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ABSTRACT. Given s,o € (0,1) and a bounded domain © C R"™, we consider
the following minimization problem of s-Dirichlet plus o-perimeter type
[u]HS(Rzn\(QC)z) + Per, ({u > 0}, Q) s

where [-]gs is the fractional Gagliardo seminorm and Pers is the fractional
perimeter.

Among other results, we prove a monotonicity formula for the minimizers,
glueing lemmata, uniform energy bounds, convergence results, a regularity
theory for the planar cones and a trivialization result for the flat case.

Several classical free boundary problems are limit cases of the one that we
consider in this paper, as s /1,0 /1 or o \,0.

1. INTRODUCTION

In this paper we deal with a free boundary problem driven by some nonlocal
features. The nonlocal structures that we consider appear both in the term that
is sometimes related to “elastic” atomic interactions and in the so-called “surface
tension” potential.

These two features are allowed to have different nonlocal behaviors, namely we
parameterize them with two different fractional parameters s,o € (0,1). Several
classical free boundary problems appear in the limit of our framework by taking
limits either in s (as s /' 1) orin o (as o /1 or o \, 0), or both.

More precisely, we will consider here the minimization of an energy functional
that involves a fractional gradient and a nonlocal perimeter. Given s,0 € (0,1)
and a bounded and Lipschitz domain Q C R"™, we consider

(1.1) F(u,E) // )_“(””2 dz dy + Per, (E,Q),
R2n\(Qe)2 | T — Y[

where E is the positivity set for « (more precisely, v > 0 a.e. in ENQ and u < 0

e. in E€N§). As customary, the superscript ¢ used here above denotes the com-
plementary set operation, i.e. Q¢ := R™\ Q. The o-fractional perimeter Per,(F, )
of a set E in Q was introduced in [6] and it is defined as

Per, (E,Q) :=L(ENQ,E°NQ)

1.2
(1.2 +LENQENQY) +LENQYE°NQ),

where the interaction £ is the following

(1.3) L(A, B) // dxdy+
AXB |.’L‘— |n 7

for any disjoint, measurable sets A and B.

The nonlocal perimeter converges to the classical perimeter as ¢ /1 and to the
Lebesgue measure of E as o \, 0 (up to multiplicative constants), see [10, 4, 17, 14]
for precise statements.



In [8] the authors consider a minimization problem that corresponds to (1.1) in
the case s = 1, namely

(1.4) /Q V(@) dz + Per, ({u > 0},9).

They use blow-up analysis to obtain regularity results for minimizers and for the
free boundaries. When o Y\, 0, the functional in (1.4) reduces to a classical free
boundary problem related to fluid dynamics and that has been extensively studied
in the literature after the pioneer work in [2, 3]. On the other hand, when o 1, the
energy in (1.4) reduces to the problem studied in [5], where the energy functional is a
competition between the classical Dirichlet form and the perimeter of the interface.

The energy functional in (1.1) that we study here is thus a variation of these type
of problems, in which both the quadratic form and the interface energy appearing
in the functional are of nonlocal type.

For other recent results on fractional free boundary problems see, for instance,
[7, 11, 12, 1].

The variational notion of minimizers that we consider in this paper is the follow-
ing. Fixed Ey C R"™ with locally finite o-perimeter and ¢ € H (R™) with ¢ > 0
a.e. in Ey and ¢ < 0 a.e. in E§, we say that (u, F) is a minimizing pair (in the
domain Q with external datum ¢) if F(u, E) attains the minimal possible value
among all the functions v such that

(1.5) v—p € H*(R") with v = ¢ a.e. in Q°
and all the measurable sets FF C R"™ with F'\ Q = F \ Q and such that
(1.6) v>=0ae in FNQand v <0 a.e. in FCNO.

In spite of its technical flavor, the definition above can be intuitively understood
by saying, roughly speaking, that the function u minimizes the energy functional
among all the competitors v that coincide with u outside the domain Q (the tech-
nicality is to formally state that F' is the positivity set of v for which we need to
compute the o-perimeter).
The existence of minimizing pairs will be guaranteed by the forthcoming Lemma 3.1

and it follows from the direct method joined with a suitable fractional compact em-
bedding.

We will show that the energy of a minimizing pair can be bounded uniformly:
more precisely, if (u, E) is a minimizing pair in a given ball, then the energy in a
smaller ball is bounded, according to the next result:

Theorem 1.1 (Uniform energy estimates). Let (u, E) be a mininimizing pair in Bs.
Then

// Juta) —uty)| da dy + Per,(E, By) < C (1 +/ e dy)
Ren\(Bg)2 | T — [t T je 14 [y[nt2e 77 )7

for some C > 0 only depending on n and s.

The proof of Theorem 1.1 relies on appropriate gluing results that are interesting
in themselves (roughly speaking, they allow us to change an admissible pair outside
a given domain, by controlling the energy produced by the interpolation).



For this, it is useful to consider an associated extension problem. That is, we
set Ri“ = {(z,2z) € R* x R s.t. z > 0}, and, given a function u : R — R, we
associate a function u defined in Ri‘H as

ZQS

(‘.’t|2 + Z2)(n+25)/2'

(1.7) u(-,2) = ux* Py(,z), where Py(z,2) :=cp s

Here ¢y, s is a normalizing constant depending on n and s.
Moreover, given a measurable set £ C R"™ we associate a function U defined
: n+1
in Ry as
lon

z

(1.8) U(-,2) = (xg — xEe) * Py(-, 2), where P,(x,2) := ¢p (R £ DTz

and ¢, is a normalizing constant depending on n and o (these constants are only
needed to normalize the integral of Ps; and P,).

We will denote the extended variable as X := (z,2) € R, where z € R"
and z > 0. Moreover, B, := {|z| < r} is the ball of radius r in R" and B :=
{|X| < r} is the ball of radius 7 in R7".

We will study in detail the extended problem in Section 4, where we will also
find equivalent minimizing conditions between the original functional in (u, F) and
an extended functional in (@,U) (see in particular Proposition 4.1). Here we
just mention that the notion of minimization in the extended variables in a do-
main Q C R"*! requires not only that the competing functions agree near 02, but
also a consistency condition on the trace {z = 0}, where the functions reduce to
characteristic functions of sets. Namely, we say that (@, U) is a minimizing pair for
the extended problem in Q c R™*! if

/21*25\vm2dx+cn,576/ A7\ VU 2 dX
Qy

Qy

</ z1—23|W|2dX+cn,s,U/ 279V [2dX

for every functions v and V' that satisfy the following conditions:

i) V =U in a neighborhood of 952,
ii) the trace of V on {z =0} is xp — xpe for some set F' C R",
ili) ¥ =@ in a neighborhood of 992, and T (=0} >0ae. in F, 0
in F°.

{(s=0} <0 a.e.

In this setting, we can use glueing techniques to prove convergence of minimizing
pairs of the extended problem, as stated in the following result:

Theorem 1.2 (Convergence of minimizers). Let (U, Uy,) be a sequence of min-
imizing pairs for the extended problem in B;. Suppose that Uy, is the extension
of U, as in (1.7), and

(1.9) uy, —u in L®(By), TUm —u in L®(BS) and U, — U in L[Q,/Q(B;),

as m — 400, for some couple (w,U), with u continuous in IR’}FH.
ga— . . . . . . . +
Then (w,U) is a minimizing pair in By,



Moreover

lim 27|V, 2 dX = / 2172\ va? dX
m—+00 [+ Bt
(1.10) ! !
and lim A70\VU,, 2 dX = / 217\ VU? dX.
m—-+00 Bt Bt
1 1
A particularly important case of convergence is given by the blow-up limit. This
is also related to the study of the minimizing pairs that possess suitable homo-
geneity properties, and in particular the ones induced by the natural scaling of the
functional. For this, we say that a minimizing pair (u, E') is a minimizing cone if u
is homogeneous of degree s — ¢ and E is a cone (i.e., for any ¢ > 0, tx € E if and
only if x € E).
In this framework, we exploit Theorems 1.1 and 1.2, combined with some ar-
guments in [6], and we obtain the following relation between blow-up limits and
minimizing cones:

Theorem 1.3 (Blow-up cones). Let s > 0 /2 and (u, E) be a minimizing pair in By,
with 0 € OF. For any r > 0 let

o 1
(1.11) up(z) ;=712 *u(rz) and E,:=-FE.
T

Assume that u € C*~2(R™). Then there exist a minimizing cone (ug, Eg) and a

sequence r, — 0 such that u,, — uo in LS, (R™) and E,, — Eo in L] (R").

