid scheme
is asymptotically optimal, which can be seen as follows. Choosing an initial level jy,
let €, denote the discretization error realized by the Galerkin approzimation uj,
relative to the energy norm. By Theorem 4.1, a fized finite number of conjugate
gradient iterations suffices to determine the solution of (4.2) within a tolerance of
gj,- Since Sj, C Sj,+1 one can take that solution as a starting point for solving
(4.2) in Sjo+1. €jo+1/€jo 15 @ constant independent of jo and again a finite number of
conjugate gradient steps are needed to reduce the error to €;,41. By the above remarks
each conjugate gradient step takes O(dim S;) operations and dim S; typically grows
ezponentially so that the whole computational work remains proportional to that
required by the finite number of steps on the finest level which, in turn, remains
proportional to dim S; independently of j.

e Even for certain nonsymmetric operators, e.g. when the symmetry is destroyed by
a lower order term, schemes like GMRES exhibit the same performance.

e When A has a global Schwartz kernel the situation changes since A, is densely
populated and each iteration requires the order of (dim S;)? operations while direct
solvers are even more expensive. -However, Ag; turns out to be much closer to a
sparse matrix as explained in the following section.
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4.2 Matrix Compression

For univariate periodic problems involving a zero order operator it was observed in [BCR)
that the entries of Ay; exhibit a certain decay. This turns out to remain true under much
more general circumstances.

To Cescribe the mechanism one has to be a bit more specific about the setting. An impor-
tant class of applications involving operators with global kernels are boundary integral
equations as described in example (III). In this case the domain I' is the boundary of
some domain Q C IR which will be assumed here to be parametrically represented as a
union of closed smooth patches

N
=117 (4.9)
. =1 ;
where meas(I'; N T'y) = 0, ¢ # £, and any two adjacent patches join at least continuously
so that I' is a Lipschitz boundary. Thus, for each ¢ there exists a smooth mapping

k; : O — Ty, where O = [0,1]? is the reference domain (see [DS1] for more details).
Practical schemes realizing surfaces of this form for essentially arbitrary topology can be

found in [HM, Re].

The crucial condition on the multiscale basis functions %; defined on I' can be formulated
now as follows. Denote by II4 the space of bivariate polynomials of order at most d* (i-e.,
degree d* — 1). ¥ is said to have patch-wise vanishing moments of order d* if

/P(m)(«ﬁj,k & sellfeklas e s P i o ey T (4.10)

=

Of course, analogous conditions can be formulated for higher dimensional domains or
manifolds. We have chosen the special version (4.10) here for later reference.

The relevance of conditions of type (4.10) becomes clear when noting that for A € (1)
and any atlas {I'y, Rm ) _; with partition of unity {&mn € C°(Tm), m = 1,...,N} the
Schwartz kernels K, »+ of the transported operators

Am,m’ = ".":'1."1 © gmAfm O R
satisfy
0308 Kot (5,9)] < cap o=y @) gy e R, z#y.  (41D)
Therefore, if dist (2, Qjx) > 0,

(AYj e, Yigdp, = / (A 1) (2)5(x) ds,

T

- / (At ) (ki (y)) Wi (ki ()i () dy

[m}

- // Z K (ki(y), ke(2)) e w (ke(2)) 5k (ki (y)) w3 (y) Ky (2) dy dz

o o leyk/ﬁrt#@
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where ;1 := supp Y-
Defining
9(y, 2) := K (ki(y), 5e(2)) 5 (y) sy (2)
and writing
9(y,2) = P(y,2) + R(y,2), R:=g-P,

where for each z P(y, z) is the Taylor polynomial of g(-,2) in y of order d* around gy,
(4.10) says that

/ / 99, 2) (s 0 8:) (0) dy | Wy e 0 2) (2) d

= [ [ R02) Gix o) @) G 0 ) ( gz

o

Likewise expanding R(y, -) around 2o € Q;/ 4, using (4.10) relative to z and taking (4.11)
into account yields for the entries of the stiffness matrix Ags the estimate

9—(+i)(1+d")

Aw" 5% ,S 5
Ay i) (dist (25, Ryrpr)) 2772

(4.12)

[DPS, PS, Sch] provided that dist (Qj, Qj &) > max{c2~7 ,c2'j'}.. It is clear that the
order d* of moment conditions determines the decay of these entries. Here and below J
will denote the finest discretization level.

To avoid logarithmic terms in the complexity analysis, we need an even more subtle
estimate. Indeed, the above -analysis requires regularity of the kernel on (;x N T;) x
(9 NTY). It is not hard to see that there are O(J227) matrix coefficients which cannot
be estimated by the above procedure. To deal with these entries let us denote by

Q‘(Sj,’k,) := sing supp ¥; x

the singular support of 1; y. For the wavelets introduced in the subsequent sections, the
singular support consists of the boundaries of the sub-domains 74 = #;(74') C Q,; N T
Here 77 is supposed to be the maximal domain such that ¢;; o x; = p; € IIp is a
polynomial of degree D on 77 C O.

If j’ < ] and dist (Qj’k, Qj’,k’) SJ 2~j’, the estimate
: 9—i(1+d*) 95’

A p, Vi) S 4.13
|< Vit ks k)| (dist (Qj,k,Q}g:,kf)) ( )

r+d*

holds [Sch].

Based on these estimates the subsequent analysis proceeds in the following steps:
e A level dependent a-priori truncation rule can be designed in such a way that upon

replacing all those entries staying below the corresponding thresholds, the resulting
compressed matrix A, is sparse containing only O(dim S;) non-vanishing entries.
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e This can be used to derive consistency estimates of the form

147 = A5) ull goer S a2 2769 |lu] (4.14)

where a < 1 is fixed, A, AS are the finite dimensional operators corresponding to
Ay and Ag,, respectively, and the range of the parameters s and ¢ is —d +r <
s <7, =y <t<d,dand v taken from (3.26).

e The preconditioned matrix B; = D_;/2AgsD_;/; is by Theorem 4.1 uniformly
boundedly invertible on Ly(I'). Thus, a Schur-lemma argument leads to estimates
for the remainder Ags — Ag,; with respect to the spectral norm.

e A perturbation argument combined with (4.14) then gives stability and convergence
results which can be summarized as follows.

Suppose that
d<d" +r.

We define the compressed matrix AS; in two steps. Firstly, let, for (j,k), (j',k')e V7,
Ak (k) = (Aj e, Pjk) and :

1 foagmgey, i dist(Qge, Qg ) < Bjgr
k). (k) T { 0, otherwise. (4.15)
Here the parameter B; ; is chosen such that for some d' € (d,d* + r)
B;j ~max {a277,a277 a2/ @d -5 (@ +d)-j(d"+d))/(2d"+r)Y (4.16)
In a second step, we set
a%j’k),(j,,k,), j’ S ] and diSt(Q(J’k), Q‘a-/,kt)) S Béj/,
(AGs) G0,y = j < ' and dist(Qf ), Ui py) < Bfy,  (4.17)

0, otherwise.

