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Abstract

A new two-phase model for concentrated suspensions is derived that incor-
porates a constitutive law combining the rheology for non-Brownian suspension
and granular flow. The resulting model naturally exhibits a Bingham-type flow
property. This property is investigated in detail for the simple geometry of plane
Poiseuille flow, where an unyielded or jammed zone of finite width arises in the
center of the channel. For the steady state of this problem, the governing equa-
tion are reduced to a boundary value problem for a system of ordinary differential
equations and the dependence of its solutions are analyzed by using phase-
space methods. For the general time-dependent case a new drift-flux model is
derived for the first time using matched asymptotic expansions that take account
of the boundary layers at the walls and the interface between the yielded and un-
yielded region. Using the drift-flux model, the behavior of the suspension flow, in
particular the appearance and evolution of unyielded or jammed regions is then
studied numerically for different choices of the parameters.

1 Introduction

Ever since the derivation of an effective viscosity for dilute suspensions by Einstein
[12] and its extensions by Batchelor & Green [1], there has been numerous investi-
gations into their rheological properties. In particular since the experimental work by
Gadala-Maria & Acrivos [13] new physical phenomena such as shear-induced particle
migration for concentrated suspensions, spurred many theoretical investigations that
led to expressions for associated diffusive flux terms as well as drift-flux models, see
for example [6, 20, 22, 25].

While drift-flux models are quite popular and are frequently combined as a transport
mechanism [7, 23, 31], they do predict also unphysical migration behavior. For ex-
ample in the case of channel flow these models predict a sharp peak in the particle
volume fraction profile in the center of the channel, where the shear rate vanishes
[24], whereas in experiments such as for example by Hampton [14] the concentration
profile is in fact flattened there. While these issues were addressed by introducing
concepts of “viscous temperature” [18, 24], or by slightly changing parameter values
such as the exponent in the Krieger-Dougherty law or in the expressions for the rela-
tive suspension viscosity and the particulate phase pressure as the maximum packing
fraction is approached [26], it remains to understand how these models can be based
on their underlying two-phase models.
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In addition, as has been shown in Cassar et al. [5] for highly dense suspensions of
particles in a viscous liquid that is sheared at a rate γ̇ under a confining pressure
pp can be characterized by a single dimensionless control parameter, the “viscous
number” Iv = ηf γ̇/pp, where ηf is the fluid viscosity. These findings have been sup-
ported by experiments where the suspensions are sheared with a constant particle
pressure [2]. Their results show that, indeed, the friction and volume-fraction law col-
lapse onto universal curves when expressed in terms of the dimensionless number Iv.
By including hydrodynamic contributions, Boyer et al. propose a model for the whole
range of Iv, which has been discussed by [8], and also by Trulsson et al. [28]. An
earlier review of stress terms for dense suspensions can be found in [27].

Boyer et al. formulate their model in a form for suspensions, where the shear stress
and particle pressure are expressed in terms of the strain rate and the volume fraction.
Their expressions for the shear and normal viscosities are similar to the ones found
in Morris & Boulay [22], and also Miller et al. [21], who investigated more general
curvilinear flows, where the migration behavior was accommodated by allowing for
anisotropy in the normal stresses. Hence, both models should exhibit viscoplastic
behavior with a yield stress that is proportional to the particle pressure.

The focus of the present study is to incorporate the rheology of Boyer et al. into a
derivation of new drift-flux model for dense suspensions. Our derivation starts with
derivation of a new two-phase model for non-homogeneous shear flows that captures
the flow properties of non-Brownian dense suspensions by including the constitutive
equations proposed by Boyer et al. [2]. The derivation of our two-phase model is
based on the averaging framework as given in Drew & Passman [9, 10].

In order to investigate the flow behavior predicted by this two-phase model as the
particle volume fraction is varied, we choose the pressure-driven plane Poiseuille flow
as our basic model example for non-constant shear flows.

We first investigate the stationary solutions for which the problem reduces to a bound-
ary-value problem for a system of ordinary differential equations. Using phase-space
methods we show existence of solutions that show an unyielded or jammed region
with maximum volume fraction in the center of the channel and naturally exhibits
Bingham-type flow properties. We then study the dependence of the width of the
jammed region and the corresponding flow field upon varying the flow parameters.

For typical ranges of the parameter Da = L/Kp = O(1/ε), where L is the character-
istic scale of the channel width and K is proportional to the particle size, a matched
asymptotic analysis shows moreover that the flow field develops a boundary layer at
the channel walls and the interface between the unyielded and yielded region.

We generalize this analysis and for the first time present a systematic derivation of a
drift-flux model via matched asymptotics. Using this model we show numerically the
emergence of the unyielded region in the flow and its evolution towards the stationary
state.
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2 Formulation of a two-phase model

We consider two inert phases and denote with k ∈ {s, f} the solid phase by s and the
liquid phase by f . Inside each phase the balance equations for mass and momentum

∂tρ+∇ · (ρu) = 0 (2.1)
∂t(ρu) +∇ · (ρu⊗ u)−∇ · T − f = 0 (2.2)

are satisfied together with the two jump conditions (see e.g. [17])∑
k

ρk(uk − ui) · nk = 0 (2.3)∑
k

ρkuk(uk − ui) · nk − T k · nk = σfsκns, (2.4)

at the interfaces of the phases with nk denoting the unit normal pointing out of phase
k, σfs a surface tension coefficient and κ the curvature of the interface that is positive
towards −ns; ui is the interface velocity. The quantities ρ, u, T and f denote den-
sity, velocity, stress tensor and body force density in each phase, respectively. At an
interface uk is defined as

uk(x
∗, t) ≡ lim

x→x∗;x∈K
u(x, t),

where K denotes the set of points occupied by phase k, and similarly for the other
quantities.

Essentially three different averaging approaches have been pursued in the literature.
The volume average, the time average and the ensemble average (sometimes also
called statistical average). Although all three produce similar balance equation for
the phases their derivation and closure is distinct. Besides the ensemble averaging
developed by Drew & Passman in [10] and [9], volume averaging is treated in Kolev
[19] and Whitaker [30] and time averaging in Ishii et al. [17].

For the derivation of our two-phase model, given in the appendix B, we follow the
mathematical framework by Drew [9] and Drew and Passman [10] and obtain for the
averaged quantities

φk ≡ 〈Xk〉, ρk ≡
〈Xkρ〉
φk

, ûk ≡
〈Xkρu〉
φkρk

, pk ≡
〈Xkp〉
φk

, τ k ≡ −
〈Xkτ 〉
φk

(2.5)

the following balance equations

∂tφs +∇ · (φsûs) = 0, (2.6a)
∂tφf +∇ · (φf ûf ) = 0, (2.6b)

ρs∂t(φsûs) +∇ · (φsρsûs ⊗ ûs) (2.6c)

−∇ · (φsτ s) +∇(φsps) = Md
s + pf∇φs, (2.6d)

ρf∂t(φf ûf ) +∇ · (φfρf ûf ⊗ ûf ) (2.6e)

−∇ · (φfτ f ) +∇(φfpf ) = −Md
s + pf∇φf . (2.6f)
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2.1 Constitutive equations for a dense suspension

To close the model for the flow in the bulk, we need to specify constitutive equa-
tions besides the assumptions already made. Essentially we need four relations for
the pressure difference and stress between the phases ps − pf and Md

s , and for the
stresses in each phase, τ f and τ s.

