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ABSTRACT. It is quite common in the statistical literature on nonparametric de-
convolution to assume that the error density is perfectly known. Since this seems 
to be unrealistic in many practical applications, we study the effect of estimating 
the unknown error density. We derive minimax rates of convergence and propose 
a modification of the usual kernel-based estimation scheme, which takes the un-
certainty about the error density into account. A simulation study quantifies the 
possible gains by this new method in finite sample situations. 
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1. INTRODUCTION 

There is already a large amount of literature on nonparametric deconvolution. The 
most frequently used approach is the kernel method, which amounts to a damped 
or truncated division by the Fourier transform of the error density in the frequency 
domain; see Carroll and Hall (1988), Stefanski and Carroll (1990), Fan (1991a, 1991b, 
1993) and Ruymgaart (1993). Some of these authors derive also minimax rates of 
convergence of such estimators in certain smoothness classes. Another approach ba-
sed on a wavelet-vaguelette decomposition of the convolution operator, which is also 
appropriate in certain cases of inhomogeneous smoothness, is proposed in Donoho 
(1992). Sometimes authors also consider deconvolution on the circle; see e.g. van 
Rooij and Ruymgaart (1990). Sinusoids are then singular functions of the operator, 
regardless of the particular error density. This allows the application of orthonormal 
series methods that lead to a quite convenient analysis of the problem. However, this 
approach suffers from the drawback that only periodic densities can be adequately 
treated, which excludes many interesting functions and makes a widespread applica-
tion of such methods impossible. Some examples for deconvolution problems are given 
in Oarroll and Hall (198?); a real practical application is described in Mendelsohn 
and Rice (1982). 
Closely related problems, which can be more or less reduced to nonparametric de-
convolution, are estimation of mixing densities [Zhang (1990)] and .nonparametric 
errors-in-variables regression [Fan and Truong (1993)]. There are also interesting and 
important higher-dimensional estimation problems, which are of deconvolution type, 
like image reconstruction from observations degraded by· a Toeplitz transform [Hall 
(1990), Hall and Koch (1990)] and density estimation in computerized tomography 
[Johnstone and Silverman (1990), Kolaczyk (1994)]. 
In all of the abovementioned papers it is assumed that the convolution or convolution-
like operator is exactly known. An approximate knowledge of it actually seems to be 
realistic in some cases of application, for example in density estimation in computer 
tomography. An amusing example of a perfectly known convolution operator is des-
cribed on page. 201 in Fuller (1987). However, very often one has only a rough idea 
about the convoluting density. A rather crude, but sometimes practicable II1=ethod is 
to perform only partial deconvolution, that is to remove only a certain fraction of the 
error density from the data. This is studied in Stefanski and Carroll (1990), where 
the authors tried three error densities with a different behaviour at the or~gin and in 
the tails. Somewhat surprisingly, it turned out that the resulting estimators were not 
too different from each other as long as only a certain fraction of the (unknown) error 
density was removed. However, we can do much better, if we can draw some informa-
tion about the convolution operator from an additional experiment. This situation 
has been studied by Horowitz in an econometric context and was described in a talk 
given at Humboldt University, Berlin, in 1995. As soon as one can estimate the error 
density consistently, one can also estimate the density of interest in an asymptotically 
consistent manner. 
In the present paper we study this effect of estimating the error density fe more 
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closely. We assume that information about le is provided by an independent expe-
riment. We propose a simple modification of the commonly used kernel estimators, 
which takes the uncertainty about the convoluting density into account. We quantify 
the additional error due to ignorance of le and derive also a lower bound for the 
risk in this situation. It turns out that the modified version of a kernel estimator, 
which would be minimax in the case of known le, is again minimax in the model 
with unknown le· Similarly to Fan (1991a, 1993) we derive also minimax rates of 
convergence in the full problem. 

