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Abstract

We consider an inverse problem arising in laser-induced thermotherapy, a minimally invasive
method for cancer treatment, in which cancer tissues is destroyed by coagulation. For the dosage
planning quantitatively reliable numerical simulation are indispensable. To this end the identification
of the thermal growth kinetics of the coagulated zone is of crucial importance. Mathematically, this
problem is a nonlinear and nonlocal parabolic inverse heat source problem. We show in this paper
that the temperature dependent thermal growth parameter can be identified uniquely from a one-point
measurement.

1 Introduction

Laser-induced thermotherapy (LITT) is a minimally invasive cancer treatment. An applicator is placed in
a tumour via a catheter and connected to a laser source (cf. Fig. 1). The energy of the laser light emitted
from the surface of the applicator is absorbed by the biological tissue causing a rise in temperature. The
laser power and treatment time is adjusted such that a temperature of around 60oC is reached in a
neighbourhood of the applicator. Driven by this rise in temperature the tissue is coagulated, a process
which is governed by protein denaturation leading to the disruption of cell walls and eventually to the
destruction of the tumour tissue. The deadened tissue remains in the body and is either decomposed or
encapsulated.

tumor
coagulated tissue

measurement
temperaturelaser

optical fiber

applicator

transparent
catheder

Figure 1: Sketch of laser-induced thermotheraphy treatment.

A detailed mathematical model for LITT is discussed in [5]. The most important part is a coagulation
model coupled to the bioheat equation describing temperature changes u(x, t) in the tumor tissue Ω.
In laser medicine, coagulation is defined as an optically visible irreversible cell destruction (necrosis)
caused by the denaturation of proteins. In the spirit of [16], where an Arrhenius formalism model for
protein denaturation is developed, the distribution of native tissue z(x, t) representing the concentration
of different proteins can be described as

∂tz(x, t) = −f(u(x, t))z(x, t), x ∈ Ω, t > 0 (1.1a)
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z(x, 0) = 1, x ∈ Ω, (1.1b)

where the non-negative function f(u) describes the thermal part of the coagulation growth kinetics.
Since the coagulation growth increases with growing temperature, we may assume f to be monotonically
increasing. Similar models are used in polymerization [1] and in solid-solid phase transitions [7]. The
second physical quantity relevant for the treatment is the temperature u(x, t) governed by the bio-heat
equation. According to [16], for most of the biological tissues, the density ρ, the heat capacity cp and the
thermal conductivity k are almost constant in the relevant temperature interval between 37oC and 70oC .
Then the bio-heat equation reads as follows

∂tu(x, t)− κ∆u(x, t) = α̃(z, x)(uB − u), x ∈ Ω× (0, T ). (1.2)

Here, T is the end-time of the treatment and κ = k/ρcp is the thermal diffusivity. Recalescence effect
of the coagulation process and metabolic changes can be neglected in the energy balance (see [16]).
The remaining heat source in the bio-heat process is the widely used Pennes model to describe the heat
exchange due to blood perfusion in the tissue, where uB is the known temperature of the arterial blood.
Since there are no (active) vessels in the coagulated zone, no perfusion takes place there, hence we can
write

α̃(z, x) = zα(x) (1.3)

where α(x) describes the perfusion in non-coagulated tissues.

L
2
L1

Ωx0

Figure 2: Domain and boundary parts.

The light is absorbed in a region around the catheter. The irradiation of laser light within the tissue
can be described by the radiation transfer equation [5]. However, for our purposes it is sufficient to model
it by a Neumann boundary condition, i.e., we have

− κ∂νu = h(x, t), in Γ1 × (0, T ) (1.4a)

−κ∂νu = 0, in Γ2 × (0, T ) (1.4b)

where Γ1 is the boundary to the applicator and Γ2 to the surrounding tissue, see Fig. 2. We also specify
the initial temperature distribution to be the blood reference temperature, that is,

u(x, 0) = uB, x ∈ Ω. (1.5)