For the momentum transfer Md
s , we use the Kozeny-Carman equation for the perme-

ability (cf. [15] and [3]),

Md
s =

µfφ
2
s

Kpφf
(ûf − ûs), (2.7)

where Kp is the permeability coefficient.

The constitutive law for the remaining quantities extend the model for dense suspen-
sions given by Boyer et al. [2] for shear flow to a general flow situation. We state it in
terms of the (weighted) solid contact pressure, defined here as

pc ≡ φs(ps − pf ), (2.8)

and the shear rate tensors for each phase

γ̇f ≡ [∇ûf + (∇ûf )T ], γ̇s ≡ [∇ûs + (∇ûs)T ]. (2.9)

For the liquid phase stress, we have

τ f = µf γ̇f + (µ∗ − 2

3
µf )(∇ · ûf )I, (2.10a)

where µf denotes the viscosity of the pure liquid. The second term in the relation for
τ f will be dropped by setting the bulk viscosity µ∗ = 2

3
µf .

For the solid phase, we need to consider two cases for the constitutive law:
Either |γ̇s| > 0, then

τ s = µfηs(φs)γ̇s, (2.10b)
pc = µfηn(φs)|γ̇s|, (2.10c)

with

ηs(φs) = 1 +
5

2

φsc
φsc − φs

+ µc(φs)
φs

(φsc − φs)2
, (2.10d)

µc(φs) = µ1 +
µ2 − µ1

1 + I0φ2
s(φsc − φs)−2

, (2.10e)

ηn(φs) =

(
φs

φsc − φs

)2

, (2.10f)

where for tensors a we define the norm as |a| = (1
2

∑
j,k |ajk|2)1/2. The material pa-

rameters µ2 ≥ µ1 > 0, I0 ≥ 0 characterize the contact contribution in the expression
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for ηs, and φsc is the maximum volume fraction for the solid phase at the jamming point
[2].
For γ̇s = 0 we require

φs = φsc, (2.10g)

while τ s, ps and pf are left unspecified, except for the constraint

|τ s| ≤ µ1pc. (2.10h)

Across a yield surface, by which we mean the boundary of the regions where γ̇s is
zero, and for which ny denotes the unit normal vector, we require φs, φf , ûf , ûs,
(−pfI + τ f ) · ny, (−psI + τ s) · ny and |γ̇s| to be continuous.

2.2 Non-dimensionalization

We introduce characteristic scales via

x = Lx′, y = Ly′, z = Lz′, (2.11)

t =
L

U
t′, uk = Uu′k, pk =

Uµf
L

p′k, (2.12)

for k = s, f . After non-dimensionalization, we drop the primes and also the bars and
hats indicating averaging, and obtain the system

∂tφf +∇ · (φfuf ) = 0, (2.13a)
∂tφs +∇ · (φsus) = 0, (2.13b)

Re[∂t(φfuf ) +∇ · (φfuf ⊗ uf )] (2.13c)

−∇ · (φfτ f ) + φf∇pf = −Da
φ2
s

φf
(uf − us),

Re

r
[∂t(φsus) +∇ · (φsus ⊗ us)] (2.13d)

−∇ · (φsτ s) + φs∇pf +∇pc = Da
φ2
s

φf
(uf − us).

Three dimensionless numbers appear here, namely the Reynolds number Re =
ULρf
µf

,,

the Darcy number Da = L2

Kp
and the density ratio r =

ρf
ρs

. We focus on the case, where
liquid and solid phases are density matched i.e. r = 1.

The non-dimensional versions of the constitutive equations for the rheology are now
as follows: For the liquid phase, we have

τ f = γ̇f . (2.14a)

For the solid phase, either |γ̇s| > 0, then

τ s = ηs(φs)γ̇s, (2.14b)
pc = ηn(φs)|γ̇s|, (2.14c)
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Figure 1: Sketch of the flow situation in a channel.

with (2.10d)-(2.10f); or γ̇s = 0, and then we require

φs = φsc

and
|τ s| ≤ µ1pc.

The continuity conditions across yield surfaces carry over from the dimensional equa-
tions and also the parameters, µ1, µ2 and I0 and φsc, which were non-dimensional to
begin with.

Remark Let us note that in the near-critical, or jamming limit, when φs → φsc, and
for fixed contact pressure pc = φs(ps − pf ), it follows from (2.14c), (2.10f) that γ̇s
tends to zero as O((φsc − φs)2). Thus, the solid phase velocity us becomes uniform,
so that in a conveniently chosen reference frame, it is at rest. Notice, however, that
|τ s| → µ1pc remainsO(1) due to (2.14b), (2.10d), (2.10e). The equations for the liquid
phase become

∇ · uf = 0,

Re [∂tuf +∇ · (uf ⊗ uf )] = −∇pf +∇ · γ̇f −Da
φ2
s

φf
2 (uf − us).

If, in addition, Da→∞, the term∇·γ̇f and the inertia terms drop out from the second
equation and we recover Darcy’s law in a porous medium.

3 Plane Poiseuille flow

It is instructive to investigate the properties of the model (2.13) for one of the classical
flow situations, namely, plane Poiseuille or channel flow.

6



We suppose the dimensions of the channel are 0 < x < L and −1
2
< y < 1

2
and

prescribe for the inlet conditions at x = 0

φs = φs,in, uf =

(
uf,in

(
1
4
− y2

)
0

)
, us =

(
us,in

(
1
4
− y2

)
0

)
(3.1)

and for the outlet condition at x = L

n · (psI + φsηs(∇us)T ) = 0, n · (pfI + φfηs(∇us)T ) = 0. (3.2)

In addition we assume that inertial effects are negligible and hence obtain for the bulk
equations

∂tφf +∇ · (φfuf ) = 0, (3.3a)
∂tφs +∇ · (φsus) = 0, (3.3b)

−∇ · (φfτ f ) + φf∇pf = −Da
φ2
s

φf
(uf − us), (3.3c)

−∇ · (φsτ s) + φs∇pf +∇pc = Da
φ2
s

φf
(uf − us), (3.3d)

φf + φs = 1, (3.3e)

where

τ f = γ̇f (3.4a)

|τ s| ≤ µ1pc, φs = φsc if |γ̇s| = 0 (3.4b)
τ s = ηs(φs)γ̇s, pc = ηn(φs)|γ̇s| if |γ̇s| 6= 0. (3.4c)

At the channel walls we assume the no-slip conditions

us = 0, uf = 0. (3.5)

For the two-phase model at hand, it turns out to be advantageous to formulate the
problem in terms of the flow variables

v ≡ φfuf + φsus, w ≡ uf − us. (3.6)

In these variables, noting that v + φsw = uf , v − φfw = us and using φf = 1 − φs
the problem can be written as

∇ · v = 0 (3.7a)
∂tφs +∇ · (φsv − φs(1− φs)w) = 0 (3.7b)

−∇ ·
(
(1− φs)γ̇f

)
+ (1− φs)∇pf = −Da

φ2
s

1− φs
w (3.7c)