2. A MODIFIED REGULARIZATION SCHEME FOR THE CASE OF UNKNOWN ERROR 
DENSITY 

Suppose we have n i.i.d. random variables X1 , · · · , Xn distributed according to a 
density Ix. However, we do not observe the X/s directly, but 

Yj = X; + c;, j = 1, ... ,n, (2.1) 

where the c/s are i.i.d. with density le, also independent of the X/s. 
We are interested in estimating Ix, but we do not know le exactly. We assume that 
some knowledge about le can be drawn from an additional experiment, where we 
observe 

cj rv le, j = 1, ... ,N, (2.2) 

where the cj's are again i.i.d., also independent of the Yj's above. 
In the case of known le, the most frequently used approach is based on linear regu-
larization in. the frequency domain. Such an estimator has the form 

.... 1 I · cpy( w) . 
lx(x) = 27r exp( 7iwx)Kn(w) 'Pe(w) ~' (2.3) 

where cp e ( w) = E exp ( iwe1 ) is the Fourier transform of the density le and 
n 

cpy(w) = n-1 :E exp(iwYj) (2.4) 
j=l 

is the natural estimate of cpy ( w) = E exp( iw Yi) . The smoothing kernel Kn is often 
taken as Kn(w) == K(w/hn) for some bandwidth hn ~ oo, but other choices could 
also be reasonable in some particular cases for le· 
In our case of unknown le, one might be tempted to replace 'Pe in (2.3) simply by 

N 

<Pe(w) == N-1 :E exp(iwej), (2.5) 
j=l 

which gives the estimator 

~ 1 I . cpy(w) 
lx(x) == 27r exp(-iwx)Kn(w) <Pe(w) dw. (2.6) 

This is actually done by Horowitz, and leads for an appropriate choice of the band-
width hn to a consistent estimator of Ix· However, the practical choice of hn is now 
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even more complicated than in the deconvolution problem with known fe, since an 
appropriate value for hn depends on the smoothness of both fx and fe· 
Here we consider an alternative method, which can be motivated as follows. It is clear 
that the characteristic function 'Pe can be estimated at each point w with the rate 
N- 1!2 • Hence, 'Pe( w) is clearly a reasonable estimator of 'Pe( w ), if l'Pe( w) I ~ N-1/ 2 . 

For frequencies w with l'Pe( w) I ~ N- 1!2 , this estimator is no longer satisfying, since 
the noise of 'Pe( w) is then of larger order than the size of the signal. Actually, we 
have to estimate 1/cpe(w) and therefore this problem is even more critical: very small 
values of l'Pe(w)I would lead to an instable estimator of fx. Hence, one could wish to 
exclude all those frequencies w from the estimator (2.3), for which l'Pe( w) I < N-1/ 2 

holds. This is approximately reached by multiplying the integral in (2.3) with the 
indicator J( l'Pe( w) I ~ N- 1! 2 ) , that is, we obtain the modified estimator 

?..* 1 J I cpy(w) fx(x) = - exp(-iwx)Kn(w)I(l'Pe(w)I ~ N-1 2
) ....... ( ) dw. 

27r 'Pe W 
(2.7) 

The following lemma shows that this is actually a reasonable strategy for estimating 
l/cpe(w). 
Lemma 2 .1. It holds 

E --- =Omm 
I 

I(l'Pe(w )I ~ N-1
!

2
) 1 1

2 
( • { N-1 1 }) 

'Pe(w) 'Pe(w) l'Pe(w)l4 ' l'Pe(w)l 2 • 

In other words, the estimator J(l'Pe(w)I ~ N-1! 2 )/'Pe(w) behaves just as we co-
uld hope: its risk attains the rate N-1 lcpe(w)j-4 like the (nearly) ideal estimator 
1/'Pe(w) in the case of l'Pe(w)I ~ N-1!2 , and attains the rate l'Pe(w)l-2 like the 
(nearly) ideal estimator which is identically zero, in the case of l'Pe(w)I < N-1 / 2 . 

An important implication of the above lemma is given by the next theorem. 