We remark that the rescaling in (1.11) is the one induced by the energy, since
if (u, F) is a minimizing pair for F in Q, then (u,, E,) is a minimizing pair for F
in 1Q. Moreover, the exponent § — s in (1.11) corresponds to the one obtained
in [8] in the case s = 1.

A complete classification of the minimal cones in dimension 2 holds true, accord-
ing to the following result:

Theorem 1.4 (Classification of minimizing cones in the plane). Let n =2 and let
(u, E) be a minimizing pair in any domain.

Assume that u is homogeneous of degree s — 3 and that E is the union of finitely
many closed conical sectors, with both E and E€ nonempty.

Then E is a halfplane.

The proof of Theorem 1.4 uses a second order domain variation, in the spirit of
the technique introduced in [18; 19] (since the main ideas of the proof are the same,
but some technical differences arise here due to the presence of minimizing pairs
rather than functions, we give the full details of the proof in Appendix A).

As a final remark, we point out that the natural scaling of the problem does
not exhaust the complexity of the minimizers. This fact is typical for fractional
free boundary problems (for instance, in [5], the natural scaling would produce a
power 1/2 and it is related to C'/?-regularity, but Lipschitz regularity holds true
in the end: compare, e.g., Theorem 3.1 and 4.1 in [5]).

For example, in our framework, a special scaling feature occurs when s = ¢/2:
in this case the Gagliardo seminorm and the fractional perimeter have exactly the
same dimensional properties and one may think that, under this circumstance, a
minimizing pair reduces to the characteristic function of a set, consistently with



the fact that the blow-up limits are homogeneous of degree zero. But it turns out
that this is not the case, as next observation points out:

Remark 1.5. Let s € (0,1/2) and o0 = 2s. Fiz a set Eg C R™ with locally finite
o-perimeter, and let ug := XE, — XEg-

Let (u, E) be a minimizing pair in By with respect to the datum (ug, Eg) out-
side Bj.

Then, it is not true that u = xg — xge (unless either E=R"™ or E = &).

We also observe that the problem we consider may develop plateaus, i.e. fat-
tening of the zero level set of minimizers. For instance, we point out that, in
dimension 1 and for s = 1/2, it is not possible that {u = 0} is just (locally) a
single point, unless u is (1/2)-harmonic across the free boundary, as shown by the
following simple example:

Remark 1.6. Let n = 1, s = 1/2 and (u, E) be a minimizing pair in (—1,1),
with u € C([-1,1]) N H'/2(R).

Then either (—A)Y?u = 0 in (=1,1) or the set {u = 0} N (=1,1) contains
infinitely many points.

We recall that the fattening of the zero level set of the minimizers also occur in
other free boundary problems, see in particular Theorem 9.1 in [1].

In the subsequent section, we present some additional results that are auxiliary
to the ones presented till now, but that we believe may have independent interest.
A detailed plan about the organization of the paper will then be presented at the
end of Section 2.

2. ADDITIONAL RESULTS

Here we collect some further results that complete the picture described in Sec-
tion 1 and that possess some independent interest. First of all, we obtain a Weiss-
type monotonicity formula for minimizing pairs (u, E) (see [22] for the original
monotonicity formula in the setting of classical free boundaries):

Theorem 2.1 (Monotonicity formula). Let (u, E) be a minimizing pair in B,, and
let w and U be as in (1.7) and (1.8). Then

Dy (r) :=r" (/ 21_25\Vﬂ\2dX+cn’syg/ zl—U|VU|2dX>
(2.1) B B

_ (S _ g) ro'—n—l/ Z1—25 HQ dH™
2 0B

is increasing in r € (0, p).
Moreover, @, is constant if and only if u is homogeneous of degree s — 5 and U
is homogeneous of degree 0.

We also show that the minimizing pairs enjoy a dimensional reduction property.
Namely, if a minimizing pair is trivial in a given direction, then it can be sliced
to a minimizing pair in one dimension less. Conversely, given a minimizing pair
in R™, one obtains a minimizing pair in R**! by adding the trivial action of one
dimension more. The formal statement of this property sounds as follows:



Theorem 2.2 (Dimensional reduction). The pair (u, E) is minimizing in any do-
main of R™ if and only if the pair (u*, E*) is minimizing in any domain of R™*!,
where u*(z, p41) := u(x) and E* := E x R.

In the study of the local free boundary problems and minimal surfaces, homo-
geneous solutions and minimizing cones are often explicit and they constitute the
easiest possible nontrivial example. In our case, the existence of nontrivial mini-
mizing cones is not obvious, since the example of the halfspace trivializes, according
to the following result:

Theorem 2.3 (Trivialization of halfspaces). Let (u, E) be a minimizing cone, with
u € C(R™) and [u]cvgrny < +00, for some v € (0,1].

If E is contained in a halfspace then u < 0.

Similarly, if E° is contained in a halfspace then u > 0.

In particular, if E is a halfspace then u vanishes identically.

The proof of Theorem 2.3 relies on a suitable nonlocal maximum principle in
unbounded domains that we explicitly state as follows:

Theorem 2.4 (Nonlocal maximum principle in a halfspace). Let D be an open set
of R™, contained in the halfspace {x, > 0}. Let v € L>°(D)NC?*(D) be continuous
on D and such that

(2.2) {(—A)Sv <0 D,

v<0 in D°.
Then v <0 in D.

The rest of the paper will present all the material necessary to the proofs of the
results presented here above and in Section 1. More precisely, in Section 3 we show
some preliminary properties of the minimizing pairs.

In Section 4 we deal with an equivalent minimization problem on the extended
variables and we use it to prove Theorem 2.1. The proof of the dimensional reduc-
tion of Theorem 2.2 is contained in Section 5.

Section 6 contains some glueing results that are interesting in themselves and that
are used to prove the uniform energy estimates of Theorem 1.1, which are contained
in Section 7, and the convergence result of Theorem 1.2, which is contained in
Section 8. The convergence to blow-up cones, as detailed in Theorem 1.3, is proved
in Section 9. Then, in Section 10 we prove Theorems 2.3 and 2.4. Finally, the
proofs of Remarks 1.5 and 1.6 are contained in Sections 11 and 12, respectively.

3. PRELIMINARIES

Here we discuss some basic properties of the minimizing pairs, such as existence
and s-harmonicity.

Lemma 3.1. The minimizing pair exists.

Proof. Let (uj, E;) be a minimizing sequence. By compactness (see e¢.g. Theorem
7.1 in [13]) we infer that, up to subsequences, u; converges to some u and xg,
converges to some xg in L?(Q) and a.e. in . In fact, since u; and Xk, are fixed
outside 2, the convergence holds a.e. in R™ and so, by Fatou Lemma, F(u, E)
attains the desired minimum of the energy. It remains to show that this pair is
admissible, i.e. u > 0 a.e. in ENQ and v < 0 a.e. in E°NQ. Indeed, let x € ENQ.
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Up to a set of null measure we have that x g, (z) — xg(z) = 1. Since the image of
the characteristic function is a discrete set, it follows that xg,(x) = 1 for large j,
hence u;(x) > 0 and therefore u(x) > 0. Similarly, one can prove that u < 0 a.e.
in E€NQ. (]

Lemma 3.2. Let (u, E) be a minimizing pair. If Q is an open subset of either
{u > 0} or {u < 0}, then (—A)*u(z) = 0 for any © € Q. In particular, if
u € C(R™), then (—A)*u(xz) =0 for any x € {u > 0} U {u < 0}.

Proof. Fix x, € Q C {u > 0} (the case Q C {u < 0} is similar). Then there exists
r > 0 such that B,(z,) €  and therefore
= 1mni > 0.
= iy
Let n € C§°(By(z,)) and € € R with |e] < M””HLOO(]R" We define u, := u + en.
Notice that u. = u outside B, (x,) and uc > p — || [|n]| poe gy > 0 in B,(z,).

Therefore u. > 0 in E and u. < 0 in E¢, since the same holds for u. This says
that (ue, F) is an admissible competitor, therefore

0< Flue, E) — F(u, E) = 2¢ // u(y)) (n(x) — n(y)) dx dy + o(e).
R?!L

|£L' _ |n+28

Dividing by e and taking the limit we conclude that (—A)*u(x,) = 0 in the weak
sense, and thus in the classical sense (see e.g. [20]). O

We prove also the following comparison principle.

Lemma 3.3. Let (u, E) be a mzmmzzmg pair and let A € R. If ¢ > A (respec-
tively ¢ < A), then u > A (respectively u < A).

