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Abstract

We consider the Allen-Cahn equation with constraint. Our constraint is the subdifferential of
the indicator function on the closed interval, which is the multivalued function. In this paper we
give the characterization of the Lagrange multiplier to our equation. Moreover, we consider the
singular limit of our system and clarify the limit of the solution and the Lagrange multiplier to our
problem.

1 Introduction

In this paper, for each ε ∈ (0, 1] we consider the following Allen-Cahn equation with constraint:

uεt −∆uε +
1

ε2
∂I[−1,1](u

ε) 3 1

ε2
uε in Q := (0, T )× Ω, (1.1)

∂uε

∂ν
= 0 on Σ := (0, T )× Γ, (1.2)

uε(0, x) = uε0(x), x ∈ Ω, (1.3)

where 0 < T < +∞, Ω is a bounded domain in RN (1 ≤ N < +∞) with smooth boundary
Γ := ∂Ω, ν is an outward normal vector on Γ and uε0 is a given initial data. Also, ∂I[−1,1](·) is the
subdifferential of the indicator function I[−1,1](·) on the closed interval [−1, 1] defined by

I[−1,1](z) :=

{
0, if z ∈ [−1, 1],

+∞, otherwise.
(1.4)

More precisely, ∂I[−1,1](·) is a set-valued mapping defined by

∂I[−1,1](z) :=


∅ if z < −1 or z > 1,
[0,∞) if z = 1,
{0} if − 1 < z < 1,
(−∞, 0] if z = −1.

(1.5)

The Allen-Cahn equation was proposed to describe the macroscopic motion of phase boundaries. In
the physical context, the function uε = uε(t, x) in (P)ε is the nonconserved order parameter that
characterizes the physical structure: uε = 1, −1 < uε < 1 and uε = −1 correspond respectively to
pure liquid, mixture and pure solid.

There are vast literatures of Allen-Cahn equation with or without constraint. For such works, we refer
to [1, 3, 7, 8, 9, 11, 15, 18], for instance. In particular, Chen and Elliott [8] considered the asymptotic
behavior of the solution to (P)ε as ε → 0. However, there was no information of an element of
∂I[−1,1](u

ε) in [8].

In this paper, for each ε ∈ (0, 1] we consider an element λε ∈ ∂I[−1,1](u
ε), which is called the

Lagrange multiplier to (P)ε :={(1.1), (1.2), (1.3)}. Also, we investigate the limiting observation of λε as
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ε→ 0. Namely, we consider the singular limit of our system (P)ε and clarify the limiting of the solution
uε and the Lagrange multiplier λε to (P)ε as ε→ 0.

Recently, elliptic and parabolic variational inequalities were considered in connection with Lagrange
multipliers (cf. [3, 4, 10, 13]). Note from the constraint that the notion of solution to (P)ε is given in
variational sense (cf. Remark 2.1 below). Therefore, it is worthy considering the Lagrange multiplier to
(P)ε. Also, we are very interested in the limit of the Lagrange multiplier to (P)ε as ε→ 0.

This present paper aims to consider the Lagrange multiplier λε and the singular limit of (P)ε as ε→ 0.
The main novelties found in this paper are the following:

(i) We give the characterization of the Lagrange multiplier λε to (P)ε.

(ii) We show the convergence of the solution uε and the Lagrange multiplier λε to (P)ε as ε→ 0.

(iii) We clarify the properties of the limit of uε and λε as ε→ 0.

The plan of this paper is as follows. In Section 2, we state the main results in this paper. In Section 3
we recall the decomposition result of the subdifferential of convex functions. Also, we prove the main
result (Theorem 2.1) concerning the existence-uniqueness of solutions to (P)ε and properties of the
Lagrange multiplier λε. In Section 4, we prove Theorem 2.2 corresponding to the item (ii) and (iii) listed
in the above.

Notations and basic assumptions

Throughout this paper, for any reflexive Banach space B, we denote | · |B the norm of B, and denote
by B∗ the dual space of B.