By the simplicity of the coagulation rate law (1.1) we easily obtain the solution

z(x, t) = exp

(
−
∫ t

0

f(u(x, τ))dτ

)
, in Ω× (0, T ). (1.6)
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Assuming α and κ are spatially homogeneous, we norm them to one. Moreover, without loss of generality
we assume uB = 0 and accordingly the initial value u(x, 0) = 0. Then we arrive at the following nonlocal
system:

∂tu = ∆u− u exp

(
−
∫ t

0

f(u(x, ξ))dξ

)
, x ∈ Ω, t > 0, (1.7a)

∂νu(x, t) =

{
ϕ(x, t), x ∈ Γ1, t > 0,

0, x ∈ Γ2, t > 0,
(1.7b)

u(x, 0) = 0, x ∈ Ω. (1.7c)

Here, we assume Ω ⊂ Rn is a bounded domain with a smooth boundary ∂Ω such that ∂Ω = Γ1 ∪ Γ2,
where Γ1,Γ2 are non-empty relatively open subsets of ∂Ω and Γ1 ∩ Γ2 = ∅.

The LITT treatment is guided using magnetic resonance imaging (MRI). Unfortunately, MRI is known
to have either a good spatial or a good temporal resolution, making it difficult to predict the final size of the
coagulated zone. Hence, there is a strong demand for computer simulations of LITT to support therapy
planning and finding an optimal dosage. To obtain quantitatively satisfactory results, the estimation of
tissue parameters is a crucial task. However, while the respective data for the bio-heat equation are by
now available, the determination of the parameters in the coagulation model is still an important task, in
our case this is the function f(u). For technical reasons temperature measurements are only possible
using a thermocouple placed inside the catheter, corresponding to a point on the boundary of the domain
Ω.

In mathematical terms the scope of this paper is thus to study the following Inverse Problem:
Let x0 ∈ ∂Ω be arbitrarily fixed, T > 0 and ϕ be suitably given. Then do one-point data u(x0, t),
0 < t < T , uniquely determine f in some interval?

Our problem is a type of inverse problem of determining nonlinear terms in a parabolic equation by a
single measurement of boundary data. For such inverse problems for semilinear parabolic equations, we
refer to [2, 3, 4, 11, 13, 15], for example. In those papers, one usually can prove the comparison principle,
by which the uniqueness for the inverse problems is proved. Our system (1.7a) is involved with an integral
term and the comparison principle is less trivial, but we can prove it (Lemma 2.3 in Section 2).

Regarding numerical methods for such inverse problems, we refer to [8, 17]. On the other hand,
in the case where a governing equation does not allow the comparison principle, we do not know the
uniqueness by one-point measurement data but the uniqueness is proved by more comprehensive data
of solution in ω × (0, T ) with subdomain ω ⊂ Ω (see [9]).

For the statement of our main result concerning the uniqueness, we introduce assumptions. Through-
out this paper, we fix ϕ which is sufficiently smooth and satisfies

ϕ(x, 0) = 0, x ∈ ∂Ω, ϕ(x, t) > 0, x ∈ Γ1, t > 0.

Fixing two constants L, η0 arbitrarily such that 0 < η0 < L, we define an admissible set U by

U = {f ≥ 0 on [0,∞); f is analytic on [0, η0], monotonically increasing, with f(0) = 0, }.

We assume the unique existence of the classical solution u to (1.7a) – (1.7c), that is, u ∈ C(Ω× [0, T ])
satisfies

∂u

∂xj
∈ C(Ω× (0, T )), ∂tu,

∂2u

∂xi∂xj
∈ C(Ω× (0, T )), 1 ≤ i, j ≤ n. (1.8)

We can prove the unique existence of the classical solution under suitable assumptions on f and ϕ by a
standard method (e.g., [6]). However, in this paper, for concentrating on the inverse problem, we assume
the unique existence of the classical solution to (1.7a) – (1.7c) on [0, T ] and denote it by uf = uf (x, t).