−∇ · (φsηsγ̇s) + φs∇pf +∇(ηn|γ̇s|) = Da
φ2
s

1− φs
w (3.7d)

and with no-slip conditions at the walls y = ±1
2

v = 0, w = 0. (3.7e)
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3.1 Phase space analysis of the stationary problem

For the system (3.7a)-(3.7e) we derive conditions for the existence of stationary two-
dimensional solutions where all quantities, except for the pressure, depend only on y.
In addition, from now on we set φs ≡ φ

φ = φ(y), v = v(y), w = w(y), (3.8)
τ f = τ f (y), τ s = τ s(y), pf = pf (x, y). (3.9)

The combination of no-slip boundary conditions (3.7e) with (3.7a), (3.7b) yields (if v1
,v2 and w1, w2 denote the components of the vectors v and w, respectively)

v2 = 0, w2 = 0, (3.10)

and therefore

γ̇s =

(
0 ∂y(v1 − (1− φ)w1)

∂y(v1 − (1− φ)w1) 0

)
, (3.11)

γ̇f =

(
0 ∂y(v1 + φw1)

∂y(v1 + φw1) 0

)
. (3.12)

The second component from (3.7c) requires pf to be independent of y. For the total
stress τ ≡ φfτ f + φsτ s we get from (3.7c), (3.7d)

∂xpf − ∂yτ12 = 0, ∂ypc = ∂y(ηn|γ̇s|) = 0. (3.13)

This means that in the first of these equations, one term only depends on x and the
other only on y, so both have to be constant, therefore the solution is

pf (x) = p1x+ p0, (3.14a)

where p0 is a constant of integration, which by a choice of origin, we can assume,
without loss of generality, to be zero, and

τ12(y) = p1y. (3.14b)

From now on, we will only look at the case of solutions with velocities and volume
fractions that are symmetric with respect to y = 0 and that have at most one unyielded
region for −yB ≤ y ≤ yB, i.e. with at most one yB, where 0 ≤ yB ≤ 1/2. Due to the
symmetry assumption, the constant contribution to τ12 has been set to zero in (3.14b)
and it is sufficient to consider only non-negative y. The same reasoning as above
further shows

pc = const. if |γ̇s| > 0. (3.15)

Thus, the contact pressure, pc, is a constant here, which is free and thus acts as an
additional parameter.
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Overall we get the system: For y ∈ [yB; 1/2], φ, τs12, τf 12, v1 and w1 satisfy

∂y((1− φ)τf 12) = (1− φ)p1 + Da
φ2

1− φ
w1, (3.16a)

φsτs12 = p1y − (1− φ)τf 12, (3.16b)

∂yw = τf 12 −
τs12
ηs(φ)

, (3.16c)

pc = ηn(φ)|∂y(v1 − (1− φ)w1)|. (3.16d)

In the unyielded region y ∈ [0; yB[, equations (3.16a)-(3.16b) stay the same, but the
two remaining ones are replaced by

∂y(v1 − (1− φ)w1) ≡ ∂yus = 0 and φ = φsc. (3.16e)

The boundary conditions are the no-slip

v1 = 0, w1 = 0, at y = 1/2, (3.16f)

and symmetry conditions

∂yv1 = 0, ∂yw1 = 0, at y = 0. (3.16g)

In case the unyielded region fills out the whole channel, i.e. yB = 1/2, the no-slip
boundary conditions together with (3.16e) gives us = 0. Then (3.16a) becomes the
Brinkman equation, c.f. [4]. For the yield surface at y = yB we demand the continuity
conditions

[τs12]
+
− = 0, [τf 12]

+
− = 0, [v1]

+
− = 0, (3.16h)

[w1]
+
− = 0, [φ]+− = 0, (3.16i)

where we denote [g]+− = limy↘yB g − limy↗yB g. We remark that these conditions are
not all independent, as, for example, the second condition in (3.16g) can be obtained
from the first via (3.16e), and the continuity of one of the stresses in (3.16i) implies
the other via (3.16b).

Notice that (3.16d) applies in the region [yB; 1/2] where γ̇s > 0, so that, if pc = 0,
this implies φ = 0, i.e. no solid phase, which seems equivocal. We therefore assume
pc > 0. Then, we can remove pc from the equations by rescaling

τs12 = pcτ̃s12, τf 12 = pcτ̃s12, p1 = pcp̃1, (3.17)
uf = pcũf , us = pcũs. (3.18)

The fact that pc can be scaled out of the problem in this way implies that the width of
the unyielded region i.e. yB does not depend on pc, as was reported in [16]. We note
that in conventional Herschel-Bulkley models, which are also able to capture yield
stress and shear-thinning, the unyielded region would change with pc.
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3.1.1 Phase space analysis

Using phase-space methods, we ask if for system (3.16) solutions exist and un-
der which conditions, but first we will reduce the system into a second order, non-
autonomous system of ordinary differential equations for w ≡ w1 and φ.

We first note that in the fluid region y ∈ [yB; 1/2] combining the definition of the solid
stress (3.4c) and (3.16d) yields

φτs12 = φηs∂yus =
φηs
ηn

sign(∂yus) = −φηs
ηn

sign(y), (3.19)

where we have made the assumption that sign(∂yus) = sign(τ ) = −sign(y) holds.
This assumption is fundamental and based on the experimental observation, that
channel velocity curves are roughly square profiles (c.f. [14]) and is further asserted
by (3.14b), which states that the total stress is just a linear function. Since Da is large,
we expect us ≈ u and this behavior should also be true for the solid velocity.

Then using (3.16b) in (3.16a) and (3.19) yields

∂yN(φ) = −φp1 + Da
φ2

1− φ
w, (3.20a)

which will be used as an equation for the solid volume fraction. We get an equation
for w by combing (3.16b) and (3.16c) to give

∂yw =
p1y +N(φ)

1− φ
+

1

ηn(φ)
. (3.20b)

The function N is given by

N(φ) ≡ φηs(φ)

ηn(φ)
. (3.20c)

In the unyielded region y ∈ [0; yB[ we already know

φ = φsc (3.20d)

and since ∂yus = 0, we have τf 12 = ∂yuf = ∂yw, which together with (3.16a) is

∂yyw = p1 + Da
φsc

2

(1− φsc)2
w. (3.20e)

At the channel wall and center, we have the boundary conditions

w = 0 at y = 1/2, (3.20f)
∂yw = 0 at y = 0, (3.20g)

and at the yield surface,

φ = φsc, [w]+− = 0, [wy]
+
− = 0, at y = yB. (3.20h)
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The problem for w in the unyielded region, (3.20e) and (3.20g), can be solved explic-
itly. For Da > 0, we have

w = α1 cosh

(
Da1/2φsc
1− φsc

y

)
− (1− φsc)2

Daφsc
2 p1, (3.21)

where α1 is a constant of integration. We can use this in the last two conditions in
(3.20h) to get

∂yw =

(
w +

(1− φsc)2

Daφsc
2 p1

)
Da1/2φsc
1− φsc

tanh

(
Da1/2φsc
1− φsc

yB

)
, at y = yB (3.22)

and from this a new formulation of the free boundary condition

φ = φsc, (3.23a)

w = W (yB) ≡ p1yB + µ1

Da1/2φsc tanh
(

Da1/2φsc
1−φsc yB

) − (1− φsc)2

Daφsc
2 p1, at y = yB. (3.23b)

We have thus reduced the problem to a free boundary value problem for second order
system of ODEs (3.20a), (3.20b) with a condition (3.20f) at the fixed boundary and two
at the free boundary (3.23a), (3.23b).