In particular, we put H := L2(Ω) with usual real Hilbert space structure, and denote by (·, ·)H the
inner product in H . Also, we put V := H1(Ω) with the usual norm

|z|V :=
{
|z|2H + |∇z|2H

} 1
2 , z ∈ V,

and denote by 〈·, ·〉 the duality pairing between V ∗ and V . By identifying H with its dual space, we
have V ⊂ H ⊂ V ∗ with compact and dense embeddings; then,

〈u, v〉 = (u, v)H for u ∈ H and v ∈ V. (1.6)

In the proof of Theorem 2.1, we use some techniques of proper (that is, not identically equal to infin-
ity), l.s.c. (lower semi-continuous), convex functions and their subdifferentials, which are useful in the
systematic study of variational inequalities. Therefore, let us outline some notations and definitions.
For a proper, l.s.c. and convex function ψ : H → R ∪ {+∞}, the effective domain D(ψ) is defined
by

D(ψ) := {z ∈ H; ψ(z) <∞}.
The subdifferential of ψ is a possibly multi-valued operator in H and is defined by z∗ ∈ ∂ψ(z) if and
only if

z ∈ D(ψ) and (z∗, y − z)H ≤ ψ(y)− ψ(z) for all y ∈ H.
For various properties and related notions of the proper, l.s.c., convex function ψ and its subdifferential
∂ψ, we refer to a monograph by Brézis [5].

Next, let us give an assumption on initial data. Throughout this paper, we assume the following condi-
tion (A):
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(A) uε0 ∈ K := {z ∈ V ; |z| ≤ 1 a.e. in Ω} for all ε ∈ (0, 1].

Finally, throughout this paper, Ci = Ci(·), i = 1, 2, 3, · · · , denotes positive (or nonnegative) con-
stants depending only on its arguments.

2 Main results

We begin by giving the rigorous definition of solutions to our problem (P)ε (ε ∈ (0, 1]).

Definition 2.1 For each ε ∈ (0, 1], a function uε : [0, T ] → H is called a solution to (P)ε on [0, T ],
if the following conditions are satisfied:

(i) uε ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ).

(ii) There is a function λε ∈ L2(0, T ;H) with λε ∈ ∂I[−1,1](u
ε) a.e. in Q such that

(uεt(t), z)H + (∇uε(t),∇z)H +
1

ε2
(λε(t), z)H =

1

ε2
(uε(t), z)H

for all z ∈ V and a.e. t ∈ (0, T ).

(iii) uε(0) = uε0 in H .

We call λε in (ii) a Lagrange multiplier to (P)ε on [0, T ].

Remark 2.1 It follows from the constraint ∂I[−1,1](·) and (ii) of Definition 2.1 that the equation (1.1) is
equivalent to the following variational inequality:(

uεt(t)−
1

ε2
uε(t), uε(t)− z

)
H

+ (∇uε(t),∇uε(t)−∇z)H ≤ 0

for all z ∈ K and a.e. t ∈ (0, T ).

Now, let us mention the first main result in this paper, which is concerned with the existence and basic
property of the solution and the Lagrange multiplier to (P)ε on [0, T ].

Theorem 2.1 Assume (A). Then, for each ε ∈ (0, 1], there exist a unique solution uε to (P)ε on [0, T ]
and a Lagrange multiplier λε in the sense of Definition 2.1 such that

λε(t, x)


≥ 0 on {(t, x) ∈ Q ; uε(t, x) = 1},
= 0 on {(t, x) ∈ Q ; −1 < uε(t, x) < 1},
≤ 0 on {(t, x) ∈ Q ; uε(t, x) = −1}.

(2.1)
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In next Section 3, we give the proof of Theorem 2.1.