Theorem 2.1. There exists a universal constant C < oo , such that 

. Ell/~ - fxlli.ci!l :::; C { Ellfx - fxlli.cEl + j IKn(w)l2 lrpx(w)l2 min{N-1 lrp,(w)l-2
, l}dw 1. 

. (2.8) 

We show in the next section that the second term on the right-hand side of (2.8) 
cannot be avoided; it is just a lower (rate-) bound for estimating fx in the case of 
unknown fe under reasonable assumptions on the class within fe varies. It follows 

....... * 
further, that our estimator J x is minimax in all smoothness classes :F x for f x in 
which the estimator fx would attain the optimal rate of convergence for kna'"wn fe· 

....... * 
From the practical point of view, the advantage of our new estimator f x over the 
estimation scheme (2.6) is, that we can use just the same bandwidth hn as in the case 
of known fe· We think that the choice of hn is now much less critical than without 
thresholding by J(l'Pe(w)I ~ N- 1! 2 ). 

A data-driven bandwidth choice can be performed by some cross-validation technique 
in the Fourier domain, which was described in Stefanski and Carroll (1990) and Dey, 
Mair and Ruymgaart (1993). For the sake of a clear presentation we do not include 
this step in our considerations here. 
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3. OPTIMALITY OF THE METHOD IN SMOOTHNESS CLASSES 
'. '?.._* 

In this section we derive rates of convergence for the estimator f x in certain smo-
othness classes Fx and Fe for fx and fe, respectively. A lower bound for the rate 
in estimating fx is obtained combining t lower bound for the problem with known 
fe with a lower bound, which captures the additional difficulty due to ignorance of 
fe· Since both bounds hold true simultaneously, we obtain a lower bound for the 
difficulty of the full problem. We show that this rate of convergence will be attained ...... 
by our estimator f x for an appropriate choice of hn. 

3.1. The additional difficulty due to ignorance of the error density. First we 
fix certain smoothness classes of functions for fx and fe· Fan (1991a, 1993) considers 
Holder smoothness classes for fx and obtained optimality of the kernel method in 
the case of known fe for the pointwise risk and for Lp-risk on a compact interval [a, b]. 
Fan (1991b) shows that the same rates are attainable for the global Lrrisk in some 
smoothness classes with integrated Holder modulus of continuity. Here we consider 
also the Lrrisk on the whole real line; accordingly we consider the following class in 
a Bessel-potential space: 

where f( w) = J exp( ixw )f ( x) dx is the Fourier transform of f. For integer (3 the 
set Fx is a usual LrSobolev class; for (3 not an integer Fx is a set of functions with 
bounded norm in the Besov space B~2 ; see Triebel (1995, Section 2.3). 
We do not want to fix a specific smoothness class for fe at this point. Let 1( w) = 
lfo( w) I be the modulus of the Fourier transform of any density Jo with the additional 
property that 

(3.1) 

holds for all w, w' with lw -w'I ~ 1 and some constants 0 < C1 ~ C2 < oo . Define, 
for any C > 0, 

Fe = {f I f density, IJ(w)I 2:: C1(w)}. 
We consider this quite general class first, since the assumption of a "regular decay" 
of f( w) as considered in the next section excludes some interesting densities. 
It is well-known (for details see the proofs in Fan (199la, 1993)) that the hardest 
one-dimensional subproblem does not capture the full difficulty in estimating fx in 
the case of known fe· In other words, there do not exist two sequences of densities 
fx,1,n, fx,2,n E Fx , which are statistically not consistently distinguishable and satisfy 
llfx,1,n - fx,2,nlli

2
c1.) ~ Cn-r , wh:ere n-r is the optimal rate of convergence. A 

suitable lower bound can be derived considering composite hypotheses of growing 
dimension. In contrast, the additional difficulty due to ignorance of fe can be captured 
by an appropriate one-dimensional subproblem. The idea is now to find two pairs of 
densities fe,N,1,fe,N,2 E Fe and fx,N,i, fx,N,2 E Fx with · 