Proof. We prove the case ¢ > A, the case p < A is analogous.
Notice that if (v, E) is an admissible competitor against (u, E), then we have

(3.1) 0<F(v,E)—F(u,E) = //Wn lv(z) — v(|y)2 — Ju(z) — u(y))? ey

€T — y|n+25

Suppose first that A = 0. We denote by @ := max{u,0} and we notice that & =
u>0in F and @ = 0 in E°. Therefore (4, F) is an admissible competitor, and
0 (3.1) holds with v := @, that is

u(z) —u 2 —u(z) —u 2
(3.2) Og//wl () (|z;)_y|n+(23) WF 44y

On the other hand, we have that |a(z) — (y)|?> < |u(x) — u(y)|>. This, together
with (3.2), implies that

a(y)]? — |u(z) — u(y)|? -
//]Rzn |.Z' _ |n+23 dxdy =0,

there exists a set Z C R?" of measure zero
such that |@(x) — a(y)|? = |u(x) — u(y)|? for every (z,y) € R*"\ Z.

which gives that

(3.3)



Now, we claim that
there exist y € R™ and V C R" such that
(3.4) [V| =0, and
(z,7) € R?"\ Z for any z € R™\ V.

Indeed, for any y € R", we define

bly) == /an(x,y) dx.

Then, by Fubini’s theorem, b is a nonnegative and measurable function, and

/n b(y) dy = //11{2»% xz(z,y)dedy = |Z|=0.

Therefore, b(y) = 0 for a.e. y € R™ In particular, we can fix § € R™ such
that b(g) = 0, that is

/ xz(x,y)dr = 0.

This implies that xz(z,y) = 0 for a.e. € R™ (say, for every z € R™\ V, for a
suitable V C R™ of zero measure). This concludes the proof of (3.4).

Having established (3.4), we use it together with (3.3) to deduce that |u(x) —
w(@)]? = |u(z) — u(y)|? for every x € R™ \ V, which means that @(z) — @(y
+(u(x) — u(y)) for a.e. x € R™. Setting cy := 4(y) F u(y), we obtain that a(x) =
tu(x) + cx for a.e. x € R™. Since & = u = ¢ outside 2, we get that u = @ a.e.
in R™, which implies that « > 0. This concludes the proof in the case A = 0.

Now suppose that A < 0. In this case we define @ := max{u, A}. It is not

difficult to see that
(3.5) [a(x) — a(y))* < |u(z) — uly)].

Moreover & = > 0 in E and @ < 0 in E°, which says that the couple (u, E) is an
admissible competitor against (u, E). Therefore, from (3.1) with v := @ and (3.5)

we obtain that
SN SN2 . 2
[ B HP ) ), g
R2n |z —y|n+2s

Now, we proceed as in the case A = 0 and we deduce that u = u a.e. in R", which
implies that © > A and concludes the proof in the case A < 0.
Finally, we deal with the case A > 0. For this, given a function v : R — R we

use the notation
_ 2
E(v) = // M dx dy.
R2n\(0e)2 | — Y[t

We denote by u* the unique minimizer of the Dirichlet energy with datum ¢, that
is

2/, *x\ __ 3 2
E%(u )—21&171118 (v),

where H := {v € H*(R") s.t. v = a.e. in Q°}. We observe that the fact that ¢ >
A implies that

(3.6) w=A>0
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(see Lemma 2.4 in [15]). This means that the positivity set of u* is the whole R".
Therefore, we have that

(3.7) EX(u*) < €*(u) and Pery(R",Q) =0 < Per,(E,Q).
Now, we claim that
(3.8) Per,(E,Q) = 0.

Indeed, suppose by contradiction that Per,(F,€2) > 0. Then,
Per,(E, Q) > Per,(R",Q),
and so, using this and (3.7), we have
F(u*,R") = E2(u*) + Pery (R™,Q) < £2(u) + Per,(E,Q) = F(u, E),

which contradicts the minimality of (u, F). This shows (3.8).
From (3.7), (3.8) and the minimality of (u, F'), we obtain

Fu*,R") = E*(u*) < E*(u) = F(u, E) < F(u*,R"),

which implies that £ (u*) = £ (u). Since u* is the unique minimizer of the Dirichlet
energy with datum ¢, this, in turn, gives that u = u* a.e. in R™. Recalling (3.6)
we conclude the proof in the case A > 0. 0

4. AN EQUIVALENT EXTENDED PROBLEM, A MONOTONICITY FORMULA AND
PROOF OF THEOREM 2.1

In this section, we discuss a problem on the extended variables that is equivalent
to our original minimization problem (this can be seen as a generalization of the
extension problem of [9]).

For this, for any bounded Lipschitz domain  C Rt we set Qo := QN {z =0}
and Q4 = QN {z > 0}. Hence, recalling (1.7) and (1.8), we have the following
characterization of minimizing pairs (u, E).

Proposition 4.1. The pair (u, E) is minimizing in B, if and only if

/ z1*25|vm2dx+cn,s,a/ 70|\ VU R dX

(4.1)
g/ z1_23|Vﬁ|2dX+cn,syg/ 277\ VV2dX
Q4 Q4

for every bounded, Lipschitz domain Q C R"* with Qg C B,., and every functions v
and V' that satisfy the following conditions:
i) V =U in a neighborhood of 012,
ii) the trace of V on {z =0} is xFp — xFe for some set F C R"™,
iii) v = in a neighborhood of 092, and @’{Z >0 a.e. inF, @’{z:o} <0 a.e.
mn Fe.

Proof. From Lemma 7.2 of [6], we know that, for any £ C R™ with U as in (1.8),
and for any F' C R"™ that coincides with E outside a compact subset of B,., we have
that

(4.2)  Per,(F,B,) — Per,(E,B,) =c,, inf /zl“’(|VV|2—|VU|2)dX.
(Q,V)GIU Q+

=0}

The set I, above consists of the couples of every bounded Lipschitz set Q ¢ R*+!
such that Q¢ C B, and every function V that coincides with U near 902 and



10

such that V(z,0) = (xr — xr<)(z). Without loss of generality, we can prescribe
that V' = U outside €2, since this does not change the above integrals.

Similarly, for any function u, with @ defined in (1.7), and any v that coincides
with u outside a compact subset of B,., we have that

_ 2 _ _ 2
[ ol
R2n\(Be)? |z — y|nt+2s

= ¢p, inf / 21—23(\V5|2—|W|2) dx,
Q

(Qo)el,

(4.3)

where I, above consists of the couples of every bounded Lipschitz set  such
that Q9 C B, and every function v that coincides with w near 02 and such
that v(z,0) = v(z). Once again, without loss of generality, we can prescribe
that ¥ = w outside (.

Now we define

go(Qav) = Cn,a/ Zlio(|vv‘2 - |VU|2) dX
Q

(4.4) +
and  G4(Q,7) := Cn,s/ z1‘28(|V6\2 - \Vﬂ|2> dx
Q4
and we show that
4.5 inf - (Q,V inf +(Q,7) = inf - (Q,V (Q,T
( ) (Qy%/n)elog ( )+ (Q,l%elsg ( U) (Q,E,%/n)ezw (g ( )+g ( v))

where Z; , consists of the triplets of every bounded Lipschitz set {2 such that {2y C
B,., every function v that coincides with @ outside a compact subset of 2 and such
that ©(z,0) = v(x), and every function V that coincides with U outside a compact
subset of Q and such that V(z,0) = (xr — xre)(z). To show (4.5), first take
a triplet (Q,7,V) € Zs,. Then, by construction, (Q,V) € I, and (Q,7) € I,
therefore

inf G,(Q,V)+ inf Gs(2,7) <Go(Q,V)+Gs(Q,7)
Q,v)el, (Q,v)el,

and so

inf G, (0, inf G,(Q,7) < inf - (82, s(Q,7)).
(Q,gl)elgg ( V)+(Q}%EISQ( %) (QE}/D)EIS,U (G5 V) +6.(82,7))

This shows one inequality in (4.5) and we now focus on the reverse inequality. For
this, we fix n > 0 and we take (17, V") € I, and (Q?7,9") € I, such that

4.6 inf G, (Q,V inf  Gs(Q,9) > G, (QM", V7 S(Q27 T,
(4.6) n+(len)eIaG( )+(Q}%Elsg( v) 2 Gy ( )+ Gs( o)

)

Let Q7 := QL7 U Q27 Since Q7 contains both QY7 and 927, we have that 7"
coincides with w outside a compact subset of Q7 and V coincides with U outside a
compact subset of Q7. Accordingly, (27,77, V") € Z, , and so

ga(le7 V) + gS(QQW’@U) = G, (V") + G (Q", 1)

= inf - (82, $(Q,7)).
B (G214 Gu(07)

By plugging this into (4.6), we obtain

inf -(Q,V inf G4(Q,7) > inf - (Q,V s(9,7)).
( (Q,gl)elag ( )+ (Q}%elsg @.9) (Q,Rgl)efs,o (6o ) +6:(,7))
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So we take 1 as small as we wish and we complete the proof of the reverse inequality
in (4.5).