Next, we consider the limiting situation of (P)ε as ε → 0. To do so, we use the following energy
functional:

F ε(u) :=

∫
Ω

{
ε

2
|∇u|2 +

1

ε
I[−1,1](u) +

1− u2

2ε

}
dx, u ∈ V. (2.2)

Now we state the second main result in this paper, which is concerned with the singular limit of (P)ε

as ε→ 0:

Theorem 2.2 Assume (A). For each ε ∈ (0, 1], let uε be the unique solution to (P)ε on [0, T ]. Also,
let λε be the Lagrange multiplier to (P)ε on [0, T ] in the sense of Definition 2.1. Assume that there are
the function u0 ∈ L1(Ω) and a positive constant M , independent of ε ∈ [0, 1], satisfying u0(x) = 1
or −1 for a.e. x ∈ Ω,

sup
ε∈[0,1]

F ε(uε0) < M (2.3)

and

lim
ε→0

∫
Ω

|uε0(x)− u0(x)|dx = 0. (2.4)

Then, there are a subsequence {εk} of {ε} with εk ↘ 0 as k →∞, the functions u ∈ L2(0, T ;H)
and λ∗ ∈ L2(0, T ;V ∗) and a positive number N0, independent of ε ∈ (0, 1], such that u(t, x) takes
only the values 1 or −1 for a.e. (t, x) ∈ (0, T )× Ω,

lim
k→∞

uεk(t, x) = u(t, x), a.e. (t, x) ∈ Q, (2.5)∫
Ω

|u(t1, x)− u(t2, x)| dx ≤ N0|t1 − t2|
1
2 , ∀t1, t2 ∈ [0, T ], (2.6)

lim
t→0

u(t, x) = u0(x), a.e. x ∈ Ω, (2.7)∫
Ω

|∇u(t)| ≤ N0, a.e. t ∈ (0, T ) (2.8)

and
λεk −→ λ∗ weakly in L2(0, T ;V ∗) as k →∞. (2.9)

Moreover, λ∗ − u = 0 in L2(0, T ;V ∗), hence,

λ∗ = 1 on {(t, x) ∈ Q ; u(t, x) = 1} (2.10)

and
λ∗ = −1 on {(t, x) ∈ Q ; u(t, x) = −1}. (2.11)

In Section 4 we prove Theorem 2.2 by using a priori estimates of uε and λε.

3 Solvability of (P)ε

In this section we consider (P)ε for each ε ∈ (0, 1]. In fact, we study (P)ε by arguments similar to
[14, 17], namely by the theory of abstract evolution equations governed by subdifferentials.
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Now, we define a functional ϕ0 on H by

ϕ0(z) :=


1

2

∫
Ω

|∇z|2dx, if z ∈ V,

∞, otherwise.
(3.1)

Clearly, ϕ0 is proper, l.s.c. and convex on H .

Also, we define the proper, l.s.c. and convex functional I[−1,1] of H by

I[−1,1](z) :=

∫
Ω

I[−1,1](z)dx for any z ∈ H,

where I[−1,1] is the indicator function defined in (1.4).

Next, we consider the functional ϕ defined by the form:

ϕ(z) = ϕ0(z) +
1

ε2
I[−1,1](z) for any z ∈ H.

Clearly, ϕ is proper, l.s.c. and convex on H with the effective domain D(ϕ) = K , where K is the set
defined in (A).

Here, we recall the following decomposition result of the subdifferential ∂ϕ.

Proposition 3.1 (cf. [6, Section 3], [17, Theorem 3.1]) The subdifferential ∂ϕ of ϕ is decomposed
into the following form:

∂ϕ(z) = ∂ϕ0(z) +
1

ε2
∂I[−1,1](z) in H for any z ∈ H.

By arguments similar to [6, Section 3] and [17, Theorem 3.1], we can prove Proposition 3.1, so, omit
its detailed proof.

Now, we prove Theorem 2.1 by using Proposition 3.1 and applying the abstract theory of nonlinear
evolution equations associated with subdifferential ∂ϕ.

