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Abstract

The optimal stopping problem arising in the pricing of American options can be tackled
by the so called dual martingale approach. In this approach, a dual problem is formulated
over the space of martingales. A feasible solution of the dual problem yields an upper
bound for the solution of the original primal problem. In practice, the optimization is per-
formed over a finite-dimensional subspace of martingales. A sample of paths of the under-
lying stochastic process is produced by a Monte-Carlo simulation, and the expectation is
replaced by the empirical mean. As a rule the resulting optimization problem, which can be
written as a linear program, yields a martingale for which the obtained estimator may have
a tight upward bias, but its variance can still be large. In order to decrease this variance, a
penalizing term can be added to the objective function of the path-wise optimization prob-
lem. In this paper, we provide a rigorous analysis of the optimization problems obtained
by adding different penalty functions. In particular, a convergence analysis implies that
it is better to minimize the empirical maximum instead of the empirical mean. Numerical
simulations confirm the variance reduction effect of the new approach.

1 Introduction

In this paper we consider the following optimal stopping problem. Let Ft be a filtration, and
let Zt, t = 0, . . . , T be a discrete-time adapted process with bounded variance. We wish to
maximize

Y ∗ = max
τ∈T

E[Zτ ], (1)

where T is the set of stopping times on {0, . . . , T}. Desai et al. [3] introduced a pathwise
optimization method for solving this kind of optimal stopping problems. It is based on the dual
martingale approach, which was developed in [7] and [4], see also [2] which in fact contained
the dual approach in germ. The dual problem to the original optimal stopping problem can be
written as an optimization problem over the space of martingalesM with zero initial value. More
precisely,

Y ∗ = inf
M

E max
t=0,...,T

(Zt −Mt) = max
t=0,...,T

(Zt −M∗
t ) a.s. (2)

where M∗ is the martingale part of the Doob-Meyer decomposition of the Snell envelope of Zt,
and the optimal values of the primal and dual problem coincide.

As the optimal stopping problem, the dual problem is infinite-dimensional. In order to reduce it
to a finite-dimensional one, it was proposed in [3] to optimize over a finite-dimensional section
of the space of martingales. In other words, a finite number of basis martingales is chosen
and the optimization is performed over all linear combinations of these basis functions, the
coefficients playing the role of the decision variables. Since the optimal martingale M∗ is as
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a rule not contained in the linear span of the chosen basis functions, the procedure yields
a suboptimal solution leading to an upper bound of the optimal value of the original optimal
stopping problem. Another practical problem in solving dual problem (2) is the presence of the
expectation operator. This can be circumvented by replacing the expectation by the empirical
mean over a sample of N paths [3]. As a consequence, we obtain the optimization problem

inf
α

1

N

N∑
n=1

max
t=0,...,T

(Z
(n)
t −

K∑
k=1

αkM
k,(n)
t ). (3)

Here α = (α1, . . . , αK)T is the vector of decision variables, Z(n)
t are the sample paths of

the process Zt, and Mk,(n)
t are the paths of the basis martingales. The index k = 1, . . . , K

denotes the index of the basis martingale, and n = 1, . . . , N denotes the index of the path. If
the minimum in (3) is attained in, say α∗, then the estimate

1

Ñ

Ñ∑
ñ=1

max
t=0,...,T

(
Z

(ñ)
t −

K∑
k=1

αkM
k,(ñ)
t

)

based on an independent new simulation gives an upper biased estimate of (2).

As mentioned before, the martingale part M∗ of the Doob-Meyer decomposition of the Snell
envelope of Zt yields an optimal solution to (2). While this solution may not be unique, it has
the distinguished property that the random variable Z(M∗) = maxt=0,...,T (Zt − M∗

t ) has
variance zero (see [1]). Martingales having this property have been named surely optimal and
have been characterized in [10]. When seeking a solution to the dual problem (2), one is not only
interested in a martingale M that gives a tight upper bound on the optimal value of the optimal
stopping problem, but also in a martingale that is close to a surely optimal one, in the sense
that the random variable Z(M) = maxt=0,...,T (Zt − Mt) has a low variance. This second
condition, however, is usually not met by the optimal solutions of the approximated problem (3),
as evidenced in [10].

To counter this problem, Belomestny proposed in [1] to add the empirical standard deviation as
a penalty term to the objective in (3), leading to the optimization problem

inf
α

 1

N

N∑
n=1

Z(n)(M(α)) + λ

√√√√ 1

N − 1

N∑
n=1

(
Z(n)(M(α))− 1

N

N∑
l=1

Z(l)(M(α))

)2
 ,

(4)
whereM(α) =

∑K
j=1 αjM

j andZ(n)(M(α)) = maxt=0,...,T (Z
(n)
t −

∑K
j=1 αjM

j,(n)
t ). Here

λ ≥ 0 is a scalar determining the weight of the penalty term. However, while problem (3) can
be cast as a linear program, problem (4) may fail to be convex if λ is too large, and thus difficult
to solve to a global optimum.

The subject of this paper is to analyze the effect of the penalty term in augmented problems
of type (4). As a penalty we assume a general convex homogeneous function F of degree 1
of the vector Ẑ(M(α)) = (Ẑ(n)(M(α)))n=1,...,N , where Ẑ(n)(M(α)) = Z(n)(M(α)) −
1
N

∑N
l=1 Z

(l)(M(α)). Note that the vector Ẑ(M(α)) resides in a subspace of codimension
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1, and hence F is effectively a function from RN−1 to R. We will, however, consider convex
homogeneous functions F : RN → R and have in mind that only the values of F on the
(N − 1)-dimensional subspace are relevant. As F should penalize deviations of the vector
Ẑ(M(α)) from zero, we shall assume that F (x) > 0 for all nonzero vectors in this subspace.
The problem considered in this paper is hence

inf
α

(
1

N

N∑
k=1

Z(k)(M(α)) + λF (Ẑ(M(α)))

)
. (5)

In problem (4) we therefore have F (x1, . . . , xN) =
√

1
N−1

∑N
n=1 x

2
n.

We will construct a convex conic relaxation to this augmented problem and, for given λ > 0,
provide a sufficient condition on the function F such that this relaxation is exact, i.e., yields the
same optimal objective value as the original problem (5).

The first aim of the paper is to show that there is a largest function F satisfying this condition,
namely the function given by RN 3 x 7→ λ−1 maxn=1,...,N xn. The corresponding augmented
optimization problem

inf
α

max
n=1,...,N

Z(n)(M(α)) (6)

can also be cast as a linear program. Next we analyze the convergence of (6) to Y ∗ asN,K →
∞.

2 Preliminaries

In this section we introduce some notions from convex analysis and conic optimization. The dual
of the real vector space Rn will be denoted by Rn, and the scalar product between y ∈ Rn and
x ∈ Rn will be denoted by 〈y, x〉. Let 1n,1n = (1, . . . , 1)T be the all-ones vector in Rn and
in the dual space Rn.

2.1 Conic programs

In this subsection we provide some basic material on convex conic programming. This is a
generalization of linear programming where the ordinary inequality constraints are replaced by
a more general notion of inequality defined by a convex cone.

Definition 1 A closed convex cone K ⊂ Rn, containing no lines, and with nonempty interior,
is called regular.

A conic program over a regular convex cone K ⊂ Rn is an optimization problem of the form

inf
x∈K
〈c, x〉 : Ax = b, (7)
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where c ∈ Rn is a vector defining the linear cost function of the problem,A is anm×n matrix,
and b ∈ Rm. Here A, b define the linear constraints of the problem.

