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Abstract

We demonstrate that Freeman resonances have a strong impact on the nonlinear op-
tical response in femtosecond filaments. These resonances decrease the transient refrac-
tive index within a narrow intensity window and strongly affect the filamentation dynamics.
In particular, we demonstrate that the peak intensity of the filament can be clamped at
these resonances, hinting at the existence of new regimes of filamentation with electron
densities considerably lower than predicted by the standard model. This sheds a new light
on the phenomenon of filamentary intensity clamping and the plasmaless filaments pre-
dicted by the controversial high-order Kerr model.

Femtosecond laser filaments are narrow beams of intense laser light in ionizing media which
maintain their beamwaist over distances exceeding the linear diffraction length [1]. The high
optical intensities in filaments lead to transient refractive index modifications, and according to
the established standard model of filamentation, they stem from an interplay of the all-optical
Kerr effect and free electrons generated by multiphoton and tunneling ionization processes. Self-
guided filaments are then understood to result from a balance of Kerr self-focusing and plasma
defocusing [2]. While the temporal evolution of a filamentary laser pulse is highly dynamic and
subject to recurrent focusing and refocusing cycles [3], a temporally averaged model can be
shown to admit spatial soliton solutions, which produces the illusion of a nondiffracting beam
[4, 5].

The standard model successfully fostered the theoretical understanding of various phenom-
ena of nonlinear optics related to filamentation, like supercontinuum generation, pulse self-
compression or terahertz generation [6, 7, 8]. However, it has recently been challenged by
measurements of the cross-Kerr response in a pump-probe setup designed to detect the Kerr-
induced birefringence [9]. This revealed strong deviations from the linear intensity dependence
of the Kerr response, and led to the proposal of an extended model including higher-order terms
in the intensity. Above a threshold intensity, these terms turn the Kerr response into a defocus-
ing nonlinearity, leading to the prediction of plasmaless filaments [10]. The higher-order Kerr
effect (HOKE) model has been heavyly debated [11, 12, 13, 14, 15]. Nevertheless, it turned
out that some basic assumptions of the standard model should be reconsidered. One of the
major weaknesses of the standard model appears now to be the fact that it mixes perturbative
and nonperturbative aspects of nonlinear optics in an inadmissible manner. While the nonlin-
ear polarization density is treated perturbatively, the typical intensities in filaments exceed the
validity range of perturbative multiphoton ionization models. Instead, in order to correctly de-
scribe ionization effects, some variant of the nonperturbative Keldysh theory [16] is employed.
The inadequacy of a perturbative description of the optical response in filaments has been re-
vealed in Ref. [17]. Moreover, the standard model inherits the separate treatment of bound state
and continuum response from the macroscopic Maxwell’s equation. However, it was shown that
in the presence of a strong laser field, gauge variance renders the distinction between bound
and continuum electrons ambiguous [13, 14]. Instead, bound states of free electrons, so called
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Kramers-Henneberger states, were proposed to contribute to HOKE [18]. Furthermore, the stan-
dard model assumes off-resonant excitation and neglects the dispersive character of the χ(3)

susceptibility. This issue was recently resolved in Ref. [19].

In the current Letter, we demonstrate that the optical response in filaments is nonperturbative
and governed by transient atomic resonances, so called Freeman resonances [20], whose im-
pact on the optical response was previously indicated in Ref. [18]. They occur when the AC
Stark shift of atomic levels is of the order of a photon energy, which is the case for intensities ex-
ceeding some ten TW/cm2. Analyzing their impact on filamentary propagation, we show that
Freeman resonances support intensity clamping, giving rise to new regimes of filamentation.

In order to analyze the transient response properties of atomic hydrogen dressed by a strong
pump pulse, we solve the time dependent Schrödinger equation (TDSE) for a commonly used
1D model atom [21],

i∂tψ = −1

2
∂2zψ −

1√
z2 + α2

ψ + E(t)zψ (1)

where α =
√

2 was chosen to match the ionization potential Ip = 13.6 eV (0.5au) of atomic
hydrogen. The model atom is subject to a total electric field E(t) = Epu(t) + Epr(t) with a
strong pump pulse Epu and a weak probe Epr of identical carrier wavelengths λ = 800 nm.
The optical response of the dressed atom is derived from the differential dipole response [22]