Proof of Theorem 2.1. By the similar arguments as in [14, Section 1], we can show the existence-
uniqueness of a solution uε to (P)ε on [0, T ] for each ε ∈ (0, 1]. In fact, we easily prove the uniqueness
of solutions to (P)ε on [0, T ] by the quite standard arguments: monotonicity and Gronwall’s inequality.

Now, we show the existence of solutions to (P)ε on [0, T ]. We easily see that the problem (P)ε can be
rewritten in an abstract framework of the form:

(CP)ε
{

d

dt
uε(t) + ∂ϕ(uε(t))− 1

ε2
uε(t) 3 0 in H, for t > 0,

uε(0) = uε0 in H.
(3.2)

Therefore, applying the Lipschitz perturbation theory of abstract evolution equations (cf. [6, 12, 16]),
we can show the existence of a solution uε to (P)ε on [0, T ] for each ε ∈ (0, 1] in the variational sense
(cf. Remark 2.1).

Also, note from Proposition 3.1 that (CP)ε is equivalent to the following:

(̃CP)
ε


d

dt
uε(t) + ∂ϕ0(uε(t)) +

1

ε2
∂I[−1,1](u

ε(t))− 1

ε2
uε(t) 3 0 in H,

for t > 0,
uε(0) = uε0 in H.

(3.3)
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Namely, there are functions vε ∈ L2(0, T ;H) and λε ∈ L2(0, T ;H) such that vε(t) ∈ ∂ϕ0(uε(t))
a.e. in (0, T ), λε ∈ ∂I[−1,1](u

ε) a.e. in Q and (3.3) holds in the following sense:

d

dt
uε(t) + vε(t) +

1

ε2
λε(t)− 1

ε2
uε(t) = 0 in H, for t > 0.

Thus, from the characterization of ∂ϕ0, we easily see that uε is a solution to (P)ε on [0, T ] and λε is
the Lagrange multiplier to (P)ε on [0, T ] in the sense of Definition 2.1.

Taking account of the definition (1.5) of ∂I[−1,1](·), we conclude from λε ∈ ∂I[−1,1](u
ε) a.e. in Q that

the signature result (2.1) of the Lagrange multiplier λε holds. Thus, the proof of Theorem 2.1 has been
completed. �

4 Singular limit of (P)ε as ε→ 0

In this section we consider the singular limit of (P)ε as ε→ 0. Then, we clarify the limit of the solution
uε and the Lagrange multiplier λε to (P)ε on [0, T ].

We begin by giving the uniform estimate of uε and λε with respect to ε ∈ (0, 1].

Lemma 4.1 Suppose all the same conditions in Theorem 2.2. For each ε ∈ (0, 1], let uε be the
unique solution to (P)ε on [0, T ]. Also, let λε be the Lagrange multiplier to (P)ε on [0, T ] in the sense
of Definition 2.1. Assume that there is a positive constant M , independent of ε ∈ [0, 1], satisfying

sup
ε∈[0,1]

F ε(uε0) < M.

Then, there is a positive number N1 > 0, dependent on M and independent of ε ∈ (0, 1], such that

ε

∫ T

0

|uεt(τ)|2Hdτ + sup
τ∈[0,T ]

F ε(uε(τ)) +

∫ T

0

|λε(τ)|2V ∗dτ ≤ N1. (4.1)

Proof. Multiplying (1.1) by εuεt , we get

ε|uεt(τ)|2H +
d

dτ
F ε(uε(τ)) = 0 for a.e. τ > 0, (4.2)

where F ε(·) is the functional defined in (2.2). By integrating (4.2) in τ over [0, t] (⊂ [0, T ]), we get

ε

∫ t

0

|uεt(τ)|2Hdτ + F ε(uε(t)) = F ε(uε0) < M for all t ∈ [0, T ]. (4.3)

Also, taking account of the constraint ∂I[−1,1](·) (cf. (1.5)), we easily see that

|uε| ≤ 1, a.e. in Q. (4.4)