‘where the truncation parameters Bf, + controlling the distance from the singular support
are given by

BS,, ~ max {a/ 277,d 277, a2V ~)-max(if }d" ~(i+5)d) /(@ 47}, (4.18)
The parameters a, a’ are fixed constants. For instance, a determines the bandwidth in the
block matrices Aj; = (a{;4) (s4))kwev,- @,a" have to be chosen sufficiently large such

that the stability of the preconditioned compressed matrix is preserved [DPS, Sch]. We
stress that a, a' are independent of J.

Theorem 4.2 Let S, Q satisfy the assumptions in Theorem 3.2 such that (4.5) holds.
‘Moreover, assume that U satisfies the patch-wise moment conditions (4.10) of order d*
where ;

d*>d-r. (4.19)
Then the above compression strategy gives rise to matrices AS,; containing only O(dim Sy)
non-vanishing entries. Suppose that the assumptions of Section 4.1 hold so that the scherne
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(4.2) is (s, s—r)-stable, 2T = r, for 2r—d < s < 7. Then the compressed system possesses
a unique solution u§ realizing asymptotically optimal accuracy

lu = u§llge S 2747 [lull (4.20)

where —d+1 <t <7v,t<s, 5 < s<dandu is the ezact solution of Au = f. Moreover,
the matrices B5 = D_, Ay ,;D_, /2 have uniformly bounded condition numbers.

Note that the Galerkin scheme gives optimal convergence rates O(2-(?4-")7) relative to
low norms.

We summarize the required conditions on the wavelet basis. To realize an asymptotically
optimal balance between accuracy and efficiency, the regularity -y of ¥, the regularity 4
of the dual basis ¥, the order of vanishing moments d* and the order of exactness d of
the trial spaces S; have to be related in the following way:

regularity q>3 A —5

conformity preconditioning
order d convergence rate 277(24+2-7)
vanishing moments || d* > (>)d —r

Note also that, on account of (4.19), optimal results can therefore not be guaranteed for
orthogonal wavelets when r < 0. One rather has to construct then S and Q such that the
dual multiresolution S has higher order of exactness, a point to be addressed later again.

The above theorem says that even if the convergence behavior of an iterative solver is
governed by the condition numbers we still end up with an asymptotically optimal scheme
as described in the previous subsection, provided that the compressed matrices Ay, can
be computed with accuracy comparable to the discretization error on the highest level at
computational costs which remain proportional to dim S;. To indicate that this actually
can be done is the objective of the following section which summarizes some recent results
from [DS2].

4.3 Adaptive Quadrature

Up to this point we have assumed that the matrix entries (A%bj,k, ¥y xr) are given exactly.
Of course, in general they have no closed analytical representation.

However, in principle, one can accurately compute the stiffness matrix Ags, relative to
the single scale basis ®; (see Section 5.4). Now the multiscale transformation T; from
(3.9) yields

Ay =T7A,,T;

which is the system matrix with respect to the multiscale basis. Note that the orig-
inal matrix A, has O(2*/) nonzero coefficients. Thus, the overall complexity is still
O(2%) = O((dim Sy)?) which rules out this way of computing the nonzero coefficients of
the compressed matrix AS.

To find a more economic strategy, let us first recall that we have already derived an a priori
criterion to decide whether a matrix coefficient must be computed or can be neglected.
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In addition, observe that dist (Q, Qj x) > Bj; implies that dist (5, Q1) > By, i1
holds for €, x, C Qi and Qj x, C Qe s, 51 2> 5,51 > §'. Thus, we do not have to check
condition (4.15) or (4.17) for all pairs (4, k), (', k). Exploiting the hierarchical structure
of multiscale bases we need at most O(2%/) checks to decide whether an entry has to be
-~ computed or not.

An accurate computation of the remaining nonz-ro coefficients is a difficult task. The
significant coefficients have to be computed approximately by numerical integration. In
order to approximate the matrix coefficients (A;x, ¥ &), we have to evaluate integrals.
of the form

/ / K (2, §)t;(2)1y 1 (§)dssdsg (4.21)
7 7
over curved quadrilaterals 7/ = x;(77) and ‘7;’" where £ = s;(z), § = r(y).

In terms of the present parametrizations (4.21) takes the form

/ / p(z, 4)p;(2)py (v)dz dy, (4.22)

Ta'T3!
where p;, p; are polynomials of degree d > d — 1 satisfying
1pjl|woso(rsy S 201 (4.23)

Since numerical integration returns only an approximate value of the integral, it causes
an additional error in the solution u$ 7 @ of the fully discrete system. Thus, the design
of a fully discrete method requires carefully monitoring the overall accuracy while still
preserving efficiency.

The problem of quadrature has to be seen in close connection with compression and the
special features of multiscale bases. Basis functions from coarser scales introduce large
domains of integration while requiring high accuracy. In particular, on the coarsest scale
4,7 = —1 the full accuracy 2-7(¢~") depending on J is required while on the highest
scale j,j' = J fixed accuracy suffices. In fact, since |(A%;, ¥;x)| S 277, this accuracy
is actually independent of J. Thus, many entries have to be computed only with low
accuracy while high accuracy is only required for a small part of the matrix. Using the
analysis of matrix compression as a guideline, a careful balancing of the various effects
shows that most matrix entries (Aw;, ¥ ») must be computed with a precision

ek S 277 OF rIgmex{id Hd 1) gmin{g.iH(d +1) g ~2max{s '}

with some d' > d.

Our fully discretizedGalerkin method is based on product-type Gaussian formulas for
approximating inner and outer integrals

/ / Pe(2)py (y)dz dy = Q2 ® QP (p, - py), forall p,,p, € Ilp, (4.24)

Tz Ty

where the domains 7, and 7, are congruent to O. According to the previous remarks, the
error estimate for the quadrature method has much in common with estimating matrix
coefficients relative to wavelet bases.
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Lemma 4.1 Let Q,’?: ®Q,€ be a product-type Gaussian quadrature method of order D and

7 CTH, 75 C T7'. Furthermore, suppose that A is a boundary integral operator of order
T over a piecewise analytic boundary surface I'. Let in local parametrization the kernel be
denoted by p(z,y) and G(z,y) := p(z,y)p;j(z)pj(y). If 7. N1y = O, then there ezists a
constant ¢ such that the estimate

[ [ 6@ vaoty - @2 0 @5 (G)
< ¢ 29 (max{diam 7,, diam 7,})P~(diam 7,)*(diam 7,)* -
-dist (ki(Ty), Ki(T5)) 27D+

is valid provided that 2+r+ D —d > 0.