Now we are ready to state
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Theorem 1.1. (Uniqueness for the inverse problem)
Let f, g ∈ U , x0 ∈ ∂Ω and T > 0 be arbitrarily fixed. If uf (x0, t) = ug(x0, t) for 0 < t < T , then
f = g on [0, η0].

With a finer lower estimate of the fundamental solution (e.g., [2]), we can prove a conditional stability
estimate in determining f . Similarly we can discuss the case where (1.7b) is replaced by a Dirichlet
boundary condition and Neumann data as the extra observation data are adopted, but we omit the details.

The paper is composed of three sections. Section 2 is devoted to the comparison principle (Lemma
2.3) for (1.7a), which is interesting itself. In Section 3, we complete the proof of Theorem 1.1.

2 Comparison principle

Let the function B = B(x, t) be smooth on Ω × [0, T ]. More precisely, B should be in the Schauder
space Cγ,γ/2(Ω× [0, T ]) with some γ ∈ (0, 1). For 0 < s < t < T , let U(x, t, y, s) = UB(x, t, y, s)
be the fundamental solution to ∂tU −∆U − B(x, t)U = 0 in Ω × (0, T ) with the boundary condition
∂νU = 0. Then

U(x, t, y, s) > 0 for x, y ∈ Ω and 0 < s < t (2.1)

and the solution v to

∂tv = ∆v +B(x, t)v + F in Ω× (0, T ),

v(x, 0) = 0, x ∈ Ω,

∂νv = ϕ on ∂Ω× (0, T ),

is represented by

v(x, t) =

∫ t

0

∫
Ω

U(x, t, y, s)F (y, s)dyds

+

∫ t

0

∫
∂Ω

U(x, t, y, s)ϕ(y, s)dSyds, x ∈ Ω, 0 < t < T (2.2)

(see, e.g., [10]). First we show

Lemma 2.1. Let a coagulation growth kinetic function g ∈ U . Then ug(x, t) > 0 for all x ∈ Ω and
0 < t ≤ T .

Proof. For simplicity, we set u = ug and B0(x, t) = − exp
(
−
∫ t

0
g(ug(x, ξ))dξ

)
. Then we have

∂tu−∆u = B0(x, t)u(x, t), x ∈ Ω, 0 < t < T.

Therefore with (2.2) for UB0 , we have

ug(x, t) =

∫ t

0

∫
Γ1

UB0(x, t, y, s)ϕ(y, s)dSyds, x ∈ Ω, 0 < t < T.

Hence by (2.1) and ϕ(·, t) > 0 on Γ1 for t > 0, the proof is completed.

Lemma 2.2. (Uniform boundedness)
There exists a constant M0 > 0 dependent on U , Ω, T , ϕ and independent of choices of g, such that

‖ug‖L∞(Ω×(0,T )) ≤M0

for all g ∈ U .
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Proof. Let U0 = U0(x, t, y, s) be the fundamental solution to ∂tU0 −∆U0 = 0 in Ω× (0, T ) with the
boundary condition ∂νU0 = 0. Then we have

ug(x, t) = −
∫ t

0

∫
Ω

U0(x, t, y, s)ug(u, s) exp

(
−
∫ s

0

g(ug(y, ξ))dξ

)
dyds

+

∫ t

0

∫
Γ1

U0(x, t, y, s)ϕ(y, s)dSyds, x ∈ Ω, 0 < t < T

(e.g., [10]). Noticing g ∈ U we have g ≥ 0 and

exp

(
−
∫ s

0

g(ug(y, ξ))dξ

)
≤ 1, y ∈ Ω, 0 < s < T.