By (1.6), (4.4) and (ii) of Definition 2.1, we see from Hölder inequality that:∣∣∣∣∫ T

0

〈λε(t), z(t)〉dt
∣∣∣∣ =

∣∣∣∣∫ T

0

(λε(t), z(t))Hdt

∣∣∣∣
≤
∫ T

0

∣∣(ε2uεt(t), z(t))H
∣∣ dt+

∫ T

0

∣∣ε2 (∇uε(t),∇z(t))H
∣∣ dt+

∫ T

0

|(uε(t), z(t))H | dt

≤

(
ε2|uεt |L2(0,T ;H) + ε2

√
T sup
t∈[0,T ]

|∇uε(t)|H +
√
T |Ω|

)
|z|L2(0,T ;V ) (4.5)
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for any z ∈ L2(0, T ;V ), where |Ω| denotes the volume of Ω. Therefore, from ε ∈ (0, 1], (2.2), (4.3)
and (4.5), we infer that:

|λε|L2(0,T ;V ∗) ≤
√
M +

√
2MT +

√
T |Ω| for all ε ∈ (0, 1]. (4.6)

From (4.3) and (4.6), we infer that the uniform estimate (4.1) holds for some positive constant N1.
Thus, the proof of Lemma 4.1 has been completed. �

Corollary 4.1 Suppose all the same conditions in Lemma 4.1. For each ε ∈ (0, 1], let uε be the
unique solution to (P)ε on [0, T ]. Also, let N1 > 0 be the positive number obtained in Lemma 4.1. Put

h(s) :=
1√
2

∫ s

−1

√
1− σ2dσ for s ∈ [−1, 1]. (4.7)

Then, the following estimates hold:

sup
t∈[0,T ]

∫
Ω

|∇h(uε(t, x))|dx ≤ N1 (4.8)

and ∫ t2

t1

∫
Ω

|(h(uε(t, x)))t|dxdt ≤ N1(t2 − t1)
1
2

for all t1, t2 with 0 ≤ t1 < t2 ≤ T.
(4.9)

Proof. First, note from (4.7) that h′(s) =
√

(1− s2)/2 for s ∈ [−1, 1].

Now, we show the estimate (4.8). By (4.4) and the Schwarz inequality, we have:∫
Ω

|∇h(uε(t, x))|dx =

∫
Ω

|h′(uε(t, x))||∇uε(t, x)|dx

≤ 1

2ε

∫
Ω

1− (uε(t, x))2

2
dx+

ε

2

∫
Ω

|∇uε(t, x)|2dx

≤ F ε(uε(t))

≤ N1 for all t ∈ [0, T ].

Thus, (4.8) holds.

Next, we show (4.9). By (4.4) and Hölder inequality, we have:∫ t2

t1

∫
Ω

|(h(uε(t, x)))t|dxdt =

∫ t2

t1

∫
Ω

|h′(uε(t, x))||uεt(t, x)|dxdt

≤
(∫ t2

t1

∫
Ω

1− (uε(t, x))2

2
dxdt

) 1
2
(∫ t2

t1

|uεt(t)|2Hdt
) 1

2

≤ (t2 − t1)
1
2{ε sup

t∈[t1,t2]

F ε(uε(t))}
1
2

1√
ε
N

1
2

1

≤ N1(t2 − t1)
1
2

for all t1, t2 with 0 ≤ t1 < t2 ≤ T .

Thus, the proof of Corollary 4.1 has been completed. �
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Now, we prove the main Theorem 2.2, which is concerned with the singular limit of (P)ε as ε→ 0.

Proof of Theorem 2.2. At first we show the existence of a subsequence {εk} of {ε} and the function
u ∈ L2(0, T ;H) such that u(t, x) takes only the values 1 or −1 for a.e. (t, x) ∈ (0, T ) × Ω and
(2.5) holds.

