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submitted: December 17, 2014

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin, Germany
E-Mail: carsten.bree@wias-berlin.de

2 Max Born Institute
Max-Born-Str. 2A
12489 Berlin

3 Leibniz Universität Hannover
Welfengarten 1
30167 Hannover, Germany
E-Mail: kretschmar@iqo.uni-hannover.de

nagy@iqo.uni-hannover.de
kurz@iqo.uni-hannover.de
morgner@iqo-uni-hannover.de
kovacev@iqo.uni-hannover.de

4 QUEST
Centre for Quantum Engineering and
Space-Time Research
Welfengarten 1
30167 Hannover, Germany

5 Laser-Laboratorium Göttingen eV
Hans-Adolf-Krebs-Weg 1
37077 Göttingen, Germany

No. 2046

Berlin 2014

2010 Mathematics Subject Classification. Primary 78A60.

2010 Physics and Astronomy Classification Scheme. 42.65.-k, 42.65.Jx,42.65.Re,52.38.Hb.

Key words and phrases. Nonlinear Optics, All-optical Kerr effect, Pulse compression.

Financial support by the Deutsche Forschungsgemeinschaft (Grant KO 3798/3-1) is gratefully acknowledged.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

We demonstrate a strong influence of the spatial beam profile on the vacuum-
propagated on-axis pulse shapes for a femtosecond filament in argon. The effects can
be minimized by transmitting the filament into the far-field by a laser-drilled pinhole setup.
Using this method, we can monitor the pulse compression dynamics along the entire lon-
gitudinal extension of the filament, including the ionization-induced plasma channel.

1 Introduction

Femtosecond filamentation provides a rich testing environment in the field of extreme nonlin-
ear optics [1, 2]. Owing to the extreme light intensities, which can approach the order of inner
atomic field strengths, a filament leads to a self-induced, transient refractive index in the prop-
agation medium, eventually leading to beam self-guiding due to a delicate balance of focusing
and defocusing nonlinearities [3]. In addition, the interplay of transient nonlinearities strongly af-
fects the on-axis temporal pulse profile [4, 5], and it has been experimentally demonstrated that
pulses undergoing filamentary propagation have the capability of temporal self-compression
into the few-cycle domain [6]. In this respect, recent controversies on the current theoretical
model of filamentation led to an increasing interest in accurately monitoring the filamentary
pulse and plasma density evolution along the filament axis [7, 8, 9, 10, 11]. This gives the
possibility to test the recent predicitions on the existence of nearly plasmaless filaments [12]
maintained by a higher-order, saturable Kerr nonlinearity. Furthermore, the dynamics of tempo-
ral self-compression is quite different in the current model compared to high-order Kerr models
[10], which strongly fostered scientific efforts to devise methods allowing for an in-situ mea-
surement of the evolution of (spatio)temporal pulse shapes in the filament. In fact, a promising
progress in this direction has recently been achieved in Ref. [13] which demonstrated a direct
reconstruction of filamentary pulses using the transient-grating cross-correlation FROG tech-
nique. However, due to the high intensities involved, most other approaches employ indirect
measuring methods, which rely on coupling the beam out of the filament, an appropriate attenu-
ation of the beam and a subsequent propagation stage towards the pulse diagnostics, typically
SPIDER [14] or second harmonic FROG [15]. In early experiments, the filament was ignited in
a pressurized gas cell, with laser pulses entering and leaving the cell through sufficiently thin
silica windows. However, nonlinear and dispersive effects inside the exit window have a quite
dramatic impact on the pulse shape [16]. Although it has been demonstrated that the pulse can
restore its original temporal shape [17], this only happens under suitable experimental condi-
tions [18]. Furthermore, due to ionization induced damage, only pulses in the lower intensity,
postionization regime [19] of the filament can be coupled out through the exit window. There-
fore, for experimental setups which employ silica windows for coupling the pulse into and out of
the gas cell, the plasma-dominated propagation regime in the vicinity of the nonlinear focus is
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not accessible for pulse diagnostics. In order to circumvent these problems, the silica window
was replaced in Ref. [11] by a so-called aerodynamic window. Alternatively, the pulse evolu-
tion was recently successfully monitored by coupling the pulse out into the vacuum through a
self-induced pinhole, and by employing a suitable translation stage to scan along the longitu-
dinal filament axis [20]. In this work, the evolution of the on-axis temporal pulse shape along
the filament axis was measured. The dynamics of temporal self-compression was observed in
good agreement with theoretical predictions. But also in these refined setups, the pulse still
undergoes a certain propagation towards the diagnostics after being outcoupled. Since filamen-
tary self-compression is based on a dynamical interplay of self-focusing and defocusing, these
nonlinear effects unfortunately lead to a spatiotemporally imhomogeneous intensity distribution
within the pulsed beam. Especially, filamentary pulse self-compression has been demonstrated
to occur only at on-axis position[21], while off-axis pulse components, i.e. the so-called photon
bath or reservoir, are unaffected by temporal self-compression. Hence, there is a resulting ne-
cessity to spatially confine the beam to the on-axis component for the reconstruction of the pulse
shape. This can be realized by using suitable apertures or by truncating the beam by employing
a laser-drilled pinhole, as done in our previous work. The latter method is advantageous since
it enables a truncation and pulse reconstruction of the filament directly within the plasma-driven
channel. However, since in most setups the beam propagates into the far field before reaching
the pulse diagnostics, the diameter of the pinhole has a crucial impact on the measured pulse
shapes in the far field.