The availability of algorithms for solving a conic program depends on the nature of the cone K .
For example, if K is the positive orthant Rn

+, then (7) can be written as a linear program and
easily solved. Efficient solution algorithms are also available if K is a second order cone or a
cone of positive semi-definite matrices, or a direct product of such cones. Conic programs with
second order cone constraints are called conic quadratic programs, programs with linear matrix
inequality constraints semi-definite programs.

2.2 Exposed and extreme points

In this subsection we introduce the notions of exposed and extreme points of a closed convex
set and consider the relations between them.

Definition 2 [9, p.162] Let C ⊂ Rn be a closed convex set. A point x ∈ C is called extreme
point if there does not exist an open line segment L ⊂ C such that x ∈ L.

Lemma 3 [9, Corollary 18.5.1] A closed bounded convex set is the convex hull of its extreme
points.

Definition 4 [9, pp.162–163] Let C ⊂ Rn be a closed convex set. A point x ∈ C is called
exposed point if there exists a supporting affine hyperplane H ⊂ Rn to C such that H ∩ C =
{x}.

Lemma 5 [9, Theorem 18.6] Let C ⊂ Rn be a closed convex set. Then the set of exposed
points of C is dense in the set of extreme points of C .

Corollary 6 Let C ⊂ Rn be a bounded closed convex set and E its set of exposed points.
Then C is the convex hull of the closure of E.

Proof. The corollary follows immediately from the two lemmas above.

2.3 Convex functions and subgradients

In this subsection we introduce the notion of a subgradient.

Definition 7 [9, pp.214–215] Let D ⊂ Rn be a convex set and f : D → R a convex function.
A subgradient of f at x ∈ D is a dual vector y ∈ Rn such that f(z) ≥ f(x) + 〈y, z − x〉 for
all z ∈ D. The set of all subgradients at x ∈ D is called subdifferential at x ∈ D and denoted
by ∂f(x).

The subdifferential is a closed convex set [9, p.215]. If f is differentiable at x, then the gradient
f ′(x) is the only subgradient [9, p.216].
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Lemma 8 [5, p.261] Let D ⊂ Rn be a convex domain, F : D → R a convex function, and
h : D → R a convex C2 function. For x ∈ D and λ ≥ 0 we then have ∂(λF + h)(x) =
λ∂F (x) + h′(x).

Lemma 9 [9, Theorem 23.9] Let D ⊂ Rm be a convex domain, and H : Rm → Rn an affine
map given by H(x) = A(x) + b, with A, b the linear part of H and the shift, respectively. Let
further F : H[D] → R be a convex function. Then for x ∈ D we have ∂(F ◦ H)(x) =
A∗[∂F (Ax+ b)], where A∗ is the adjoint map of A.

2.4 Convex sets and polars

In this subsection we introduce the notion of a polar and study its properties.

Definition 10 [9, p.125] Let C ⊂ Rn be a closed convex set containing the origin of Rn. The
set Co = {y ∈ Rn | 〈y, x〉 ≤ 1 ∀ x ∈ C} is called the polar of the set C .

The set Co is also closed, convex, and contains the origin [9, p.125]. It is bounded if and only
if the origin of Rn is contained in the interior of C [9, Corollary 14.5.1]. Moreover, the polar of
Co is again C [9, Theorem 14.5]. If C,C ′ are two closed convex sets containing the origin and
satisfying C ⊂ C ′, then their polars satisfy (C ′)o ⊂ Co [9, p.125].

Let now L ⊂ Rn be a linear subspace, and let L⊥ ⊂ Rn be the orthogonal subspace. Then
the dual space L∗ of L can be identified with the quotient Rn/L

⊥. Let Π : Rn → Rn/L
⊥ be

the corresponding projection. Let C ⊂ Rn be a closed convex set containing the origin. Then
the intersection C ∩ L ⊂ L is a closed convex set in L, containing the origin of L. The next
result gives a convenient description of the polar of C ∩L as a subset of L in terms of the polar
Co.

Lemma 11 Assume the notations of the previous paragraph. Then the polar (C ∩ L)o is given
by the closure of the projection Π[Co].

Proof. Let y ∈ Co be an arbitrary point in the polar of C and Π(y) = y + L⊥ its projection on
the quotient Rn/L

⊥. Then we have 〈y, x〉 ≤ 1 for all x ∈ C . In particular, we have 〈y, x〉 ≤ 1
for all x ∈ C ∩ L. Hence Π(y) ∈ (C ∩ L)o. It follows that Π[Co] ⊂ (C ∩ L)o. However,
(C ∩ L)o is closed, and hence the closure of Π[Co] is also a subset of (C ∩ L)o.

Let now y ∈ Rn such that Π(y) = y+L⊥ is not contained in the closure of Π[Co]. Then there
exists a hyperplaneH ⊂ Rn/L

⊥ which separates Π(y) from Π[Co], and such that Π(y) 6∈ H .
Then the hyperplane Π−1[H] ⊂ Rn separates y from Co, and y 6∈ Π−1[H]. Note also that
y 6= 0. It follows that there exists a vector z ∈ L such that 〈y, z〉 > 1 and 〈w, z〉 ≤ 1 for all
w ∈ Co. Hence z ∈ C ∩ L. But then y + L⊥ 6∈ (C ∩ L)o. This proves the converse inclusion
and completes the proof.
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3 An auxiliary result

Let L ⊂ Rn be the linear subspace of vectors x defined by the equation 〈1n, x〉 = 0, and let
Π be the orthogonal projection onto L, Πx = x − 1

n
〈1n, x〉 · 1n. Let further Π∗ : Rn → Rn

be the adjoint of Π, Π∗w = w − 1
n
〈w,1n〉 · 1n. In this section we prove the following result.

Theorem 12 Let F : Rn → R be a convex homogeneous function of degree 1, and set
F1 = {x ∈ Rn |F (x) ≤ 1}. Suppose that for every nonzero vector x ∈ L we haveF (x) > 0.
Let λ > 0 and let g : Rn → R be the function defined by g(x) = 1

n
〈1n, x〉+ λF (Πx). Then

the following conditions are equivalent.

(i) For every x ∈ Rn there exists a subgradient y ∈ ∂g(x) whose elements are all nonneg-
ative.

(ii) The set 1
n
1n + λΠ∗[F o

1 ] is contained in the nonnegative orthant.

We shall prove the two directions of the equivalence relation separately.

3.1 (ii)⇒ (i)

First we consider condition (i) the case Πx = 0. We shall show that the dual vector y = 1
n
1n ≥

0 is a subgradient of g at x. We have F (Πx) = 0 and hence g(x) = 1
n
〈1n, x〉. For every

z ∈ Rn we have F (Πz) ≥ 0 and hence g(z) ≥ 1
n
〈1n, z〉 = g(x) + 〈 1

n
1n, z − x〉. This

proves 1
n
1n ∈ ∂g(x).

Now let x ∈ Rn be such that L 3 Πx 6= 0. Then F (Πx) > 0, and we can define x̃ =
Πx

F (Πx)
∈ L. By definition, we have F (x̃) = 1. It follows that x̃ is on the boundary of the set F1.

Hence there exists an element w ∈ F o
1 such that 〈w̃, x〉 = 1, and hence 〈w,Πx〉 = F (Πx).

By assumption we have y = 1
n
1n + λΠ∗w ≥ 0. We shall show that y ∈ ∂g(x).

Indeed, let z ∈ Rn. Then we have g(z) − g(x) − 〈y, z − x〉 = λ(F (Πz) − F (Πx) −
〈Π∗w, z − x〉) = λ(F (Πz) − 〈w,Πz〉). If Πz = 0, then F (Πz) − 〈w,Πz〉 = 0. Let us
assume that Πz 6= 0. Then F (Πz) > 0, and we may define z̃ = Πz

F (Πz)
. We get F (z̃) = 1,

and z̃ ∈ F1. It follows that 〈w, z̃〉 ≤ 1, because w ∈ F o
1 . But then 〈w,Πz〉 ≤ F (Πz), which

proves g(z)− g(x)− 〈y, z − x〉 ≥ 0. Hence y ∈ ∂g(x), which yields (i).