For the solution of the boundary value problem (3.20), we proceed as follows. Rewrit-
ing (3.20a) for w, i.e.

w =
(∂yN + φ p1) (1− φ)

Daφ2
, (3.24)

and using it in (3.20b) and the boundary conditions yields an equation solely in φ, i.e.

∂y

(
(∂yN + φ p1) (1− φ)

Daφ2

)
=
p1y +N

1− φ
+

1

ηn
, (3.25a)

with boundary conditions

0 = ∂yN + φs p1 at y =
1

2
, (3.25b)

φ = φsc at y = yB, (3.25c)
(∂yN + p1) (1− φsc)

Daφsc
2 =

p1yB + µ1

Da
1
2φsc tanh

(
Da

1
2 φsc

1−φsc yB

) at y = yB. (3.25d)

We transform the free-boundary problem (3.25) into fixed-domain problem via

y =

(
yB −

1

2

)
ζ +

1

2
, (3.26)
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where ζ ∈ [0, 1], which introduces the free-boundary coordinate as an explicit param-
eter in the system and then we add the trivial differential equation for the constant yB
to get the boundary value problem

1

yB − 1
2

∂ζ


(

1
yB− 1

2

∂ζN + φ p1

)
(1− φ)

Daφ2

 =
p1
(
(yB − 1

2
)ζ + 1

2

)
+N

1− φ
+

1

ηn
(3.27a)

∂ζyB = 0 (3.27b)

with boundary conditions

0 = ∂ζN +

(
yb −

1

2

)
φ p1 at ζ = 0 (3.27c)

φ = φsc at ζ = 1 (3.27d)

∂ζφ = −
2(yb − 1

2
)

5(1− φsc)
Da

1
2φsc(p1yB + µ1)

tanh

(
Da

1
2 φsc

1−φsc yB

) +
2

5

(
yB −

1

2

)
p1 at ζ = 1. (3.27e)

We have thus reduced our original system into a nonlinear boundary value problem,
which can be solved using standard methods like Matlab’s bvp5c solver.

After solving for φ, we can determine the remaining variables by first using (3.24)
for w, next solving for φfτf 12 via (3.16a) with (φfτf 12)(0) = 0 and then get the fluid
velocity via (3.16d) with uf (1/2) = 0. The solid variables are then easily computable
by (3.16b) and us = uf − w.

3.1.2 The minimum pressure condition

We now derive a condition for the minimum pressure gradient that guaranties the
existence of nontrivial solutions of the stationary problem.

Let ywall be the position of the wall, i.e. in our case ywall = 1/2, then the minimum
magnitude for the pressure gradient pmin can be explicitly computed from (3.23b) and
w(ywall) = 0 as

pmin =
φscDaµ1

ywallφscDa +
√

Da tanh(ywall

√
Daφsc

φsc−1 )(1− φsc)2
. (3.28)

This expression for pmin also contains the correct limits for infinite and zero Da when
compared to (3.30) and (3.29). From this expression one can also see, that there must
be always an unyielded region as ywall → 0 implies pmin →∞.

The dependence of the width of the unyielded zone on the pressure gradient is sum-
marized in figure 2, for Da between 0 and infinity. In both cases, there is a minimum
magnitude for the pressure gradient, i.e. pmin, below which the unyielded region fills
the entire channel. On the other hand, as p1 decreases, the width of the unyielded
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Figure 2: The dependence of the yield surface position yB on the pressure gradient
magnitude p1, for parameters (3.31), µ2 = 1. The solid line shows the results for
Da = 0; the dotted for Da = 10; the dashed curve for Da = 1000 and the dashed-
dotted line for Da set to infinity.

region decreases as well. In fact, yB tends to zero as p1 → −∞, but always remains
strictly positive for finite pressure gradients. For larger Da the unyielded region is get-
ting smaller and in the limit Da→∞ it becomes the curve

yB = −µ1

p1
. (3.29)

For the other limit Da = 0 the yield surface position is

yB = − µ1

p1φsc
. (3.30)

Thus, we expect every yB - p1 - curve to be in between the two limits.

Problem (3.20a), (3.20b) with boundary conditions (3.16f) and (3.23b) contains the
parameters Da, φsc, p1, µ1, µ2, I0. The critical volume fraction φsc ∈ [0.5; 0.74] is
typically chosen as 0.5 (volume fraction at freezing point), 0.63 - 0.68 (volume fraction
at maximum random packing) or 0.74 (volume fraction in a perfect crystal structure)
depending on the application of interest. The channel pressure gradient value p1 ≤
0 is a control parameter. Darcy’s number Da is often given as the squared ratio of
particle diameter, i.e. Da ≈ (L/a)2, and can reach quite large values, see e.g. [22, 24].
The three parameter µ1, µ2 and I0 are material parameters determined in [2] to be
µ1 = 0.32, µ2 = 0.7 and I0 = 0.005 by fitting to experimental data. In our study we fix

φsc = 0.63, µ1 = 1, I0 = 0.005, (3.31)

and vary p1 and Da for µ1 = µ2. Notice that in this case, the term that depends on
I0 drops out. After that, we let µ2 = 1.5 and again vary p1 and Da. The reason we
do not choose the values presented in [2] is an occurring instability for µ1 < 1 in the
multiphase system as will be shown in a separate publication.
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Figure 3: The trajectories for system (3.27), onto the φs-ζ-plane with µ1 = µ2 (contin-
uous line) and µ2 = 2 (dotted line) as well as Da = 1 (left) and Da = 1000 (right).

3.1.3 Case µ1 = µ2

Keeping in mind that we always keep the parameters in (3.31) fixed, we first consider
µ2 = µ1 and let Da = 1 and p1 = −5, shown in figure 3. If the magnitude of the
pressure gradient is lowered below pmin, the yield surface position yB is at the wall,
implying there is no yielded region and the unyielded region extends through the entire
cross section of the channel. If, on the other hand, Da is raised to a large value, e.g.
Da = 1000 with our first choice for the pressure gradient, the yield surface position
becomes smaller, thus the unyielded region is thinner, as might have been expected
for larger interphase stress due to drag. The effect in the φs− ζ−plane is a seemingly
steeper ascent of the curve.

3.1.4 Case µ1 6= µ2

Next, we consider µ2 = 1.5 6= µ1 and Da = 1, p1 = −5. The profile of φ is very similar
to the µ1 = µ2 case, but it additionally contains an inflection point just before the
volume fraction reaches the critical value φsc. This is a consequence of the second
term in µc dominating the first term, i.e. µ1 for φs close to the maximum packing
fraction, provided µ2 > µ1 and I0 > 0.

Summarizing, unless the absolute pressure gradient becomes smaller than pmin, the
results suggest that there always exists a unique solution to the boundary value prob-
lem (3.20).