Therefore by (2.1) we obtain

‖ug(·, t)‖L∞(Ω) ≤
∫ t

0

∫
Ω

U0(x, t, y, s)‖ug(·, s)‖L∞(Ω)dyds

+

∫ t

0

∫
∂Ω

U0(x, t, y, s)dSyds‖ϕ‖L∞(Γ1×(0,T ))

=: J1(x, t) + J2(x, t)‖ϕ‖L∞(Γ1×(0,T )), 0 < t < T. (2.3)

Since there holds ∫
Ω

U0(x, t, y, s)dy ≤ CeC(t−s), x ∈ Ω, 0 < s < t < T (2.4)

(e.g., Itô [10], Chapter IV in Ladyzenskaja, Solonnikov and Ural’ceva [12]), we have

J1(t) ≤ Ce2CT

∫ t

0

‖ug(·, s)‖L∞(Ω)ds, 0 < t < T. (2.5)

Here and henceforth C > 0 denotes generic constants which are independent of choices of g ∈ U , but
dependent on Ω,U , T,Ω, ϕ. Next we estimate J2(x, t) :=

∫ t
0

∫
∂Ω
U0(x, t, y, s)dSyds. We consider the

solution J3 to 
∂tJ3(x, t) = ∆J3(x, t), x ∈ Ω, 0 < t < T,
∂νJ3(x, t) = 1, x ∈ ∂Ω, 0 < t < T,
J3(x, 0) = 1, x ∈ Ω.

Then, by the a priori estimate (e.g., Theorem 5.3 (pp. 320-321) in [12]), we see that ‖J3‖L∞(Ω×(0,T )) ≤
C . Let J4 = J4(x, t) satisfy

∂tJ4(x, t) = ∆J4(x, t), x ∈ Ω, 0 < t < T,
∂νJ4(x, t) = 0, x ∈ ∂Ω, 0 < t < T,
J4(x, 0) = 1, x ∈ Ω.

Then (2.4) and J4(x, t) =
∫

Ω
U0(x, t, y, 0)dy imply ‖J4‖L∞(Ω×(0,T )) ≤ C . Since J2 = J3 + J4 in

Ω× (0, T ), we have

‖J2‖L∞(Ω×(0,T )) ≤ C. (2.6)

Implementing (2.3), (2.5) and (2.6), we obtain

‖ug(·, t)‖L∞(Ω) ≤ C + C

∫ t

0

‖ug(·, s)‖L∞(Ω)ds, 0 < t < T.

The Gronwall inequality completes the proof of Lemma 2.2.
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Next, we prove

Lemma 2.3. (Comparison principle)
Let f, g ∈ U and f ≤ g on [0, η0]. Then there exists a small constant t1 > 0 such that

uf (x, t) ≥ ug(x, t), x ∈ Ω, 0 < t < t1.

Proof. Owing to the integral term in (1.7a), it is very difficult to prove the lemma directly. Therefore we
construct uf by the contraction mapping theorem in a suitable set for the proof. Let u = uf − ug. Then

∂tu−∆u = −u exp

(
−
∫ t

0

f(u(x, ξ) + ug(x, ξ))dξ

)
− ug

(
exp

(
−
∫ t

0

f(u+ ug)dξ

)
− exp

(
−
∫ t

0

f(ug)dξ

))
− ug

(
exp

(
−
∫ t

0

f(ug)dξ

)
− exp

(
−
∫ t

0

g(ug)dξ

))
, x ∈ Ω, t > 0,

∂νu(x, t) = 0, x ∈ ∂Ω, t > 0

and
u(x, 0) = 0, x ∈ Ω.

Therefore, although uf is already assumed to exist, we reconstruct uf as follows. First let M > 0 be an
arbitrarily fixed constant. We set

W = {z ∈ C([0, t1];L∞(Ω)); z ≥ 0 in Ω× (0, t1), ‖z‖C([0,t1];L∞(Ω)) ≤M}.