The principal strategy is to choose the diameter of the sub-domains proportional to the
distance from the singularity while the degree D has to be adapted to maintain the desired
accuracy. That is, we proceed as follows:

e When integrating over domains 7, X 7, where 7, and 7, share an edge, a vertex
or are identical, then in general the integral is singular. In this case some sort of
regularization should be applied to reduce the integral to a weakly singular integral
[N, PS]. Then we use transformation techniques like Duffy’s trick proposed in [S]
to end up with analytical integrals [PS].

e For the remaining integrals we apply the following adaptive quadrature method.
We divide the domain of integration into sub-domains of different sizes. On each
sub-domain we apply e.g. a product-type Gaussian quadrature of variable degree
D. Without loss of generality we assume that J > j > j’ and choose a parameter
a1l

If the domains 77, 7/ satisfy the estimate
dist (77,77) > gmax(diam (77), diam (77)), (4.25)
we employ Gaussian quadrature with order
D = o|(min{j’, j} = T+ o )r+ (J = j)d + (J — j')d' +log, €]+

- withd < d', a~ (log,¢)~! and [u] := max{0, u}.

Otherwise, as long as j > j’, we continue by subdividing the domain 77" into four
sub-domains T,;‘,' with X' = j' + 1. We repeat the procedure for 77 and all sub-
domains 7% of 77" until we arrive at

dist (77,7) > ¢ max(diam (77), diam (72})). (4.26)

V'
Then we apply numerical integration with order

D = [a(min{j,j}—-J+aV)r
+ ('] I min{j: J’})d, + (‘] - max{], ]’})dl * 10g2 6) = 2]+-
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If j =4 or j = XN, there are two possibilities. In case
TNty #0 (4.27)

we have to approximate a singular integral as mentioned above.

If finally neither condition (4.25) nor condition (4.27) applies and j = X, we divide
both 77 and 7} and repeat the same procedure for each sub-domain 7 of 77 and
7 of T7', respectively, until 7 and 7 have a distance proportional to 2.

In case of Lipschitz domains the above algorithm terminates after a finite number of
subdivisions. Once a matrix entry has been decided to be computed we apply the above
quadrature procedure yielding an approximate compressed matrix Ag?

We remark that for arbitrary J € IN we may need arbitrarily high accuracy. For that
reason we have assumed analyticity of the surface elements [’;.

If we assume that evaluating the kernel function at one quadrature point requires O(J¢),
a > 1, floating point operations, we compute the complete fully discretized compressed
matrix Ag? with O(2%) = O(dim S;) floating point operations, i.e., with linear com-
plexity, while still preserving the accuracy of the Galerkin scheme.

Theorem 4.3 Let the assumptions in Theorem 4.2 be satisfied. Then the fully discretized

compressed system Ag?u(jo = f; possesses a unique solution u?Q realizing asymptotically
optimal accuracy ‘
c i(t—
Ju=u5?|, 522 lull (4.28)

where —d+1r <t <7v,t<s, 5 < s<d andu is the ezact solution of Au = f; Moreover,
the nonzero coefficients of the matriz Ag? can be computed at the ezpense of O(dim Sy)
floating point operations.

Summarizing our conclusions, we compute an approximate solution of an integral equation
in linear time, requiring an amount of storage which remains proportional to the number
of unknowns dim S;. This can be performed without diminishing the accuracy of the full
Galerkin method. Conversely, if the order of exactness of the trial spaces is d, in order to
achieve optimal accuracy :

lu = uS9|asr < €

for a given € > 0 we need dim S; = O(e~%(4-")). Here we have proposed a method to
achieve this accuracy with only @(e~%/(?¢-")) floating point operations.

5 Construction of Bases

In the above analysis we have assumed a number of concrete properties of multiscale bases
which are crucial for the success of the outlined techniques. The actual construction of
such bases is in general by no means a trivial task. This section is to review some recent
developments in this regard, in particular, in connection with (II), (III).
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5.1 The Shift-Invariant Case

We begin with a few comments on the classical setting of wavelets defined on the Euclidean
space IR". Although this setting is obviously not suited for applications of the above type
some of its ingredients do turn out to be useful.

A function 6 € Ly(IR") is called refinable if there exists a mask a = {as }qcz~ such that
8(z) = Z a.b(2z — a). (5.1)
a€EZ™

More generally, one could consider scaling by powers of some matrix M whose eigenvalues
are all larger than one or vector valued versions of the form

P(z) = Z a,®(Mz - o)

a€EZ

where now ®(z) = (61(z),...,0x(z))T and the a, are N x N matrices (see e.g. [DM2]).
For our purposes it will suffice to stick with (5.1) for the special univariate case n = 1. In
this case the concept of biorthogonal wavelets is well developed. To describe this, we call
two refinable functions 6, 8 a dual pair if

<0, o(- — k)>IR = / 0(z)d(z —k)dz = 6o, k€ R. . (5.2)

We will confine the discussion to the case that both 6 and 6 have compact support
contained in [—£,£]. It is well-known that 6 and 6 can then be normalized to satisfy
[ 6(z)dz = [ 6(z)dz = 1 which means that :

R R

1= 6z—k)=)Y 08(z—k). (5.3)
keZ keZ
One easily derives from (5.2) that the collections ©; := {29/26(27 - —k) : k € Z} and
analogously ©; are uniformly stable in the sense of (3.3) while refinability ensures that

S(©;) C 5(0j11), S(6;) CS8(61), i€ Z. (5.4)

In this case one can identify appropriate complement spaces as follows [CDF]. Let

w(z) =Y _(-1)¥ax0(2z — k), @(z):= ) (-1)*a1-+0(2z — k). (5.5)
kEZ keZ
One verifies that the functions w; x 1= 29/2w (27 - —k), @; = 2920 (2- —k), j,k € Z, form
biorthogonal collections,
(wj,k,u?j:'kz)m = 5(j,k),(j’,k’), j, j’, k, k' e Z. (56)
Moreover, {w;x}irez, {@jk}jkez are Riesz bases [CDF|. The classical derivation uses
Fourier analysis [CD, CDF, Vi]. It can also be deduced with the aid of Theorems 3.1
or 3.2 as follows. One concludes from (5.3) that (3.23) holds for s < 1. Moreover, it is
known that 8,0 € Ly(IR) actually implies 6,0 € H¢(IR) for some € > 0 [CD, Vi] and that
this confirms the validity of (3.24) for s < €. So the claim follows from Theorem 3.2 for
s = 0. We could have also applied Theorem 3.1 where w = w; can be chosen as the first
order Ly-modulus of smoothness [D3].