Having established (4.5), we can sum up (4.2) and (4.3) (taking F as the posi-
tivity set of u and recalling (4.4)) and obtain
(4.7) F,F)—F(u, E) = inf (Go(Q2, V) 4+ G5(Q,7)) .

(Qvivv)efs,o‘
From this, we obtain the desired result by arguing as follows. First, suppose that
(u, F) is a minimizing pair and take Q, 7, and V as in the statement of Proposition
4.1. We define v(z) := ©(z,0). Then, the triplet (2,7, V) belongs to Zs , and
therefore, by (4.7) we have that
(4.8) Fu, F) = F(u, E) < Go(Q, V) + G5(Q, ).
On the other hand, by item iii) in the statement of Proposition 4.1, we have that
v(z) = 9(z,0) = u(zr,0) = u(x) outside a compact subset of B,. Similarly, by
item i) and ii), we have that (xp — xrc)(x) = V(2,0) = U(z,0) = (xg — X5<)(2)
outside a compact subset of B,. Moreover, v(x) = T(x,0) > 0 for a.e. € F and
v(z) =0(x,0) < 0 for a.e. x € F°, thanks to item iii). As a consequence, v and F'
are admissible competitors with respect to (1.5) and (1.6), hence the minimality of
(u, E) gives that F(u, F) < F(v, F'). By inserting this into (4.8) we obtain
0<Go(2,V) +Gs(2,),

which, recalling (4.4), gives (4.1).
Now, viceversa, suppose that
(4.9)
(4.1) holds under conditions i), ii) and iii) of the statement of Proposition 4.1,

and let (v, F') be a competing pair according to (1.5) and (1.6). We show that, in
this case,
any triplet (Q,7,V) € Z; ., satisfies

4.10
(4.10) conditions i), ii) and iii) of the statement of Proposition 4.1.

Indeed, since (v, F') satisfies (1.5) and (1.6) we have that 7(z,0) = v(x) > 0 a.e. in
F and 9(z,0) = v(z) < 0 a.e. in F°. This and the definition of Z, , give (4.10).

By (4.9) and (4.10) we obtain that (4.1) holds true for any triplet (Q,7,V) € Z; ;.
This means, recalling (4.4), that

Gs(, V) +Gs(Q,7) > 0
for any triplet (Q,7,V) € Z, ,. Consequently, by (4.7), we obtain that
‘7:(1)7F) _f(qu) P Oa

which shows that (u, E) is minimizing and thus it completes the proof of Proposition
4.1. O

Now we address the proof of Theorem 2.1, with the aid of some simple but useful
lemmata.

Lemma 4.2. Let c € R and u: B, \ {0} — R be a function satisfying
Vu(z) -z =cu(z), for anyx € B, \ {0}.

Then u is homogeneous of degree ¢ (more precisely, u can be extended to a function
defined in the whole of R™ \ {0} that is homogeneous of degree c).
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Proof. The function ¢(t) := u(tx) — t°u(x) satisfies the ODE ¢'(t) = §p(t) for
any t € (0,1) U (1,+00), with ¢(1) = 0. By uniqueness we get that ¢ = 0, as
desired. (]

In the following lemma we show that ®,,, defined in (2.1), possesses a natural
scaling.

Lemma 4.3. Let (u, E) be a minimizing pair in B, and let ®,, be as in (2.1). Let
also

(4.11) Gu(r) :=r7" (/ z1’25|VH|2dX+cn7s,g/ zl"VUde> ,
Bt Bt

T

and let (ur, E,.) be the rescaled pair defined in (1.11). Then, for any t > 0,
(4.12) Gu(rt) = Gy, (t) and D, (rt) = @, (t).

Proof. The claim follows by observing that u,.(X) = 72 *u(rX) and U,(X)
U(rX).

ol

With this, we are in the position of proving Theorem 2.1.

Proof of Theorem 2.1. We will prove that

d

%q)u(r) >0 fora.e. 7

We write

where G,, is as in (4.11) and

H,(r) = (s — f) r"_"_l/ 2172552 dH.
2 OBy

Thanks to the scaling properties in Lemma 4.3, it is sufficient to prove the theorem
when r = 1.

Given a small € > 0, we consider a competitor (u®,U¢) for (u,U) defined as
follows

(1—5)5_%ﬂ( X) it X € By,

l1—¢e
w(X) = |X|“”—%ﬂ(|X7| if X € Bf\Bf__,
w(X) if X € (By)e,
and
v(&) ixesr,
Us(X)=1 © \TXO if X € Bf \ Bf__,
U(X if X € (Bf)°.

Since the pair (u, E) is a minimizer and @ and U*® satisfy conditions i), ii) and iii)
in the statement of Proposition 4.1, from (4.1) we have that

(4.13) Gu(1) < Gus (1),
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where u®(x) := u®(x,0). Now, we compute G,(1) and G,:(1) by splitting the
integrals in By into integrals in By" _ and B; \ By __. Therefore, we have
(4.14)
Gu(l):/ z1*25|vﬂ|2dx+e/ 21725 va|? dH"
Bf_. o8Bt

+Cn,s,a / 2170|VU|2dX+5/ ZliU|VU|2dHn +O(€)
By By

1—e¢ 1

=(1-¢)"7Gu(1—¢)+ s/ 27 ([a o+ (@ ?) aH”
oBy

+scn,w/ 270 (U2 4 U 1) dH™ + o(e),
aBf

where, as usual, v, and u, stand for the tangential and the normal gradient of u
on 9B .

To compute G- (1) we notice that @* and U¢ coincide with the rescaling @ /(1)
and Uy /(1_e), respectively, in Bi__, as given in (1.11), hence

Gu-(1) =(1 - 5)"‘”Gu1/<1_5> (1—-¢)+ ecms,a/ AU 2 dH
+
(4.15) o8

2
+ s/ 2172 (|u7|2 + (s - E) u2> dH" + o(e).
o8} 2

Also, from Lemma 4.3 (used here with ¢t :=1 — ¢ and r := 1/(1 — €)), we see that
Gul/(l—g)(]‘ - 5) = Gu(l)
Therefore, (4.15) becomes

Gue(1) = (1— &) 7Gu(1) + ecms,g/ A-|U, 2 aHn
oBy
(4.16)

2
+ 5/ 21728 <|uT|2 + (s - E) u2) dH" 4 o(e).
o8} 2

Plugging (4.14) and (4.16) into (4.13) we obtain
o2
(1-)"9Gu(1) > (1 — )" "Gu(l—2) + e/ A2 [|u,,2 - (s - f) uﬂ aH"
aBf 2

+ scnys_yg/ zl_"|Ul,\2dH" +o(e),
B

1
which implies
(4.17)
2
Gl (1) >/ -2 {|uy|2 - (s - 5) UQ] dH" +cn,s,0/ A0\U, |2 dH
o8} 2 o8}
Now, we claim that

o

(4.18) H (1) = (s - 5) /BB+ 2172 (2T, + (o — 25)0%) dH™.
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For this, we notice that, by using the change of variable X = Y, with z = rw, we
can rewrite H,(r) as
) = (s= )07 [ wt ey ane,
2 o8+

Taking the derivative with respect to r and then setting r = 1 we obtain (4.18).
From (4.17) and (4.18) we deduce that

2
(1) > / 21728 [uVZ — (s — %) uQ} dH"™ + cms,g/ 270U, )P dH™
aB;y oBt

g —28 (o —— — n
_<S_§> /5)81+Z1 * (2u, + (o — 2s)u”) dH"™.

Notice that

(4.19) @/,(1) > / Slo2e (ﬂ - (s - 5) ﬂ)2 aM" +cn’s’a/ A=0\U, 2 dH
aBf 2 B

This implies that ®,, is increasing in (0, p).