H ( t t ) < cN-1/2 J e,N,1, J e,N,2 _ , (3.2) 



/· 

where H(f, g) = [J( VI - v'9?]1f2 denotes the Hellinger distance, 

le,N,1 * lx,N,1 = le,N,2 * lx,N,2 (3.3) 
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and the pr0perty that lllx,N,1 - lx,N,211£2 (1.) is as large as possible (in order) among 
all densities satisfying (3.2) and (3.3). (3.2) and (3.3) will imply that one cannot 
consistently discriminate between the two experiments based on le,N,1, lx,N,l and 
le,N,2, lx,N,2 , respectively. The value of lllx,N,1 - lx,N,211£2 (1.) provides then a lower 
bound for estimating lx under the assumption lx E :Fx and le E Fe . This 
is formalized in the following theorem. The starting point for the search for these 
densities is the search for the least favourable frequency, that is 

WN := argmjn{ (1 + lwlt2,l3min{N-1 11(w)l-2 ,1}}. (3.4) 

Theorem 3.1. Assume {2.l} and (2.2) and let WN be defined by {3.4). Then 

i_nf sup . {Ell} x - lxlli2 (1.)} ~ C(l + lwNlt2,a min{N-1 l1(wN )l-2, l}. 
f x fxE:Fx,feE:Fr: 

..-* 
In conjunction with Theorem 2.1, we obtain immediately the optimality of fx m 
classes :F x where fx is minimax for the problem with known le: 

Corollary 3.1. Assume (2.l) and (2.2). Let fx be minimax in :Fx with known le, 
lh(w)I ~ !T(w)I, where 'Y satisfies (3.1). Then 

sup _ {Ettl~ - fx l1Lc111)} ::; C \!if sup _ {Ell] x - fxl1Lc111)} · 
fxE:Fx,Jr:E:Fr: . f X fxE:Fx,JeE:F., . 

3.2. Rates of convergence in smoothness classes. So far we have concentrated 
on the quite general set Fe for le· If we assume additionally some kind of "regular 
decay" for lh(w)I, we are able to derive rates of convergence depending on n and N. 
Let, for some a > 0 , 

:Fe = {l I l density, lf(w)I ~ (1 + lwlta}. 
This assumption basically means that le has about a derivatives. It turns out that 
this relation is satisfied for gamma distributions with shape parameter a, which 
contain for a= 1 the exponential and for a= J'i,/2 the chi-square distribution with . 
J'i, degrees of freedom as special cases. Another example, which satisfies this condition 
with a= 2 , is the Laplace (double exponential) distribution. 
First we state a lower bound, which characterizes the difficulty in estimating lx E 
:F x in the case of known le E :Fe . 
Theorem 3.2. Assume observations {2.l} and that the error density le is known. 
Then 
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According to Fan (1991b ), a particular estimator, which attains the optimal rate of 
convergence, is given by 

.- 1 j . <Py(w) fx(x) == - exp(-iwx)K(w/hn) ( ) dw, 
2~ ~w 

where hn :;:::::: n1 /C 2J3+2a:+l) and the kernel function K satisfies 
(A 1) K ( w) == 1 + 0( lw l,e) as I w I -7 0, 
(A2) J IK(w)(l + lwltl2 dw < oo. 

(3.5) 

To derive a lower bound for the rate of convergence in the case of unknown fe, we 
only have to combine the lower bounds contained in Theorems 3.1 and 3.2. It can be 
easily seen that the lower bound given in Theorem 3.1 is of order N-((,8/a:)Al), which 
gives the following assertion. 