21



5.2 Wavelets on the Intervall [0, 1]

One can use next the shift-invariant case to construct wavelets on an interval which we
may choose for simplicity to be [0, 1]. Simply restricting the translates §(27-—k), §(27-—k)
to [0,1] would destroy the biorthogonality relations as well as stability properties. The
key idea is to modify those translates which interfere with the ends of the interval. Since
this will be used several times we explain it in a little more detail. Suppose that # and ]
are exact of order d, d, respectively, i.e.,

Z<<->',e”<-~k>> oz—k), 0<r<d-1,
s %( W glz—k), 0<r<d—1, )

keZ

where d > d > 2. It is known that this is equivalent to the fact that the symbols

= Z aps’,  alz) = Z arz",

kEZ kezZ

contain (1 + z)¢, (1 + 2)¢ as a factor, respectlvely The usual approach taken in [CDV,
AHJP, CQ)] is to introduce for k =0,...,d — 1 boundary near functions

HjL,L;d+k o Z ajl':m,k2j/ 29(2j'—m)f[o,1],
g~ _ _ (5.8)
9R21 Rid-k = Z {?m’k2]/20(23 : _m)'[o,u, '
m=27 —R+1

where the
“ 27.)k 29/24(29 . — =/ ¥(z — k)d
o = (P 270 - —m)) = [ iz~ k) de
R
are actually independent of j. The afm,k are defined analogously, so that when L = R

and 6, 6 even,
0 =009 k_pial—2), k=0,...,d-1 (5.9)

Setting ©; = {04, 0%, _p.g4  k=0,...,d—1}U{2//20(2 . —k) : k=1L,...,2 — R}
the construction ensures that

I([0,1)) € S(®;), 27! > £+ max{L,R} +1, (5.10)

which, in turn, is known to imply (3.23) for S(©;) = V; and s < d. The common
approach is to choose L, R large enough so that one can form biorthogonal systems ®;
from (unchanged) translates §(27 - —k) supported strictly in the interior of [0, 1]. While
this simplifies biorthogonalization of the boundary near functions the dual multiresolution
S looses its exactness. Since the exactness of S will matter in our applications we follow a
different line, defining also modified functions 9 ko 91 .. on the dual side, so as to preserve

the order d of exactness for S as well. When 6 is a cardinal B-spline with integer knots and
6 any of the duals derived in [CDF] it can be proved that the boundary near functions can
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~always be biorthogonalized [DKUZ2] so that now also S is exact of order d and (3.23) holds.

Forming corresponding biorthogonal wavelets by making similar modifications near the
ends of the interval as in [CDV, AHJP] or using techniques detailed below in Section 5.5,
we obtain again biorthogonal bases {wjx}jrez, {@jr}jkez for Ls([0,1]). While Fourier
techniques can no longer be used to ensure the Riesz basis property it follows again from
Theorem 3.2 that {w;r}jrez and {@;r}jrez are indeed Riesz bases for Ly[0, 1]. We will
exploit these facts in the following two important cases.

5.3 The LadysSenskaja—Babuska—Brezzi Condition

We return to problem (III) concerning the construction of compatible pairs of trial func-
tions for treating problems of the type (2.6) which may be formulated in general as follows.
Given a symmetric and continuous bilinear form a : V XV — IR and a continuous bilinear
form b: V x M — IR where V and M are Hilbert spaces. For f € V' (relative to a dual
form (-,-)) find (u,p) € V x M such that

a(u,v) +b(v,p) = (f,v), veEV,

b(u, ) =0, geM (5. 11)

It is well-known that (5.11) possesses a unique solution if and only if a is V-elliptic on
{veV : blv,qg) =0, g€ M} and if the inf-sup condition

inf sup (%)

>8>0 5.12
9EM yev ”v“V ”‘I”M : )

“holds. As explained in (II) we seek for pairs of finite dimensional spaces V; C V, M cCM
such that (5.12) holds uniformly in j € INy (see (2.8)). Our starting point is the followmg
well-known observation due to Fortin [BF, GR]. -

Proposition 5.1 Suppose that V, M satisfy (5.12). Then (2.8) holds uniformly in j if
and only if there exist linear operators Q; : V — V; satisfying

1Qsvlly S llvlly, veV, - (5.13)

and
b(v - Qjv,g;) =0, vEV, g; €M  (5.14)

According to (II) we are interested in the case
b(v,q) = (divv, q)q = /div v(z)q(z) dz

Q

where in the sequel we restrict the discussion for simplicity to Q = [0,1]". Since (5.14)
may be viewed as a biorthogonality condition we wish to construct a suitable sequence
Q = {Q,} of operators satisfying (5.13) and (5.14) with the aid of techniques from Sections
5.1 and 5.2. '
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To this end, note that biorthogonality can be expressed in terms of the respective symbols,
-namely, when 6, 0 form a dual pair (5.2) then

a(2)a(z) + a(—z)a(—z) = 4. (5.15)

Moreover, if the modified symbols

2 La=%

a*(z) := e za(z), 4*(7) 1= 5 a(z) (5.16)

correspond to refinable functlons 6*, 6* (which is the case e.g. when § € H'(IR)) then 6*, §*
still form a dual pair. Roughly spea.kmg, 9*, §* are obtained from 6, 6 by d1fferent1at1on
and integration. The precise circumstances are described by the following observation
which is essentially due to Lemarié [L1, L2, DKU1].

Lemma 5.1 Let 0,0 € Ly(IR) be a dual pair of compactly supported refinable functions
with masks a°, &°, respectively, and normalized as in (5.3). If§ € H'(IR) then there ezists
a dual pair 6%, 6* of compactly supported refinable functions in Ls(IR) such that

d d - ~ ~ i

— = 0*(z) — 0*(z — —0*(z) = — 17

@) =0(@) =0 (z~1), -6(z) =0(z+1) - 6(z) (5.17)
holds. Their symbols al®*); 4% are given by (5.16) and the corresponding biorthogonal
wavelets w*, @* (5.5) satisfy

FUE = WE), L@ =), (518)

Defining now for simplicity

[
S
I
ol
El
Il
&

wo:=0, w:=w,

letrfor ¢== 1. .08 € {0,1}" = B

= ﬁweu ";e o ﬁ‘:’eu (5.19)
i=1 ¥

i=1

as well as

ng) = ( H we,> w;, 1/;21') = ( H (I)_er) (I); | (520)
r=1 y r=1

=1,...n, r#i =1, i
and finally -
o=10, o=y, G=1u, V=4 (5.21)
Clearly, (v, 3), (¢, D) form again dual pairs in Ly(R™).