Moreover, if @, is constant, then (4.19) and Lemma 4.2 give that @ is homo-
geneous of degree s — Z and U is homogeneous of degree 0. Conversely, suppose
that @ and U are homogeneous of degree s — 3 and 0 respectively. Then, u = u,
for any r > 0, and therefore from Lemma 4.3 we have that ®,(rt) = ®,(¢), which

implies that ®,, is constant. This concludes the proof of Theorem 2.1. ([

5. DIMENSIONAL REDUCTION AND PROOF OF THEOREM 2.2

In order to establish the dimensional reduction property, as stated in Theo-
rem 2.2, we recall a useful gluing result from Lemma 10.2 of [6] (this is indeed just
the translation of such result by some a in the (n + 1)th component):

Lemma 5.1. Fiz R, a > 0. Let « € (—1,1). Let W be a bounded function in
B} c Rt Suppose that

W =0 in a neighborhood of 0Br and / 2*|VW|?dX < oo,
Bf

where X = (z,2) € R"™L. Then there exists a function W = W(x, xp11,2) defined
on B x [a — 1,a + 1] with the following properties:

1
(5.1) WwW=0 ifl‘n+1 <CL—§7
1
(5.2) W=W ifx,41 >a+§a
(5.3) W =0 in a neighborhood of OB}, x [a — 1,a + 1],
_ 0 if Try1 < a,
(5.4) Weaanin0) = {0 gy oS
with
cow) = 2%|VWI|2dX finite and independent of a,

B; Xla—1,a+1]
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where X = (z,%,41,2) € R"2.

From the geometric point of view, Lemma 5.1 states that one can interpolate 0
with a given function W by performing a sharp switch at {z,+1 = a} U {z = 0},
maintaining the energy finite. As a consequence, we obtain:

Corollary 5.2. Fiz R, a > 0. Let a € (—1,1). LetU and V be bounded functions
n BE C R with U =V in a neighborhood of OBr and

/ z”‘<|VZ/{\2 + |VV|2)dX < o0,
By

where X = (x,z) € R"™L. Then there exists a function Z = Z(x,T,1,2) defined
on B x [—(a+1),a+ 1] with the following properties:

Z IS even in Tp41,

1
Z =Y if |Tpq1] <a-—g,
Z =U in a neighborhood of OB} x [—(a +1),a + 1],

_ V(@0 iflzasal €[0,d],
Z($7$n+170) - {Z/{(I,O) ’Lf |I’n+1| € (a7a + l]a

(5.9) c(2):= / 2%V Z|?dX finite and independent of a,
B} xla—1,a+1]

where X = (x,Tp41,2) € R"T2,

Proof. Let W be the function obtained by applying Lemma 5.1 to the function
W :=U -V, and let W(x, 241, 2) := W(x, |n41], 2). Then let

I W(z,xpng1,2) + V(2,2) i |zpga] € (a— 1,0+ 1],
2@ i1, 2) = { V(z,z) if |2p41] € [0,a — 1].

We remark that (5.5) holds true by construction, while (5.6) and (5.7) follow from
(5.1) and (5.3) respectively. Also, (5.8) is a consequence of (5.4). O

With this, we are ready for the proof of Theorem 2.2:

Proof of Theorem 2.2. If (u, E) is a minimizer in R"™, then (u*, E*) is a mini-
mizer in R"*!: this follows easily from Proposition 4.1 by slicing, using that for
a function (x, 2,41, 2) one has that |V9]? > |Vx0|? for any fixed 2,41, where
X = (z,2p41,2) and X := (z, 2).

Now we suppose that (u*, E*) is minimizing in R"*! and we show that (u, E)
is minimizing in any domain of R™. To this extent, we use again Proposition 4.1.
For this, we fix a competitor triplet V, © and Q := Br C R"*! as prescribed by
Proposition 4.1 (in particular, we also have a set F' given in item ii) there), and
our goal is to show that (4.1) holds true in this case. The idea is to construct a
competitor in one dimension more with respect to (u*, E*) and thus to use the
minimality of (u*, E*) for this competitor. The details of the computation go as
follows. Fix a > 0, to be taken arbitrarily large at the end of the argument. We take
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Zs to be the function constructed in Corollary 5.2, applied here with a := 1 — 2s,
U:=7and V:=7. By (5.6),

/ 21728 Vy Z,2dX
B;X[f(afl),afl]

/ 21728 Vw2 dX
B} x[—(a—1),a—1]

= 2(a—1)/ 21725 Vx|2dX,
B+

R

since ¥ does not depend on x,1. Therefore, by (5.5),

/ Zl—25|VZS|QdX
B x[—(a+1),a+1]

= 2/ 27|V ZPdX 4 2(a — 1) / 2172\ Vo)?dX.
B x[a—1,a+1] Bt

R

(5.10)

Similarly, one can define Z, to be the function constructed in Corollary 5.2, applied
here with «:=1— 0, U :=U and V := V. In analogy with (5.10), we obtain

/ ATV Z,|PdXx
B} x[—(a+1),a+1]

= 2/ TV Z,2dX + 2(a — 1)/ 77|V 2dX.
B;X[afl,aJrl] B,

R

(5.11)

Now we point out that

Z,, Zs and Bg x [—(a+1),a + 1] € R"*? are an admissible triplet

(5.12) ) ) .
(with respect to (u*, E*), as prescribed by Proposition 4.1).

For this, we observe that Z, = U and Z, =u on 9(Bg % [~(a+1),a+1]), thanks
to (5.7) (the first of these observations takes care of item i) in the statement of
Proposition 4.1, while the second is involved in item iii)).

Furthermore, by (5.8), we see that Zg‘{Z:O} = Xj — Xje, Where

o <Fﬂ {Zn1 < a}) U (Em (1 > a}),

and
if x,41 <a,

7|
— {z=0}
Zs|{z:0} B {u|{z_0} if xp41 > a.

Accordingly, ZS|{Z:O} > 0 ae. in F and ZS|{Z:O} < 0 ae. in F°. This proves

(5.12).
Using (5.12) and the minimality of (u*, E*), we deduce from Proposition 4.1 that

A7 VA ?dX + cnso / A7\ VU*PdX
B x[—(a+1),a+1]

< / 21_25|VZS|2dX+cn7S,g/ ATV Z,PdX,
B;X[f(a+1),a+1] B;X[f(a+1),a+1]

where @ (2, Tpt1,2) := W (z,2) and U(x,2p41,2) := U(x, z). Thus, we can com-
pute the integrals on the left hand side in the (n+ 1)th variable and use (5.10) and

/B;x[—(a+1)7a+1]
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(5.11): we obtain

2(a +1) / A2V PdX +2(a+ 1V)enso / 70|\ VUAPdX
B+ +

R BR

<2(a—1) / 21728 Vo2dX + 2(a — 1)cn,s,c,/ A7\ VYV 2dX + O(1),
B, B,
where O(1) is a quantity independent on a (recall (5.9)). Hence, we divide by 2a
and we take a as large as we wish: we conclude that

/ 21_25|Vﬂ*|2dX+cn757g/ VU PdX
Bt +

R BR
< / 21 7%IVuPdX + cn,w/ 2177 VVdX.
B} B}
R R
By Proposition 4.1, this says that (u, F) is a minimal pair in R"™, as desired. = O
6. SOME GLUEING LEMMATA

Here we present some results that glue two admissible pairs together by estimat-
ing the excess of energy produced by this surgery.

Lemma 6.1. Let § € (0,1) and € € (0,1/4). Then there exists a function
¢ = ¢ : ]RT'1 — [0,1]

such that
(6.1) ¢(x,2) =0 for any (x,2) € Bf__,
(6.2) ¢(z,2) =1 for any (z,z) € Ry \ B,
(6.3) ¢(x,0) = xgn\B, () a.e. z€R",
(6.4) and / PIVe(x,2)|? dedz < g,
]RiJrl &

for some C > 0.
Proof. Let ' := ¢/2 and, for any X = (z,z) € R}, we define

0 if | X|<1-¢,
o1(X) =< (I X|—1+¢€)/(2¢) if|X|e[l-¢,1+¢),
1 if [X]|>1+¢.
Let also
0 if |[2] <1 — 2,
63(X) = { (jal = 1+2)/(22) iflal € 1 -2, 1+2),
1 iflg] 21+2
and

_Jz/e iz e(0,€),
n(X) '_{ 1 if z>¢.