Later we will choose a specific constant t1 > 0. Let the mapping v = K(z), z ∈ W , be defined by

∂tv −∆v = −v exp

(
−
∫ t

0

f(z(x, ξ) + ug(x, ξ))dξ

)
−ug

(
exp

(
−
∫ t

0

f(z + ug)dξ

)
− exp

(
−
∫ t

0

f(ug)dξ

))
−ug

(
exp

(
−
∫ t

0

f(ug)dξ

)
− exp

(
−
∫ t

0

g(ug)dξ

))
, x ∈ Ω, t > 0 (2.7a)

∂νv(x, t) = 0, x ∈ ∂Ω, t > 0 (2.7b)

v(x, 0) = 0, x ∈ Ω. (2.7c)

We need to prove

K(z)(x, t) ≥ 0, (x, t) ∈ Ω× (0, t1). (2.8)

Note that we can prove ug > 0 in Ω × (0, T ) by Lemma 2.1. Let z ∈ W . Set B1(x, t) =

exp
(
−
∫ t

0
f(z + ug)dξ

)
. Then

∂tv −∆v +B1(x, t)v

= −ug
(

exp

(
−
∫ t

0

f(z + ug)dξ

)
− exp

(
−
∫ t

0

f(ug)dξ

))
− ug

(
exp

(
−
∫ t

0

f(ug)dξ

)
− exp

(
−
∫ t

0

g(ug)dξ

))
≥ 0, x ∈ Ω, t > 0,
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∂νv(x, t) = 0, x ∈ ∂Ω, t > 0

and
v(x, 0) = 0, x ∈ Ω.

Regarding the right-hand side of (2.7a) by F ≥ 0 and applying (2.2) and in terms of (2.1), we have v ≥ 0
in Ω× (0, t1). Hence K(z) ≥ 0 in Ω× (0, t1).

Next we estimate ‖K(z)‖C([0,t1];L∞(Ω)) which satisfies v = K(z) and

∂tv −∆v +B1v

= −ug
(

exp

(
−
∫ t

0

f(z + ug)dξ

)
− exp

(
−
∫ t

0

f(ug)dξ

))
− ug

(
exp

(
−
∫ t

0

f(ug)dξ

)
− exp

(
−
∫ t

0

g(ug)dξ

))
:= J1 + J2.

Henceforth C > 0 and Ck > 0, k = 1, . . . , 7, denote generic constants which are dependent on f and
g but independent of choices of z ∈ W . In terms of f, g ∈ U , the mean value theorem and Lemma 2.2
yields

‖J1‖L∞(Ω×(0,t1)) ≤ C

∥∥∥∥∫ t

0

(f(z + ug)− f(ug))dξ

∥∥∥∥
L∞(Ω×(0,t1))

≤ Ct1‖f(z + ug)− f(ug)‖L∞(Ω×(0,t1)) ≤ Ct1‖z‖L∞(Ω×(0,t1))

and

‖J2‖L∞(Ω×(0,t1)) ≤ C

∥∥∥∥∫ t

0

(f(ug)− g(ug))dξ

∥∥∥∥
L∞(Ω×(0,t1))

≤ Ct1‖f(ug)− g(ug)‖L∞(Ω×(0,t1)).

Applying the fundamental solution U = UB1 to ∂tv −∆v + B1v = 0 with the homogeneous Neumann
boundary value condition, by (2.2) we obtain

‖v‖L∞(Ω×(0,t1)) ≤ C1‖J1 + J2‖L∞(Ω×(0,t1)) ≤ C2t1.

Select t1 > 0 such that C2t1 ≤M . Then we verify that K(z) ∈ W if z ∈ W .

Finally we estimate ‖K(z1) − K(z2)‖L∞(Ω×(0,t1)) for z1, z2 ∈ W . Let v1 = K(z1) and v2 =
K(z2) and v = v1 − v2 to obtain

∂tv −∆v =

{
−v1 exp

(
−
∫ t

0

f(z1 + ug)dξ

)
+ v2 exp

(
−
∫ t

0

f(z2 + ug)dξ

)}
−
{
ug exp

(
−
∫ t

0

f(z1 + ug)dξ

)
− ug exp

(
−
∫ t

0

f(z2 + ug)dξ

)}
:= I1 + I2.