In the current manuscript, we therefore investigate this crucial dependence of the reconstructed
pulse shapes on the selected on-axis portion of the beam. We demonstrate that this is a con-
sequence of the strongly inhomogeneous spatiotemporal intensity distribution. We furthermore
show that a sufficiently small pinhole or aperture maps the filamentary on-axis pulse shape at
the pinhole nearly undisturbed into the far field. This fact was exploited in our recent work [20],
and here we provide additional theoretical investigation of the impact of these effects.

2 Theoretical models of near and far-field evolution

Our numerical model of filamentary propagation is based on the forward Maxwell equation with
eliminated THG term [22]. In the frequency domain, it reads as

∂zÊ(r, z, ω) =
i

2k(ω)
∇2
⊥Ê(r, z, ω) + i(k(ω)− ω

vg
)Ê(r, z, ω) + iµ0ω

2

2k(ω)

(
P̂NL + i

Ĵ

ω

)
. (1)

Here, Ê(r, z, ω) is the positive frequency part of the Fourier transform of the real electric field
E (analytic signal), and it is assumed that a cylindrical symmetry of the beam around the optical
axis is maintained during propagation. The parameter r denotes the transverse radial coordinate
in the diffraction plane, and z denotes the longitudinal distance along the filament axis. The gas
dispersion is modelled by the frequency dependence of the wave number k(ω) according to
Ref. [23]. The simulations were performed in a reference frame comoving with the group velocity
vg of the pulse. The nonlinear polarization density PNL reads in the time domain as

PNL =
3

8
ε0χ

(3)|E(r, z, t)|2E(r, z, t). (2)

The charge current density J due to self-induced ionization effects is governed by the Drude
model for a homogeneous, uncorrelated plasma of density ρ(r, z, t). The latter is governed by
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the rate equation

∂tρ(r, z, t) = w(I)(ρ0 − ρ) +
σ(ω0)

Ip
ρI. (3)

The ionization ratew(I) depending on the light intensity I is modelled according to Ref. [24] and
accurately describes strong field ionization effects in the multiphoton, tunneling and intermediate
regime. Here, ρ0 = 2.7 × 1025m−3 denotes the neutral gas density, σ(ω0) = 1 × 10−19cm2

denotes the cross section for collisional ionization in the vicinity of the carrier frequency ω0, and
Ip = 15.76eV denotes the ionization potential of argon. To analyze the propagation into the
far field after the pulse is coupled out of the filament, we subsequently solve the Fraunhofer
diffraction integral. For a radially symmetric electric field distribution, it is given by the Fourier-
Hankel transform

Êff(k⊥, ω) = 2π

d/2ˆ

0

r′dr′Ênf(r
′, ω, z)J0(k⊥r

′) (4)