Corollary 3.2. Assume that observations according to {2.1) and {2.2) are available. 
Then 

In the case of unknown fe we consider the estimator 

. ]~(x) = 2~ j exp(-iwx)K(w/hn)I([ip.(~)[ 2'. N-112 )~:~{ dw. (3.6) 

Theorem 3.2 and Corollary 3.1 imply the following assertion~ 

Theorem 3.3. Assume that observations according to {2.l) and {2.2) are available. 
Further, assume {Al), {A2) and hn:;:::::: n 1IC2.e+2a:+i). Then 

{ 
* } . . Ell!-::.. f 112 = 0 (n-2,e/(2,e+2a:+i) --1,- N-((f3/a:)A1)) . SU p X - X L 2 (1.) I' 

fxE:Fx,f£E:F£ 

Remark 1. The uncertainty about 'Pe is modeled in a stochastic setting, which permits 
. an estimator <Pe with l<Pe( w) - 'Pe( w) I == Op( N-1/ 2 ) • Then an appropriate double 

asymptotics, th~t is n, N -7 oo , leads to certain rates of convergence. Nqte that 
analogous effects hold true in a nonst'ochastic setting as wel.l, that is when one takes 
any nonrandom approximation <Pe to 'Pe· To fix this idea, assume that l<Pe(w) -
'Pe(w)I ~ CN , CN -7 0 . Then we obtain analogous results to Theorems 2.1, 3.1 
a.nd 3.3. 

Remark 2. We see from Theorem 3.3 that one obtains the usual rate of convergence 
in the special case of n == N . However, we stress again that it is important to apply 
the thresholding scheme (3.6) to guard against too small values of <Pe(w.) which can 
occur with positive probability and which would lead to an unstable estimate of f x. 
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4. SIMULATIONS· 

In this section we present some results of a simulation study, which support the claims 
made in the theoretical part of. this paper. 
We used as a convenient prograri.ming environment the XploRe system, which has 
been developed by W. Hardle and coworkers, and runs on personal computers. A 
description of this is contained in Hardle, Klinke and Turlach (1995). 
For the sake of convenience we took convolutions of Laplace (double exponential) 
densities for fx and fe· Let fo(x) = 0.5 exp(-lxl) be the standard Laplace density. 
Then its Fourier transform lo(w) = 1/(1 + w2 ) is a real function. The d-fold 
convolution of fo has a Fourier transform 1/(1 + w2)d, which makes the link to our 
smoothness classes obvious. 
For the regularization step we used the uniform kernel K(x) = I(lxl ~ 1) and took 
this nonrandom bandwidth hn, which is optimal for the estimator h with known 
error density fe· The explicit calculation of this bandwidth is quite simple in our 
particular example. The risk in estimating cpx(w) by cpx(w) = cpy(w)/cpe(w) 1s 
equal to 

var(cpx(w)) = var(cpy(w))/lcpe(w)l 2 = n-1 (1 - lcpy(w)l 2 )lcpe(w)l-2 . 

Since we use the uniform kernel, the only alternative is to estimate cp x ( w) by zero, 
which gives a risk equal to lcpx(w)l 2 • Let fx and fe be di-fold and drfold convolutions 
of f 0 , respectively. The optimal smoothing set, that is the set nn of frequencies which 
should be included in the estimation process, is given as 

n-1 (1 - lcpy(w)l2)lcpe(w)l-2 ~ lcpx(w)l 2
} 

1 ~ ( n + 1) I cpy ( w) 12 
} 

1 ~· (n + l)(l + w2t2d1-2d2} 

lwl :S /(n ~ 1)1/(2d,+2d>) - 1}. 

Acc~rdingly, we set hn = .j(n + 1)i/(2d1+2d2) - 1 . 
We considered two cases, namely fx smoother than fe and vice versa. The sample 
size of the main experiment was chosen to be n = 200 . Since the effect of estimating 
fe can be expected to be large, if the sample size of the additional experiment is small 
compared to n, we took N = 10 . In each case we generated 100 random samples 
using the Gaussian pseudo-random number generator from XploRe. To obtain the· 
desired distributions of the random variables we used the fact that XiX2 -f X3X4 
is Laplace distributed, if Xi rv N(O, 1) are independent; see Johnson, Kotz and 
Balakrishnan (1995, Section 24.6). In the following we present the results of the 
simulation experiments. 

