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Abstract

When describing the anisotropic evolution of microstructures in solids using
phase-field models, the anisotropy of the crystalline phases is usually introduced
into the interfacial energy by directional dependencies of the gradient energy
coefficients. This paper considers an alternative approach based on a wavelet
analogue of the Laplace operator that is intrinsically anisotropic and linear. We
focus on the classical coupled temperature-Ginzburg–Landau type phase-field
model for dendritic growth. For the model based on the wavelet analogue, ex-
istence, uniqueness and continuous dependence on initial data are proved for
weak solutions. Numerical studies of the wavelet based phase-field model show
dendritic growth similar to the results obtained for classical phase-field models.

1 Introduction

Since at least the late 1980s, wavelets have been the focus of intensive research and
have developed into an indispensable tool for signal and image processing. Wavelet
compression is used, for example, in the JPEG2000 image compression standard.
From the vast literature on the mathematical theory of wavelets we mention only the
ten lectures by Daubechies [8], which provide a classical introduction to the field, and
a more recent overview by Mallat [20]. Wavelets have also been explored for their use
in numerical approximation of partial differential equations and operator equations [7]
through Galerkin type methods [15], in wavelet collocation methods [29, 30] or as a
tool to determine sparse grids for other common discretization methods [6, 14, 16, 27].

A completely new role of wavelets in the context of partial differential equations has
recently been introduced by Dobrosotskaya and Bertozzi [9–11] in applications from
image processing. The key idea is to replace the Laplace operator in a Ginzburg–
Landau free energy formulation by a pseudo-differential operator defined in wavelet
space, by using a Besov type seminorm instead of the standard Sobolev H1 semi-
norm. In the Euler-Lagrange equation the Laplacian is correspondingly replaced by
a “derivative-free” wavelet analogue. The new approach, intended to improve results
for sharper image reconstructions, also introduced anisotropy of the solutions with a
four- or eight-fold symmetry. In particular, the authors determined and proved the Γ-
limit for the new energy [2, 10] and showed the square anisotropy of the Wulff shape
[4, 13, 33] and the well-posedness of the wavelet analogue of the Allen–Cahn equa-
tion [11]. In the work presented here, we make use of this idea to model anisotropic
patterns in dendritic growth.

One of the most widely studied model equations of dendritic recrystallization goes
back to the work by Kobayashi [18], and has subsequently been discussed in a num-
ber of studies, see for example Caginalp [5], Penrose and Fife [26], Wang et al. [31]
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and McFadden et al. [22]. For reviews we refer to Glicksman [12], Steinbach [28] and,
for a survey from an analytical point of view, to the recent review by Miranville [23].

The approach introduces a phase-field model where the gradient terms have an
anisotropic weight γ that depends on the direction of the spatial gradient of the phase-
field variable ∇u. Usually, γ is written as a function of the angle θ between the direc-
tion of ∇u and a reference direction. A typical choice is γ(θ) = 1 + δ cos(nθ), where
n > 0 is an integer parameter that leads to an n-fold symmetry and δ ≥ 0 denotes the
strength of the anisotropy.

For this type of anisotropic recrystallization model, existence of solutions has been
shown in Burman and Rappaz [3]. To correctly capture the interfacial instability various
numerical methods have been developed, starting with Kobayashi’s own work [18], or
for example in Wheeler et al. [32], Karma and Rappel [17], McFadden [21], Li et al. [19]
and more recently in Barrett et al. [1], who also gave an overview of various numerical
approaches to phase-field models and their associated sharp interface limits.

In this study we present a new anisotropic recrystallization model, where the leading
derivative of the phase field variable is replaced by a wavelet analogue, and we show
that it captures dendritic growth that is similar to the classical recrystallization model.
However, while Kobayashi’s classical model is quasilinear in the phase field variable,
the new model does not contain spatial derivatives of the phase field variable. More-
over, the new wavelet term is linear and has a simple form in wavelet space, very
similar to the diagonal representation of differential operators in Fourier space. As a
consequence, the mathematical analysis and the numerical approximation of the new
system of partial differential equations simplify greatly.

The paper is structured as follows. We begin with a formulation of both models in Sec-
tion 2, where we also summarize the essential notions about wavelets and Besov-type
norms, and we introduce a wavelet analogue of the Laplacian. In Section 3, we prove
well-posedness, in particular we show existence and uniqueness. Results from nu-
merical experiments that explore the anisotropic evolution of these models and com-
parisons with classical models are discussed in Section 4. Starting with a simpler,
limiting case, the anisotropic Allen–Cahn equation, we first investigate the different
scaling behaviours of the evolution of the original anisotropic Allen–Cahn equation
and its wavelet analogue. Then for the full recrystallization model the dendritic mor-
phologies are discussed. Finally, in Section 5, we summarize our results and their
implications and give an outlook on further directions of research.

2 Dendritic recrystallization: two approaches to
anisotropy

2.1 Kobayashi’s classical anisotropic model

In one of the first studies to describe the growth of dendrites from a melt similar to
the one observed in experiments, Kobayashi [18] introduced a model that couples
an anisotropic evolution equation for a phase field describing the melt-solid transition
with an equation for the heat generation and diffusion. The phase-field u is 0 in the
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liquid and 1 in the solid phase, and the temperature field is denoted by T . Both are
assumed to be functions on the 2-dimensional unit box, Ω ≡ (0, 1)d with d = 2, which
are 1-periodic in both spatial directions. The evolution of the phase-field is obtained
from the L2(Ω) gradient flow

τ ut = −δE
δu

(1)

of the Ginzburg–Landau type free energy

E = E(u; ε,m) =
∫

Ω

ε

2
γ(θ)2 |∇u|2 +

1

ε
W (u;m) dx, (2)

with the interface energy
γ(θ) = 1 + δ cos(nθ), (3)

for an anisotropy with an n-fold symmetry and strength δ ≥ 0, and the homogeneous
free energy contribution

W (u;m) =
1

4
u2(u− 1)2 +m

Ç
1

3
u3 − 1

2
u2

å
. (4)

The positive parameter ε � 1 in (2) controls the width of the interface layer and the
parameter τ > 0 in (1) is a relaxation constant. For x = (x1, x2) ∈ Ω ≡ (0, 1)2,
the angle θ is defined as θ = arctan (ux1/ux2). For an isotropic system, γ(θ) is a
constant, while in this study we consider weak anisotropies with a four-fold symmetry
by choosing n = 4 and a positive δ so that γ(θ) + γ′′(θ) (with ′ = d/dθ) is strictly
positive for all θ (i.e. δ ∈ (0, 1/15)).