3.2 (i)⇒ (ii)

First we shall prove an auxiliary result.

Lemma 13 Let F̃1 = F1 ∩ L. Then the polar F̃ o
1 of F̃1 in L is given by the projection Π∗[F o

1 ].

Proof. By Lemma 11 the polar F̃ o
1 is given by the closure of Π∗[F o

1 ]. It remains to show that
Π∗[F o

1 ] is closed. We have F (0) = 0, and hence F1 contains a ball around the origin with
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positive radius r. It follows that the polar F o
1 is contained in a ball with radius r−1, and is hence

compact. But projections of compact sets are compact, and in particular closed.

We now come to the implication (i)⇒ (ii). Assume (i) and consider first an exposed point w ∈
F̃ o

1 . Our aim is to show that 1
n
1n + λw ≥ 0. By definition, there exists x ∈ F̃1 such that

〈w, x〉 = 1, 〈v, x〉 ≤ 1 for all v ∈ F̃ o
1 , and {v ∈ F̃ o

1 | 〈v, x〉 = 1} = {w}. Note that x 6= 0,
hence F (x) > 0, and x̃ = x

F (x)
∈ F̃1. Therefore 〈w, x̃〉 ≤ 1 and 1 = 〈w, x〉 ≤ F (x). It

follows that F (x) = 1.

Let y ≥ 0 be a subgradient of g at x. By Lemmas 8 and 9 there exists v ∈ ∂F (x) such
that y = 1

n
1n + λΠ∗v. By definition, for all z we have F (z) − F (x) − 〈v, z − x〉 ≥ 0.

Inserting z = αx for α ≥ 0, we obtain (α− 1)F (x) ≥ (α− 1)〈v, x〉. Since α− 1 assumes
positive as well as negative values for α ≥ 0, it follows that 1 = F (x) = 〈v, x〉 = 〈v,Πx〉 =
〈Π∗v, x〉. Thus we get for all z that F (z) − 〈v, z〉 ≥ 0. In particular, for z ∈ F̃1 we have
1 ≥ F (z) ≥ 〈v, z〉 = 〈Π∗v, z〉, and Π∗v ∈ F̃ o

1 . From 〈Π∗v, x〉 = 1 it follows that Π∗v = w,
and y = 1

n
1n + λw ≥ 0.

Thus 1
n
1n +λw ≥ 0 for all exposed points w ∈ F̃ o

1 . By Corollary 6 we get that 1
n
1n +λw ≥ 0

for all w ∈ F̃ o
1 = Π∗[F o

1 ]. This shows (ii).

4 Penalties in the optimal stopping problem

In this section we investigate under which conditions problem (5) can be written as a conic
program (7). We shall identify the vector space RN with its dual by means of the standard
Euclidean scalar product. Then the orthogonal projection operator Π onto the subspace L =
{x ∈ RN | 〈1N , x〉 = 0} can be identified with its adjoint and is given by the matrix Π =
I − 1

N
1N1

T
N .

First we relax (5) to the following problem:

inf
α,c

1

N

N∑
n=1

cn + λF (ĉ) : cn ≥ Z
(n)
t −

K∑
j=1

αjM
j,(n)
t , n = 1, . . . , N, t = 0, . . . , T, (8)

where c = (c1, . . . , cN)T is a vector of auxiliary variables and ĉ = (ĉ1, . . . , ĉN)T with ĉn =
cn − 1

N

∑N
l=1 cl.

Lemma 14 The optimal value of problem (8) is not greater than the optimal value of (5).

Proof. Let α ∈ Rm be arbitrary, and set ck = Z(k)(M(α)). Then the pair (α, c) is a feasible
point for problem (8). Moreover, we have ĉk = Ẑ(k)(M(α)), and hence (α, c) gives the same
value to the cost function in (8) as α gives to the cost function in (5). This proves our claim.

Define the set K ⊂ RN+1 by K = {(a, v) ∈ R× RN | a ≥ F (v)}.

Lemma 15 The set K is a regular convex cone if and only if for all v 6= 0 we have F (v) +
F (−v) > 0.
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Proof. From the homogeneity property of F it follows that K is a cone, and from convexity of
F that K is convex. Clearly K is also closed. The point (1, 0) is contained in the interior of K .
Now K contains a line if and only if F (v) + F (−v) ≤ 0 for some v 6= 0. This completes the
proof.

Relaxation (8) can be rewritten as

inf
α,c,a

1

N

N∑
n=1

cn+λa : (a, ĉ) ∈ K, cn ≥ Z
(n)
t +

K∑
j=1

αjM
j,(n)
t , n = 1, . . . , N, t = 0, . . . , T,

(9)
where a is an additional scalar auxiliary variable. Indeed, since λ ≥ 0, it is for fixed α, c optimal
to set a = F (ĉ), which recovers the formulation (8).

Problem (9) has a linear objective function and involves the conic constraint (a, ĉ) ∈ K as
well as N · (T + 1) linear inequalities in quantities which are linear in the decision variables.
Therefore, if the condition in Lemma 15 is fulfilled, problem (9) can be written as a conic program
over the regular convex cone K × RN(T+1)

+ . If K is polyhedral, it can be written as a linear
program.

Lemma 16 Suppose the function g : RN → R defined by g(c) = 1
N

∑N
n=1 cn + λF (c −

( 1
N

∑N
l=1 cl)1N) is such that for every c ∈ RN there exists a subgradient y ∈ ∂g(c) which is

nonnegative element-wise. Then relaxation (8) is exact, i.e., it yields the same optimal value as
the original problem (5).

Proof. Assume the conditions of the lemma. Fix a vector ĉ and a subgradient y ≥ 0 of g at ĉ.
Then for every c such that c ≥ ĉ element-wise, we have g(c) ≥ g(ĉ) + 〈y, c − ĉ〉 ≥ g(ĉ).
Hence in (8) it is optimal to set ck to the minimal value allowed by the constraint, namely ck =
Z(k)(M(α)). It follows that (9) is equivalent to (5).

The converse of the lemma is in general not true. If g is differentiable and g′ is not nonnegative
at c∗ defined by c∗n = Z(n)(M(α∗)), where α∗ is optimal for (5), then relaxation (8) gives
a strictly lower optimal value than (5). In the Appendix we show that relaxation (8) may be
considered optimal, as every other convex relaxation may also fail to be exact in the absence of
the condition in Lemma 16.

Lemma 17 Suppose that F (x) > 0 for all x 6= 0 such that 〈1N , x〉 = 0. Then the condition
in Lemma 16 is equivalent to the following condition:

For every y ∈ F o
1 we have λΠy ≥ − 1

N
1N , where F1 = {c ∈ RN |F (c) ≤ 1}.

Proof. The lemma follows immediately from Theorem 12.

Hence the condition in Lemma 16 becomes Πy ≥ − 1
λN

1N for all y ∈ F o
1 . In other words, the

largest allowed value for λ is such that a shift of the projection Π[F o
1 ] by the vector 1

λN
1N still

moves it into the nonnegative orthant.

We shall now consider different examples of penalty functions F . Set F̃1 = F1 ∩ L.

1. F (x) = maxn xn. The set F1 is given by {x |xn ≤ 1}. Its polar is given by F o
1 = {y ≥

0 | 〈y,1N〉 ≤ 1}. The polar F̃ o
1 = Π[F o

1 ] is then spanned by the projections Πen of the unit

8



vectors, namely the vector (− 1
N
, . . . ,− 1

N
, N−1

N
) and the vectors obtained by permutation of

the elements from it. The condition on λ becomes (− 1
N
, . . . ,− 1

N
, N−1

N
)T ≥ − 1

λN
1N , which

yields λ ≤ 1.