1) f x smoother than f e 

In this case we took di = 4 and d2 = 2 . The (estimated) risks· of the estimators 
...... ....... 

f x, f x and f x are shown in Table 1. 
Typical realizations of the real part and the imaginary part of the Fourier transforms 
of these estimators as well as of these estimators themselves are shown in Figures la, 
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Table 1 
I estimator I Lrrisk I 

Ix 0.00257 
',;:... 

f x 0.01010 
?..• 

f x 0.00828 

1 b and le, respectively. We displayed the "most typical" realization, which minimizes 
the sum of the differences between the Lrlosses and the Lrrisks of the three estima-
tors. The thick line shows the truth, i.e. Re(cpx), Im(cpx) and fx, respectively. The 

~ ~· 

thin solid line refers to fx, the dotted line to f x and the dashed line to f x. 

[Please insert Figures la, 1 b and le about here.] 
~ 

Figures 2a, 2b and 2c show the worst ~ase for the uncorrected estimator J x, that is 
this realization, where the 1 2-loss for f x is maximal. 

[Please insert Figures 2a, 2b and 2c about here.] 

These pictures underline the necessity of taking the uncertainty about fe into account, 
~· 

which is done by our estimation scheme f x· 
2) fe smoother than fx 

We considered also a more difficult case of estimating fx with d1 = 2 and d2 = 4 . 
The estimated risks are shown in ·Table 2. 

Table 2 I estimator I Lrrisk I 
Ix 0.019037 

f x 0.086432 
?..• 
f x 0.065923 

As .could be expected, the risks are considerably larger than in the case above, which 
reflects the fact that a smooth f x and a nonsmooth f e are favorable. The most 
typical of the 100 realizations is shown in Figures 3a, 3b and 3c. 

[Please insert Figures 3a, ?b and 3c about here.] 

Finally, the worst case for f x is displayed in Figures 4a, 4b and 4c. 

[Please insert Figures 4a, 4b and 4c about here.] 

It shows even more drastically than in the first example the advantage of our new 
~· ~ 

estimator f x over f x. 
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5. PROOFS 

Proof of Lemma 2.1. We distinguish between two cases, l'Pt:(w)I < 2N-1/2 and 
l'Pt:(w)I 2 2N-1l 2 • 

(i) Let l'Pt:( w) I < 2N-1l 2 . Then 

E II(lcpt:(w)I 2 N-1/2) - _1_112 
cpt:(w) 'Pt:(w) 

- 1 P (lcpe:(w)I < N-1/2) + EI (lcpe:(w)I 2 N-1/2) l<P~(w) - 'Pe:(w)l2 
l'Pt:( w) 1

2 l'Pt:( w) 1
2lcpt:(w)1 2 

- 0 (1/lcpe:(w)l2). 

(ii) Let l'Pt:(w)I 2 2N-1/2 . To derive the desired upper bound we apply Bernstein's 
inequality, which we quote for reader's convenience from Shorack and Wellner (1986, 
p. 855): 
Let Z1, ... , ZN be i.i.d. random variables with EZ1 = 0 and IZ1I ~ K almost 
surely. Then, for Z = N-1 :E Zi , 

< ( Nc
2 /2 ) P(Z > c) exp var(Z1) + (Kc)/3 

holds for arbitrary c > 0 . 
Now we have 

( . c2 
. ) ( 3N c) < exp - + exp --

4 var( Z) 4K 

P (lcpt:(w)I < N-1/2) < p (lcpe:(w) - 'Pt:(w)I > l'Pt:(w)I - N-1/2) 

< P(l<Pt:(w) - 'Pt:(w)I > l'Pt:(w)l/2) 
· < O·exp(-0Nlcpe:(w)l2) 

= 0 (N-1lcpe:(w)l-2). 