3.1.5 Full solutions

Figure 4 shows solutions for volume fraction, velocities and velocity difference across
the whole channel. The solid volume fraction usually is increasing towards the channel
center, where it has a non-vanishing region at maximum packing and falls back to its
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Figure 4: (left) The solid volume fraction φs, (middle) the velocities us,uf ,u and (right)
the velocity difference w obtained by using the ODE problem (3.20). The parameters
are given by (3.31), µ2 = 1, and p1 = −10. Top figures show results for Da = 1000
and bottom figures for Da = 10000.

original value due to symmetry. The velocities are increasing towards the center, with
a flattened profile around the unyielded region. We note that the fluid velocity has a dip
around the center, thus reaches its maximum point not at the middle of the channel,
but near the yield surface. The velocity difference w always has the form of a upside
down w with a flattened region in the center.

We observe that for growing Da the solution of the stationary problem develops bound-
ary layers, in particular the velocityw shows a pronounced sharp drop near the bound-
ary y = 1/2. In the following section we will make use of this property to derive an
asymptotic solution of the stationary problem in the limit Da = 1/ε → ∞. We will
expand on this analysis to derive a new drift-flux model from the time-dependent two-
phase flow model for concentrated suspensions and use it to study the formation of
unyielded or jammed regions in the flow.

3.2 Asymptotic analysis of the stationary state

For the typical physical situation we consider Da can become quite large and as we
observed in the previous paragraph, at the same time the value of w becomes very
small. This suggest an asymptotic approximation of the problem using the ansatz

Da =
1

ε
, w = εw̃. (3.32)
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We denote in this paragraph φ ≡ φs and also drop from now on the tilde. Then we
have from (3.20a)-(3.20b)

w = p1
1− φ
φ

+
1− φ
φ2

N ′(φ)∂yφ. (3.33a)

Substitution into equation for φ in (3.20b) yield the second order equation for φ

ε ∂y

(
p1

1− φ
φ

+
1− φ
φ2

N ′(φ)∂yφ

)
=
p1y +N(φ)

1− φ
+

(φsc − φ)2

φ2
. (3.33b)

The boundary conditions at the yield interface y = yB are

φ = φsc, (3.33c)

∂yφ = −ε−1/2 2

5

φsc
1− φsc

p1yB + µ1

tanh
(

φsc
1−φsc ε

−1/2yB

) +
2

5
p1, (3.33d)

and at the channel wall y = 1
2

we have, since w = 0, so that 0 = p1
1−φ
φ

+ 1−φ
φ2
N ′(φ)∂yφ.

Hence, we have the boundary condition

∂yφ = −p1
φ

N ′(φ)
at y =

1

2
. (3.33e)

Clearly, this is a singular perturbed problem with a boundary layer at y = 1/2 and
y = yB. In fact, if we assume that φ and yB have asymptotic expansions

φ(y) = φ0(y) + ε1/2φ1(y) +O(ε), yB = yB0 + ε yB1 +O(ε2). (3.34)

Then to leading order we have

0 =
p1y +N(φ0)

1− φ0

+
(φsc − φ0)

2

φ2
0

. (3.35)

When we use this in (3.33a) the boundary conditions for w are not satisfied.

3.2.1 Boundary layer problem at y = 1/2

For the boundary layer variables z = (1
2
− y)ε−1/2 and Φ(z) = φ(y) the governing

equation is

∂z

(
−ε1/2 p1

1− Φ

Φ
+

1− Φ

Φ2
N ′(Φ)∂zΦ

)
=

1
2
p1 +N(Φ)− ε1/2 z

1− Φ
+

(φsc − Φ)2

Φ2
,

(3.36a)
with boundary condition at z = 0

(1− Φ) N ′(Φ) ∂zΦ = ε1/2 p1 (1− Φ)Φ. (3.36b)
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Assume the asymptotic expansion of the inner variables can be written as

Φ(z) = Φ0(z) + ε1/2Φ1(z) +O(ε), (3.37)

so that the solution satisfies to leading order the problem

∂z

(
1− Φ0

Φ2
0

N ′(Φ0) ∂zΦ0

)
=

1
2
p1 +N(Φ0)

1− Φ0

+
(φsc − Φ0)

2

Φ2
0

(3.38a)

∂zΦ0 = 0 at z = 0+ (3.38b)

since (1 − Φ0) N ′(Φ0) 6= 0. As z → ∞ the solution approaches a constant, say
Φ0 → Φ0,∞, which satisfies

1
2
p1 +N(Φ0,∞)

1− Φ0,∞
+

(φsc − Φ0,∞)2

Φ2
0,∞

= 0. (3.39)

Hence, since for y → (1/2)− in the leading order outer problem, then

0 =
1
2
p1 +N

(
φ0(

1
2
)
)

1− φ0(
1
2
)

+

(
φsc − φ0(

1
2
)
)2

φ2
0(

1
2
)

. (3.40)

Therefore, matching yields Φ0,∞ = φ0(1/2).

It is straightforward to solve the next order problem to obtain

Φ1(z) =
A2N

′(φ0 (1/2))− p1φ0 (1/2)A1

A
3/2
1 N ′(φ0 (1/2))

exp
(
−
√
A1z

)
+
A2

A1

z, (3.41)

where

A1 =
φ2
0 (1/2)

(1− φ0 (1/2))2
+

φ2
0 (1/2)

N ′(φ0 (1/2))

1
2
p1 +N(φ0 (1/2))

(1− φ0 (1/2))3

− 2

N ′(φ0 (1/2))

φsc
φ0 (1/2)

φsc − φ0 (1/2)

1− φ0 (1/2)
, (3.42a)

A2 =
p1

N ′(φ0 (1/2))

φ2
0 (1/2)

(1− φ0 (1/2))2
, (3.42b)

thus, using (3.40)

A2

A1

= p1

[
N ′(φ0 (1/2)) +

(φsc − φ0 (1/2)) (φ2
0 (1/2)− 2φsc + φscφ0 (1/2))

φ3
0 (1/2)

]−1
.

(3.43)

Taking the y-derivative of (3.35) we get

∂yφ0 = −p1
[
N ′(φ0) +

φsc − φ0

φ3
0

(
φ2
0 − 2φsc + φ0φsc

)]−1
. (3.44)

Therefore, the linear term in the expansion of the outer solution φ0 and in the inner
solution Φ1, see (3.41), match as required.
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3.2.2 Boundary layer problem at y = yB

Similarly, we let the boundary layer variables be

ξ =
y − yB
ε1/2

, ϕ(ξ) = φ(y). (3.45)

To leading order the problem now reads

∂ξ

(
1− ϕ0

ϕ2
0

N ′(ϕ0) ∂ξϕ0

)
=
p1 yB0 +N(ϕ0)

1− ϕ0

+
(φsc − ϕ0)

2

ϕ2
0

, (3.46a)

with boundary condition at ξ = 0+

ϕ0(0) = φsc (3.46b)

and
∂ξϕ0(0) = −2

5

φsc
1− φsc

(p1 yB0 + µ1) = 0. (3.46c)

Note, if we assume that in the leading order outer equation, φ also satisfies φ = φsc
at y = yB then we must have that p1 yB0 + µ1 = 0, since N(φsc) = µ1. Hence, the
second boundary condition is also zero. This suggests ϕ0 = φsc. Matching this to the
leading order outer problem

p1 yB0 +N(φ0(yB0)

1− φ0(yB)
+

(φsc − φ0(yB))2

φ2
0(yB)

= 0. (3.47)

Hence, φ0(yB) = φsc. Solving the next order problem

∂ξξϕ1 =

(
ϕ1 −

2

5
p1 ξ

)
φsc

2

(1− φsc)2
(3.48a)

with boundary conditions

ϕ1(0) = 0, ∂ξϕ1(0) =
2

5
p1 (3.48b)

gives

ϕ1(ξ) =
2

5
p1ξ. (3.49)

This needs to be matched with the linear term in the Taylor expansion of the leading
order outer solution φ0, which can be obtained by taking the limit φ → φsc in (3.44).
That limit gives ∂yφ0(yB) = −p1/N ′(φsc) = −p1/(−5/2), that is, the coefficients are
equal, hence the terms match.