Thus, we have the Ginzburg–Landau type equation

τ ut = ε
î
∇ ·
Ä
γ(θ)γ′(θ)∇⊥u

ä
+∇ · (γ(θ)2∇u)

ó
+

1

ε
W ′(u;m), (5)

where ∇⊥u = (−ux2 , ux1)T is the orthogonal gradient.

This equation is coupled to the equation for the temperature T by the latent heat
contribution arising from the phase change at the interface via

Tt = c∆T +Kut, (6)

where c is the thermal diffusivity andK is the latent heat, and via the time dependence
of m,

m(T ) =
c1

π
arctan (c2 (Te − T )) , (7)

where Te denotes the dimensionless equilibrium (or melting) temperature. We will
typically assume that the scaling for the temperature has been chosen so that Te = 1.
Notice thatW andm together with the constants c1 and c2 need to be carefully chosen
so that the functionW is always a double-well potential with minima occurring at u = 0
and u = 1 for c1 < 1, so that spatially homogeneous liquid and solid phases are in
equilibrium.
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Remark An issue that has been intensively discussed in connection with phase field
models like Kobayashi’s is the question whether these are formulated in a thermody-
namically consistent way, see for example Caginalp [5], Penrose and Fife [25, 26],
Wang et al. [31] and in the anisotropic case by McFadden et al. [22]. The focus of this
paper is to derive a wavelet-based analogue for one of the simplest models of den-
dritic growth. In our Conclusion and Outlook section we indicate how wavelet-based
analogues of the thermodynamically consistent models can be pursued.

2.2 Anisotropy in wavelet-based models

To prepare for the derivation of the wavelet-based model, first recall that for the
isotropic case, the free energy functional (2) can be written as

E(u; ζ, ε,m) =
ε

2
|u|2ζ +

∫
Ω

1

ε
W (u;m) dx, (8)

with the H1(Ω) seminorm | · |ζ = | · |H1(Ω), where the Sobolev space Hm is defined as
usual and has the inner product and associated norm

(u, v)Hm(Ω) =
∑
|l|≤m

∫
Ω
Dlu(x)Dlv(x) dx, ‖u‖Hm(Ω) =

»
(u, u)Hm(Ω),

in multi-index notation. In the case of Sobolev spaces of 1-periodic functions on Ω =
(0, 1)d we shall write Hm

p (Ω) instead of Hm(Ω). In the general, anisotropic case, we
can also write E as in (8) with |u|2ζ = |u|2A,

|u|2A =
∫

Ω
γ(θ)2|∇u|2 dx, (9)

but | · |A is not in general a seminorm, as θ depends on the derivatives of u. We now
follow Dobrosotskaya and Bertozzi in [9–11], and introduce a new seminorm | · |B,
which gives rise to an anisotropic evolution.

We begin by considering a class of wavelets ψ ∈ L2(Rd) with an associated scaling
function φ ∈ L2(Rd). We define the wavelet mode (j, k) as

ψj,k(x) = 2jd/2ψ(2jx− k), j = 0, 1, 2, . . . ; k ∈ Rd,

and the wavelet transform of a function u ∈ L2(Rd) at the mode (j, k) is defined by

wj,k = 〈u, ψj,k〉,

where 〈·, ·〉 denotes the inner product in L2(Rd). Analogously, we define

φj,k(x) = 2jd/2φ(2jx− k), j = 0, 1, 2, . . . ; k ∈ Rd.

For any function u ∈ L2(Rd), we define the seminorm

|u|B =

Ñ
∞∑
j=0

22j
∫
Rd
|〈u, ψj,k〉|2 dk

é 1
2

.
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The wavelet Laplacian of u ∈ L2(Rd) is formally defined as

∆wu(x) = −
∞∑
j=0

22j
∫
Rd
〈u, ψj,k〉ψj,k(x) dk.

A simple (but lengthy) calculation based on Fourier transforms shows that, for suffi-
ciently regular functions u and v defined on Rd, and any d-component multi-index α,
one has

〈−∆wu,D
αv〉 =

∫
Rd

(−∆wu)∧(ξ) (−ıξ)α v̂(ξ) dξ

= (−1)|α|
∫
Rd

(ıξ)αû(ξ)
∞∑
j=0

22j|ψ̂(2−jξ)|2 v̂(ξ) dξ = (−1)|α|〈−∆wD
αu, v〉.

Thus, for any multi-index α, the wavelet Laplacian ∆w and the differential operator Dα

commute. In particular, for α = 0 and v = u,

〈−∆wu, u〉 =
∫
Rd
|û(ξ)|2

∞∑
j=0

22j|ψ̂(2−jξ)|2 dξ =
∞∑
j=0

22j
∫
Rd
|û(ξ) ψ̂(2−jξ)|2 dξ

=
∞∑
j=0

22j
∫
Rd
|F−1(û(·) ψ̂(2−j·))(κ)|2 dκ

=
∞∑
j=0

22j
∫
Rd
|2−jd/2F−1(û(·) ψ̂(2−j·))(2−jk)|2 dk

=
∞∑
j=0

22j
∫
Rd
|〈u, ψj,k〉|2 dκ = |u|2B,

where in the transition to the penultimate term in this chain of equalities we used that

〈u, ψjk〉 = 〈û,‘ψjk〉 = 2−jd/2
∫
Rd
û(ξ)ψ̂(2−jξ) e2πı(2−jk)·ξ dξ

= 2−jd/2F−1(û(·) ψ̂(2−j·))(2−jk).