Then

I1 = −v1 exp

(
−
∫ t

0

f(z1 + ug)dξ

)
+ v2 exp

(
−
∫ t

0

f(z1 + ug)dξ

)
− v2 exp

(
−
∫ t

0

f(z1 + ug)dξ

)
+ v2 exp

(
−
∫ t

0

f(z2 + ug)dξ

)
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= −v exp

(
−
∫ t

0

f(z1 + ug)dξ

)
− v2

(
exp

(
−
∫ t

0

f(z1 + ug)dξ

)
− exp

(
−
∫ t

0

f(z2 + ug)dξ

))
:= −vB2(x, t) + I12

and

I2 = −ug
(

exp

(
−
∫ t

0

f(z1 + ug)dξ

)
− exp

(
−
∫ t

0

f(z2 + ug)dξ

))
.

By the mean value theorem and Lemma 2.2, we have

‖I12‖L∞(Ω×(0,t1)) ≤ C3

∥∥∥∥∫ t

0

f(z1 + ug)dξ −
∫ t

0

f(z2 + ug)dξ

∥∥∥∥
L∞(Ω×(0,t1))

≤ C4t1‖z1 − z2‖L∞(Ω×(0,t1))

and

‖I2‖L∞(Ω×(0,t1)) ≤ C5

∥∥∥∥exp

(
−
∫ t

0

f(z1 + ug)dξ

)
− exp

(
−
∫ t

0

f(z2 + ug)dξ

)∥∥∥∥
L∞(Ω×(0,t1))

≤ C6t1‖z1 − z2‖L∞(Ω×(0,t1)).

Using the fundamental solution to ∂tv − ∆v + v exp
(
−
∫ t

0
f(z1 + ug)dξ

)
with the homogeneous

Neumann boundary condition, we similarly obtain

‖v‖L∞(Ω×(0,t1)) ≤ C7t1‖z1 − z2‖L∞(Ω×(0,t1)).

Therefore we further choose t1 > 0 such that C7t1 < 1 and we see thatK :W −→W is a contraction
mapping. HenceK possesses a unique fixed point q. By the uniqueness of the mild solution (e.g., [14]), it
follows that uf = ug + q. By (2.1) we have q ∈ U , in particular, q ≥ 0 in Ω× (0, t1). Therefore uf ≥ ug
in Ω× (0, t1).

3 Proof of Theorem 1.1

We complete the proof of the main result.

Since ug(x0, t) > 0 for 0 < t < t1, and the intermediate value theorem, we have

{ug(x0, t); 0 ≤ t ≤ t1} = [0, `0]

with some constant `0 > 0. We can choose t1 small if necessary, and so `0 < η0 and thus f and g are
analytic in [0, `0]. Moreover, since f − g is analytic in a neighborhood of 0, the zeros of f − g have no
accumulation points, and we can choose small `1 > 0 such that

f(ξ) ≥ g(ξ), 0 ≤ ξ ≤ `1

or
f(ξ) ≤ g(ξ), 0 ≤ ξ ≤ `1.
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Without loss of generality, we can assume that f(ξ) ≥ g(ξ), 0 ≤ ξ ≤ `1 and denote ` = min{`0, `1}.
Then

f(ξ) ≥ g(ξ), 0 ≤ ξ ≤ `. (3.1)

Define
A = max

0≤ξ≤`
|f(ξ)− g(ξ)| = max

0≤ξ≤`
(f(ξ)− g(ξ)). (3.2)

We choose η ∈ [0, `] such that
A = (f − g)(η). (3.3)

IfA = 0, then the proof is already finished and so we can assume thatA > 0. Moreover we can assume
that η > 0. Otherwise we have f(·) = g(·) in the non-empty interval (0, η) with η > 0, which completes
the proof by the analyticity of f and g.