2. F (x) = maxn |xn|. The set F1 is the unit cube, its polar F o
1 the unit hyper-octahedron. The

polar F̃ o
1 is then spanned by the projections±Πen, namely the vectors±(− 1

N
, . . . ,− 1

N
, N−1

N
)

and the vectors obtained by permutation of the elements from it. The condition on λ becomes
λ ≤ 1

N−1
.

3. F (x) =
∑

n |xn|. The set F1 is the unit hyper-octahedron, its polar the unit cube. The
set F̃ o

1 is then spanned by the projections of the vertices of the cube. These projections are
given by (2− 2n

N
, . . . , 2− 2n

N
,−2n

N
, . . . ,−2n

N
) and their permutations, where the first number

appears n times and the second oneN−n times, n = 0, . . . , N . The condition on λ becomes
−2N + 2n ≤ 1

λ
for all n = 1, . . . , N , and 2n ≤ 1

λ
for all n = 0, . . . , N − 1, yielding

λ ≤ 1
2(N−1)

.

4. F (x) = ||x||2. Then both F1 and F o
1 are the unit ball, and F̃ o

1 is the intersection of the unit
ball with L. The condition on λ is determined by the unit length vector in L with the smallest

element, which is ( 1√
N(N−1)

, . . . , 1√
N(N−1)

,−
√

N−1
N

). We hence get −
√

N−1
N
≥ − 1

λN
,

yielding λ ≤ 1√
N(N−1)

.

While relaxation (9) with F given by cases 1 – 3 is a linear program, it is a conic quadratic
program with one conic quadratic constraint with F given by 4. In general, (9) is a linear program
if and only if K is a polyhedral cone.

Finally we shall show that among the penalty functions F which allow a weighting value of
λ = 1, the function F (x) = maxn xn is maximal.

Lemma 18 Suppose the function F satisfies the condition in Lemma 17 with λ = 1. Then for
every x ∈ Rn such that 〈1N , x〉 = 0 we have F (x) ≤ maxn xn.

Proof. Define the set C = {x ∈ RN | maxk xk ≤ 1} and the set C̃ = {x ∈ C | 〈1N , x〉 =
0}. From case 1 above we have that the polar C̃o is given by {y ≥ − 1

N
| 〈y,1N〉 = 0}.

By assumption we have that 1
N
1TN + Π[F o

1 ] is contained in the intersection of the subspace
{y | 〈y,1N〉 = 1} with the nonnegative orthant, i.e., in the convex hull of the unit vectors.
Hence we have the inclusion Π[F o

1 ] = F̃ o
1 ⊂ C̃o. It follows that C̃ ⊂ F̃1. From this the claim of

the lemma easily follows.

In this sequel we henceforth concentrate on the case where λ = 1 and F (x) = maxn xn, i.e.,
we consider the problem

inf
α

max
n=1,...,N

sup
t∈[0,T ]

[
Z

(n)
t −

K∑
j=1

αjM
j,(n)
t

]
. (10)
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5 Convergence analysis of the maximally penalized problem

In this section we analyze the convergence of the solution of the sequence of problems (10)
if both the dimension K of the subspace of martingales as well as the number N of paths
in the Monte-Carlo simulation tend to infinity. We establish bounds on the growth rate of N in
dependence on K in order for the solution sequence to converge to a surely optimal solution of
the original problem (2).

Consider for a sequence of basis martingales Mk, k = 1, 2, ... with Mk
0 = 0, the linear span

ΛK :=

{
M(α) =

K∑
k=1

αkM
j : α1, ..., αK ∈ R

}

for K ∈ N+, and then study the convex optimization problem

αK,N := arg inf
α:M(α)∈ΛK

max
n=1,...,N

Z(n)(M(α)) (11)

:= arg inf
α∈RK

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
.

The following result is proved in the Appendix.

Theorem 19 Suppose that an almost surely optimal martingale M∗
t is square integrable and

has a representation

M∗
t :=

∞∑
k=1

α∗kM
k
t , t ∈ [0, T ]

in L2 satisfying

E

[∣∣∣∣∣
∞∑

k=K+1

α∗kM
k
T

∣∣∣∣∣
p]
≤ ηK−ρ, ∀K > K0 (12)

for some p > 1, K0 > 0, η > 0, and ρ > 0. Let t∗ be a random variable satisfying

Y ∗ = (Zt∗ −M∗
t∗), a.s.

Then it holds for any c > 0, ε > 0 that

P
({
‖α∗K − αK,N‖ ≥ ε

}
∩ Ec,K,N

)
≤ Ap,ηNK

−ρ/(cε)p, (13)

where α∗K := (α∗1, ..., α
∗
K), Ap,η is constant depending on p and η, and

Ec,K,N :=

{
max

n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
∗
≥ c ‖δ‖ for all δ ∈ RK

}
.

10



Remark 20 Suppose that Zt = Gt(Xt), where Gt : Rd → R is a Hölder function on [0, T ]×
R and Xt is a d-dimensional Markov process solving the following system of SDE’s:

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, X0 = x. (14)

The coefficient functions µ : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×m are supposed
to be Lipschitz in space and 1/2-Hölder continuous in time, with m denoting the dimension of
the Brownian motion W = (W 1, . . . ,Wm)>. It is well-known that under the assumption that a
martingale Mt is square integrable and is adapted to the filtration generated by Wt, there is a
square integrable (row vector valued) process Ht = (H1

t , . . . , H
m
t ) satisfying

Mt =

∫ t

0

HsdWs. (15)

It is not hard to see that in the Markovian setting and under some rather weak assumptions, the
optimal Doob martingale M∗ can be represented as

M∗
t =

∫ t

0

u(s,Xs)dWs. (16)

for some vector function u(s, x) = (u1(s, x), . . . , um(s, x)) satisfying∫ T

0

E[|u(s,Xs)|2] ds <∞.

In such a situation, we can consider a class of adapted square-integrable martingales which can
be “parameterized” by the set L2,P ([0, T ] × Rd) of square-integrable m-dimensional vector

functions ψ on [0, T ] × Rd that satisfy ‖ψ‖2
2,P :=

∫ T
0
E[|ψ(s,Xs)|2] ds < ∞. Choose a

family of finite-dimensional linear models of functions, called sieves, with good approximation
properties with respect to u. We can consider, for example, linear sieves of the form:

ΨK := {α1φ1 + . . .+ αKφK : α1, . . . , αK ∈ R},

where φ1, . . . , φK are some given vector basis functions from L2,P ([0, T ] × Rd). Then the
basis martingales in (10) can be defined via Mk

t = Mt(φk), k = 1, . . . , K. In this case the
condition (12) can transformed (by using Burkholder-Davis-Gundy’s inequalities) to the following
one

E

[∣∣∣∣∫ T

0

(u(s,Xs)− α∗1φ1(s,Xs)− . . .− α∗KφK(s,Xs))
2 ds

∣∣∣∣p/2
]
≤ ηK−ρ

which measures the quality of “best projection” of u on the linear subspace ΨK .

One of the main issues is the estimation of the probability of the event Ec,K,N . We have the
following result, whose proof can be found in the Appendix.

11



Theorem 21 Assume that the density p of the vector x =
(
Mk

t∗

)
k=1,...,K

satisfies

p(x) ≥ a(√
2π
)K e− 1

2
‖x‖2 , x ∈ RK , (17)

for some a > 0. Set γ := N−K+1
(K−1) log(K−1)

and suppose N is such that

γ > − 1

2 log
(

1− a√
2π

∫∞
c
e−t2/2 dt

) . (18)

Then

logP (Ω\Ec,K,N) < (K − 1)

{
3− log 2− c2

2
+ log(1 + γ log(K − 1)) + log a

+ log(K − 1)

(
γ log

(
1− a√

2π

∫ ∞
c

e−t
2/2 dt

)
+

1

2

)}
.