By the definition of h (cf. (4.7)), we easily see that the function h is bounded on [−1, 1]:

|h(s)| ≤ Ch for all s ∈ [−1, 1] (4.10)

for some positive constant Ch > 0. Therefore we infer from (4.4) and (4.10) that:∫ T

0

∫
Ω

|h(uε(t, x))|dxdt ≤ T |Ω|Ch. (4.11)

Taking account of (4.8), (4.9) and (4.11), we see that {h(uε)} is bounded inBV ((0, T )×Ω) uniformly
in ε ∈ (0, 1], where BV ((0, T )× Ω) is the space of all bounded variation functions on (0, T )× Ω.
Since BV ((0, T ) × Ω) is compactly embedded into L1((0, T ) × Ω) (cf. [2, Corollary 3.49]), there
are subsequence {εk} ⊂ {ε} and the function h∗ ∈ BV ((0, T )× Ω) such that εk → 0 and

h(uεk) −→ h∗ in L1((0, T )× Ω) as k →∞. (4.12)

Therefore, taking a subsequence if necessary, we see that:

h(uεk(t, x)) −→ h∗(t, x), a.e. (t, x) ∈ (0, T )× Ω as k →∞. (4.13)

Since h is continuous and strictly increasing on [−1, 1] (cf. (4.7)), we can find a unique function u(t, x)
such that

h∗(t, x) = h(u(t, x)), a.e. (t, x) ∈ (0, T )× Ω (4.14)

and
uεk(t, x) −→ u(t, x), a.e. (t, x) ∈ (0, T )× Ω as k →∞, (4.15)

hence (2.5) holds. Clearly, it follows from (4.4) and (4.15) that:

|u| ≤ 1, a.e. in Q. (4.16)

From (4.1), (4.4), (4.15), (4.16) and Lebesgue’s dominated convergence theorem, we infer that:

0 ≤
∫ T

0

∫
Ω

(
1− (u(t, x))2

)
dxdt = lim

k→∞

∫ T

0

∫
Ω

(
1− (uεk(t, x))2

)
dxdt

≤ 2N1T lim
k→∞

εk = 0, (4.17)

which implies that the limit function u of uεk takes only the values 1 or−1 for a.e. (t, x) ∈ (0, T )×Ω.

Next, we show (2.6). Note from (4.9) that the following inequality holds:∫
Ω

|h(uεk(t1, x))− h(uεk(t2, x))| dx ≤
∫

Ω

∫ t2

t1

|(h(uεk(t, x)))t|dtdx

≤ N1(t2 − t1)
1
2 (4.18)

for all t1, t2 with 0 ≤ t1 < t2 ≤ T .
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Taking the limit in (4.18) as k → ∞, we infer from (4.4), (4.10), (4.12)–(4.14) and Lebesgue’s domi-
nated convergence theorem that:∫

Ω

|h(u(t1, x))− h(u(t2, x))| dx ≤ N1(t2 − t1)
1
2

for a.e. t1, t2 with 0 ≤ t1 < t2 ≤ T .
(4.19)

Since the limit function u of uεk takes only the values 1 or −1 for a.e. on (0, T ) × Ω, we easily see
that:

|h(u(t1, x))− h(u(t2, x))| = C3

2
|u(t1, x)− u(t2, x)|

with C3 = h(1)− h(−1),
a.e. x ∈ Ω and a.e. t1, t2 ∈ (0, T ).

(4.20)

Therefore, we observe from (4.19) and (4.20) that:∫
Ω

|u(t1, x)− u(t2, x)| dx ≤ 2N1

C3

(t2 − t1)
1
2

for a.e. t1, t2 with 0 ≤ t1 < t2 ≤ T .
(4.21)

By (4.21), we can redefine the function u in order that u(t) ∈ L1(Ω) is continuous with respect to
t ∈ [0, T ]. Therefore, (4.21) hold for all t1, t2 ∈ [0, T ] with t2 > t1, thus, (2.6) holds by putting
N0 := (2N1)/C3.