Next we define an anisotropic counterpart of | · |B. We shall confine ourselves to the
case of d = 2 dimensions; for d = 3, the construction is similar and is therefore
omitted. Given a univariate wavelet ψ ∈ L2(R) with associated scaling function φ ∈
L2(Rd), we consider the ‘diagonal’, ‘vertical’ and ‘horizontal’ wavelet functions

ψd(x1, x2) = ψ(x1)ψ(x2), ψv(x1, x2) = ψ(x1)φ(x2), ψh(x1, x2) = φ(x1)ψ(x2),

and we let Ψ̃ = {ψd, ψv, ψh}. With a slight abuse of notation we consider the bivariate
scaling function

φ(x1, x2) = φ(x1)φ(x2),

and we define Ψ = Ψ̃ ∪ {φ}.
With j = 0, 1, 2, . . . , k ∈ R2, x = (x1, x2) ∈ R2, ψ ∈ Ψ̃ one scales and dilates to get
the modes

ψj,k(x) = 2jψ(2jx− k), ψ ∈ Ψ̃.
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The corresponding wavelet transform is defined by

wj,k,ψ =
∫
R2
u(x)ψj,k(x) dx, ψ ∈ Ψ̃. (10)

On the bounded domain Ω = (0, 1)2 one uses j = 0, 1, 2, . . . and k ∈ [0, 2j]2, since
the spatial shifts only make sense when the supports of the wavelets are contained
in Ω. The wavelet Laplace operator acting on a 1-periodic function u ∈ L2

p(Ω) is then
defined by

∆wu = −
∑
ψ∈Ψ̃

∞∑
j=0

22j
∫
k∈[0,2j ]2

(u, ψj,k)ψj,k dk, (11)

and we further define the seminorm

|u|B =

Ñ∑
ψ∈Ψ̃

∞∑
j=0

22j
∫
k∈[0,2j ]2

|(u, ψj,k)|2 dk

é 1
2

.

As previously, we have that for any, sufficiently smooth, 1-periodic functions u and v,

(−∆wu, u) = |u|2B and (−∆wu,D
αv) = (−1)|α|(−∆wD

αu, v).

The seminorm | · |B is equivalent to the B1
2,2(Ω) Besov seminorm, whenever the

wavelets ψj,k are twice continuously differentiable with r ≥ 2 vanishing moments,
and to its discretized version, where the integral over k ∈ [0, 2j]2 is replaced by a finite
sum over k ∈ Z2

j := Z2 ∩ [0, 2j]2.

In order to simplify the notation, when discussing multidimensional cases, we shall
use ψ as general notation for the wavelet functions, assuming, wherever needed,
summation over all of those.

Note that in numerical implementations one has to treat finite expansions and hence
one incorporates the scaling function to represent the mass, similarly as with the
zeroth mode in a Fourier expansion; hence we change to the extended set Ψ =
Ψ̃ ∪ {φ} and write

f =
N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

wj,k,ψψj,k,

with
wj,k,ψ = 〈u, ψj,k〉, ψ ∈ Ψ.

The L2
p(Ω) gradient flow of E now leads to a new wavelet-based model with a new

evolution equation for the phase field,

τut = ε∆wu−
1

ε
Wu(u;m), (12a)

where ∆w is the wavelet analogue (11) of the Laplacian, while the equation for the
heat diffusion and generation remains unchanged,

Tt = c∆T +Kut. (12b)

In order to understand the intrinsic anisotropy in this formulation we recapitulate the
main result obtained in [10] for the analysis of the energy (8) with ζ = B and m = 0
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(i.e. without temperature dependence) in the limit ε → 0. For compactly supported
wavelets that are r-regular, r ≥ 2, that is∫

Ω
xjψ dx = 0, j = 0, 1, . . . , r,

one can prove the Γ-convergence result E∗ Γ→ G∞ =
√

2
3
R(u)|u|TV (Ω), where |u|TV (Ω)

is the total variation functional [10], and where

E∗(u; ε, B) ≡
®
E(u; ε, B), u ∈ H1(Ω),
∞, u ∈ BV (Ω) \H1(Ω)

is the extension of E(u; ε, B) to functions of bounded variation (BV).

In the case of the classical Ginzburg–Landau free energy, (8) with m = 0 and ζ =
H1(Ω), the factor R(u) is constant and the minima of G∞ are the characteristic func-
tions of spheres [24]. Here,R(u) is defined as the limit of the quotient of the equivalent
norms R(u) = limε→0 |uε|B/|uε|H1(Ω), which is unique for all sequences uε ∈ H1

p (Ω)
with uε → u in L1

p(Ω) as ε→ 0. One can show that

G∞(1E) =
∫
∂E
γ(n;ψ) dl(x)

for characteristic functions u = 1E of sets E ⊂ RN with finite perimeter. The function
γ of the normal at the boundary of E turns out to have just the form (3) with n = 4.

3 Well-posedness of the wavelet based model

As an important prerequisite for meaningful numerical simulations using the new
wavelet-based model, we first prove existence, uniqueness and continuous depen-
dence on initial data for weak solutions of the system (12), with initial conditions
u(x, 0) = u0(x), T (x, 0) = T0(x), where we now take Ω = (0, 1)d to be either two
or three dimensional (i.e. d = 2 or d = 3). In contrast to Kobayashi’s model, for
which proving well-posedness is quite intricate (see for example [3]), this is relatively
straightforward for the new model and essentially combines a Galerkin approach, with
repeated use of the equivalence of relevant seminorms. The results are formulated in
terms of Sobolev spacesHm

p (Ω),m ∈ N, of functions f ∈ Hm
loc(Rd) that are 1-periodic

in all spatial directions. In the following, C denotes a generic constant that does not
depend on the relevant quantities.

Theorem 1 (Existence and regularity of weak solutions). Let t̄ > 0 and suppose that

(u0, T0) ∈ H1
p (Ω)×H1

p (Ω).

Then, the above problem, defined via r-regular wavelets with r ≥ 2, has a weak
solution with

u ∈ L∞(0, t̄;H1
p (Ω)) ∩ L2(0, t̄;H2

p (Ω)),

T ∈ L∞(0, t̄;H1
p (Ω)) ∩ L2(0, t̄;H2

p (Ω))
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and

ut ∈ L2(0, t̄;L2
p(Ω)), Tt ∈ L2(0, t̄;L2

p(Ω)).

Furthermore, if (u0, T0) ∈ H2
p (Ω)×H2

p (Ω), then

u, T ∈ H1(0, t̄;H1
p (Ω)),

and
u, T ∈ L∞(0, t̄;H2

p (Ω)),

and thus also u, T ∈ L∞(0, t̄;L∞p (Ω)).

Proof. In order to work with weak solutions, we introduce, as in reference [11], the
bilinear form B : H1

p (Ω)×H1
p (Ω)→ R with

B(u, v) = lim
n→∞

(∆wun, v),

where u, v ∈ H1
p (Ω) and (un) is a sequence of H2

p (Ω) functions converging to u in the
norm of H1

p (Ω). It can be shown that the definition of B is independent of the choice of
the sequence (un). With this definition of B, we state the following weak formulation
of the problem:

(ut, ϕ) = εB(u, ϕ)− 1

ε
(Wu(u;m), ϕ), (13)

(Tt, φ) = −c(∇T,∇φ) +K(ut, φ) for all ϕ, φ ∈ H1
p (Ω), (14)

with
m(t) =

c1

π
arctan(c2(Te − T (t))),

and c1 < 1.