Note that the main term in the upper bound in Theorem 21 is given by the last summand in the
brackets. We obtain the following corollary.

Corollary 22 Choose γ > − 1

2 log
(

1− a√
2π

∫∞
c e−t2/2 dt

) and set

N = (K − 1)(1 + γ log(K − 1)),

then
P (Ω\Ec,K,N) < (K − 1)−C(K−1) for some C > 0.

Corollary 23 Under the choice N = (K − 1)(1 + γ log(K − 1)), we have by combining
Corollary 22 with the bound (13) that

P
(∥∥α∗K − αK,N∥∥ ≥ ε

)
≤ P

(∥∥α∗K − αK,N∥∥ ≥ ε
∣∣Ec,K,N)+ P (Ω \ Ec,K,N)

≤ Ap,ηNK
−ρ/(cε)p + e−C(K−1) log(K−1)

. (cε)−pK−ρ+1 log(K)

for all ε > 0.

Suppose now we have a new set of trajectories (independent of those used to construct αK,N )
(Z

(n)
· ,M

(n)
· ), n = 1, . . . , N1. Consider the estimate

YK,N,N1 :=
1

N1

N1∑
n=1

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αK,Nk M
k,(n)
t

)
.

Using the Doob inequality, we get

E
[
|YK,N,N1 − Y ∗|2

]
≤ 8

N1

E
∣∣∣∣∣

K∑
k=1

(
αK,Nk − α∗k

)
Mk

T

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k
T

∣∣∣∣∣
2

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Suppose now that Mk
t is a sequence of continuous square integrable martingales satisfying

E[M i
T M

k
T ] = δik for all i, k ∈ {1, . . . , K}, then

E
[
|YK,N,N1 − Y ∗|2

]
≤ 8

N1

[
E
∥∥αK,N − α∗,K∥∥2

+
∞∑

k=K+1

(α∗k)
2

]

.
K−ρ+1 log(K)

N1

, K →∞,

provided
∑∞

k=K+1 (α∗k)
2 = O(K1−ρ), K → ∞. So if ρ > 1 we have a variance reduction

effect by using the maximal penalty in (5).

6 Simulation example

Consider the example given in [10, Section 8]. We have T = 2, Z0 = 0, Z2 = 1, and Z1 = ξ
is a random variable which is uniformly distributed on the interval [0, 2]. The optimal stopping
time τ ∗ is given by

τ ∗ =

{
1, ξ ≥ 1,
2, ξ < 1.

and the optimal value of problems (1) and (2) by Y ∗ = Emax(ξ, 1) = 5
4
.

The martingale M in problem (2) can be assumed of the general form M0 = 0, M1 = M2 =
h(ξ), where h : [0, 2]→ R is a function satisfying Eξh(ξ) = 0. It follows that

max
t=0,1,2

(Zt −Mt) = max(h(ξ), ξ, 1)− h(ξ)

and hence Emaxt=0,1,2(Zt−Mt) = Emax(h(ξ), ξ, 1) ≥ Emax(ξ, 1) = 5
4
. Any martingale

given by a function h satisfying h(ξ) ≤ max(ξ, 1) almost surely is hence an optimal solution
for problem (2). Such an optimal solution then yields maxt=0,1,2(Zt−Mt) = max(ξ, 1)−h(ξ)
almost surely.

However, not every such martingale is surely optimal in the sense defined in [10]. A surely
optimal martingale is defined by a function h(ξ) satisfying maxt=0,1,2(Zt−Mt) = max(ξ, 1)−
h(ξ) = 5

4
almost surely, which gives h(ξ) = max(ξ, 1)− 5

4
almost surely. Define the function

h∗(ξ) = max(ξ, 1)− 5
4

and denote the martingale defined by this function by M∗.

We shall now try to find the function h∗ by Monte-Carlo methods. We search over a finite-
dimensional subspace LK of functions h(ξ), which will depend on an even integer parameter
K . Namely, LK consists of functions of the form

h(ξ) =

K/2∑
k=1

ck cos(kξπ) + sk sin(kξπ),

where ck, sk, k = 1, . . . , K/2 are real coefficients. The dimension of the subspace LK equals
K . Note that h∗(ξ) is not contained in LK for any K . We rather have

h∗(ξ) =
∞∑
k=1

c∗k cos(kξπ) + s∗k sin(kξπ)

13



with s∗k = − 1
kπ

, c∗k = 0 for even k, and c∗k = 2
k2π2 for odd k.

Note further that for fixed K we have P(Ec,K,N) > 0 for c > 0 small enough and N large
enough, and that for fixed c > 0 small enough we have limN→∞ P(Ec,K,N) = 1. The condition
(17) in Theorem 21, however, is not satisfied for this example, since the basis martingales are all
correlated with each other and the vector built from these martingales has a distribution which
is concentrated on a 1-dimensional curve.

We solve the two optimization problems (3) and (6) for K = 2, 4, . . . , 20 and with a number
of samples N = 5, 10, 15, . . . , 250. For the martingale M̂ which gives the optimal solution
of problems (3) and (6), respectively, we compute the expected value and the variance of the
expression maxt=0,1,2(Zt − M̂t). Note that both this expected value and the variance are

random variables, because they depend on the random realization of the paths (Z
(n)
t ,M

j,(n)
t ).

For each pair (K,N), we perform 100 independent runs.

On Fig. 6 we depict the fraction of runs for which the solution of (6) yielded an optimal martingale.
The failures for small N are due to runs where the paths were outside of the set E0,K,N . The
exponential decay of P (Ω \ E0,K,N) for growing N can be clearly seen. A tiny fraction of runs
(< 0.1%) yielded martingales which were not optimal, these were confined to the region in
parameter space where N ≤ 5K . The failures for large N were due to numerical difficulties
experienced by the solver.

In contrast to problem (6) with maximum penalty term, whose solution in most cases yielded an
optimal martingale, the martingale obtained from the solution of (3) without penalty was rarely
optimal. In Fig. 6 we depict the obtained values of Emaxt=0,1,2(Zt−M̂t) from solving problem
(3), under the condition that the simulated paths were in the set E0,K,N (paths outside this set do
not yield a meaningful solution). It can be seen that the performance gets better with increasing
N , but the obtained martingales nevertheless remain sub-optimal. Problem (6) is also a bit more
robust numerically: a somewhat higher fraction of runs failed due to numerical difficulties when
solving problem (3) without penalty as compared to (6).

In Fig. 6 we compare the values of V armaxt=0,1,2(Zt− M̂t) for the 100 runs with parameters
N = 250, K = 20. It can be seen that the variance of maxt=0,1,2(Zt−M̂t) drops dramatically
if problem (6) is solved in place of problem (3). In Fig. 6 we depict martingales obtained by
solving problems (3),(6) for N = 250, K = 20. The surely optimal function h∗(ξ) is given for
reference.

To summarize the results of the simulation, adding the maximum penalty term not only largely
decreases the variance of maxt=0,1,2(Zt − M̂t), but also its expectation. As a result, the ob-
tained martingale is actually in most cases optimal. The presence of the penalty term in (6) also

14



15



leads to a slight numerical robustification against the uncertainty introduced by the sampling
procedure.

Appendix

Proof of Theorem 19

We first need the following Lemma.