Here Eff is the electric field distribution in the transverse detector plane in the far field, while Enf

is the field distribution in the near field, directly within the filament. In the far field, the transverse
spatial frequency k⊥ is related to the diffraction angle according to k⊥ = k sin θ ≈ kθ, and k =
2π/λ is the wavenumber. The integration is performed over the radius of the pinhole, whose
diameter is given by d. From Eq. (4), the far field spatio-spectral distribution in the detection
plane can then be obtained from θ ≈ r/zvac, where r is the transverse radius in the far field
diffraction plane. Given the applicability of the far field approximation, the distance zvac between
the detector and the pinhole only determines the radial scale of the diffraction pattern in the
detection plane. In our experiment, the pinhole diameter d is of the order of some 100 microns,
and zvac = 1.75m. For a center wavelength of λ = 800nm, this indeed ensures the validity of
the far field approximation, since d2/(λzvac)� 1 for the parameters employed. The transverse
radius in the diffraction plane of the filament (in the near field) is denoted r′ and z denotes
the longitudinal position along the filament axis, i.e., according to Ref. [20], the position of the
pinhole relative to the position of the curved mirror which focuses the laser beam into the gas
cell.

3 Numerical results

We solve Eq. (1) for a Gaussian input beam with a beamwaist of w0 = 0.9 cm, a focal length
of f = 200 cm, a pulse duration of tp = 45 fs and a carrier frequency of ν = 385THz. The
input pulse energy was adapted to the experimental conditions of 0.9mJ [20]. Since clipping
the input profile with a diaphragm avoids beam instabilities and multifilamentation, we further
modulated the input spatial profile with an N = 16 supergaussian to represent a diaphragm
of 0.7mm diameter. With these initial conditions, the evolution of the temporal on-axis profile
in the filament is as shown in Fig. 1a. The pulse undergoes the well-known pulse splitting and
focusing-defocusing dynamics in the vicinity of the nonlinear focus, which in the postionization
regime leads to a refocused, sub-5 fs FWHM few-cycle structure in the trailing part and a small
leading sub-pulse. The generated self-compressed pulse propagates stable for approximately
20 cm. Figure 1b shows the corresponding evolution if the pulses are allowed to propagate into
the far field, without any appropriate selection of the filament core using a pinhole. Since here
the unclipped beam propagates into the far field, d =∞ has been applied in Eq. (4).
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Figure 1: (color online) a Evolution of near field temporal intensity profile in the filament. b Cor-
responding evolution after propagation into the far field. c-f Spatiotemporal intensity distribution
in the near field at z = 190, 200, 210 and 220 cm. Dark blue solid lines correspond to instanta-
neous spatial RMS radius of the beam.

The on-axis temporal profiles in the detection plane are obtained by letting k⊥ = 0 and perform-
ing the Fourier transform back into the time domain. As Fig. 1b reveals, vacuum propagation
towards the detector strongly affects the measured pulse profiles. In fact, no trace of pulse self-
compression is left, and considerably longer pulses are measured at the detector. To analyze
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Figure 2: a Near field spatio-spectral intensity distribution at z = 200 cm. b Corresponding far
field spectrum (Fourier-Hankel transform) after transmission through a d = 150µm pinhole c
Correspondingly, for a d = 500µm pinhole d Near field on-axis spectrum (black solid line),
far field on-axis spectrum for d = 150µm (red dashed line), far field on-axis spectrum for
d = 500µm (blue dashed line). e-h Same as a-d, but for the filament pulse at z = 220 cm.

the origins of this effect, in Figs. 1c-f, we elucidate the involved spatiotemporal structure of the
filament beam at z = 190, 200, 210 and 220 cm propagation distance. As the dark blue lines
reveal, the RMS radius of the beam strongly varies with temporal delay. If these pulses were
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coupled out of the filament without appropriate selection of an on-axis portion using a pinhole or
diaphragm, subsequent vacuum propagation would strongly affect the on-axis temporal pulse
shape, even in the absence of gas dispersion. This is a direct consequence of the fact that each
temporal slice of the beam has its individual diffraction length according to zR(t) = πw2