¢ :=n¢1+ (1 —n)p2.
We remark that n‘{z:O} =0, thus

We also set

¢|{z:0} = ¢2’{z:0} = XR"\By s
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which proves (6.3).
Now we prove (6.1). For this, we fix X € R}, with [X| < 1—e=1-2¢.
Then ¢1(X) = 0, hence

(6.5) ¢(X) = (1 = 1(X))P2(X).
Now, if |z] < 1 — 2z, we have that ¢2(X) = 0, and therefore ¢(X) = 0, that

proves (6.1) in this case. Accordingly, we may suppose that || > 1— z. So we have
that

1—(1—2)2=22 _1—|2]?=2%2 1—-|X]?_1-(1-2)?% _
= = > >e,
2 2 2 2
and so n(X) = 1. As a consequence of this and (6.5), we obtain that ¢(X) = 0,
and this establishes (6.1).
Now we prove (6.2). To this goal, we fix X € R} with [X|>1+e=1+2¢
In this case, we have that

(6.6) 1 (X) =1
Now, if z > £’, we have that n(X) =1 and so
P(X) =1 (X) =1
Thus, we can assume that z < ¢’. In this case, we have that |z|? = |X|? — 2% >
(1 + 2)%, which implies that ¢(X) = 1. Combining this and (6.6) we conclude

)
that ¢(X) = n(X) + (1 —n(X)) = 1, which proves (6.2).
Now we prove (6.4). For this, we first observe that

Ve (X) = ( ) X(1—z 142 (12])

z 2z

x 1—|z|
2z |x|” 222

and therefore
(67) Vo201 < & w1 (),
for some C > 0. Moreover

Vol < < xamer e (XD
As a consequence

C‘{|X\€(1—s’,1+5’)}’ o

(6.8) [ A vapax < i -
R1+1 & g
up to renaming C' > 0. Also, ¢ = ¢ if z > €/, therefore we deduce from (6.8) that
C
(6.9) / PIVe2dX = P|\Vei PdX < —.
{z>¢} {=>¢'} €

Furthermore, if z < ¢’ and | X| > 2, we have that ¢;(X) = 1 and |2|? = | X|?> — 22 >
(1+ 2)?, that gives ¢o(X) = 1.
As a consequence, ¢; — ¢ = 0 if z < &’ and |X| > 2, therefore

C
/ 2P|V ¢1 — ¢af? dX < j/
{z<e’} &7 JlzgeIn{Ix|<2}
C

<= Pdz = CeP 1.
& Jiage}

P dx
(6.10)
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In addition, using (6.7), we obtain that

/ Zﬁ|v¢2|2dX <C ZB*Z ax
(6.11) {z<er} (=<} Jale(1—2, 1+2)}

<C P dz = CeP.
{z<¢}
Notice also that

Vo =Vn(¢1 — ¢2) +nVe1 + (1 —n)Vs.

Consequently, by gathering the estimates in (6.8), (6.10) and (6.11) and using Young
inequality, we deduce that

/ PIVo|?dX

{z<e'}

< c /{ (190 01 = 6ol 4 17V 1 ]+ (1= )|V 0af”) aX
z<Le’

C
< 5
€
up to renaming C. This and (6.9) imply (6.4). O

Next we give a glueing result: namely, given any admissible pair in By, we glue
it to another admissible pair outside Bj, keeping the energy contribution under
control.

Lemma 6.2. Let ¢ > 0. Let (u;, E;), i € {1,2}, be admissible pairs in Ba, and
let w; and U; be their extensions according to (1.7) and (1.8). Let also ¢ be the
function introduced in Lemma 6.1.

Then there exist F CR™, 7 : IR?_H — R and V : Riﬂ — R such that

(612) FﬂBl :El ﬁBl and F\B1:E2\B1,

and v and V satisfy the properties listed in Proposition 4.1, namely

i) V. = Us in a neighborhood of 88;/2,
ii) the trace of V on {z =0} is xFp — XFe,

iii) ¥ = uy in a neighborhood of@B;r/Q, and Ul{.—y = 0 a.e. in F and 0| —py <
0 a.e. in F°.

Also,
(6.13)
/ 272 (Vo] — |V |?) dX g/ 27|V |? — [Vael?) dX
B3/, Bf
+Cs‘2/ 27250 — w2 dX + C 277 (V| + |Vae|?) dX
Bi:»s\Br—s Bi{»s\BfLE
and
(6.14)
/+ 270 (IVV]E = [VU?) dX < /+ 270 (VUL = |[VU,|?) dX
3/2 81
+C A7V UL — Us|?dX + C 270 (VUL + | VU, |?) dX

+ + + +
Bl+s\8175 Bl+5\617£
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for some C > 0.
Proof. We set

With this we have established (6.12).
Now, we define
Wy = min{Ts, 75 }.

Let also m1,m2 € C°(R"1,[0,1]), with

mX)=1if |X|<1—¢,
mX)=0 if | X|>1-¢/2,
n(X)=1if | X|<1+¢/2,
n2(X) =0 |>1+e

We define!
Ui =Wy 4 (1 — ) We + (1 —12) T
and U =04 —U_.
By construction, v = us near 88;/2
Also, if x € F, then x € F1U E», and so either @y (x,0) > 0 or u2(x,0) > 0 (up to
sets of zero measure), and then either @] (x,0) = 0 or U, (z,0) = 0, so w_(z,0) = 0.
This gives that for a.e. x € F

_(z,0) = n1(x,0) n2(x,0) Uy (z,0) + (1 — na(z, 0))E5 (z,0),
and so
(6.16)
o(x,0)
=m(z,0)n2(z,0) Ui (z,0) + (1 — n2(x, 0)) Uz(,0) + m2(z, 0)(1 — mi (2, 0)) W (z,0)
> (x,0)n2(z,0)uy (x,0) + (1 — n2(x,0)) Ta(x, 0).
Now, for a.e. © € FN By = E1 N By we have that n9(2,0) = 1, thus (6.16) implies
that
o(x,0) = n1(z,0)uy(x,0) = 0.
Similarly, for a.e z € F'\ By = E5 \ By we have that 7, (z,0) = 0, thus (6.16) gives
that
9(xz,0) = (1 — na2(x,0)) wa(x,0) > 0.
This shows that, for a.e. € F, 5(x,0) > 0.

Conversely, if x € F¢, then z € E{ U ES and so either @y (x,0) < 0 or ua(z, )
0 (up to sets of zero measure), that is either u; (z,0) = 0 or u;( 0) =

w4 (2,0) = 0. As a consequence, for a.e. x € F°,

U4 (2,0) = m(z,0) m2(x,0) [ (,0) + (1 — n2(x,0)) T3 (x,0),

N

SO

1We put + as a subscript (rather than a superscript) in 4+ and W4 not to confuse in principle
the notation with the positive/negative part of a function.
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and so
o(z,0)
= 771(1570) 772('7“‘70)E1($70) + (1 - 772(‘7"’0))52(1'70) - 7]2(5670)(1 - 771(*%"0))@*(1'70)
< 771(55,0) 772(1’, O) Hl(x’o) + (1 - 772(5% O))EQ(xv 0)

In particular, for a.e. & € F¢N By = E{ N Bj, we have that n:(x,0) = 1, so
(z,0) < my(x,0)Ty(x,0) < 0, and for a.e. © € F\ By = ES\ B;, we have that
M (z,0) =0, so v(z,0) < (1 —n2(z,0))uz(z,0) < 0. This shows that v(z,0) < 0 for
a.e. x € F°, thus completing the proof of iii).

Now we prove (6.13). For this, we notice that

Vor = mne Vg +m(l — ) Vg + (1 —n2)Vay
+V (m ) TE +V (n2(1 —m)) Wa + V(1 — n2)as5,
SO
Vo = 71 M2 Vuy, + 172(1 — 7]1) (VEJF — VE_) + (1 — UQ)VHQ
+V (mm2) w1 +V (21 —m)) (Wy —w-) + V(1 — n2)Ta.
Now we notice that
V(mm)uf +V (2l —m))wy + V(1 —n2)uy
= (mVm+Vmn)tui +((1—m)Vne — Vi) Wy — Vo Uy
= (muf + (1 —n)wy —a3) Vg + (@ —wy ) n2 Vi
_ Sl
= O ]

= O (671|ﬂ1 - HQD XB?;E\BT Ea

and similarly for the negative parts. Hence,
Vi = xprVu+ (771 N2 — XB;> Vi, + (1 —12) Vg
+n2(1 = m1)O (V| + [Vaz|) + O (e ur — u2l) X5t, \B}.
That is
Vol < Xt [V + (1= m2)*| V|
O, mt (IVBF + V) + Oxgy, gy =7l — 0l
for some constant C' > 0. Since ¥ = Uy outside B, we conclude that
[ (vel - ) ax
3/2

2172 (Vo] — |V |?) dX

1+e

I,
J

< 272 (Vs |? — [Vael?) dX + C 217 (V| + |V |?) dX
BT BT+E\BT76
+Cs‘2/ 272wy — wp|? dX,
Bi:»s\Bf;E

that concludes the proof of (6.13).
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Now, let ¢ be as in Lemma 6.1, and set xg := xg — Xge. We define V :=
(1 —¢)Uy + ¢Ua. We observe that, for a.e. x € R", ¢(x,0) = xgn\p, and therefore

(6.17) V|{Z:0} = XBiXE, T XR"\B,XE2 = XF»

where F' is defined in (6.15). This establishes ii).
Also, ¢ =1 outside BL_E hence

(6.18) V = U outside B,

thus proving i).
Now we show (6.14). We observe that

VV =VU; + (Uy — U1)Vo + ¢V (Us — Uy).
Therefore, by Young inequality we have
V< C (VP IU = Uil* + VUL + VU [?)

for suitable C' > 0. Hence, integrating over By, .\ By_. we get

27\ VVRdX
B \BY .