δP [Epr](t) = P [Epu + Epr](t)− P [Epu](t), (2)

where
P [E](t) = −ρntqe〈ψ(t)|z|ψ(t)〉 (3)

is the polarization density, ρnt the atomic density and qe the electron charge. We are interested
in the cross-induced transient refractive index seen by the probe. This is obtained by calcu-
lating the polarization response δP (ω0) at the probe frequency, after removing the negative
frequency contributions of the probe field. This eliminates spurious contributions to δP (ω0) due
to multiwave mixing and is achieved by replacing the real probe field Epr with the complex an-
alytic signal Epr = Epr + iH(Epr), whereH is the Hilbert transform. By solving the TDSE (1)
seperately for the real and complex parts of Epr, the differential response δP to the complex
probe field can be evaluated according to

δP [Epr](t) = δP [Re Epr](t) + i δP [Im Epr](t). (4)

The medium is dressed by a flat-top pump field of variable intensity I . The field is switched
on and off following a four-cycle cos2-envelope with a constant amplitude along 40 cycles in-
between. The weak complex probe field is 124 cycles flat-top pulse with a peak intensity of
Ipr = 1 W/cm2. The transient susceptibility then reads as

χ(τ) =
δP̃ (ω0, τ)

ε0Ẽpr(ω0, τ)
, (5)

where ω0 denotes the carrier frequency of pump and probe. P̃ (ω, τ) and Ẽ(ω, τ) are short-
time Fourier transforms with a 20 fs FWHM Gaussian window w(t− τ) centered at t = τ . The
transient refractive index change is then obtained from

∆n(τ) =
√

1 + Reχ(τ)− n0, (6)
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Figure 1: (color online) (a) Transient refractive index induced by a 40-cycle flat-top pump for
low intensities and (b) in the vicinity of the first prominent Freeman resonance at 15TW/cm2.
(c) Logarithmic plot of probability density beyond 200 au. Solid line: nonlinear refractive index
change. Inset: Closeup on low intensities.

where n0 is the field-free refractive index. For weak pump intensities smaller than 10 TW/cm2,
Fig. 1a) shows that ∆n(τ) follows the intensity envelope of the pump pulse, in accordance
with the Kerr model of the optical response based on an instantaneous χ(3)-nonlinearity. As our
grid is sufficiently large (6000 au radius), we capture the full plasma contribution to the refrac-
tive index, which is evident from the constant negative ∆n(τ) in the wake of the 12 TW/cm2

pulse, cf. Fig. 1a). However, at this intensity, the decrease in ∆n(τ) during the pulse is much
larger than the plasma contribution in the wake of the pulse, a first evidence of deviations from
the standard model. In the vicinity of 15 TW/cm2 as shown in Fig. 1b), these deviations are
dramatic and indicate the breakdown of a perturbative, instantaneous description of the nonlin-
earity. In fact, in the trailing part of the pump in Fig. 1b), ∆n(τ) exhibits a resonance pattern,
with pronounced negative response (solid lines) below and positive response (dashed lines)
above 15.05 TW/cm2. In order to expose the origins of this behavior, we plot in Fig. 1c) the
electron density leaving a spatial range of 200 au versus time and pump intensity. This exposes a
sharp peak in the electron density at 15 TW/cm2 and further peaks at higher intensities. These
peaks are related to resonance enhanced multiphoton ionization (REMPI) due to the presence
of Freeman resonances [20]. They arise as the intensity is increased beyond a K−photon
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channel closure (CC) [23] defined byK~ω0 = Ip +Up, where Ip is the field-free ionization po-
tential of the atom andUp = E2/4ω2 (in atomic units) is the ponderomotive potential. The white
solid line in Fig. 1c) shows the pump-induced refractive index change, evaluated at the carrier
frequency, i.e. ∆n(ω0) =

√
1 + Reχ(ω0)−n0, where χ(ω0) is obtained from Eq. (5) using a

constant window w ≡ 1. While ∆n increases linearly for intensities below 10 TW/cm2, cf. the
inset in Fig. 1c) , REMPI leads to sharp resonances for higher intensities. Especially after the
ten photon CC around 30 TW/cm2, ∆n varies by orders of magnitude, leading us to suspect
that Freeman resonances dominate the optical response in this regime.

The sharpness of these resonances may also be attributed to the employed flat-top pulse, en-
abling the field-free eigenstates to adiabatically adapt to field-dressed eigenstates. However,
experimental femtosecond pulses usually exhibit a variable intensity envelope. We therefore re-
peat our calculations for a pulse with cos2 shape, where the pulse duration of ∼ 90 fs FWHM
(96 cycles total) matches that of the original HOKE experiment [9]. Figures 2a) and b) depict
the transient refractive index in the low-intensity regime and in the vicinity of the resonance at
15 TW/cm2. Qualitatively, we observe the same behavior as for the flat-top pump. However,
due to the non-constant intensity envelope, the resonance appears smeared out, and we may
expect the resonant features to disappear for even shorter pulses.
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Figure 2: (color online) Transient refractive index as in Fig. 1a) and b), but for a 90fs cos2-pulse.
The resonance and hence the refractive index saturation are still clearly visible.