We have collected now all prerequisites to construct compatible pairs of trial spaces Vj,
M; satisfying the LBB condition first for @ = R" and b(u,p) = (divy,p)r~. In fact,
setting

¢j,k = 2nj/2¢e(2j : —a)’ k= (e’ a) EEXZ",
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and analogously ﬁj,k, ¢J(f,{, ¢( K1 Piks go§ ,)c, Pk <p§ 3:, we obtain pairs of biorthogonal bases

@j = {(pj,k ke {0} X Zn}, éj = {Qaj,k ke {O} X Zn}

and likewise ¢>§i), @;i), ¢ =1,...,n. The corresponding complement bases are denoted by
T, Ty, 09 0. Now let |

My = 8(8;), V;:=8(8P) x .- x S(3M). (5.22)

In view of the above biorthogonality relations the mappings Q; : H{(Q)" — V; defined by

@)= > (v,e0)5% (5.23)
ke{0}xzZ™
are projectors and for i = 1,...,7n one has
(v—Qjv); = Z > (i vD0e8, . (5.24)

m=j kEE.XZ™

where E, = E \ {0}. But from the construction of the y_ )k, 1/},(,:)  and Lemma 5.1 one
easily deduces that

0 — . = s
é;(v — Q)i = Z Y dmpmp € @ S(¥.) (5.25)
m=j kEE.XZ™" m=j
and thus : -
div(v — Q;v) € P S(¥m)- (5.26)
m=j

Biorthogonality ensures that
S(Qj—l) 1 S(\ilm)a m 2 j,

so that one has
b(v—Q,v,q) =0, g€ M, . (5.27)

Since for sufficiently regular ¢ the projectors are easily seen to be H-bounded [D2],
the hypotheses of Proposition 5.1 are satisfied so that the above pairs M;, V; fulfill the
LBB condition.

The next step is to extend these constructions to bounded domains. For Q = [0, 1]" one
can use the techniques described in Section 5.2 to adapt multiresolution analyses based
on 0, 8, 6%, 6* to [0,1] and then form tensor products as above. The crucial point is that
" the relation

9 =) £ v
S(gx—iq:j ) CS@,), i=1,...,n, (5.28)

can be shown to persist under the modifications of the boundary near functions. Therefore
the arguments (5.25), (5.26) remain valid so that Proposition 5.1 confirms again the
validity of the LBB condition for the resulting spaces M;, V; on Q = [0,1]" [DKU1].
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Choosing 6 as a B-spline and 8 as a dual derived in [CDF] a whole family of spaces M;,
V; is constructed in [DKUI] satisfying the LBB condition as well as direct and inverse
estimates of the form (3.23) and (3.24) for ranges of s depending on the regularity and
exactness of § and 6. In particular, the Q; defined in (5.23) give rise to norm equivalences
of the form (3.25) so that the above construction not only yields admissible trial spaces
but also lays the foundation for efficient solvers of the resulting linear systems (2.7). It is
showw in [DKU1] that preconditioners based on the change of bases as described in Section
4.1 can be applied to A; = Ay in (2.7) as well as to the Schur complements BjA;lB?
(when dealing with fully implicit time discretizations in the time dependent case (2.5)) to
guarantee that iterative schemes of the type discussed in [BP] are asymptotically optimal.
For details the reader is referred to [DKU1].

5.4 Computational Aspects

Working with bases which result from modifying a multiresolution analysis for JR" offers
some interesting computational advantages. In fact, there is an essentially dimension
independent unified platform for computing quantities involving integrals of products
of derivatives of refinable functions and wavelets. More precisely, suppose that ¢* €
Ly(R™), i = 0,...,m, are (possibly) different compactly supported refinable functions
with refinement masks a* (see (5.1)). It turns out that quantities of the form

[ #@@" )@ - ) (D" gm)a - ™) da (5.29)
R‘n
=: I(a,...,0™)
where D¥ =[], waz—:'),,,— can be computed exactly (up to round off) without resorting to

-quadrature [DM1]. Before describing this in more detail let us briefly pause to indicate
the usefulness and consequences of this fact in the context of the above applications.

The entries of the matrices arising in problems of type (I), (II) on Q2 C IR" are of the form

[ en@@)@z - )"z - o) da (5:30)
Q

where ¢,5(z) are some possibly variable coefficients and 7, 8, o', a? € Z™. Since in general
the setup of a linear system (4.2) takes up a major part of all computational costs, it
is important to note that, in view of (4.8), the use of multiscale bases only requires to
determine the quantities (5.30) on the finest discretization level J. One would here replace
the nonconstant coefficients ¢,5(z) by an expression of the form

> Plegs) ¢°(27z — ) (5.31)

where 73 are e.g. dual functionals for another compactly supported refinable function ¢*
with mask a3. In particular, 3 could be the characteristic function so that nonsmooth
coefficients are also covered. In the simplest case = [0,1]" the integrals (5.30) can
be written as a sum of integrals over all cubes of diameter ~ 277 which in turn are
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integrals over IR" by introducing the characteristic function ¢° over the microcubes as
an additional factor. Since now all involved functions live with respect to level J, the
substitution 27z — z readily yields terms of the form (5.29). Note that the accuracy of
the computations depends only on the quality of approximation (5.31) to cyp(z) when
the integrals (5.29) are computed exactly. Thus, no more than four factors appear in the
latter integral to model the effects of variable coefficients and the bounded domain. The
rignt hand sides of systems (4.2) and (2.7) can be handled in the same fashion. Due to
the nature of their entries, the involved integrals only contain at most three factors and
no derivatives. Such computations and the setup of the linear system with polynomial
coefficients for n = 1 can e.g. be found in [K1].

The first step towards the evaluation of (5.29) is the observation that the function I(a) =
I(at,...,a™) defined on IR™ is also compactly supported and refinable,

27 (z) = Z ca I(2z — @), z € R™, (5.32)
aeznm -

since the ¢, i =0, ..., m, are, with mask coefficients given by

=27 a)[]ai_y, nezm™. (5.33)
vEZ™ i=1
Here |p| = |p| + --- + |u™| is the total number of derivatives in (5.29). Because of
the validity of (5.32) we call I a refinable integral. The presence of any such refinement
equation (5.32) has two computational advantages:

. e If I is known at all lattice points Z™", I can be determined in linear time at all
dyadic points Z™" /2, Z™" /4, ... by successively using the refinement equation.

e To compute I on Z™", rewrite by a change of indices (5.32) as

2-lelf(a)y = VN g, T o e B (5.34)
Veznm

Since due to the finite support of the masks only finitely many I(a) are different from
zero- (5.34) can be interpreted as the problem of computing an eigenvector of finite length
for the eigenvalue 27#|. These facts have been already observed in [CDM)]. They have
also been utilized in [LRT] for the purpose of evaluating univariate refinable functions
and also integrals of the form (5.29) in one dimension (called connection coefficients
there). However, in order to make this approach work one has to deal with the following
uniqueness questions. When || = 0 one has to make sure that one is a simple eigenvalue.
When |g| > 0 and n > 1 the corresponding refinable integrals already give rise to different
eigenvectors. So one has to find additional conditions which uniquely determine these
eigenvectors. These problems have been addressed and solved first in [DM1]. One of the
conditions derived there is based on certain factorizations of the symbols a’*(z). In the
multivariate case these factorizations may not always exist. -Alternative conditions which
are always applicable can be derived with the aid of subdivision techniques.