0(t)/λ,
where w0(t) is the beamwaist of the respective temporal slice at delay t, cf. Figs. 1c-f. The
delay-dependent diffraction length, in addition with the aquired spatial phase curvature which
may also strongly vary with delay, have a strong impact on the vacuum propagation into the
far field. However, the impact of vacuum propagation on the pulse shapes can be considerably
reduced by transmitting the beam through a pinhole before it propagates into the farfield, as will
be demonstrated in the following. The inhomogeneity of the spatiotemporal intensity distribution,
which strongly affects the measured pulse shapes in the far field, is also reflected in the spectral
domain. This is shown in Fig. 2a, which depicts the spatio-spectral intensity distribution within
the filament at z = 200 cm. However, for a sufficiently small pinhole with d = 150µm for cou-
pling the beam out into the vacuum, the on-axis spectrum can be transmitted into the far field
nearly undisturbed, as revealed by Fig. 2b, which shows the far field spectrum in the (k⊥, ω)
domain. Besides the characteristic sidelobes generated at higher spatial frequencies due to
transmission through the pinhole, we observe that the on-axis components close to k⊥ = 0
reproduce the on-axis spatio-spectral distribution directly in the filament. In contrast, the cor-
respondence of near and far-field spectra is strongly deteriorated for a larger pinhole diameter
of d = 500µm as depicted in Fig. 2c. This also becomes clear by comparing on-axis spec-
tra in the filament (black solid line), and in the far field, cf. Fig. 2d. While the far-field on-axis
spectrum is a nearly unchanged reproduction of the on-axis filament spectrum for the smaller
pinhole (green dashed line), the far field on-axis spectrum corresponding to the larger pinhole
strongly deviates from the near field on-axis spectrum. Especially, the far field spectrum has a
pronounced mininum at the carrier frequency of ν = 385THz, which is related to the fact that
frequency components close to the carrier frequency exhibit a stronger transverse localization
(cf. Fig. 2a) and therefore diffract more rapidly. Similarly, Figs. 2e-h depict near and far-field
spectra for the filament pulse coupled out at z = 220 cm. Again, for the smaller pinhole diam-
eter, the on-axis spectrum is reproduced in the far field with good accuracy, while for the larger
pinhole diameter, the on-axis far-field spectrum strongly deviates. In the latter case, we also find
a significant reduction of the on-axis spectral bandwidth at the detector for the large pinhole
diameter. Therefore, we find that the spectral shape in the far field is strongly sensitive to the
employed pinhole diameter, leading to an equally dramatic effect in the time domain.

Evaluating Eq. (4) for k⊥ = 0 and Fourier transforming back into the time domain, we obtain
the on-axis temporal pulse shape in the far field. For a pinhole diameter of d = 500µm, the
evolution of the on-axis temporal intensity profile detected in the far field is depicted in Fig. 3a. It
corresponds to the near-field evolution shown in Fig. 1a. The pulses in the detection plane are
considerably longer than the near field pulse profiles, and it is obvious that a pinhole diameter
of 500µm is still too large to reveal the actual self-compression dynamics and the generation
of few-cycle pulses. Therefore, the pinhole diameter has to be further decreased in order to
truncate the photon bath and select the filament core only. Indeed, for d = 150µm, (cf. Fig. 3b),
the near field pulse evolution is reproduced in the far field, and reveals the characteristic pulse
splitting and the refocusing of a trailing portion of the pulse which is further compressed into
the few-cycle regime. For d = 150µm, the temporal profiles of the near field pulses in the
postionization regime z > 200 cm appear only slightly longer after transmission into the far-
field and maintain their few-cycle characteristics, as shown by the light dashed line in Fig. 3c,
which shows the FWHM duration versus propagation distances of the measured and simulated
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Figure 3: Evolution of temporal intensity profile in the far field for a d = 500µm pinhole and for
b d = 150µm pinhole. c Evolution of FWHM pulse duration versus propagation distance for
the near-field (dark solid line), and the far-field for a d = ∞ (dark dashed line), d = 500µm
(light solid line), and d = 150µm (light dashed line). Crosses indicate experimentally measured
pulse durations. d Energy transmitted through pinhole versus z. Dashed line: pinhole diameter
d = 500µm, Solid line: d = 150µm.