Higher order approximations, that include the perturbation of the boundary will only
come in at O(ε) and are not considered here.
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4 Drift-flux model for plane Poiseuille flow

Drift-flux models are well-known and have been proposed to study the evolution of
two-phase flows of suspensions [20, 25]. They are also used as transport equations
for a suspended phase and combined with hydrodynamic equations [7, 23]. Here we
will use matched asymptotics along the lines of the analysis of the stationary problem,
for the derivation of a new drift-flux model for the cross-section of the channel. Our
analysis shows that the inclusion of the boundary layers leads to a drift-flux model
that naturally accounts for the shear-induced flux of the suspended phase away from
the boundaries. Moreover, the constitutive law for concentrated suspensions leads to
the appearance of unyielded and yielded regions, which needs to be captured by the
new drift-flux model.

4.1 Asymptotic model

To capture the evolution towards a Bingham-type flow it will be instructive to inves-
tigate the problem for the cross-section. We assume therefore that all the variables
depend only on y and t, except for the pressure variables, which depend in addition
on x. As in our previous section, the drift-flux regime is established for large Da and
small velocity differences w, and in addition on a long time scale. Hence we let

Da =
1

ε
, w1 = εw∗1, w2 = εw∗2, t =

t∗

ε
. (4.1)

The governing equations are then, after we drop the “∗”

∂tφ− ∂y(φ (1− φ)w2) = 0 (4.2a)

−∂y [(1− φ) ∂yv1 + ε(1− φ) ∂y(φw1)] + (1− φ)∂xpf = − φ2

1− φ
w1 (4.2b)

−∂y [2ε(1− φ) ∂y(φw2)] + (1− φ)∂ypf = − φ2

1− φ
w2 (4.2c)

−∂y [φηs∂yv1 − εφηs∂y((1− φ)w1)] + φ∂xpf =
φ2

1− φ
w1 (4.2d)

∂y [2εφ ∂y((1− φ)w2)] + φs∂ypf + ∂ypc =
φ2

1− φ
w2 (4.2e)

pc = ηn(φ)
[
(∂yv1 − ε∂y((1− φ)w1))

2 + 2ε[∂y((1− φ)w2)]
2
]1/2 (4.2f)

and no-slip conditions at y = ±1/2

v1 = 0, w1 = 0, w2 = 0. (4.2g)

To leading order we obtain for the outer problem
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∂tφ− ∂y(φ(1− φ)w2) = 0 (4.3a)

−∂y[(1− φ)∂yv1] + (1− φ)∂xpf = − φ2

1− φ
w1 (4.3b)

(1− φ)∂ypf = − φ2

1− φ
w2 (4.3c)

−∂y[φηs∂yv1] + φ∂xpf + ∂xpc =
φ2

1− φ
w1 (4.3d)

φ∂ypf + ∂ypc =
φ2

1− φ
w2 (4.3e)

pc = ηn |∂yv1| , (4.3f)

and no-slip conditions at y = ±1/2

v1 = 0, w1 = 0, w2 = 0. (4.3g)

We note that for ease of notation we have dropped the indices in the variables that
denote the leading order solutions. Adding (4.3c) and (4.3e) yields ∂y(pf + pc) = 0,
hence pf + pc = f(x). Adding (4.3b) and (4.3d) yields

−∂y ([φηs + (1− φ)] ∂yv1) + ∂x(pf + pc) = 0. (4.4)

Since the left hand side is only dependent on y and the right hand side only on x, they
must be constants. Thus, defining ∂x(pf + pc) = p1, so that after integration

[φηs + (1− φ)] ∂yv1 = p1y + α. (4.5)

Adding (1− φ)∂ypc on both sides of (4.3c) yields

∂ypc =
φ2

(1− φ)2
w2. (4.6)

We have

w2 =
(1− φ)2

φ2
∂y (ηn|∂yv1|) =

(1− φ)2

φ2
∂y (ηnγ̇) . (4.7)

In addition note that from (4.5) we obtain

∂yv1 =
p1 y

φηs + 1− φ
, (4.8)

where due to symmetry we have set α = 0. Since p1 < 0 the negative of this expres-
sion will always be positive and we set

γ̇ = − p1 y

φηs + 1− φ
, (4.9)

so that

w2 = −p1
(1− φ)2

φ2
∂y

[
ηny

φηs + 1− φ

]
. (4.10)
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Hence, we obtain for the drift-flux model

∂tφ = −p1∂y

[
(1− φ)3

φ
∂y

(
y

N(φ) + 1−φ
ηn(φ)

)]
. (4.11)

We note at this point that the drift-flux model we have just derived (4.11) is a nonlinear
diffusion equation which admits constant solutions, say φ0. Linearizing about these
base states by making the ansatz φ(t, y) = φ0 + δ φ1(t, y) +O(δ2) we obtain to O(δ)

∂tφ1 = −p1 ∂y
[
M ′(φ0)

K(φ0)
φ1 −M(φ0)

K ′(φ0)

K2(φ0)
∂y (yφ1)

]
, (4.12)

where M(φ) = (1− φ)3/φ and K(φ) = N(φ) + (1− φ)/ηn(φ). Clearly, if K ′(φ0) < 0
then any perturbation of the constant bases states will be damped out and the flow
will remain constant. But we note that constant solutions will not satisfy the boundary
conditions unless the constant is zero. Hence we expect the nonlinear structure to
come from the interplay between the drift-flux equation and the no-flux condition.

We now supplement this equation with boundary conditions. At the wall, y = 1/2, it
seems plausible to use no-flux conditions, and indeed, matching to a boundary layer
there gives w2 = 0, see appendix C. We seek solutions that are symmetric with
respect to the middle axis of the channel, thus we also impose w2 = 0 at y = 0.

We expect that the flux of the solid phase will lead to an increase of φ at the centre of
the channel. At some time, in fact, the solid volume fraction will reach φsc there and
jamming will occur. After that, flow of both phases will only occur for y > yB, while for
y < yB, the solid phase will be jammed, where yB is a time dependent free boundary.
In this region, the volume fractions are constant so that the mass conservation equa-
tions give w2 = w2(t). Assuming symmetry at y = 0 then fixes w2 to be zero to all
orders in ε for 0 < y < yB. At y = yB, we therefore impose φ = φsc and w2 = 0, so
that we have two boundary conditions as required at a free boundary.