For a finitely supported mask a on Z™", the stationary subdivision scheme

(SaA)a = Z aa_gﬁAg, a € Zm",
BezZ™
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is said to converge if for any A € £,,(Z™") there is some fy € C(/R™) such that

(58~ £ (55)]) =0

The relevance of these notions for the present context is indicated by the following facts.
In [CDM] it is shown that convergence of S, implies the existence of a unique ¢ € Co(IR™)
which is refinable with respect to a. Conversely, a-refinability and £.-stability of ¢ €
Co(IR™) imply convergence in the above sense. A refined analysis of convergence based -
on asymptotic expansions is the heart of the proof of the following result. It identifies
additional moment conditions which guarantee uniqueness of the eigenvector I in (5.34).

lim ( sup

k—o0 a€EZ™"

Theorem 5.1 Let ¢* € CJ(IR") be a’-refinable and {.-stable for each i = 0,.
Then for every p € Z7T", |p| < o, there ezists a unique finitely supported sequence
{Ws:8€Z™} such that

Z Cza_ﬁWﬂ = 2_]“|Wa, anm", (535)
ﬂezmn

> ey We = Way, W<l nueZy
acZ™m

The refinable integrals are given by

I(a) = (-1)¥W,, aczZ™. (5.36)

The assertion of the theorem actually remains true under weaker smoothness assumptions.
For instance, one can take ¢* = xp1)» and ©' any pi-times continuously differentiable
refinable function, i = 1,...,m, when integrals with derivatives of order 4’ in (5.29) are to
be computed. If one wishes to evaluate any multivariate function I satisfying a refinement
equation (5.32) with mask coeflicients ¢, i.e. |u| = 0, or compute its derivatives at lattice
points, the solution W, (5.36) already gives the desired quantities. It should also be
mentioned that Theorem 5.1 applies e.g. to cardinal B-Splines and box splines [BHR].

The procedure for computing the refinable integrals (5.29) based on the above theorem is
implemented in C++-routines for up to four factors in the integral in dimensions n < 2
and up to three in 3D [K2]. Of course, if the functions ¢’ are tensor products of univariate
functions as in Section 5.2 the integrals factor into univariate refinable integrals so that
also four factors in three dimensions can be handled efficiently. As input, the software
only requires the mask coefficients a’, i = 0, ..., m, and information about their supports.
The system (5.35) is then set up with dynamical storage allocation and is solved in the
current version by computing the QR factorization of the system matrix.

| 5.5 Stable Completions

The explicit computability of biorthogonal complement bases in Ly(IR"™) rests to a great
deal on the possibility of reducing the computation to manipulating Laurent polynomials
(see (5.15), (5.16)). As soon as one has to deal with function spaces defined on domains
other than IR™ or the torus, such techniques are usually not applicable. The common
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theme of [D1, D2, D3, CDP] is to develop an appropriate general framework for multiscale
techniques which are applicable to more realistic problems. Two major issues arise in
this context. On one hand, one has to bring out the relevant facts pertaining to stability
properties and norm equivalences as indicated in Section 3 above. On the other hand, one
has to develop new tools for actually realizing these properties for concrete constructions.
We briefly review next one general concept that has proven to be quite useful in several
applications [CDP)].

To describe this for the general setting in Section 3, let us first note that the nestedness
of the spaces S(®;) and (uniform) stability of the bases ®; imply the existence of refine-
ment matrices Mo = (M} )eca;1,kea,; Tepresenting (uniformly) bounded mappings from
eg(Aj) into £2(Aj+1) such that

on,k = Z m{,k(pj+1,l1 k € A]1 (537)
et

where whenever in the following infinite sums occur convergence is to be understood in
the absolute sense. It will be convenient to view ®; formally as a (column) vector so that
(5.37) reads

T P

and Mo € [£(4;),£4(Ajt+1)], the space of bounded linear mappings from /3(A;) into
£5(Aj41). Next one observes that any collection ¥; C S(®;41) spans a complement of
S(®;) in S(®;4+1) such that {®; U ¥;} is uniformly stable if and only if ¥; has the form

¥ =2/, M;, (5.39)

for some M_-,',1 € [Ez(vj'), Zg(Aj.H)] such that Mj - (Mj)o, Mj,l) € [EZ(AJ'UVJ'), £2(Aj+1)] is
uniformly bounded and boundedly invertible. That-is, there exists G; € [£2(A;11), L2(A;U

V)] blocked as ( Gio ) such that

Gj1
G,M; =M;G; =1, M, |G;ll=0(1), ;e DNy, (5.40)
ie.,
G;iM;e = 6ipl, M;oGjo+M;1Gj =1 (5.41)
and
8T, =7 Gjo+ Y] Gjy1. (5.42)

This tells us how the single scale basis functions on the fine level j + 1 are reconstructed
from the coarse scale basis functions.on level j and the complement basis ¥;. It is not
hard to verify that the multiscale transformation T; from (3.9) has the form

; piond M, 0
Tj=Tj"1..-T0) th( OL I)‘

Any M, as above is called a stable completion of M.

Tt is clear from the discussion in Section 3.3 that not any arbitrary complement basis ¥;
of ®; is suitable. Thus M;; has to be chosen judiciously. It is important to note that
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the stability of ®; U ¥; as a basis for S(®;41) is by no means sufficient to ensure that
¥ =J;2_, ¥; is a Riesz basis for H.

The point of view taken in the sequel is as follows. In many cases some stable comple-
tion M;; of Mj;, is available along with the inverse G; which may, however, induce a
complement basis ¥; which is not yet satisfactory. The idea is to generate from such an

initial completion 1\7Ij,1 another stable completion M;; which possesses better properties
[CDP, Sw].

As a first step one has to parametrize the set of all stable completions in order to see then
how to choose the parameters for a suitable one.

The assumed stability allows us to treat all operators like finite matrices which, of
course, is the case in practical situations although the setting covers, in principle, in-
finite collections ®;, ¥;. The key observation is that whenever L; € [£3(V;),£2(4j)],
K;,K;"' € [£2(V;),£2(V;)] are uniformly bounded, then so are

I L L -LETY T Lo¥ o
(o) (0 %7 )=(o & o
so that : o
" T ~L.K; N
M,-=M,-(O K]]) Gj=<0 it )G,- (5.44)
7

still satisfy M;G; =T and
Mj,l = Mj,ng + M, 1K (545)

is another stable completion of M;o. By (5.44) the blocks of G; are given by
G’j,O = Gjyo - LjK;IGj’]_, : G’j)l = K;lcj,]_. (546)

Moreover, one can show that whenever M;; and M, ; are any two stable completions of
M, then they are related by (5.44) for some L;, K; with the properties stated above
[CDP].