To further corroborate our hypothesis on the importance of Freeman resonances, we analyze
the Floquet quasienergies using the method of Ref. [25]. Our results for pulses with 80 and
160 cycles flat-top are shown in Fig. 3a) and b), respectively. The increased pulse durations
do not qualitatively alter the result, but improve the sharpness and frequency resolution of the
Floquet spectral peaks. The prominent lines originating at ω = −0.5 +Nω0 correspond to the
N−photon dressed ground state, where ω0 = 0.057, in atomic units. With increasing intensity,
the ground state energy decreases only slightly. The dressed excited states are subject to the
AC Stark shift, as visualized by the dashed white line in Fig. 3a) which shows the ponderomo-
tively upshifted continuum limit in the N = −4 Floquet block. Interestingly, Fig. 3a) exhibits
level crossings of the dressed ground state with excited states. These crossings occur just after
the nine- and ten-photon CCs indicated by the solid vertical lines, and their position on the in-
tensity axis matches that of the resonances observed in our numerical pump probe experiment,
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cf. Fig. 1c).

In Fig. 3b), a closeup of the level crossings up to 15 TW/cm2 is shown. Below the continuum
threshold in the N = −4 Floquet block (dashed line), we recognize occupied Rydberg states
shifting with Up which eventually cross the N = 5 dressed ground state. At 5 TW/cm2 and
below, avoided crossings of the first excited state in the N = 0 block (originating at 0.233 au)
with the 7th and 9th excited state in the N=-4 block (solid lines) are evident, upon which the par-
ticipating states interchange their role. Therefore, the observed crossings below 15 TW/cm2

facilitate nine-photon transitions, which confirms that the resonant behavior of the transient re-
fractive index stems from Freeman resonances.
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Figure 3: (color online) (a) Floquet spectrum versus intensity. Solid lines mark 9- and 10-photon
CC, respectively. (b) Closeup on the five-photon dressed ground state in the vicinity of the first
excited state. Solid and dashed lines: ponderomotive upshift of 7th and 9th excited field-free
states and continuum limit (bottom to top) in N = −4 Floquet block.

These results raise the probing question whether the observed resonances have a notable influ-
ence on filament propagation. To this purpose, we analyze the self-induced nonlinear refractive
index (instead of the cross Kerr response of Eq. (5)), which we obtain from

χ(ω0) =
P̂ [Epu](ω0)

ε0Êpu(ω0)
. (7)

For the 1D atomic hydrogen model, the resulting intensity dependent refractive index ∆n(I) is
shown as the dash-dotted line in Fig. 4a). In the low-intensity regime, it increases linearly with
a slope n2 = 6.7 × 10−7cm2/TW. Due the onset of Freeman resonances, the refractive index
exhibits deviations from the linear behavior for intensities beyond 15 TW/cm2. However, the
resonances appear less pronounced in the self-induced refractive index n(I) than in its cross-
induced counterpart nX(I). This is a consequence of the relation nX(I) = n(I) + Idn/dI
which generalizes the corresponding relation for the high-order Kerr coefficients, nX

2j = (j +
1)n2j [24].

In order to increase the explanatory power of our approach, we extend our analysis to atomic
argon by employing a 3D quantum model based on the single active electron approximation
in an effective potential [27]. The intensity dependent refractive index of argon is shown as
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the solid line in Fig. 4a). We deduce a slope n2 = 1.06 × 10−7 cm2/TW in the low-intensity
regime, in excellent agreement with the experimental value n2 = 0.98 × 10−7 cm2/TW [28].
Above the 12-photon CC at 47 TW/cm2, transient resonances locally decrease the refractive
index. The inversion intensity for which ∆n(I) changes its sign, amounts to 71.5 TW/cm2,
and a further transient resonance shows up slightly above the 13-photon CC at 73.6 TW/cm2.
Interestingly, the global behavior of the intensity dependent refractive index derived from the
TDSE calculations for argon is in excellent agreement with the standard model which predicts a
nonlinear index ∆n(I) = n2I−ρ/(2ρc). Here, we employ the measured value for n2 according
to [28]. The electron density generated by the 200 fs cos2-pulse is denoted by ρ and calculated
according to the strong field ionization rate of Ref. [29], and ρc is the critical plasma density. The
resulting refractive index is shown as the dashed black line in Fig. 4a). The inversion intensity
according to the standard model is 68.3 TW/cm2, which is only slightly below the one derived
from our TDSE calculations. However, while the CC appear as local cusps in the standard model
curve, we note the absence of transient resonances since the employed strong field ionization
rate neglects excited bound states.
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Figure 4: (color online) (a) Nonlinear refractive index ∆n(I) of hydrogen (dash-dotted line,
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the transverse beam profile for regime ArIII.
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A time averaged model equation for filamentary propagation then reads [4]