Lemma 24 Let K,N ∈ N+ and β ∈ RK be fixed. For a fixed set of N Monte Carlo realiza-
tions, let t(n)

β , n = 1, ..., N, be such that

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

βkM
k,(n)
t

)
= Z

(n)

t
(n)
β

−
K∑
k=1

βkM
k,(n)

t
(n)
β

.

If

max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
β

≥ 0 for all δ ∈ RK (19)

then it holds that

min
n=1,...,N

(
Z

(n)

t
(n)
β

−
K∑
k=1

βkM
k,(n)

t
(n)
β

)

≤ inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)

≤ max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

βkM
k,(n)
t

)
.
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Proof. With α = β − δ for δ ∈ RK we have on the one hand

inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)

= inf
δ

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

βkM
k,(n)
t +

K∑
k=1

δkM
k,(n)
t

)

≤ max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

βkM
k,(n)
t

)
,

and on the other hand

inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)

≥ inf
δ

max
n=1,...,N

(
Z

(n)

t
(n)
β

−
K∑
k=1

βkM
k,(n)

t
(n)
β

+
K∑
k=1

δkM
k,(n)

t
(n)
β

)

≥ inf
δ

(
max

n=1,...,N

(
min

n′=1,...,N

(
Z

(n′)

t
(n′)
β

−
K∑
k=1

βkM
k,(n′)

t
(n′)
β

)
+

K∑
k=1

δkM
k,(n)

t
(n)
β

))

= inf
δ

(
min

n′=1,...,N

(
Z

(n′)

t
(n′)
β

−
K∑
k=1

βkM
k,(n′)

t
(n′)
β

)
+ max

n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
β

)

≥ min
n=1,...,N

(
Z

(n)

t
(n)
β

−
K∑
k=1

βkM
k,(n)

t
(n)
β

)
,

by using (19).

Corollary 25 Suppose that for a fixed K ∈ N+ there exists an α∗ ∈ RK such that

M∗ :=
K∑
k=1

α∗kM
k
t (20)

is surely optimal in the sense of [10]. That is

Y ∗ = max
t=0,...,T

(
Zt −

K∑
k=1

α∗kM
k
t

)
almost surely,

and so we have

Y ∗ = max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

α∗kM
k,(n)
t

)
, n = 1, ..., N.

Let t(n)
∗ , n = 1, ..., N, be such that

Y ∗ = max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

α∗kM
k,(n)
t

)
= Z

(n)

t
(n)
∗
−

K∑
k=1

α∗kM
k,(n)

t
(n)
∗
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for each n. By virtue of Lemma 24 we then obtain for β = α∗

Y ∗ = inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
,

provided that (19) holds for β = α∗.

Proposition 26 Let us assume M∗ as in (20) in Corollary 25 and that

max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
∗
≥ c ‖δ‖ for all δ ∈ RK and some c > 0, (21)

that is, a stronger version of (19) holds. If now

α◦ = arg inf
α

max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
,

then it follows that α◦ = α∗.

Proof. Let us define

F (α) = max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
.

So by Corollary 25, F (α◦) = F (α∗) = Y ∗, and for any δ ∈ RK we have

F (α∗ − δ) = max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

α∗kM
k,(n)
t +

K∑
k=1

δkM
k,(n)
t

)

≥ max
n=1,...,N

(
Z

(n)

t
(n)
∗
−

K∑
k=1

α∗kM
k,(n)

t
(n)
∗

+
K∑
k=1

δkM
k,(n)

t
(n)
∗

)

= Y ∗ + max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
∗
≥ c ‖δ‖ ,

hence α∗ is a strict local minimum of F. Since F is convex, α∗ is also a unique strict global
minimum. Thus, it must hold that α◦ = α∗.

We next suppose that an almost surely optimal martingale M∗ satisfies

M∗ :=
∞∑
k=1

α∗kM
k
t

where the convergence is understood almost surely (and if it is needed to be in an Lp sense for
some p ≥ 1). Let us introduce two convex functions

GK,N(α) = max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t −

∞∑
k=K+1

α∗kM
k,(n)
t

)
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and

FK,N(α) = max
n=1,...,N

max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

αkM
k,(n)
t

)
.

It then holds that

sup
α
|FK,N(α)−GK,N(α)| ≤ max

n=1,...,N
max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ .
Indeed, for fixed α, n∗ and tn

∗
∗ such that

FK,N(α) = Z
(n∗)

tn∗∗
−

K∑
k=1

αkM
k,(n∗)

tn∗∗

we have on the one hand

FK,N(α)−GK,N(α)

≤ Z
(n∗)

tn∗∗
−

K∑
k=1

αkM
k,(n∗)

tn∗∗
−

(
Z

(n∗)

tn∗∗
−

K∑
k=1

αkM
k,(n∗)

tn∗∗
−

∞∑
k=K+1

α∗kM
k,(n∗)

tn
∗
∗

)

=
∞∑

k=K+1

α∗kM
k,(n∗)

tn∗∗
≤ max

n=1,...,N
max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ ,
and on the other hand, with n◦ and tn

◦
◦ such that

GK,N(α) = Z
(n◦)

tn
◦
◦
−

K∑
k=1

αkM
k,(n◦)

tn
◦
◦

−
∞∑

k=K+1

α∗kM
k,(n◦)

tn
◦
◦

GK,N(α)− FK,N(α)

≤ Z
(n◦)

tn
◦
◦
−

K∑
k=1

αkM
k,(n◦)

tn
◦
◦

−
∞∑

k=K+1

α∗kM
k,(n◦)

tn
◦
◦

−

(
Z

(n◦)

tn
◦
◦
−

K∑
k=1

αkM
k,(n◦)

tn
◦
◦

)

= −
∞∑

k=K+1

α∗kM
k,(n◦)

tK,n
◦

◦
≤ max

n=1,...,N
max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ .
Now let t(n)

∗ , n = 1, ..., N, be defined such that for α∗ := (α∗1, . . . , α
∗
K),

GK,N(α∗) = Z
(n)

t
(n)
∗
−

K∑
k=1

α∗kM
k,(n)

t
(n)
∗
−

∞∑
k=K+1

α∗kM
k,(n)

t
(n)
∗

= Y ∗

for each n, and assume that

max
n=1,...,N

K∑
k=1

δkM
k,(n)

t
(n)
∗
≥ c ‖δ‖ for all δ ∈ RK and some c > 0. (22)
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By applying Proposition 26 to the cash-flow

Zt −
∞∑

k=K+1

α∗kM
k
t

it thus follows that
arg inf
α∈RK

GK,N(α) = (α∗1, . . . , α
∗
K)

on Ec,K,N . Then, using the Markov and Doob inequalities, we get

P
(

sup
α
|FK,N(α)−GK,N(α)| ≥ ε

)
≤ P

(
max
n

max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ ≥ ε

)

= 1− P

(
max
n

max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ < ε

)

= 1−

(
P

(
max
t=0,...,T

∣∣∣∣∣
∞∑

k=K+1

α∗kM
k,(n)
t

∣∣∣∣∣ < ε

))N

≤ 1− (1− Ap,η ε−pK−ρ)N ≤ Ap,ηNε
−pK−ρ

(23)

for K > K0 and some constant Ap,η depending on p, η. Now consider K and N to be fixed
and let

αFinf := (αFinf,1, ..., α
F
inf,K) := arg inf

α∈RK
FK,N(α).