Remark We remark that in the stationary case we let ∂tφ = 0 in (4.11), and integrate
once. Using the condition that w̄2 = 0 at the channel walls, the integration constant
must be zero. Since (1− φ)3/φ will never be zero, we can divide and integrate once
more to obtain

y

N(φ) + 1−φ
ηn(φ)

= c. (4.13)

With c = −1/p1 we obtain the stationary outer equation (3.35).

21



4.2 Numerical solution of the drift-flux model

In order to understand the time evolution of the solid volume fraction in a channel, we
numerical solve (4.11) with no-flux boundary conditions

∂y

(
y

N(φ) + 1−φ
ηn(φ)

)
= 0 at y ∈

{
yB,

1

2

}
(4.14)

using a central finite difference scheme of second order with a fully implicit Euler-
Euler-2-step method. The free-boundary condition

φ = φsc at y = yB (4.15)

is used to update the position of the yield surface yB.

The time evolution is shown in figure 5 for the parameters from (3.31) with µ1 = µ2

and p1 = −10, starting from an initial uniform profile of φ(0, y) = 1
2
φsc. The profile first

changes near the channel center and wall. Next, the volume fraction increases near
the center until maximum packing is reached, which spawns an unyielded region. This
unyielded region then grows until the yield surface yB reaches the value from (3.29),
where the evolution stops as the stationary solution is reached.
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Figure 5: Time evolution of solid volume fraction using the outer drift-flux approxima-
tion (4.11).

The stationary profile obtained by the drift-flux model has the same parameters µ1, µ2, I0, φsc,Da,
but not p1. The pressure p1 must then be chosen, so that the volume of solids Vs in a
cross section of the channel is matching, i.e.

Vs(t) =

∫ 1/2

−1/2
φ(t, y) dy (4.16)
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must be the same for the stationary and the drift-flux solution. A simple way achiev-
ing this is to measure the yield surface position yB and use equation (3.29) for the
pressure of the stationary solution.

5 Conclusion and Outlook

In this study we presented the derivation of a new drift-flux model using matched
asymptotic expansions, for concentrated non-Brownian suspensions that allow for the
emergence of jammed regions. We showed how the underlying two-phase model itself
can be systematically derived through ensemble averaging along the lines of Drew et
al. [11] while incorporating recent constitutive laws by Boyer et al. [2] for the shear and
normal viscosities for concentrated suspensions.

Our study of plane Poiseuille flow using the two-phase model shows the existence of
unyielded or jammed regions. The emergence of such a region and its width depend
critically on the value of the applied pressure for given volume fraction of the solid
phase. We also demonstrated the dependence of the profile for the volume fraction φs
on the so-called “viscous number”, which can induce a qualitative change in the ap-
proach towards maximum volume fraction. Interestingly, for the typically large values
of Da the flow variable w1 = uf − us, i.e. the difference between the velocities of the
fluid phase uf and the solid phase us develops a boundary layer at the channel walls
and at the interface between unyielded and yielded regions.

Our asymptotic analysis, which we generalized for the time-dependent problem, shows
that in order for the drift-flux model to correctly capture shear-induced particle migra-
tion the boundary layer structure of the solution has to be resolved and matched to
the “outer” problem of the drift-flux model.

We then showed numerically how the flow pattern emerges in time once the boundary
layer at the channel walls are established and show the slow approach towards the
stationary solution of the two-phase model. It would be interesting to compare this
evolution to experimental results on a transition length towards the steady state in the
future.

Our analysis suggests that the boundary layer acts as a source for the particle migra-
tion towards the unyielded region. Our asymptotic analysis shows that the quantities
w1, w2, which denote the difference between the velocities uf , us and vf , vs, respec-
tively, are by O(ε) smaller than the actual flow variables. The fact that the particle
transport acts on a different asymptotic scale than the actual flow field also suggests
how to systematically develop an asymptotic theory leading to a complete coupled
flow model that includes transport and even jamming of particles. In some way such
an analysis could also rationalize some of the suspension flow models that are found
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in the literature. In fact, using the methods presented in this study should also en-
able the systematic derivation of drift-flux models for more complex flow geometries,
including for example a free boundary between the suspension and the surrounding
atmosphere, and will be part of our future work.
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A Averaging rules

We will follow the mathematical framework by Drew and Passman [9],[10] in this sec-
tion. Let f and g be arbitrary measurable functions, c a constant and 〈·〉 an average
operator obeying the so-called Reynolds’ rules

〈f + g〉 = 〈f〉+ 〈g〉 (A.1)
〈〈f〉g〉 = 〈f〉〈g〉 (A.2)
〈c〉 = c, (A.3)

the Leibniz’ rule
〈∂tf〉 = ∂t〈f〉 (A.4)

and the Gauss’ rule
〈∂if〉 = ∂i〈f〉. (A.5)

The functions should be weakly differentiable up to the required order. Admissible
operators are for example the volume average [29], [19], time averages [17], the en-
semble average [10] or a mixture of these [11]. However, note the derivatives are
defined in the sense of distributions in this work. This implies 〈∇f〉 can have a Dirac
delta property yielding additional surface integrals, whereas in classical theories the
Leibniz’ and Gauss’ rule are written explicitly with surface integrals, c.f. [10] and [29].

We further need a component indicator function

Xk(x, t) =

{
1, if (x, t) ∈ K
0, if (x, t) 6∈ K

(A.6)

with K the set of states of the k-th-phase. In our model we use the average operator
in a weighted form. There are in general two averages in use, the intrinsic or phasic
average

g ≡ 〈Xkg〉
〈Xk〉

(A.7)
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and the mass-weighted or Favré average (in its three common forms)

ĝ ≡ ρg

ρ
=
〈Xkρg〉
〈Xk〉 〈Xkρ〉

〈Xk〉

=
〈Xkρg〉
〈Xkρ〉

. (A.8)

When we have multiple indicator functions, an index states the indicator function we
used in the average, e.g. gs means we usedXs in the average. We define a fluctuation
field (cf. [10]) as

g′ := g − g (A.9)
g◦ := g − ĝ (A.10)

and due to the Reynolds rules g′ = ĝ◦ = 0 holds. This splitting together with the
Reynolds rules yields the identity

fg = fg + f ′g′ (A.11)

and similar for the Favré average

f̂ g = f̂ ĝ + f̂ ◦g◦. (A.12)

The characteristic function fulfills the so-called topological equation (cf. [10])

∂tXk + ui · ∇Xk = 0 (A.13)

with ui the interface velocity.

B Derivation of the two-phase flow model

As in [10] we introduce the component indicator function

Xk(x, t) =

{
1, if (x, t) ∈ K,
0, if (x, t) 6∈ K.

(B.1)

We further define an average operator 〈·〉 obeying the so-called Reynolds’ rules, the
Leibniz’ rule and the Gauss’ rule, which are given in the appendix A.

We further define an average operator 〈·〉 obeying the so-called Reynolds’ rules, the
Leibniz’ rule and the Gauss’ rule, which are given in the appendix A.