Using this and 



10 

we obtain that 

E J(lcpe:(w)I ~ N-1/2) - _1_ 2 
<Pe:.( w) 'Pe:( w) 

- 1 P(I ...... ( )I N-1/2) EI(l ...... ( )I N-1/2)l<Pe:(w)-cpe:(w)l2 
l'Pe:(w)l2 'Pe: w < + 'Pe: w ~ lcpe:(w)l2l'Pe:(w)l2 

< 0 (N-1l'Pe:(w)l-4
) 

+ El<Pe:(w) - 'Pe:(w)l2 + Elcpe:(w) - 'Pe:(w)l 4 N 
l'Pe:(w)l4 l'Pe:(w)l4 

- 0 (N-1l'Pe:(w)l-4
). 

D 

Proof of Theorem 2.1. Using the decomposition 

....... 
f x(x) - fx(x) 

- fx(x) - fx(x) 

+ -
2
1 j exp(-ixw)Kn(w)[cpy(w) - cpy(w)] [J(l$.(w]l(?:t

1
'

2
) - ___;__)] dw 

7r 'Pe: w cpt:( w 

1 j . [J(l<Pe:(w)I ~ N-1! 2
) 1 ] + 

2
7r exp(-ixw)J\n(w)cpx(w)cpe:(w) <Pe:(w) . - 'Pe:(w) dw 

- rl(x) + r2(x) + r3(x) 

we obtain that 

Ellf: - fxll 2 ~ 3tE jh(x)l2 dx. 
i=l 

The first summand on the right-hand side is just the risk of fx. Using Parseval's 
identity we obtain, due to independence of cpy and <Pe:, that 

- ]_Ejlr2l 2 dw 
27r 

- ]_jlK( )l2EI ...... ( )- ( )l2EII(lcpe:(w)l~N-1;2) __ 1_12 dw 
2 n W cpy W cpy W ...... ( ) ( ) 

7r 'Pe: w 'Pe: w 

< C j IK ( )12 E lcpy(w) - cpy(w)l2 dw 
n w l'Pe:(w )12 

< C Ellfx - fxll 2
• 
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Again by Parseval's identity we get that 

- J:_Ej Kn(w)<.px(w)<.pe(w) [I(lcpe(w]I ~ N-1/2) - _1_] 2 dw 
271" 'Pe(w) 'Pe(w) 

< C j IKn(w)l 2 1<.px(w)l2 [N-1 l'Pe(w)j-2 
/\ 1] dw, 

which completes the proof. D 

Proof of Theorem 3.1. 
( i) Construction of fe,N,i 
Let Jo be any density with llo(w)I ~ 1(w). 
If WN < 1, we redefine WN := 1. Now we set 

[ (
sin( x )) 

2
] fe,N,i(x) = Ki fo(x) + -x-

where 

and 

Since p N is an odd function, we have 

j fe,N,i(x)dx = 1, i=l,2. 

(5.1) 

Moreover, if K 2 is chosen small enough, the fe,N/s will be nonnegative and satisfy 

lh,N,i(w)I ~ Clr(w)I Vw. 

(ii) Construction of f x,N,i 
Let CN = l1(wN )j-1(1 + lwNlt,e . 
If CN ::=; 1 , we define 

f ( ) + ( ) {2cN (sin(wNx)sin(x))
2 

( ) (sin(x)).2 }~ X,N,i X = Je,N,(3-i) X * - + 2 1- CN -- , 
71" x x i = 1, 2, 

where "*" means convolution of the two functions on the right-hand side. The term 
in braces integrates to one; hence fx,N,i is a density. The convolution of fe,N,i with 
the function in braces has the effect that fx,N,i is bandlimited to frequencies around 
w = WN and w = 0 . 
If CN > 1 , we define the fx,N/s in a slightly different way. Since fx,N,i must be 
densities, the L1 -norm of the term in braces must be one. On the other hand, it turns 
out that the Lrnorm of that term is responsible for the Lrdifference between fx,N,l 
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and fx,N, 2. To maximize this difference we extract a smaller frequency band, that is 
we define 

f ·( ) _ + . ( ) {2cN (sin(wNx)sin(x/cN))
2
} 

X Ni X - J e N (3-i) X * , 
I I I I 7f' X 

i = 1,2. 