For the Galerkin approximation we insert

un(x, t) =
n∑
j=0

bj(t)ϕj(x), T n(x, t) =
n∑
j=0

dj(t)ϕj(x),

where the set {ϕj}j forms an orthonormal basis of H1
p (Ω) (e.g., we can consider the

smooth eigenfunctions of the Laplacian on the periodic torus). Then we consider the
weak formulation above in terms of the basis functions, yielding

(unt , ϕk) = εB(un, ϕk)−
1

ε
(Wu(u

n;mn), ϕk), (15)

(T nt , ϕk) = −c(∇T n,∇ϕk) +K(unt , ϕk), (16)
(un, ϕk) = ξk, (17)
(T n, ϕk) = ηk, k = 0, . . . , n, (18)

with
mn(t) =

c1

π
arctan(c2(Te − T n(t))),

for c1 < 1. Here ξk = ξk(n) are such that

n∑
j=0

ξjϕj → u0 in H1
p (Ω),
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as n→∞, and for ηk(n) as n→∞,

n∑
j=0

ηjϕj → T0 in H1
p (Ω).

As the ϕj form a basis of the above spaces and as u0 ∈ H1
p (Ω), T0 ∈ H1

p (Ω), such
coefficients do exist. Due to the orthogonality of the basis functions we obtain an
ODE system for the coefficients whose system function is locally Lipschitz due to the
boundedness of the bilinear form B. This gives local existence.

We obtain bounds for the Galerkin approximation and then pass to the limit. Therefore
we drop the superscript n from our notation and keep in mind that we are working with
the finite-dimensional approximation until the limiting process is mentioned.

Testing equation (13) by u yields

1

2

d

dt
‖u‖2 + ε|u|2B = −1

ε
(Wu(u;m), u),

as we can use in the Galerkin approximation that B(u, u) = (∆wu, u) = −|u|2B (see
e.g. [11]).

The second term reads, noting that by the choice of c1 < 1 we can use that m ∈
[−1

2
+ δ, 1

2
− δ] for some small number δ � 1,

−1

ε

∫
Ω
Wu(u;m)udx ≤ 1

ε

∫
Ω
−u4 + (2− δ)u2|u|+

Å
m− 1

2

ã
u2 dx ≤ 1

2ε
(−‖u‖4 + 2‖u‖2).

We have used that (
∫
Ω u

2 dx)2 ≤
∫
Ω u

4 dx. Hence if ‖u‖ >
√

2, then d
dt
‖u‖ ≤ 0,

independently of the value of m (with more care one can derive a sharper bound). We
have thus established the following uniform bound on the L2

p(Ω) norm:

‖u‖ ≤ max{
√

2, ‖u0‖}.

Additionally, as −‖u‖4 + 2‖u‖2 ≤ 1, we get the following t̄-dependent bound, after
integrating over [0, t̄]:

1

2
‖u(t̄)‖2 +

∫ t̄

0
ε|u|2B dt ≤ 1

2
‖u0‖2 +

t̄

2ε
.

As the B seminorm is equivalent to the Besov B1
2,2(Ω) seminorm for sufficiently reg-

ular wavelets, it is equivalent to the H1
p (Ω) seminorm; see the discussions and refer-

ences in the papers by Dobrosotskaya and Bertozzi [9, 11]. Thanks to this equivalence
we obtain

∫ t̄
0 ε|u|2H1

p(Ω) dt ≤ C + t̄/(2ε), and hence we have, for any fixed t̄,

u ∈ L∞(0, t̄;L2
p(Ω)), u ∈ L2(0, t̄;H1

p (Ω)).

Testing equation (13) by ut gives

‖ut‖2 = −ε
2

d

dt
|u|2B −

1

ε
(Wu(u;m), ut). (19)

Integrating over the time interval [0, s], with 0 < s ≤ t̄, yields∫ s

0
‖ut‖2 dt+

ε

2
|u(s)|2B =

ε

2
|u(0)|2B −

1

ε

∫ s

0
(Wu(u;m), ut) dt.
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We control the last term on the right-hand side via

−1

ε

∫ s

0
(Wu(u;m), ut) dt =

1

ε

∫ s

0

∫
Ω
−u3ut +

Ç
3

2
−m

å
u2ut +

Ç
m− 1

2

å
uut dx dt

≤ − 1

4ε

∫ s

0

d

dt
‖u‖4

L4
p(Ω) dt+

1

ε

∫ s

0
(2u2 + |u|, |ut|) dt,

where we have used that |m| ≤ 1/2, which follows from (7) if c1 < 1. Applying first
the Cauchy–Schwarz inequality and then Young’s inequality to the inner product un-
derneath the last integral, we get

−1

ε

∫ s

0
(Wu(u;m), ut) dt ≤− 1

4ε
(‖u(s)‖4

L4
p(Ω) − ‖u(0)‖4

L4
p(Ω)) +

1

2ε2

∫ s

0
‖2u2 + |u|‖2 dt

+
1

2

∫ s

0
‖ut‖2 dt.

However, ‖2u2 + |u|‖2 ≤ 8‖u2‖2 + 2‖u‖2; thus,

−1

ε

∫ s

0
(Wu(u;m), ut) dt ≤− 1

4ε
(‖u(s)‖4

L4
p(Ω) − ‖u(0)‖4

L4(Ω)) +
4

ε2

∫ s

0
‖u‖4

L4
p(Ω) dt

+
1

2

∫ s

0
‖ut‖2 dt+

1

ε2

∫ s

0
‖u‖2 dt.

Using the L2(Ω) norm bound on u, inserting into (19) and rearranging yields

1

2

∫ s

0
‖ut‖2 dt+

ε

2
|u(s)|2B +

1

4ε
‖u(s)‖4

L4
p(Ω) ≤ C(s) +

4

ε2

∫ s

0
‖u‖4

L4
p(Ω) dt.

In particular we have, with F (s) := ‖u(s)‖4
L4
p(Ω), the inequality

F (s) ≤ C(s, ε) +
16

ε

∫ s

0
F (t) dt, s ∈ (0, t̄].

Gronwall’s inequality then yields, as C(s, ε) is nondecreasing in s (and therefore
C(s, ε) ≤ C(t̄, ε), that

F (t̄) ≤ C(t̄, ε) e
∫ t̄

0
16
ε

dt = C(t̄, ε) e
16t̄
ε = C̃(t̄, ε).