Due to

GK,N(αFinf) = GK,N

(
α∗ −

(
α∗ − αFinf

))
= max

n=1,...,N
max
t=0,...,T

(
Z

(n)
t −

K∑
k=1

α∗kM
k,(n)
t −

∞∑
k=K+1

α∗kM
k,(n)
t +

K∑
k=1

(
α∗k − αFinf,k

)
M

k,(n)
t

)

≥ max
n=1,...,N

(
Z

(n)

t
(n)
∗
−

K∑
k=1

α∗kM
k,(n)

t
(n)
∗
−

∞∑
k=K+1

α∗kM
k,(n)

t
(n)
∗

+
K∑
k=1

(
α∗k − αFinf,k

)
M

k,(n)

t
(n)
∗

)

= Y ∗ + max
n=1,...,N

K∑
k=1

(
α∗k − αFinf,k

)
M

k,(n)

t
(n)
∗

≥ Y ∗ + c
∥∥α∗ − αFinf

∥∥ ,
by virtue of (22), it holds that∥∥α∗ − αFinf

∥∥ ≤ 1

c

(
GK,N(αFinf)−GK,N(α∗)

)
≤ 1

c

∣∣GK,N(αFinf)− FK,N(αFinf)
∣∣+

1

c

(
FK,N(αFinf)− FK,N(α∗)

)
+

1

c
|FK,N(α∗)−GK,N(α∗)|

≤ 2

c
sup
α
|FK,N(α)−GK,N(α)| .
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So we have

P
({
‖α∗K − αFinf‖ ≥ ε

}
∩ Ec,K,N

)
≤ P

(
2

c
sup
α
|FK,N(α)−GK,N(α)| ≥ ε

)
≤ Ap,η2

pN(cε)−pK−ρ

by (23).

Exactness of the convex relaxation

The following consideration shows that if the condition in Lemma 16 is not satisfied, then no
convex relaxation can be guaranteed to be exact, because problem (5) may not be convex at
all.

Let α∗ ∈ RK be an arbitrary vector, and define the vector c∗ by c∗k = Z(k)(M(α∗)). Assume
that g is differentiable and g′ is not nonnegative at c∗, i.e., there exists an index l such that
∇lg(c∗) < 0. Suppose further that the maximum maxt(Z

(l)
t −

∑K
r=1 α

∗
rM

r,(l)
t ) is attained at

more than one index t, e.g., the indices i, j, and suppose that there exists a direction δ ∈ RK

such that
∑K

r=1 δrM
r,(k)
t is zero for pairs (k, t) other than (l, i) and (l, j) such that Z(k)

t −∑K
r=1 α

∗
rM

r,(k)
t = Z(k)(M(α∗)), and

∑K
r=1 δrM

r,(l)
i 6=

∑K
r=1 δrM

r,(l)
j . Then problem (5) is

not convex.

Indeed, for real ε define αε = α∗ + εδ and a vector c(ε) by ck(ε) = Z(k)(M(αε)). Let

without loss of generality
∑K

r=1 δrM
r,(l)
i <

∑K
r=1 δrM

r,(l)
j . For ε > 0 small enough we

then have ck(±ε) = c∗k for all k 6= l, cl(ε) = c∗l − ε
∑K

r=1 δrM
r,(l)
i , and cl(−ε) =

c∗l + ε
∑K

r=1 δrM
r,(l)
j . The cost function of problem (5) is given by g(c(ε)) for α = αε. We

have d
dε
g(c(ε))+g(c(−ε))

2
|ε=0 = ∇lg(c∗)

∑K
r=1 δrM

r,(l)
j −

∑K
r=1 δrM

r,(l)
i

2
< 0, and the cost function is

not convex.

If K is not too small, then the above conditions are in general verified for some value of α.
Hence it is reasonable to demand the condition given in Lemma 16.

Proof of Theorem 21

Let X ∈ RK be a random vector with a probability density. In this subsection we estimate
the probability p(K,N, c) of the event {maxk=1,...,N〈z,Xk〉 ≥ c|z| ∀z ∈ RK}, where
X1, . . . , XN are i.i.d. samples of the random vector X , and c > 0 is a fixed constant.

First we assume that X ∼ N (0, I). In this case the above-mentioned probability is explicitly
known for the limiting case c = 0 [11]:

p(K,N, 0) = P
{

max
k=1,...,N

〈z,Xk〉 ≥ 0 ∀z ∈ RK

}
= 1− 2−N+1

K−1∑
i=0

(
N − 1
i

)
.

We now consider the case c > 0. For every x ∈ RK , define the setSx = {z ∈ SK−1 | 〈z, x〉 ≥
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c}. This set is a spherical cap with opening angle

2 arctan

√
||x||2 − c2

c
,

centered on x
||x|| . It is nonempty if and only if ||x|| ≥ c. Clearly we have maxk=1,...,N〈z,Xk〉 ≥

c|z| for all z ∈ RK if and only if
⋃N
k=1 SXk = SK−1.

In order to estimate the probability of this event, we shall employ an idea from [8]. Fix δ ∈ (0, π
2
)

and let Sx,δ be the cap centered on x
||x|| with angle 2

(
arctan

√
||x||2−c2
c

− δ
)

if the inequality

arctan

√
||x||2−c2
c

≥ δ holds and Sx,δ = ∅ otherwise.

Let now z ∈ SK−1 be a point such that z 6∈
⋃N
k=1 SXk . Then the spherical cap B(z, 2δ) cen-

tered on z and with opening angle 2δ is contained in the complement of the union
⋃N
k=1 SXk,δ.

In particular, the fraction uδ(X1, . . . , XN) of points of the sphere SK−1 which is not covered
by the union

⋃N
k=1 SXk,δ is not smaller than

|B(z, 2δ)|
|SK−1|

=

2π(K−1)/2

Γ((K−1)/2)

∫ δ
0

(sinϕ)K−2dϕ

2πK/2

Γ(K/2)

=
Γ(K/2)

∫ δ
0

(sinϕ)K−2dϕ
√
πΓ((K − 1)/2)

.

Hence

Euδ(X1, . . . , XN) ≥ P

{
N⋃
k=1

SXk 6= SK−1

}
·

Γ(K/2)
∫ δ

0
(sinϕ)K−2dϕ

√
πΓ((K − 1)/2)

. (24)

We shall now compute the expectation of uδ(X1, . . . , XN). For a fixed point z, let pδ be the
probability that z ∈ SX,δ. Since X is isotropic, this quantity does not depend on z, and equals
the expectation of the fraction of SK−1 covered by the spherical cap SX,δ. We have

|SX,δ|
|SK−1|

=

 Γ(K/2)
∫ arctan

√
||X||2−c2

c −δ
0 (sinϕ)K−2dϕ√

πΓ((K−1)/2)
, ||X||2 > c2(1 + tan2 δ),

0, ||X||2 ≤ c2(1 + tan2 δ).

Therefore

pδ =

∫ ∞
c2(1+tan2 δ)

χK/2−1e−χ/2

2K/2Γ(K/2)

Γ(K/2)
∫ arctan

√
χ−c2
c
−δ

0
(sinϕ)K−2dϕ

√
πΓ((K − 1)/2)

dχ

=
1

2K/2
√
πΓ((K − 1)/2)

∫ ∞
c2(1+tan2 δ)

χK/2−1e−χ/2
∫ arctan

√
χ−c2
c
−δ

0

(sinϕ)K−2dϕ dχ.

Note that at δ = 0 we get

p0 = P{〈z,X〉 ≥ c} =
1√
2π

∫ ∞
c

e−t
2/2 dt, 1− p0 =

1√
2π

∫ c

−∞
e−t

2/2 dt.
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and

dpδ
dδ

∣∣∣∣
δ=0

= − 1

2K/2
√
πΓ((K − 1)/2)

∫ ∞
c2

χK/2−1e−χ/2 sinK−2

(
arctan

√
χ− c2

c

)
dχ

= − 1

2K/2
√
πΓ((K − 1)/2)

∫ ∞
c2

e−χ/2(χ− c2)K/2−1 dχ = − e−c
2/2Γ(K/2)√

πΓ((K − 1)/2)
.