Since η > 0 and η ∈ {ug(x0, t); 0 ≤ t ≤ t1}, there exists t0 ∈ (0, t1] such that ug(x0, t0) = η.
We set u = uf − ug. Then

∂tu−∆u

= −uf exp

(
−
∫ t

0

f(uf (x, ξ))dξ

)
+ ug exp

(
−
∫ t

0

f(uf (x, ξ))dξ

)
− ug exp

(
−
∫ t

0

f(uf (x, ξ))dξ

)
+ ug exp

(
−
∫ t

0

f(ug(x, ξ))dξ

)
− ug exp

(
−
∫ t

0

f(ug(x, ξ))dξ

)
+ ug exp

(
−
∫ t

0

g(ug(x, ξ))dξ

)
= B3(x, t)u(x, t)− ug

{
exp

(
−
∫ t

0

f(uf (x, ξ))dξ

)
− exp

(
−
∫ t

0

f(ug(x, ξ))dξ

)}
− ug

{
exp

(
−
∫ t

0

f(ug(x, ξ))dξ

)
− exp

(
−
∫ t

0

g(ug(x, ξ))dξ

)}
=: B3u+ S1 + S2,

where we consequently set

B3(x, t) = − exp

(
−
∫ t

0

f(uf (x, ξ))dξ

)
S1 = −ug

{
exp

(
−
∫ t

0

f(uf (x, ξ))dξ

)
− exp

(
−
∫ t

0

f(ug(x, ξ))dξ

)}
S2 = −ug

{
exp

(
−
∫ t

0

f(ug(x, ξ))dξ

)
− exp

(
−
∫ t

0

g(ug(x, ξ))dξ

)}
.

Hence we rewrite the above equation by

∂tu−∆u−B3(x, t)u = S1 + S2 in Ω× (0, t0), (3.4a)

∂νu = 0 on ∂Ω× (0, t0), (3.4b)

u(·, 0) = 0 in Ω. (3.4c)

Lemma 2.1 yields ug ≥ 0. By (3.1) and Lemma 2.3, we have uf ≥ ug. Hence we have

S1, S2 ≥ 0 in Ω× (0, t0). (3.5)
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Let U = UB3 be the fundamental solution for ∂t −∆− B3 with the homogeneous Neumann boundary
condition. Then

u(x, t) =

∫ t

0

∫
Ω

U(x, t, y, s)S1(y, s)dyds

+

∫ t

0

∫
Ω

U(x, t, y, s)S2(y, s)dyds, x ∈ Ω, 0 < t < t0.

Since u(x0, t) = 0 for 0 < t < t0, we have∫ t0

0

∫
Ω

U(x0, t0, y, s)S1(y, s)dyds+

∫ t0

0

∫
Ω

U(x0, t0, y, s)S2(y, s)dyds = 0, x ∈ ∂Ω, 0 < t < t0.

Therefore (3.5) yields∫ t0

0

∫
Ω

U(x0, t0, y, s)S2(y, s)dyds = 0, x ∈ ∂Ω, 0 < t < t0.

By (2.1), we have S2(x0, t) = 0 for almost all t ∈ (0, t0), that is,

ug(x0, t)

{
exp

(
−
∫ t

0

f(ug)(x0, ξ)dξ

)
− exp

(
−
∫ t

0

g(ug)(x0, ξ)dξ

)}
= 0

for almost all t ∈ (0, t0). Lemma 2.1 yields ug(x0, t) > 0 for t > 0, and

exp

(
−
∫ t

0

f(ug)(x0, ξ)dξ

)
= exp

(
−
∫ t

0

g(ug)(x0, ξ)dξ

)
for almost all 0 < t < t0, in particular, f(ug(x0, t)) = g(ug(x0, t)) for 0 < t < t0. Therefore
f(ug(x0, t0)) = g(ug(x0, t0)). Since ug(x0, t0) = η, by (3.2) and (3.3) we see that f(ξ) = g(ξ) for
0 ≤ ξ ≤ `, which is a contradiction. Thus A = 0 holds, that is, the proof of the theorem is completed.
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