This can be used in several ways. The point of view taken in [Sw] may be roughly
described as follows. Given some ‘simple’ initial bases ®; with refinement matrices M, o,
e.g. Haar type functions, as well as some stable completions 1\7[,-,1, choose only some L; to
form another stable completion of the form (5.45)

M1 = M;oL; + M,

which means that the new complement functions 1;; take the form

VYik = Z Lok Pim + Wi,

meA;

i.e., they are obtained by adding a linear combination of coarse grid functions to the
previous complement basis functions. This can be exploited to increase the efficiency of
corresponding multiscalé transformations T; significantly [Sw]. Next one can exchange
the roles of M; and G} (the formal adjoint of G;) which results in modifying the original
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bases ®;. Possibly alternating this procedure one hopes to end up with biorthogonal
systems with more desirable properties pertaining to regularity or vanishing moments.

A somewhat different point of view which will be taken up here is to keep the spaces
S; = S(®,) fixed and generate from some initial completion M;; of M;, in one step a
certain ‘target’ completion M;;. From the discussion in Section 3.3 it is clear that an
appropriate complement basis ¥; = {¢;¢ : k£ € V;} must fulfill

(Qij+1 — Qi)¥ik = Yix, kE€EV, (5.47)
where the Q; : H — S; are linear uniformly H-bounded projectors satisfying
QR =Qr £<]. (5.48)
It is not hard to verify that in terms of the generating basis ®; such Q; must have the
form
Qv = Z (v, Bjir) i (5.49)
keA;

where ®; = {@; : k € A,} is biorthogonal to ®;, i.e.,
<ij,k7 @j,k’) = Jk,k” k) k’ = Aja . (550)

and refinable
<I>- = <I>J+1M (5.51)

Note that (5.51) means that the ranges S; = S(®;) of the adjoints Q} of Q; are also nested.
Once the projectors Q; satisfying (5. 48) are known one has to 1dent1fy complement basis
v, \I! such that

<¢j,k) 'le’,k’> = 5(j,k),(j’,k’): (]a k)) (j’) k,) EV= U ({J} x VJ) (552)

j=-1

Given some initial stable completion M ; of M this can indeed be facilitated as follows
[CDP].

Theorem 5.2 Let {®;}, {®;}, M0, M be related by (5.38), (5 50) and (5.51). Suj)pose
that MJ 1 is some stable completion of M;o and that G M . Then

M;, = (T - MM, ) M (5.53)

is a stable completion of M; and G; = MJ-_1 has the form
M*
G; = ‘
( GJJ- )

U =M%, ¥ =Gudin

Moreover, the collections
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form biorthogonal systems, i.e.,
(v, 8,) =1, (9;,8;)=(2;,%;) =0, (5.54)
where (U}, ;) := (4, $jp) g ey, S0 that, in particular,

(9;,97) =651, j,' € No. (5.55)

Some applications of this result will be outlined below.

There is yet another useful observatlon in the same spirit concerning changes of bases
within each space S;. Suppose <I>( is the ‘old’ basis for S; with refinement matrix MJ s

stable completion M 1 and inverse G( )
Remark 5.1 [DS1] Given a ‘new’ basis

& = c;of (5.56)
of S;, the corresponding refinement matriz M ;o and stable completion M( 1 are given by

n - 0
Mg,()) = C TM( )CT

j+1
(5.57)
MY = CihMp)
and 0
=1 =T
i) - (T ) e o2
G| Cin

5.6 Wavelets on Surfaces in R®

We briefly indicate next how the above concepts can be employed in the context of problem
(III), namely, boundary integral equations on Lipschitz manifolds I in JR®. We refer to the
setting described in Section 4.2, i.e., I has the form (4.9) where each I; is the parametric
image of the unit square O := [0, 1] x [0, 1] in JR%. To construct a multiresolution sequence
S for Ly(T") with the properties worked out in Sections 4.1, 4.2, 4.3 one may proceed as
follows:

1. Construct a biorthogonal multiresolution for L,([0,1]) where the basis functions
satisfy certain boundary conditions.

2. Tensor products yield biorthogonal multiresolution sequences on O.

3. With the aid of the mappings «x; : O — [I; these can be lifted to I' where the
boundary conditions mentioned in 1. allow us to glue these local multiresolution
sequence together.
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First note that in essentially all cases of interest covering the single and double layer
potential operator as well as the hypersingular operator it suffices to have that ®; and
®; are continuous. Discontinuous bases such as Haar type bases or multiwavelets have
a more restricted applicability and the disadvantage that the lack of global smoothness
causes a relatively strong increase of dim S; without raising the degree of accuracy. What
matters is the degree of vanishing moments (see (4.10)) controlling the compression rate.
This suggests the following approach. Let

1+2, =ze[-1,0],
6(z)=¢ 1—z, z€[0,1],
0, else,

the piecewise linear hat function. It is known from [CDF] that for any d* € IV, d* even,
there exists a refinable even function § = 6. € Ly(IR) with support in [—d*, d*] such'that

<a, 6(- — k)>IR =8, P& B, (5.59)

where

() = / Hegla)io
A

and 4 is exact of degree d* — 1 (see (5.7)).
By the strategy outlined in Section 5.2 one can establish the following specific facts [DS1].

Theorem 5.3 Let for 6, 6 as above and fized even d*
Kj’L = {0’ R '7d* - 1}’ ijR = {2] - d* 4+ 1) s 7.2]'}) ' Kj,I = {d*; s s 2j — d*}

and .
Kj = Kj,L U Kj,l U Kj,R.

Moreover, let
KjaL = {_d*+1)'°'1d*— 1}’ KJ',R# {zj_d*+1272]+d* —1}

Then there ezist coefficients &, Lke Ky, 3, L€ Kiv, k € Kjy, V.€ {L,R},
independent of j with 29 > 3d* — 2, such that the functions

Oj = Z gl‘:,,l 2j/29(2j ) —Z)l[o,l]’ éj,k = Z gl‘c/,l 2j/29~(2j : "Z)|[o,1]av

teKjyv ' ek v
ke K;y,V e {L,R}, and

0; = 29/20(27 - —k), 0, :=270(2% - —k), ke K,
have the following properties:

(i) The collections ©; = {0; : k € K;}, ©; = {0; : k € K;} are biorthogonal, i.e.,

<9j,k,éj,k'>[0 2 Okp, kK € K.
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(i) One has

0;£(0) = 0;4(1) = 0;4(0) = 8;,(1) =0, k€ K;\ {0,27}. (5.60)
(111) The symmetry relations
O;n(z) =00 k(1 —2), Gia(z) =0, 4(1—2), k=0,...,d"—1, (5.61)
hold.
(iv) The spaces S(©;), S(é;-) are nested, i.e., the ©; and ©; are refinable.
(v) One has for 29 > 3d* — 2
M,([0,1]) € 5(8;), Ta([0,1]) C 5(6;).

We refer to [DS1] for the concrete determination of the coefficients gy ,, gy , above.