Multiplication with Xk, followed by usage of the average operator and its linearity
together with Gauss’ and Leibniz’ rules yield

∂t〈Xkρ〉+∇ · 〈Xkρu〉 = 〈ρ(∂tXk + ui∇ ·Xk)〉 (B.2)
+ 〈ρ(u− ui) · ∇Xk〉 (B.3)

∂t〈Xkρu〉+∇ · 〈Xkρu⊗u〉 − ∇ · 〈XkT 〉 = 〈Xkf〉 (B.4)
+〈(∂tXk + ui · ∇Xk)ρu〉 (B.5)

+〈[(u− ui) · ∇Xk]ρu〉 − 〈∇Xk · T 〉. (B.6)
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In the above we assume that the interface velocity ui has been smoothly extended for
all x. Since the indicator function satisfies the so-called topological equation (cf. [10])

∂tXk + ui · ∇Xk = 0, (B.7)

the first and the second term equations (B.2) and (B.5) drop out, respectively, and we
can write the system as

∂t〈Xkρ〉+∇ · 〈Xkρu〉 = Γk (B.8)
∂t〈Xkρu〉+∇ · 〈Xkρu⊗ u〉 (B.9)

−∇ · 〈XkT 〉 = 〈Xkf〉+M k, (B.10)

where

Γk ≡ 〈ρ(u− ui) · ∇Xk〉, (B.11)
M k ≡ 〈∇Xk · [ρ(u− ui)⊗ u− T ]〉, (B.12)

denotes the average interfacial mass source and the average interfacial momentum
source for the k-th phase, respectively.

To obtain the averaged form of the jump conditions, we note first the Dirac delta prop-
erty of the component indicator functions’ derivative

〈∇Xkf〉 = −
∫
Sk
nkfkdS, (B.13)

with Sk the interface of phase k. Using this and (B.11), (B.12) in the jump conditions
for mass (2.3) and momentum (2.4), these conditions become∑

k

Γk = 0, (B.14)∑
k

M k = 〈σfsκ∇X1〉. (B.15)

We further introduce the following averaged quantities (for notation see appendix A)

φk ≡ 〈Xk〉,
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for the volume fraction, and

ρk ≡
〈Xkρ〉
φk

,

ûk ≡
〈Xkρu〉
φkρk

,

T k ≡ −
〈XkT 〉
φk

,

TRe
k ≡ −

〈Xkρu
◦
k ⊗ u◦k〉
φk

,

fk ≡
〈Xkf〉
φk

,

Sdk ≡ −〈∇Xk · T 〉,
ukiΓk ≡ 〈∇Xk · ρ(u− ui)⊗ u〉

for the average density, velocity, stress, Reynolds stress, body forces, interfacial stress,
interfacial velocity of the kth phase, respectively.

Then, after we split the interfacial momentum source as

M k = Sdk + ukiΓk (B.16)

and the momentum flux into an average flux and a Reynolds stress

〈Xkρu⊗ u〉 = φkρkûk ⊗ ûk − φkTRe
k , (B.17)

and use the product rule (A.12) for the velocity, we obtain the following system of
phase averaged mass and momentum equations

∂t(φkρk) +∇ · (φkρkûk) = Γk, (B.18)

∂t(φkρkûk) +∇ · (φkρkûk ⊗ ûk)−∇ · (φkT k) = (B.19)

∇ · (φkTRe
k ) + fk + Sdk + ukiΓk. (B.20)

As we are interested in the laminar flow regime we neglect the Reynolds stress TRe
k

and further assume no phase change occurs at the interface between particles and
liquid, Γk = 0.

We introduce the stress tensor as the sum of pressure and deviatoric stress in the
form

T = −pI + τ , (B.21)

so that for the averaged quantities T k and

pk ≡
〈Xkp〉
φk

, (B.22)

τ k ≡ −
〈Xkτ 〉
φk

, (B.23)
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we have correspondingly
T k = −pkI + τ k. (B.24)

The interfacial pressure of phase k and the interfacial force density is defined as

p̃ik ≡
〈∇Xkpk〉
〈∇Xk〉

=
〈∇Xkpk〉
∇φk

, (B.25)

M d
k ≡ Sdk − 〈∇Xkpk〉 = 〈∇Xk · ((pk − p̃ik)I − τ )〉, (B.26)

respectively, where the second equality in (B.25) follows from an application of Gauss’
rule (A.5). We have (from (B.16))

M k = M d
k + p̃ik∇φk, (B.27)

so that we obtain for the mass and momentum balance equations

∂t(φkρk) +∇ · (φkρkûk) = 0, (B.28)
∂t(φkρkûk) +∇ · (φkρkûk ⊗ ûk) (B.29)

−∇ · (φkτ k) +∇(φkpk) = M d
k + p̃ik∇φk, (B.30)

where we have also assumed that no external body forces are applied, i.e. f = 0.

We neglect surface tension forces between the solid and the liquid phase [9]. Setting
σfs = 0 the interfacial pressure difference becomes∑

k

p̃ik∇φk = 〈σκ∇Xs〉 = 0, (B.31)

and we obtain together with the interfacial momentum jump condition (B.15) the rela-
tion

Md
s = −Md

f . (B.32)

Since we only have two phases, we know φs + φf = 1, which directly leads to ∇φs =
−∇φf . Thus, equation (B.31) yields

p̃is = p̃if .

For the case of identical liquid interfacial and bulk pressure

p̃if = pf ,

and constant densities ρk within each phase, the balance equations reduce to the
system (2.6) in the text.
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C Boundary layer analysis for the drift-flux model

For the boundary layer analysis at the wall we introduce variable

z =
1
2
− y
ε1/2

, Φ(t, z) = φs(t, y) = φ(t, y). (C.1)

Then we obtain

ε1/2∂tΦ + ∂z(Φ (1− Φ)w2) = 0 (C.2a)

−∂z [(1− Φ) ∂zv1 + ε(1− Φ) ∂z(Φw1)] + ε(1− Φ)∂xpf = −ε Φ2

1− Φ
w1 (C.2b)

ε1/2∂z [2(1− Φ) ∂z(Φw2)] + (1− Φ)∂zpf = ε1/2
Φ2

1− Φ
w2 (C.2c)

−∂z [Φηs∂zv1 − εΦηs∂z((1− Φ)w1)] + εΦ∂xpf = ε
Φ2

1− Φ
w1 (C.2d)

ε1/2∂z [2Φ ∂z((1− Φ)w2)]− Φ∂zpf − ∂zpc = ε1/2
Φ2

1− Φ
w2 (C.2e)

and

pc = ηn

[
1

ε
(∂zv1 − ε∂z((1− Φ)w1))

2 + 2[∂z((1− Φ)w2)]
2

]1/2
(C.2f)

and no-slip conditions at z = 0

v1 = 0, w1 = 0, w2 = 0. (C.2g)

The leading order system is

∂z(Φ (1− Φ)w2) = 0 (C.3a)
−∂z [(1− Φ) ∂zv1] = 0 (C.3b)

(1− Φ)∂zpf = 0 (C.3c)
−∂z [Φηs∂zv1] = 0 (C.3d)

−∂zpc = 0 (C.3e)

and
pc = ηn

[
(∂zv1)

2
]1/2 (C.3f)

and no-slip conditions at z = 0

v1 = 0, w1 = 0, w2 = 0. (C.3g)

We see immediately that w2 = 0, which provides, via matching, the boundary condi-
tion for the drift-flux model at y = 1/2 as claimed in the text.
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