Moreover, for K ≥ 3 we have

d2pδ
dδ2

=
K − 2

2K/2
√
πΓ((K − 1)/2)

∫ ∞
c2(1+tan2 δ)

χK/2−1e−χ/2 ·

·(sin(arctan

√
χ− c2

c
− δ))K−3 cos(arctan

√
χ− c2

c
− δ) dχ ≥ 0,

and the quantity pδ is convex in δ. In particular, we have

1− pδ ≤
1√
2π

∫ c

−∞
e−t

2/2 dt+
e−c

2/2Γ(K/2)√
πΓ((K − 1)/2)

δ.

For fixed z ∈ SK−1 we have P{z 6∈
⋃N
k=1 SXK ,δ} = (1 − pδ)

N . By Robbins theorem [6,
pp.109–110] we then have

Euδ(X1, . . . , XN) =
1

|SK−1|

∫
SK−1

P{z 6∈
N⋃
k=1

SXK ,δ}dz = (1− pδ)N . (25)

Inserting this into (24), we obtain

1− p(K,N, c) = P

{
N⋃
k=1

SXk 6= SK−1

}
≤

√
πΓ((K − 1)/2)

Γ(K/2)
∫ δ

0
(sinϕ)K−2dϕ

(1− pδ)N

≤
√
πΓ((K − 1)/2)

Γ(K/2)
∫ δ

0
(sinϕ)K−2dϕ

(
1√
2π

∫ c

−∞
e−t

2/2 dt+
e−c

2/2Γ(K/2)√
πΓ((K − 1)/2)

δ

)N

.

Now we set N = β(K − 1) with β > 1 and δ =
Γ((K−1)/2)

∫ c
−∞ e−t

2/2 dt
√

2(β−1)e−c2/2Γ(K/2)
. Then we get

1− p(K,N, c) ≤
√
πΓ((K − 1)/2)

Γ(K/2)
∫ δ

0
ϕK−2(1− ϕ2

6
)K−2dϕ

(
β

β − 1

1√
2π

∫ c

−∞
e−t

2/2 dt

)β(K−1)

≤
(K − 1)e−c

2(K−1)/2Γ(K/2)K−2ββ(K−1)
(

1√
2π

∫ c
−∞ e

−t2/2 dt
)(β−1)(K−1)

πK/2−1Γ((K − 1)/2)K−2(1− δ2

6
)K−2(β − 1)(β−1)(K−1)

.

For K ≥ 3 and a ≤ a∗, where a∗ ≈ 0.4915 is given by the positive root of the equation

1 − 4a∗

π
= e−2a∗ , we have

(
1− aΓ((K−1)/2)2

Γ(K/2)2

)K−2

≥ e−2a ≥ e−2a∗ > e−1. It follows that
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for β ≥ 1 +
∫ c
−∞ e−t

2/2 dt

2
√

3a∗e−c2/2
we have (1 − δ2

6
)K−2 > e−1. Moreover, for K ≥ 3 we have

(K−1)Γ(K/2)K−2

Γ((K−1)/2)K−2 ≤
√
π
(
K−1

2

)K/2
. We also have ( β

β−1
)β−1 < e. Inserting all this, we get

1− p(K,N, c) < e
√
π(K − 1)K/2e(1−c2/2)(K−1)βK−1

2K/2πK/2−1

(
1√
2π

∫ c

−∞
e−t

2/2 dt

)(β−1)(K−1)

.

Now set β = 1 + γ log(K − 1) with γ > − 1

2 log( 1√
2π

∫ c
−∞ e−t2/2 dt)

. Then we get

1− p(K,N, c) <
e
√
π(K − 1)K/2e(1−c2/2)(K−1)(1 + γ log(K − 1))K−1

2K/2πK/2−1
·

·
(

1√
2π

∫ c

−∞
e−t

2/2 dt

)γ(K−1) log(K−1)

,

and

log(1− p(K,N, c))
K − 1

< 1− c2

2
+ log(1 + γ log(K − 1))

+
2 + log(K − 1)−K log 2− (K − 3) log π

2(K − 1)

+ log(K − 1)

(
γ log

(
1√
2π

∫ c

−∞
e−t

2/2 dt

)
+

1

2

)
≤ 3− log 2− c2

2
+ log(1 + γ log(K − 1))

+ log(K − 1)

(
γ log

(
1√
2π

∫ c

−∞
e−t

2/2 dt

)
+

1

2

)
.

The main term on the right-hand side is the last one, which tends to −∞ by the choice of γ if
K →∞.

Defining γ̃ = −
(
γ log

(
1√
2π

∫ c
−∞ e

−t2/2 dt
)

+ 1
2

)
> 0, we then get

1− p(K,N, c) <∼ (K − 1)−γ̃(K−1) → 0.

The number of Monte-Carlo simulations hence has to be chosen like

N = (K − 1)(1 + γ log(K − 1))

for some γ > − 1

2 log( 1√
2π

∫ c
−∞ e−t2/2 dt)

.

Let us now assume that the density ofX majorizes the normal density, µ(X) ≥ a
(2π)K/2

e−||X||
2/2,

where a ∈ (0, 1] might also depend on K . Then we get P{z ∈ SX,δ} ≥ apδ, and hence in-
stead of (25) we obtain Euδ ≤ (1−apδ)N . The subsequent reasoning is analogous to the nor-

mal case considered above. Set againN = β(K−1), but δ =
(1− a√

2π

∫∞
c e−t

2/2 dt)
√
πΓ((K−1)/2)

(β−1)ae−c2/2Γ(K/2)
.

24



For β ≥ 1 +
(1− a√

2π

∫∞
c e−t

2/2 dt)
√
π

√
6a∗ae−c2/2

and K ≥ 3 we then get (1− δ2

6
)K−2 > e−1. From (24) we

then get

P

{
N⋃
k=1

SXk 6= SK−1

}
≤
√
π(K − 1)Γ((K − 1)/2)

Γ(K/2)δK−1(1− δ2

6
)K−2

(1− apδ)N

<
(K − 1)eββ(K−1)aK−1(Γ(K/2))K−2

ec2(K−1)/2πK/2−1(Γ((K − 1)/2))K−2

(
1− a√

2π

∫∞
c
e−t

2/2 dt

β − 1

)(β−1)(K−1)

≤ (K − 1)K/2βK−1eKaK−1

2K/2ec2(K−1)/2π(K−3)/2

(
1− a√

2π

∫ ∞
c

e−t
2/2 dt

)(β−1)(K−1)

.

Now set β = 1 + γ log(K − 1) such that γ = − 1+ν

2 log
(

1− a√
2π

∫∞
c e−t2/2 dt

) for ν > 0. We obtain

logP
{⋃N

k=1 SXk 6= SK−1
}

K − 1
<

log(K − 1) + 2K −K log 2− (K − 3) log π

2(K − 1)

+ log(1 + γ log(K − 1)) + log a− c2

2

+

(
γ log

(
1− a√

2π

∫ ∞
c

e−t
2/2 dt

)
+

1

2

)
log(K − 1)

≤ 3− log 2

2
− c2

2
+ log(a+ γa log(K − 1))− ν

2
log(K − 1)

<
3− log 2

2
− c2

2
+ log

a+
1 + ν√

2
π

∫∞
c
e−t2/2 dt

log(K − 1)

− ν

2
log(K − 1).

The main term is again the last summand, which tends to −∞ for K → ∞. The number of
Monte-Carlo simulations has thus to be chosen not smaller than

N =

1− (1 + ν) log(K − 1)

2 log
(

1− a√
2π

∫∞
c
e−t2/2 dt

)
 (K − 1)

≤

(
1 +

(1 + ν) log(K − 1)
√

2a√
π

∫∞
c
e−t2/2 dt

)
(K − 1).

This proves Theorem 21.
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