This bound grows exponentially fast with t̄, but it suffices to deduce that

u ∈ L∞(0, t̄;L4
p(Ω)), ut ∈ L2(0, t̄;L2

p(Ω)), (20)

and because of the equivalence of the seminorm |·|B to |·|H1
p(Ω) we have a|u(t̄)|H1

p(Ω) ≤
|u(t̄)|B, where a is a positive constant. We conclude further the bound

u ∈ L∞(0, t̄;H1
p (Ω)). (21)

Now we establish bounds on the temperature. Testing (14) by Tt leads to

‖Tt‖2 +
c

2

d

dt
|T |2H1

p(Ω) = K(ut, Tt) ≤
K2

2
‖ut‖2 +

1

2
‖Tt‖2. (22)
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Integrating over time yields, using (20),∫ t̄

0
‖Tt‖2 dt+ c|T (t̄)|2H1

p(Ω) ≤ C(T (0), t̄, K) (23)

and

T ∈ L∞(0, t̄;H1
p (Ω)), Tt ∈ L2(0, t̄;L2

p(Ω)).

To obtain a bound on higher-order Sobolev norms of u, we test with −∆u and we
obtain

d

dt
|u|2H1

p(Ω) = ε(∆w∇u,∇u) +
1

ε

∫
Ω
Wu(u;m)∆u dx

≤ −ε|∇u|2B + C(ε, ε̄)
∫

Ω
u6 dx+

εε̄

2
|∇u|2H1

p(Ω) + C(ε, ε̄)

≤ −C̃|∇u|2H1
p(Ω) + C‖u‖6

H1
p(Ω) + C(ε, ε̄).

Here we have used a small ε̄ to get rid of the second-order term with the wrong sign.
As u ∈ L∞(0, t̄;H1

p (Ω)), we obtain by integration that

|u(t̄)|2H1
p(Ω) + C

∫ t̄

0
‖∆u(t)‖2 dt ≤ Ct̄,

and we have the desired result u ∈ L2(0, t̄;H2
p (Ω)).

Similarly we test the heat equation (12b) by −∆T to deduce that

1

2

d

dt
|T |2H1

p(Ω) + c‖∆T‖2 = −K(ut,∆T ) ≤ C(K, c)‖ut‖2 +
c

2
‖∆T‖2.

Using the bound on ut and integrating gives that T ∈ L2(0, t̄;H2
p (Ω)).

A usual limiting process (following e.g. [34], Chapter 3) yields global existence.

It remains to show that u ∈ L∞(0, t̄;L∞p (Ω)). We shall confine ourselves to the case
of d = 3 space dimensions; for d = 2 the proof is simpler, as the embedding theorem
used in the argument below is stronger for d = 2 than for d = 3.

Taking the inner product (on the Galerkin level throughout the rest of this proof) of the
phase field equation with −∆ut yields that

(ut,−∆ut) + εB(u,−∆ut) = −1

ε
(Wu(u;m),−∆ut).

Hence,

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B = −1

ε

∫
Ω
Wuu(u;m)∇u · ∇ut +Wum(u;m)∇m · ∇ut dx,

which implies the inequality

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B ≤

1

ε

∫
Ω
|Wuu(u;m)∇u · ∇ut|+ |Wum(u;m)∇m · ∇ut| dx.

11



Since

W (u;m) =
1

4
u2(u− 1)2 +m

Ç
1

3
u3 − 1

2
u2

å
=

1

4
(u4 − 2u3 + u2) +m

Ç
1

3
u3 − 1

2
u2

å
,

we have that
Wuu(u;m) = 3u2 − 3u+

1

2
+m(2u− 1)

and
Wum(u;m) = u2 − u.

As |m(T )| ≤ c1/2, it follows that

|Wuu(u;m)| ≤ C(u2 + 1) and |Wum(u;m)| ≤ C(u2 + 1).

Thus (with now C signifying a constant that may depend on ε and other constants in
the statement of the problem, but is independent of u, m, T and the dimensions of the
Galerkin subspaces from which u, m and T are picked),

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B ≤ C

∫
Ω

(u2 + 1)|∇u| |∇ut| dx+ C
∫

Ω
(u2 + 1)|∇m| |∇ut| dx.

Thanks to Hölder’s inequality,

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B ≤ C‖u2 + 1‖L3

p(Ω)‖∇u‖L6
p(Ω)‖∇ut‖

+ C‖u2 + 1‖L3
p(Ω)‖∇m‖L6

p(Ω)‖∇ut‖.

By noting that ‖u2 + 1‖L3
p(Ω) ≤ C(‖u‖2

L6
p(Ω) + 1), ‖∇m‖L6

p(Ω) ≤ C‖∇T‖L6
p(Ω), and

invoking the continuous embedding of the Sobolev space H1
p (Ω) into L6

p(Ω) (recall
that, by hypothesis, d = 3), we have that

‖∇ut‖2 +
ε

2

d

dt
|∇u|2B ≤ C(‖u‖2

H1
p(Ω) + 1)‖∇u‖H1

p(Ω)‖∇ut‖

+ C(‖u‖2
H1

p(Ω) + 1)‖∇T‖H1
p(Ω)‖∇ut‖.

Hence, by Cauchy’s inequality (ab ≤ η
2
a2 + 1

2η
b2 for any a, b ≥ 0 and η > 0),

1

2
‖∇ut‖2 +

ε

2

d

dt
|∇u|2B ≤ C(‖u‖2

H1
p(Ω) + 1)2

Ä
‖∇u‖2

H1
p(Ω) + ‖∇T‖2

H1
p(Ω)

ä
. (24)

Now, thanks to eq. (6), upon taking the inner product with −∆Tt, we have that

‖∇Tt‖2 +
c

2

d

dt
‖∆T‖2 = K(∇ut,∇Tt).