(6.19)
< c/ A (VORUs — U2 + VU2 + [VUL[?) dX,
B+

+
1+5\Bl—€

for some C' > 0. Furthermore, V = U; in Bf" _. Thus, using (6.18) and (6.19) we
obtain that

/+ A7V 2 dX
B

3/2

- / A7\ VU 2 dX +/ A7\ VU2 dX +/ A70\VV P dX

BT_E 33/2\81+5 BT—#s\BT—s
< / A0 VUL P dX +/ VUL ? dX —/ ATV |2 dX

Br ;/2 BT‘FE

+C 20|V |Us = Ui + VUL + VU [?) dX.
BT+£\B;F75
This implies (6.14) and concludes the proof of Lemma 6.2. O

Lemma 6.3. Let Fy, E; CR™ and F := (Ey N By) U (Ey \ By). Then
(6.20) FNB =E NB, and F\ B, = E;\ By,

and

Per, (F, B3/2) — Per,(E2, Bz/2)

6.21
( ) g PGI‘G(El,Bl) — PG‘I‘G(EQ,Bl) +£(Bl,(E1AE2) \Bl)

Proof. Tt is clear that F satisfies (6.20). Now we prove (6.21). For this, we use
(6.20) to see that

(6.22) Per,(F, By)3) — Per,(Es, By/y) = Per,(F, B1) — Per,(E2, By).
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Furthermore, (6.20) also gives that

Per, (F, B1) — Per,(E1, B1)
=L(FNB,F°NBy)+ L(FNB, F°NBY)+ L(F°N By, FNBY)
—L(E1NBy,E{NBy) — L(E, N By, E{ N BS) — L(ES N By, By N BY)
= L(Ey N By, E{N By) + L(E1 N By, ESN BY) + L(ES N By, By N BY)
—L(EyN By, E{N By) — L(E, N By, E$ N BY) — L(E{ N By, By N BY)
= L(Ey N By, ESNBY) — L(E1 N By, E{ N BY)
+L(E{N By, ExN BY) — L(E{ N By, E1 N BY)
< L(E1N By, (Bv\ E2) NBY) + L(EfN By, (B2 \ E1) N BY)
< L(By, (E1\ E2) N BY) + L(B1, (B2 \ E1) N BY)
= L(By,(F1AEs) N BY).

By combining this and (6.22), we conclude that

Perg(F, Bg/g) — Perg (EQ, Bg/g)
= Per,(F, By) — Per,(Es, By) + Per,(E1, B1) — Per,(E1, By)
< Per,(Eq, B1) — Pery(E2, B1) + L(B1, (E1AEs) N BY),

which establishes (6.21). O

7. UNIFORM ENERGY BOUNDS FOR MINIMIZING PAIRS AND PROOF OF
THEOREM 1.1

Here we prove that if (u, F) is a minimizing pair in some ball then its energy
in a smaller ball is bounded uniformly, only in dependence of a weighted L? norm
of u. For this, we start with some technical observations:

Lemma 7.1. Letn € C§°(B1) and u: R™ — R be a measurable function. Then

2 In@) —n(@) |u(y)
T [ 0 drdy < C

2
|z — y|n+2e re 14 [y[" T2
Here C > 0 only depends on ||n||c1(wny, n and s.

Proof. We suppose that the right-hand side of (7.1) is finite, otherwise we are done.
Then we observe that, for any y € R",

In(z) —n(y)|? min{4|\n||2Lm(]Rn), ||V77||%oc(1an)|$ -’}
T gz 4TS dx
(7.2) no |z =yl

. o =y

min{1, |2|?}

< C |Z|n+25

dz < C,
Rn

for some C' > 0 (that may be different from step to step). Similarly, we have that

—n(y)[? V17 e gyl — 9l
i / ‘n(x) Zi%)‘J dz < Sup / — 73+25‘ dx
(7 3) yEBz\B1 B4 |x - y| ° y€B2\31 B4 |‘T" - y| -

ks

<C dz < C.

Bs |Z‘n+25
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Furthermore, if y € R™ \ By and x € By, we have that |z —y| > |y| — |z] = |y|/2,

therefore
[n(z) = n(y)? n2s dz
/ |Z‘ — |n+25 dx < 4”77”%00(]11") -2 2 | |n+25
(7. L] m Iy
<W for any y € R™ \ Bo.

Accordingly, using (7.2), (7.3) and (7.4), we see that

[n(z) —n(y)
// u(y))? o — g dx dy
R2m\(Bf)? Ty

dy> ;

Corollary 7.2. Let (u, E) be a minimizing pair in By. Then

+// |u(y)‘2 \U(x) - 77(3/)|2 dxdy
B1 x(R"\ Bz) |z — y|+2s

2
uly
< of [ wwPa+ [ uwPas [ S0
B, B2\B; R\ Bs |yl

that gives (7.1).

y)|?

In(x) —n(y)”

|z —y|nt2

_ 2
[ Ml o b,
R2n\(B)2 | — Y[R re 1+ [y[n+2s

for some C' > 0 only depending on n and s.

dx dy

Proof. Let n € C§°(Bz) with n = 1 in By. Let ¢ € R and u. := (1 + en?)u. We
observe that the sign of u. is the same as the one of u, as long as ¢ is sufficiently
small, and so (u., E) is an admissible competitor. Therefore F(ue, E)—F (u, E) > 0.

Dividing by € and taking the limit as ¢ — 0, we obtain that

(u(z) — u(y)) (n*(@)ulz) —n*(y)uly))
(7 / /1R2"\<B;)2

|z —y|rt2e

Moreover

dx dy = 0.
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Also, if we use the symmetry of the kernel, we see that

// In(z) +n(y)|*|u(z) u(y)lzdxd
R2n\(Bg)? |z — y|mt2e /

2
< 2// (n*(z) +n*(y \UH —u(y)] ddy
R2n\(Bg)? |z —y[r+2e

2 _ 2
_ 4// n (:c)’u(x)n+gs(y)| dx dy.
R2n\(BS)? |z —yl

Consequently, if we integrate (7.6) and we use the latter estimate, we conclude that

/ / (u(z) — u(y)) (*(@)ulz) —n*(y)uly)) g dy
]R21L\(BC)

|z —y[nF2

3
—

n? (@) |u(x) —u(y)[* = En(@) +n@)|"|u(z) — uw)|” - su*(y)
g //]R2"\(B§)2 |z — y|m+2e

b0’ (@)|u(z) —u(y)|” 82 (W)|n() —n@w)|*
g //IR?”\(Bg)Z |z — y|nt2s dr dy.

By inserting this into (7.5) and using that 7 =1 in By we obtain

2 2 _ 2
M. et e ff I e,
Bi xR™ |33 —yl R2n\(BS)? |z — y| 2

By interchanging the variable we obtain a similar estimates with R™ x By as domain
in the left-hand side, and therefore, by summing up

_ 2 2 _ 2
/I [u@) W ) g < 30 /[ Wl — )l g
R2n\(Bp)2 T = y[mTe Ree\(Bg)2 € — y["t

This and Lemma 7.1 imply the desired result. (Il

Now we are ready for the completion of the proof of Theorem 1.1:

Proof of Theorem 1.1. We use Lemma 6.3 with F; := R™ and F, := F, and we
obtain that there exists F' such that F'\ By = F'\ By and

(7.7) Per, (F, Bg/3) — Pery(E, B3/y) < — Perg(E, By) + L(B1, BY).

In addition, we take n € C§°(Bs/2,[0,1]) with n = 1 in By, and we define v :=
(1 = n)u. We observe that v = u outside Bs,5. Also, the positive set of u and v
are the same and v = 0 in By. This implies that v > 0 in F and v < 0 in F°,
thus (v, F') is an admissible competitor in Bg/,, which gives that

|v ) —v(y )|
ﬁdiﬂd'y+ Pera(F B3/2)
]R2"\(B§/2)2 |.T— |
(7.8)

|u ) —u(y )| drd
— s dedy — Per,(E, B3/3) = 0
]R2n\(B§/2)2 |$ - |
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Now we observe that
lo(2) — v(y)|* = |1 = n@))ulz) — (1 —n(@)uly) + (1 —n(@)uly) — (1 - (y))uy)|”
<2((1 = n@)’Ju(@) - uw)|” + w2 @)|n) - nw)[*).