pulses. The shortest attainable pulse duration in the near-field is tp ≈ 4 fs. For the small pinhole
d = 150µm, this value only slightly increases to 5 fs, while both for the d = 500µm and the
d = ∞ pinholes, the obtained pulse durations are no shorter than 20 fs. Since our results
clearly show that filamentary self-compression is only effective at an on-axis position of the
filament, it is subject to a trade-off between the pulse duration in the far field and the conversion
efficiency. This is illustrated in Fig. 3d, which shows the transmitted energy versus propagation
distance in the filament for two different pinhole diameters. For the larger pinhole diameter of
d = 500µm, the shortest pulse duration of τ ≈ 30 fs is obtained at z = 203.2 cm. In this case,
the energy transmitted through the pinhole is 0.35mJ, i.e. a conversion efficiency of 38%. A
considerably shorter pulse with a duration of 4 fs can be extracted at z = 219 cm for the smaller
pinhole with d = 150µm. However, in this case the conversion efficiency drops down to 3.8%,
with a transmitted energy of 0.035mJ.

4 Experimental results

In order to further demonstrate the advantages of truncating the filament through pinholes, we
also present additional experimental evidence obtained with the experimenal setup of Ref. [20].
Here, a 35 fs, 0.9 mJ beam is focused (f=2m) into a semi-infinite gas-cell to ignite a filament in
1 bar of argon. The high-intensity pulse propagates until its nonlinear propagation is stopped by
a differential pumping stage with two laser-drilled pinholes. Subsequently, the pulse propagates
under vacuum conditions for 1.75 m into the far-field, where it is analyzed by an all-vacuum SHG-
FROG setup [15]. The measured pulse durations along z is indicated by the crosses in Fig. 3c.
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The evolution of the temporal profile along the filament axis is shown in Fig. 4 and reveals
several features also found in the simulations. First, the characteristic pulse splitting dynamics
can be clearly observed. Second, the trailing pulse at positive delays is further compressed with
increasing propagation distance, cf. the crosses in Fig. 3c, which shows the FWHM duration
versus propagation distance of the measured and simulated pulses.
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Figure 4: Experimental data for the evolution of the filamentary pulse retrieved with the setup of
Ref. [20]

Third, self-steepening continuously shifts the intense trailing pulse towards positive delay, while
the weak leading pulse accelerates towards negative delays. This is a consequence of the spec-
tral redshift suffered by the leading pulse and the corresponding increase of its group velocity.
Note that a crucial technical detail of our measurement was neglected in our theoretical dis-
cussion. In the experiment, two laser-drilled pinholes were employed, separated by a distance
of approximately 1cm. While the first pinhole had a rather large diameter of d = 500µm due
to additional laser ablation induced by the argon plasma, the gas pressure at the second pin-
hole releasing the pulses into the vacuum was significantly reduced, leading to an absence of
argon plasma and a considerably smaller pinhole size of d = 150µm, as already confirmed
in [20]. Here, using our propagation model we checked that the first, large pinhole has a minor
impact on the pulse evolution, and our theoretical considerations confirmed that the small size
of the second pinhole was crucial for an accurate reconstruction of on-axis pulse shapes in the
filament. With respect to the above discussion, releasing the beam into the vacuum through a
sequence of two pinholes therefore guarantees an undistorted reconstruction of on-axis pulse
shapes in the filament and enables us to accurately monitor the process of filamentary self-
compression into the few-cycle regime. Indeed, our measurements allowed the reconstruction
of 5 fs pulses, as short as two optical cycles at the driving frequency of 385THz.

5 Conclusions

In summary, we have shown that even vacuum propagation of filamentary pulses towards the
detector is prone to completely obscure the on-axis near field evolution in the filament, leaving
no signature of pulse self-compression or the generation of few-cycle pulses. This may explain
why many groups were unable to report evidence of real self-compression and instead resorted
to dispersion management techniques for pulse recompression [25]. Furthermore, it was theo-
retically demonstrated that the setup of [20], which involves differential pumping and extracting
the filament pulse into the vacuum through a small self-induced pinhole, is in principle suitable
for reconstructing on-axis pulse profiles directly in the filament.
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