Thus, again by Cauchy’s inequality,

1

2
‖∇Tt‖2 +

c

2

d

dt
‖∆T‖2 ≤ 1

2
K2‖∇ut‖.

Adding this last inequality to the inequality (24) multiplied by 2K2, we deduce that

1

2
K2‖∇ut‖2 +K2ε

d

dt
|∇u|2B +

1

2
‖∇Tt‖2 +

c

2

d

dt
‖∆T‖2

≤ C(‖u‖2
H1

p(Ω) + 1)2
Ä
‖∇u‖2

H1
p(Ω) + ‖∇T‖2

H1
p(Ω)

ä
. (25)
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Let us consider the terms appearing in the last pair of brackets in (25). We note
that by Poincaré’s inequality for a 1-periodic function w ∈ H1

p (Ω) on Ω = (0, 1)3,
with integral average over Ω equal to zero, ‖w‖2 ≤ C|w|2H1

p(Ω). As each of the partial
derivatives of u can be taken, in turn, as such a function w (note that by the divergence
theorem

∫
Ω ∂u/∂xi dx = 0, i = 1, 2, 3, thanks to the periodicity of u), we have that

‖∇u‖2 ≤ C|∇u|2H1
p(Ω), and therefore

‖∇u‖2
H1

p(Ω) = ‖∇u‖2 + |∇u|2H1
p(Ω) ≤ C|∇u|2H1

p(Ω).

Consequently, by the norm equivalence | · |H1
p(Ω) ∼ | · |B, it follows that

‖∇u‖2
H1

p(Ω) ≤ |∇u|2B. (26)

Further, by the definition of the Sobolev norm ‖ · ‖H2
p(Ω) and the elliptic regularity

estimate ‖T‖H2
p(Ω) ≤ C‖∆T‖ for 1-periodic functions on Ω, we have that

‖∇T‖2
H1

p(Ω) = ‖∇T‖2 + |∇T |2H1
p(Ω) ≤ ‖T‖2

H2
p(Ω) ≤ C‖∆T‖2. (27)

By substituting (26) and (27) into (25), we deduce that

1

2
K2‖∇ut‖2 +K2ε

d

dt
|∇u|2B +

1

2
‖∇Tt‖2 +

c

2

d

dt
‖∆T‖2

≤ C(‖u‖2
H1

p(Ω) + 1)2
Ä
|∇u|2B + ‖∆T‖2

ä
.

Upon integration of this inequality with respect to the temporal variable, we have that

1

2

Ç∫ t

0

Ä
K2‖∇ut(s)‖2 + ‖∇Tt(s)‖2

ä
ds

å
+K2ε|∇u(t)|2B +

c

2
‖∆T (t)‖2

≤ K2ε|∇u(0)|2B +
c

2
‖∆T (0)‖2

+ C
∫ t

0
(‖u(s)‖2

H1
p(Ω) + 1)2

Ä
‖∇u(s)‖2

B + ‖∆T (s)‖2
ä

ds.

Let c0 := min(K2ε, c
2
) and c1 := max(K2ε, c

2
), and multiply the last inequality by 1/c0

to deduce that

1

2c0

Ç∫ t

0

Ä
K2‖∇ut(s)‖2 + ‖∇Tt(s)‖2

ä
ds

å
+
Ä
|∇u(t)|2B + ‖∆T (t)‖2

ä
≤ c1

c0

Ä
|∇u(0)|2B + ‖∆T (0)‖2

ä
+
C

c0

∫ t

0
(‖u(s)‖2

H1
p(Ω) + 1)2

Ä
‖∇u(s)‖2

B + ‖∆T (s)‖2
ä

ds.

Thus, by Gronwall’s inequality,

1

2c0

Ç∫ t

0

Ä
K2‖∇ut(s)‖2 + ‖∇Tt(s)‖2

ä
ds

å
+
Ä
|∇u(t)|2B + ‖∆T (t)‖2

ä
≤ c1

c0

Ä
|∇u(0)|2B + ‖∆T (0)‖2

ä
exp

Ç
C

c0

∫ t

0
(‖u(s)‖2

H1
p(Ω) + 1)2 ds

å
∀t ∈ (0, t].

As already established in (21), u ∈ L∞(0, t;H1
p (Ω)), so it follows that the argument

of the exponential appearing in the last inequality in bounded by a constant. Thus, in
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conjunction with norm equivalence and elliptic regularity, in precisely the same way
as in (26) and (27) above, we deduce from the last inequality that

u, T ∈ H1(0, t;H1
p (Ω)),

u, T ∈ L∞(0, t;H2
p (Ω)) ⊂ L∞(0, t;L∞p (Ω)),

provided that u0, T0 ∈ H2(Ω).

Theorem 2 (Uniqueness and continuous dependence on the initial data). The so-
lutions from Theorem 1 are uniquely defined and depend continuously on the initial
data u0, T0 in H2

p (Ω), assuming that d ≤ 3 and that the temperature stays below the
melting temperature. In particular we then have, for all u0

i , T
0
i , i = 1, 2, in H2

p (Ω), that

‖u1 − u2‖2
H1

p(Ω) + ‖T1 − T2‖2
H1

p(Ω) ≤ C
[
‖u0

1 − u0
2‖2
H1

p(Ω) + ‖T 0
1 − T 0

2 ‖2
H1

p(Ω)

]
eCt. (28)

Remark. The proof of the inequality (28) presented below relies on bounding ui,
i = 1, 2, in the L∞(0, t̄;L∞p (Ω)) norm, which is deduced by bounding ui, i = 1, 2, in
the L∞(0, t̄;H2

p (Ω)) norm and using the continuous embedding of H2
p (Ω) into L∞p (Ω)

for d ≤ 3. The derivation of the L∞(0, t̄;H2
p (Ω)) norm bound on ui, i = 1, 2, in turn

rests on assuming that u0
i , T

0
i , i = 1, 2, belong to H2

p (Ω). In particular, the constant
C appearing in (28) depends on the H2

p (Ω) norms of u0
i , T

0
i , i = 1, 2, even though

the expression in the square bracket on the right-hand side of (28) only involves their
H1
p (Ω) norms.