∂zE =
i

2k0
∆⊥E + i

ω0

c
∆n(I)E (8)

where E is the complex electric field envelope, normalized as I = |E|2. The carrier frequency
is denoted as ω0, n0 is the field-free refractive index, k0 = n0ω0/c is the wave-number at the
carrier frequency, and ∆⊥ = 1

r
∂rr∂r is the transverse part of the Laplace operator, assum-

ing cylindrical symmetry of the beam. Depending on the chosen initial conditions, the beam
explores different filamentation regimes, cf. Table 1, which compiles the beamwaist w0, the
initial peak intensity I0, the ratio P/Pcr, where Pcr = λ2/2πn0n2 is the critical power for
self-focusing, the focal length f and the explored filamentation regime for the respective beam.
These regimes are distinguished by their respective clamping intensity and peak electron den-
sity. In atomic hydrogen, we identify the plasma dominated filamentation regime HI, with a peak
electron density of 4.9×1016 cm−3. Remarkably, regime HII corresponds to subcritical intensity
clamping at the 9-photon Freeman resonance in the vicinity of 15 TW/cm2, cf. the light grey
line in Fig. 4b) depicting the nonlinear refractive index. Here, the electron density amounts to
ρ = 7.1 × 1015 cm−3, nearly an order of magnitude smaller than in HI. In argon, we identify
the plasma dominated regimes ArI and ArII, with electron densities of 1.9 and 1.3×1017 cm−3,
respectively. Moreover, ArIII corresponds to intensity clamping at a Freeman resonance above
the 12-photon CC, with a reduced electron density of 2.2 × 1016 cm−3. For ArIII, the evolution
of the radial beam profile versus propagation distance is shown in Fig. 4d). This reveals that
the beam sheds radiation into its spatial surrounding upon converging to a spatial soliton solu-
tion [5]. In addition, we again observe subcritical intensity clamping (ArIV) with further reduced
electron density ρ = 9.5× 1015 cm−3.

Beam w0(mm) I0(TW/cm2) P/Pcr f(cm) Regime
A 1 0.46 3 50 HI
B 0.12 9.8 0.92 ∞ HII
C 1 3.25 3 50 ArI,ArII
D 1 5.4 5 50 ArI,ArIII
E 0.2 26.8 1 ∞ ArIV

Table 1: Initial data for Gaussian beam propagation and filamentation regimes explored.

In conclusion, we found that Freeman resonances strongly impact the optical response. Since
they are closely related to CCs, this sheds new light on the results of Ref. [14] which made CCs
accountable for the HOKE. Our results imply the existence of new filamentation regimes due to
intensity clamping at a Freeman resonance, especially for longer pulses of some 100 fs duration.
This is in accordance with a recent experimental result which demonstrated that for 200fs pulses
undergoing filamentation a “plasmaless” postfilament regime [26] emerges. However, while in
former works, hypothetical plasmaless filaments were attributed to the HOKE, our research
reveals a completely different underlying mechanism. Moreover, our results shed an interesting
perspective on subcritical intensity clamping [30] and may have interesting implications with
regard to bi- or multistable beam self-trapping [31]. Finally, the presence of transient resonances
implies that a HOKE-like phenomenological description of the refractive index in terms of an
instantaneous power series in I is inadequate, at least for the pulse durations considered here.
Regarding future research, note that the impact of Freeman resonances depends sensitively
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on the temporal intensity envelope of the pump, which exhibits a pronounced dynamics upon
filamentary propagation [3]. For an exact description, it is therefore inevitable to replace our
time-averaged model (8) with a filamentation model derived from first principles.

We thank Matthias Wolfrum, Oleh Omel’chenko, and Günter Steinmeyer for valuable discus-
sions. Financial support by the Deutsche Forschungsgemeinschaft, grant BR 4654/1-1, is grate-
fully acknowledged.
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