Next, we show (2.7). At first, we note from (2.4) that

uεk
0 (x) −→ u0(x), a.e. x ∈ Ω as k →∞ (4.22)

by taking a subsequence if necessary. Therefore, by (2.3), (4.10), (4.22) and the continuity of h, we
easily see from Lebesgue’s dominated convergence theorem that:

lim
k→∞

∫
Ω

|h(uεk
0 (x))− h(u0(x))| dx = 0. (4.23)

Now, putting t1 = 0 in (4.18), we have:∫
Ω

|h(uεk
0 (x))− h(uεk(t2, x))| dx ≤ N1t

1
2
2 for all t2 ∈ (0, T ]. (4.24)

Taking the limit in (4.24) as k →∞, we see from (4.12)–(4.15), (4.23) and (4.24) that:∫
Ω

|h(u0(x))− h(u(t2, x))| dx ≤ N1t
1
2
2 , a.e. t2 ∈ (0, T ]. (4.25)

Since u0(x) takes only the values 1 or −1 for a.e. x ∈ Ω and u(t) ∈ L1(Ω) is continuous with
respect to t ∈ [0, T ], we easily see from (4.20) and (4.25) that:∫

Ω

|u0(x)− u(t2, x)| dx ≤ 2N1

C3

t
1
2
2 for all t2 ∈ (0, T ]. (4.26)

Thus, passing the limit t2 → 0 in (4.26), we observe that (2.7) holds.

Next, we show (2.8). By (4.8), (4.12) and the lower semicontinuity of the total variation under L1-
convergence (cf. [2, Proposition 3.6]), we observe that∫

Ω

|∇h∗(t)| ≤ N1, a.e. t ∈ (0, T ), (4.27)
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where
∫

Ω
|∇h∗(t)| is the total variation measure of h∗(t). Since u(t, x) takes only the values 1 or

−1 for a.e. (t, x) ∈ (0, T )× Ω, we infer from (4.14) and (4.20) that∫
Ω

|∇u(t)| ≤ 2N1

C3

, a.e. t ∈ (0, T ). (4.28)

Hence, (2.8) holds.

Finally, we show (2.9)–(2.11). By the uniform estimate (4.1), we easily see that there is a subsequence
of {εk} (which we denote εk for simplicity) and a function λ∗ ∈ L2(0, T ;V ∗) satisfying (2.9).

From (4.4), (4.15) and Lebesgue’s dominated convergence theorem, we infer that:

uεk −→ u in L2(0, T ;H) as k →∞. (4.29)

By (1.6), (4.1) and (ii) of Definition 2.1, we have that:∫ T

0

〈λεk(t)− uεk(t), z(t)〉dt
(

=

∫ T

0

(λεk(t)− uεk(t), z(t))Hdt

)
≤
∫ T

0

∣∣(ε2
ku

εk
t (t), z(t))H

∣∣ dt+

∫ T

0

∣∣ε2
k(∇uεk(t),∇z(t))H

∣∣ dt
≤ε

3
2
k

√
N1|z|L2(0,T ;H) + ε

3
2
k

√
2TN1|z|L2(0,T ;V )

for any z ∈ L2(0, T ;V ).

From (2.9), (4.29) and the inequality as above, we see that∫ T

0

〈λ∗(t)− u(t), z(t)〉dt = lim
k→∞

∫ T

0

〈λεk(t)− uεk(t), z(t)〉dt ≤ 0. (4.30)

Since z ∈ L2(0, T ;V ) is arbitrary, we infer from (4.30) that

λ∗ − u = 0
(
∈ L2(0, T ;H)

)
in L2(0, T ;V ∗). (4.31)

Since the function u ∈ L2(0, T ;H) takes only the values 1 or −1 for a.e. in (0, T ) × Ω, we easily
conclude from (4.31) that (2.10) and (2.11) hold. Thus, the proof of Theorem 2.2 has been completed.

�
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