Proof. We define two solutions (u1, T1), (u2, T2) and their difference (w, v) = (u1 −
u2, T1 − T2). That leads to the weak system

(wt, ϕ) = ε(∆ww,ϕ)− 1

ε
(Wu(u1;m1)−Wu(u2;m2), ϕ), (29)

(vt, ψ) = c(∆v, ψ) +K(wt, ψ), (30)

for all ϕ, ψ in H1
p (Ω). Testing with (ϕ, ψ) = (w, v) yields

1

2

d

dt
‖w‖2 = −ε|w|2B −

1

ε
(Wu(u1;m1)−Wu(u2;m2), u1 − u2), (31)

1

2

d

dt
‖v‖2 = −c‖∇v‖2 +K(wt, v). (32)

Under the assumptions on the initial data, both u1 and u2 belong to L∞(0, t̄;L∞p (Ω)).
Then, formi ∈ [−1/2+δ, 1/2−δ], the polynomialsWu(ui,mi) are Lipschitz continuous
and we can choose a suitable positive constant C such that

1

2

d

dt

Ä
‖w‖2 + ‖v‖2

ä
+ ε|w|2B + c|v|2H1

p(Ω) ≤ C‖w‖2 +K
∫

Ω
wtv dx. (33)

Testing the phase field equation with ϕ = wt and the temperature equation with −∆v
yields additionally

‖wt‖2 + ε
d

dt
|w|2B = −1

ε

∫
Ω

(Wu(u1;m1)−Wu(u2;m2))wt dx ≤ C‖w‖‖wt‖,

C1
d

dt
‖∇v‖2 + C2‖∆v‖2 ≤ 1

4
‖wt‖2.
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Adding these inequalities yields

1

4
‖wt‖2 +

d

dt

î
ε|w|2B + C1‖∇v‖2

ó
≤ C‖w‖2.

Together with the estimate (33) we then deduce that

1

2

d

dt

Ä
‖w‖2 + 2ε|w|2B + ‖v‖2 + 2C1‖∇v‖2

ä
+ ε|w|2B + c|v|2H1

p(Ω) ≤ C‖w‖2 +
K2

2
‖v‖2.

An application of Gronwall’s inequality thus yields

‖w‖2 + 2ε|w|2B + ‖v‖2 + 2C1‖∇v‖2 ≤ C
[
‖w0‖2 + |w0|2B + ‖v0‖2

H1
p(Ω)

]
eCt.

In particular we can use the equivalence of the Besov seminorm | · |B to the Sobolev
seminorm | · |H1

p(Ω) and estimation of constants to deduce the assertion (28).

Remark In the proof we have used that the temperature stays below the melting
temperature (slightly above is also permissible) and this assumption requires that the
initial temperature profile is also below this value.

4 Numerical methods and comparisons

The simulations are carried out with a pseudospectral method for both equations,
the classical model and its wavelet analogue. While the definition of ∆w suggests
a natural discretization in wavelet space, we use a Fourier spectral method for the
discretization of T with 1-periodic Fourier modes in both spatial directions. In terms of
these expansions, the system is written as the following system of ODEs:

N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

(wj,k,ψ)tψj,k = ε
N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

−22jwj,k,ψψj,k +
N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

cj,k,ψψj,k,

∑
j

(T̂j)t exp(ijx2π) =
∑
j

−j24π2T̂j exp(ijx2π) +K
∑
j

(ξ̂j)t exp(ijx2π).

The coefficients cj,k,ψ are related to the cubic polynomial

Wu(u;m) = u(1− u)
Ä
u− 1

2
+m

ä
by a stationary wavelet transform and the Fourier coefficients ξ̂j are determined by
transforming

∑N
j=0

∑
k,ψ∈Ψ(wj,k,ψ)tψj,k into discrete Fourier space. We discretize in

time by a semi-implicit Euler scheme that treats the linear parts implicitly:

w+
j,k,ψ − wj,k,ψ

∆t
= −22jw+

j,k,ψ + cj,k,ψ, (34a)

T̂+
j − T̂j

∆t
= −j24π2T̂+

j +Kξ̂j, (34b)

where the superscript + indicates the new, updated coefficients. We employ convex
splitting to ensure stability, which is also reflected in the update (see below). We up-
date the wavelet coefficients first and then use the resulting approximation for ut to
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calculate the coefficients ξ̂j . Also note that the coefficients cj,k,ψ in (34a) are evaluated
by using the coefficients of the temperature approximations T̂j at the old time level.

The update for the temperature is completely standard for spectral methods. For the
order parameter, however, we shall provide additional details. The stationary wavelet
transform yields four fields for the scaling function coefficients A, and H,V,D for the
horizontal, vertical and diagonal wavelet coefficients, respectively. In MATLAB with the
corresponding ordering, to calculate the wavelet Laplacian we multiply the jth scale by
22(N−j). For the jth coefficient level, let Rj ∈ {Aj, Hj, Vj, Dh} be one of the coefficient
arrays, andR3,j the same kind of coefficients for the cubic expression; then we update,
with the convex splitting parameter C,

R+
j =

Rj + (∆t/τ)(R3,j + CRj)

1 + (∆t/τ)(22(N−j)ε+ C)
.

4.1 Limiting case: Allen–Cahn model

Before we investigate the evolution of the new model numerically and compare it with
the classical recrystallization model, it is instructive to probe the models in a simpler
setting, so we consider a special case where the models introduced in Section 2 re-
duce to scalar Allen–Cahn type equations. Specifically, we set the latent heat param-
eter K = 0 and let the initial temperature field to be uniformly equal to the equilibrium
temperature T (x, 0) = Te, where Te is a nonnegative constant. Then, the temper-
ature remains constant, m = 0, and the homogeneous free energy contribution is
symmetric,

W (u) =
1

4
u2(u− 1)2, (35)

and Kobayashi’s model (4)-(7) reduces the anisotropic Allen–Cahn equation

ut = ε
î
∇ ·
Ä
γ(θ)γ′(θ)∇⊥u

ä
+∇ ·

Ä
γ(θ)2∇u

äó
− 1

ε
W ′(u). (36)

The new model (12) with (4), (7) reduces to the “wavelet Allen–Cahn equation”,

ut = ε∆wu−
1

ε
W ′(u). (37)

The above are L2
p(Ω) gradient flows of the free energy (8), with ζ = H1

p (Ω) for the
isotropic Allen–Cahn model, ζ = A for the anisotropic Allen–Cahn model, and ζ = B
for the wavelet Allen–Cahn equation. For all numerical results in this section, the initial
condition for u was a small uniformly distributed random perturbation of u = 1.

In Figure 1 we observe the well-known emergence of a coarsening pattern for the
Allen–Cahn equation, which evolves isotropically as can be seen from the radial sym-
metry of the Fourier spectrum (a’), We also show the evolution for the anisotropic
Allen–Cahn equation for n = 4 and δ = 0.065, where the anisotropy is still in the weak
regime. The resulting patterns show a directional dependence that is in accordance
with a four-fold symmetry for γ, which is also reflected in the characteristic shape of
the Fourier spectrum (b’).
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Figure 1: Panel (a) shows the numerical results for the isotropic Allen–Cahn model
((36) with δ = 0) for ε = 0.001 on a 1024×1024 grid at t = 0.1, and (a’) shows the
absolute values of the corresponding two-dimensional discrete Fourier transform. In
panel (b), we see the numerical results for the anisotropic Allen–Cahn model (36)
with δ = 0.065, with the same grid and values for t and ε. Again, panel (b’) shows
the absolute values of the corresponding Fourier transform. The zoom (c) highlights
anisotropic features of the pattern in (b) in the spatial domain.