At this point one is exactly in the situation described in the previous section. In fact,
the biorthogonal systems ©;, ©, induce projectors of the form (5.49) which satisfy (5.48).
To construct now the corresponding biorthogonal wavelets one can employ the concept of
stable completions. In fact, for the hat function basis

0 . . = .
o = {29/20(27 - ~k)|p : k=0,...,27}
a simple stable completion corresponds to the hierarchical complement bases
{20792+ - —k) : k=2+1,£=0,...2" —1}.

Remark 5.1 yields then a stable completion relative to the bases @g-") = ©;. One is now
in the position to apply Theorem 5.2 providing the desired biorthogonal wavelet bases

n [0,1]. Forming tensor products of these univariate wavelets and transporting these
functions on I' via the parametric mappings x; can be shown to give rise to a multiscale
bases ¥ = {9;x : k € V} on I' with the following properties [DS1]:

1. The elements of ®; and ®; are continuous. This is a consequence of (5.60).

2. The ¥ have patchwise vanishing moments of order d* in the sense of (410) This
follows from Theorem 5.3(v).

3. The generator bases ®;, <I> obtained by hftlng and gluing are biorthogonal relative
to the inner product

(f,9) = /(fom) (90 5)(@) do.

| 1/2
2 )
H2(Q)

4. Defining for s > 0 the scale of norms

[[v]ls := (Z [[v]
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and denoting by || - ||, s > 0, the respective dual norms, the corresponding pro-
jectors Q; defined by (5.49) give rise to the norm equivalences

oo . 1/2
[[]]4 ~ (Z 27 |(@; - Qj—l)vlliz(r)> , 4€(-1,1),

=30

where Qj,—1 :=0.

6 Adaptivity and Multiscale Bases

The discussion has been confined so far to the efficient solution of systems corresponding
to an a-priori fixed sequence of trial spaces which are typically related to uniform mesh
refinements. A further reduction of the solution complexity may be expected by adapting
the trial spaces to the particular problem at hand. Adaptive procedures have been studied
on various levels of generality. The messages conveyed by some of these results differ
significantly as to the actual success of such techniques [DY, KN1, KN2, TWW] on a
principal level. On the other hand, practical experience gained in connection with solving
partial differential equations clearly confirms a tremendeous power of adaptive techniques
which make certain problems computable at all [HJ]. Adaptive refinement strategies based
on a-posteriori local error estimators or indicators have been particularly far developed
in a finite element context [BEK, BR, HJ, Ve]. Nevertheless, rigorous proofs for the
precise convergence behavior of such techniques are by far less advanced. These known
a-posteriori error indicators depend strongly on the particular choice of trial space as well
as on the spatial dimension and therefore do not carry over into the present multiscale
basis oriented setting. On the other hand, most of the techniques employed in connection
_ with wavelet analysis (so far mainly for univariate problems) assume essential knowledge
about the singularity [LPT, BMR, JMP] and are therefore not adaptive in the strict sense.

In the following we will briefly review some recent first results about adaptive strategies for
~multiscale basis methods which rely on an a-posteriori error estimate and can be proved
to converge for a wide range of elliptic problems [DDHS).

We adhere to the general setting from Sections 3 and 4.1. A key role will again be played
by norm equivalences of the form (3.18) or (3.25). Thus, we will assume again that ¥
and U are stable biorthogonal Riesz bases giving rise to such norm equivalences. Instead
of seeking for an approximate solution of (1.2) in a full space S; according to (4.2), the
goal is to break S; into small subspaces that capture possibly much information about the
particular solution. To describe this, it is convenient to employ the following notation.
As before, let V = [J;2_,({s} x V;). By A we will denote finite subsets of V, i.e., each
X € A has the form X = (4, k) where |A| ;= j indicates the refinement level. Accordingly,
we set Sy = S({¥» : A€ A}) and

Qv = Z <U, 1/~)A> ¥

A€A

denotes the corresponding projector. Let uy denote the solution of

QrAup = Q1 f (6.1)
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where we assume solvability of (6.1) for any A C V which is e.g. ‘the case under the
assumption (2.1). In fact, we will assume that for 7 = r/2

[Av]|g-r ~ llollg-,  |QRAQAY]I - ~ |Qavllg-, v € H. (6.2)

We wish to base the adaptive selection of sets A C V on estimating the error in the
‘energy’ norm ||z — ua||5- which by (6.2) satisfies

Irall g ~lw — uallg- (63)

where

rai=A(u—1up) = f — Auy
is the residual. When |7| < {7,%} (4.5) and (3.25) tell us that ||r4||5-- can, in principle,
be evaluated via

1/2 1/2

Yisadfp]eiov (6.4)

Irallg-- ~ Z 272 |(r, 93)

AEV\A AEV\A
Writing
un =Y uxn, f=Y Htn H=(f %),
NeA eV
one has
=2 H =) (Ayx, ) ua (6.5)
NeA

Employing arguments similar to those used in connection with matrix compression, one
‘can show [DDHS] that one can replace for any given € > 0 the infinite sum on the right

1/2
hand side of (6.4) by an expression (Z AEV\A df\) such that

1/2
lo—vallg- S| D B ] +ellfllg-- (6.6)
AEV\A '
and
! 1/2
Z d3 S llu—uallg- +ellfllg--- (6.7)
AEV\A
Here

dy=da(Ae) =27 = Y (Agy, ) ua

NEANN: «

and j\/',\,E is a “neighborhood” of A which is determined by the decay behavior of the
entries (A, ¥,) estimated e.g. by (4.12) as well as by a given tolerance € > 0 [DDHS].
Specifically, denoting by

ex:i= Y, (Apx, ) ux

NEA\N;
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the portion of d, which is neglected when passing to the dj, it can be shown that
1/2

3 Mg < Bel|fllg. - (6.8)

AEV\A

Estimates of this type have been presented first in [Be] for the special case of a second
order two point boundary value problem.

Since A NN, # @ for only finitely many A € V \ A the dy are determined for most
A € V \ A by properties of f. This suggests considering the quantities

ay) = a,\(A, E) = 2_7-!'\] Z (A'(,[),\l, ’l/}x) Uy -

NEANN}

The idea is now to choose A D A such that the ay, A € A \ A, represent most of the
error. For simplicity we will assume that A is positive definite and self-adjoint. Thus
o] := (Av,v)** ~ ||v||z.. The key result from [DDHS] may then be formulated as
follows.

Theorem 6.1 Given eps > 0 there ezists a pu > 0 such that for any finite set A C V with

1/2
IQAf — fllg-- ~ Z 221 | £, 2 < peps
AEV\A .
and o p, . eps
- Bl Nl
any finite indez set A C V, A C A, satisfying
1/2 1/2
1
Z ax(A, €)? > 2 Z ax(A,€)? ,
AeA\A AEV\A

ensures that for some k € (0,1) either
lu = uill < & llu = uall

or
1/2

Z ax(A, €)? < eps.

AEV\A

For a concrete adaptive scheme which is guaranteed to converge under the above circum-
stances, the reader is referred to [DDHS].
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