Hence, the fx,N/s are in both cases densities, that is they are nonnegative and 
integrate to one. Further, it is easy to see that 

Moreover, we have that 

1 JI - - -- 12 llfx,N,1 - fx,N,2llLcnq - 27r Ue,N,1(w) - fe,N,2(w)){. · · }(w) dw 

> c (N-1 /\ b(wN )1 2) lt(wN )l-2(1 + lwNlt213 

= C (N-1 l!(wN)l-2 /\1) (1 + lwNlt213 . (5.2) 

(iii) Asymptotic indistinguishability of the experiments 
Now we state statistical indistinguishability of the experiment with fe,N,l and fx,N,1 
from that with fe,N,2 and f x,N,2· 
First, we have 

H 2 (fe,N,1, fe,N,2) _ J lfe,N,1(.x) - fe,N,2(x)l2 dx. 
( J fe,N,1(x) + J fe,N,2(x ))2 · 

< c (N-1 /\ li(wN)l2) J (8in(wN:)sin(x)r dx 

- 0(N-1 /\b(wN)l 2
). 

We define for two densities f and g the Hellinger affinity p(f, g) = J VJ V§ . Note 
that we have, according to (2.1) and (2.2), two sets of observations, which possibly 
provide information about fx. Let fi denote the joint density of Yi, ... , Yn, c:;:, ... , c:iv · 
under fe,N,i and fx,N,i· Since the observations Y; and c:j are independent, we obtain 
that 

p(f1,f2) - P (Ue,N,1 * fx,N,1)[nl,(Je,N,2 * fx,N,dnl) P (J!~,1,ft1L) 
- PN (fe,N,1, fe,N,2) 

( 1 - ~H2(f,,N,1.f,,N,2) f 
> (1 - C/N)N 2:: C > 0. (5.3) 



(iv) A lower bound for the risk 
On the other hand, we obtain for any estimator] x that 

< 

J llfx(Y) - fx.N,111.jfi(y).jfi(y)dy 
llfx,N,1 - fx,N,211 

+ j llfx(Y) - fx,N,211.jfi(y).jh(y)dy 
llfx,N,1 - fx,N,211 

llfx,N,1 - fx,N,211-2J117 x(Y) - fx,N,111 2 fl(Y) dy 

13 

+ llfx,N,1 - fx,N,211-2 J117 x(Y) - fx,N,211 2 f2(Y) dy. (.5.4) 

From (5.2) through (5.4) we obtain that 

!!if max { Et,,N,1,fx,N,JJ x - fx,N,111 2, Ef,,N,2,fx,N,2 llf x - fx,N,211 2} 
f x 

> Cllfx,N,1 - fx,N,211 2 

2:: C ( N-1 lr(wN )l-2 /\ 1) (1 + lwNlt2.8, 

which proves the theorem. D 
Proof of Corollary 3.1. The assertion follows from Theorem 2.1, which holds um-
formly in fx, Theorem 3.1 and the assumption that 

. sup _ { Ellfx - fxll2} ::; Ci_nf sup _ {Ell] x - fxll2}. 
fxE:Fx,J,E:Fe fx fxE:Fx,J,E:Fe 

D 
Proof of Theorem 3.2. Although the proof in Fan (1993) was give.n for Holder classes 
and Lp-risk on a compact interval rather than for Bessel-potential classes and Li-risk 

. on the real line, we can derive a lower bound using the same calculations as in Fan's 
proof. An upper bound for the L2-risk on the real line and smoothness classes with 
an integrated Holder modulus of continuity was derived in Fan (1991b ). It can be 
easily shown that analogous rates are valid in our Bessel-potential classes. D 
Acknowledgment. The research has been stimulated by a talk of Joel Horowitz given 
in Berlin, 1995. 
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