Figure 2: Numerical results for the wavelet-Allen–Cahn model (37) for ε = 0.005 on a
1024×1024 grid in a unit square at three different times. Panels (a’), (b’) and (c’) show
the absolute values of the corresponding two-dimensional discrete Fourier transform.

10
1

10
2

10
1

t

<
L>

~t−2/5

Figure 3: Coarsening diagram for the wavelet-Allen–Cahn equation, using the same
parameters as in Figure 2. The diagramm shows the average length scale 〈L〉, versus
t as a solid line, where 〈L〉 is defined in (38).
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We now carry out a numerical study to investigate the emergence of anisotropy and its
long-time evolution in the wavelet-Allen–Cahn equation. As has been shown in [10],
volume constrained minimizers of the free energy using the Besov seminorm lead to
Wulff shapes with a clear four-fold symmetry for the new wavelet-Allen–Cahn equa-
tion. Figures 2 (a)–(c) depict a typical evolution that compares well to the numerical
results for the anisotropic Allen–Cahn equation (36). The white and black regions cor-
respond to the order parameter being approximately 0 or 1. Coarsening takes place
in a similar fashion as for the classical anisotropic Allen–Cahn model. Figures (a’)-
(c’) show the absolute values of the Fourier transforms corresponding to the patterns
in (a)-(c). One clearly sees the emergence of an anisotropic pattern with a four-fold
symmetry.

In Figure 3 we show a coarsening diagram for the wavelet Allen–Cahn equation in a
doubly logarithmic plot, for the same parameters as in Figure 2. For each line i of grid
points parallel to the x-axis, we counted the number of domains Ni(t) and averaged
the Ni over all these lines, which gives a measure 〈L〉 for the inverse of the typical
domain size:

〈L〉 =
1

ny

ny∑
i=1

Ni(t). (38)

The numerical results show that the coarsening rate approaches a power law be-
haviour 〈L〉 ∼ t−2/5 for the isotropic Allen–Cahn equation and also for the wavelet
Allen–Cahn equation as t→∞. Only the latter is shown in Figure 2.

4.2 Recrystallization with thermal coupling

While for the wavelet-Allen–Cahn case we have used small scaled uniformly dis-
tributed random noise as initial datum, here we instead insert a very narrow Gaussian
into the domain as a nucleation site to start the recrystallization process, similarly to
what happens in physical experiments. For comparison we note first a recent study
[1] on numerical methods and conditions regarding the accurate numerical descrip-
tion of dendritic patterns. For our numerical implementation of the original model by
Kobayashi, we consider the system (5) and (6) with

γ(θ) = 1 + δ cos(4(θ + π/6)). (39)

As expected, the Figures 4 and 5 show that the growing nucleus develops a branching
structure that becomes more pointed as δ is increased. In addition, the branches
align more closely with the horizontal and vertical directions, reflecting the increasingly
stronger degree to which the four-fold symmetry is imposed by γ.

For the new model with the wavelet Laplacian we show numerical results in Figure 5.
The initial Gaussian nucleus exhibits faster growth in four preferred directions, which
are now aligned with the axes. We also observe the onset of side-branching.

5 Conclusions and outlook

This work explores the possibility of using the anisotropic nature of a wavelet analogue
for a differential operator to construct mathematical models that describe anisotropic
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Figure 4: Numerical results for Kobayashi’s model, (5) and (6), using γ as in (39) with
δ = 0.15.

Figure 5: Dendritic growth based on the intrinsic anisotropy of the wavelet-Laplacian.

pattern formation in material science. For a standard model of dendritic crystal growth,
we have demonstrated that simply replacing the H1 seminorm representation for the
interface contribution to the underlying free energy by a wavelet-based Besov semi-
norm produces an L2 gradient flow with preferred growth directions that have four-fold
symmetry. A wavelet Laplacian appears in the equation instead of the usual Laplacian.

Kobayashi’s original model requires an explicit dependence of the surface tension
coefficient on the phase field gradient to obtain anisotropy, thus leading to a quasi-
linear PDE for the phase-field. In contrast, the wavelet-based approach uses a linear
and derivative-free operator with an intrinsic anisotropy. Our results confirm that the
evolution of the phase field for the new model reflects the anisotropy with the four-fold
symmetry suggested in [10] for the Allen–Cahn equation. Also, the coarsening rates
compare well with those seen for the classical models.

Moreover, the new formulation lends itself naturally to numerical solutions via wavelet
or hybrid e.g. wavelet-spectral methods. The fully discrete scheme uses convex split-
ting where the implicit terms are linear and is easily implemented in MATLAB with the
help of the available wavelet tools.

We also note that the model is easily generalized to 3D and in fact our well-posedness
result applies also to this case. It would be interesting to see if an efficient 3D imple-
mentation is possible that would be competitive with existing simulations using classi-
cal PDE models.

Concerning thermodynamical consistency of wavelet-based recrystallization models
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we remark that the coupled energy and phase-field equations are obtained via

τut = −δE
δu

= ε∆wu−
1

ε
Wu(u;m), (40)

et = −∇ ·
Ç
M∇ δ

δe

∫
Ω

e

T
dx

å
= −∇ ·

Ç
M∇ 1

T

å
= ∇ ·

Ç
M

T 2
∇T
å
, (41)

where E is the energy functional (8) with the wavelet seminorm, i.e. ζ = B, and e is
the internal energy density,

e = T +K(1− u). (42)

By setting M = cT 2, we deduce (12). We recall that in the “classical” context, ther-
modynamical consistency requires a relation between e and W , namely (cf. [23, 31]),

∂(W/T )

∂(1/T )
= e.

On extending our models and analysis to these situations it is interesting to discuss
whether thermodynamic consistency with respect to a corresponding wavelet-based
entropy remains a useful concept, and this is subject to further investigations.

There are, of course, a number of open problems and directions for future research,
such as extending our investigations to anisotropic surface energies with other sym-
metries. This may require using generalizations of wavelets such as for example
shearlets.
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