Integrating this inequality and using Lemma 7.1 and Corollary 7.2 we obtain that

2 2
v(z) —v
// il nS—yQ)J dedy < C |U(y)n|+2s dy,
R27\(BS,)? |z — y| g 1+ [yl
for some C' > 0. This, (7.7) and (7.8) imply that
2

2
Og// o) e = o) —ww)* b e o
R27L\(B§/2)2

|.Z' _ y|n+25
2
|u(y)? // |u(z) — u(y)|
SC’/ ———dy — ———"" dxdy — Per,(E,B;)+ C,
re L+ [y T2s R27\(BS,,)? |z — y[n+2s

up to renaming C, and this implies the thesis of Theorem 1.1. (Il

8. CONVERGENCE RESULTS AND PROOF OF THEOREM 1.2

In the sequel, given a € (0,1) and r > 0, we denote by L2 (B,5) the weighted
Lebesgue space with respect to the weight z'~2¢, i.e. the Lebesgue space with norm

ol 2 st = ¢/ S-2afy(X)2 dX

Now we study the convergence of the energy for a sequence of minimizing pairs.
For this, we first obtain a useful “integration by parts” formula.

Lemma 8.1. Let R > 0. Let u : R™ — R be such that |u(z)| < C|z|*, with o < 2s
and C' > 0. Suppose that

(8.1) (=A)*u =0 in BrN{u # 0},

and let @ be as in (1.7). Assume also that W is continuous in @ and
(8.2) |Va| € LE(Bf).

Then

(8.3) /}RTI 2172V - V(ug) dX = 0

for any ¢ € C§°(BY,).

Proof. By Sard’s Lemma, we can take a sequence of ¢ \ 0 such that Sy := {u = +e}
is a smooth set in R, So we write BLN(9{[@| > €}) = S1US>, with Sy C R™x {0}
and |u(X)| > ¢ for any X € S3. Accordingly, from (8.1), the quantity z'=2¢0,u
vanishes along S; and therefore, by the Divergence Theorem,

/ div (2! u¢Va) dX = —/ 720 p 0, udH™ = :Fa/ 2172500, 0 dH™
{|E‘>E} S1 S1

= Fe / div (2! 7% ¢Va) dX = Fe / 2172V - VudX.
{[a|>e} {

[w|>e}
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From this and (8.2) we obtain that

lim 2173V (Ug) - VudX = lim div (2! **u¢vVa)dX = 0. O
NS fa>ey SN0 Sl >ey

The importance of the “integration by parts” formula in (8.3) is exploited in the
next observation:

Lemma 8.2. Let u and w be as in Lemma 8.1. Then

(8.4) / 72 div (zl_QSVqS) dX = 2/ A2 |V dX.
Bf, By,

for any ¢ € C§°(Bgr) that is even in z.

Proof. Since ¢ is even in z, we have that d,¢(z,0) = 0 and so for any z > 0 we
have that

0:(x,2) = 02¢(, %) z,
for some Z € [0, 2] and so
lir% 217250, ¢(x, 2) = liII(l] 2272592 (x,2) = 0.

From this and the Divergence Theorem, we obtain that
(8.5) / div (zl_2sﬂ2(X) v¢(X)) dX = 0.

B,
Furthermore a direct computation shows that

@ div (2172Ve) = 22172 6 |Val = div (2127 V) - 22172 Va - V(6n).

Consequently, if we integrate this identity and make use of (8.3) and (8.5), we
obtain (8.4). O

Lemma 8.3. Let (up, Eyn) be a minimizing pair in Bs, and let U, be the exten-
sion of uy, as in (1.7). Suppose that u.;, converges to some u in L°°(B3) and Uy,

converges to some W in L°°(BY ), with @ continuous in IR?_H, being U the extension
of u as in (1.7). Then

lim 21728\ Vi, (X) 2 dX :/ 2172\ V(X)) 2 dX.
Bf

m——+00 Bl+
Proof. First we observe that, for any ¢ € C§°(B5), we have that
(8.6) / 272V, (X) - V($T,)(X) dX = 0.
R

To prove this, we denote by U, the extension of E,, according to (1.8), and we
set Uy, := (14 &¢)Um, with |e] < 1 to be taken sufficiently small. We have that the
positive set of 4, coincide with the one of W,,, and (4,,, Uy,) is a competing pair
with (@,,, U,,) in Proposition 4.1.

As a consequence, the minimality property of (U, U,,) gives that

I,

2

= 25/ 2175V, (X) - V(0T ) (X) dX + o(e),
By

0

N

z1‘23|Vﬂm(X)|2dX—/ 21728\ V,, (X)) 2 dX
Bf
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which implies (8.6).

Now we check that @ satisfies (8.1) and (8.2) (this will allow us to exploit
Lemma 8.2 in the sequel). For this, we take p € Bpg, with u(p) # 0. So there
exists r > 0 such that u # 0 in B,.(p). By the uniform convergence, for m suf-
ficiently large we have that w,, # 0 in B,(p). Then, by minimality and Lemma
3.2, we know that (—A)*u,, = 0 in B,.(p). So, by uniform convergence, we obtain
that (—A)®u = 0 in the weak (and so in the strong) sense in B,(p). This shows
that u satisfies (8.1).

Moreover, given any ¢ € C5°(By ), if we apply (8.6) with ¢ := 1) we obtain that

0= / 221724 Wy, Vi, (X) - Vi dX + / 72592 |V, |? dX.
R R
+ +
Thus, using Young inequality, we see that
/ 217 |V, [P dX < c/ 217w, |Vl dX,
Ri+1 R1+1

+

for some C > 0. In particular, fixing ¢ with ¢» =1 in 827(1/10

(8.7) /B )

2-(1/10)

) we obtain that
2172%va,, 2 dX < C / A725752 dX <1+ C / A2 dX,
B B

for large m, up to renaming C'. As a consequence, we may suppose that
(8.8) 2(1=29)/2y7,, converges to some ® weakly in LQ(B;(UN)).

We claim that

(8.9) P = 172/2y7g
in the weak sense. Indeed, fixed any ball B C B;—(l/lo) such that B C lRT'l, for

any ¥ € C§°(B,R"™) we have that
/ div (@, ¥)dX =0,
B
due to the Divergence Theorem, therefore
/ Vi, - VdX :/ div (@, ) dX —/ Uy, div U dX = —/ Uy, div ¥ dX.
B B B B
Also, by (8.8), we have that

lim Vi, ¥dX = lim z(l_QS)/2Vﬂm-(z(25_1)/2\11)dX:/@-(2(25_1)/2\Il)dX.
B

m——+oo B m——+oo B

On the other hand, by the uniform convergence of u,,, we have that

lim ﬂmdiV\IldX:/ﬁdiv\IldX.
B

m——+o0 B
These observations imply that
/ P (2272 dX = —/ udiv ¥ dX,
B B
that is Vi = 2(2=1/2® in B, in the weak sense, which concludes the proof of (8.9).
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From (8.8) and (8.9) we conclude that z(1=2%)/2V7,, converges to 2(1=2)/2v7
weakly in L? (B;_(l/w)). As a consequence, recalling (8.7), we obtain that

/ A2|Vg2dX = lim 21*28(|Vam|2 — |V, — vm?) dX
3;7(1/10) metee 5;7(1/10)

< lim z1—25|Vam|2dX<1+c/ A% dX.
m— 0o Bt B+
2—(1/10) 2

This proves that @ satisfies (8.2) (up to renaming the radius of the ball).
Therefore we are in the position to apply Lemma 8.2, which gives that

/ 7 div (zl_QSqu) dX = 2/ 21725 3 |Va? dX,
By By
for any ¢ € C§°(Bz) that is even in z. On the other hand, (8.6) implies that
/ w2, div (21_23V¢) dX = 2/ 2172 |V |2 dX,
By By

for any ¢ € C5°(B2) that is even in z. As a consequence, if we take ¢ > 0 and ¢
with image in [0, 1], such that ¢ = 1 in B; and ¢ = 0 outside Bj4., we obtain that

m——+o0 m——+00

lim 2/ 21725 |V, )2 dX < lim 2/ 21725 0|V, |2 dX
B BY

= lim w2, div <z1—2sv¢) dX = /

m— 00 B; B;

@ div (zl_QsV(]ﬁ) dX

:2/ 2172 ¢ |Vl dX.
B+

1+e¢

Since € can be taken as small as we like, we obtain

m——+o0

(8.10) lim 2/ 21725 |V, |2 dX < 2/ 21728 |\ va)? dX.
B B

1

On the other hand, if we take ¢ > 0 and ¢ with image in [0, 1], such that ¢ = 1
in By_. and ¢ = 0 outside B, the argument above gives

lim 2/ 217\ VT, |*dX > lim 2/ 21725 0|V, |2 dX
B By

m——+o0 m——+00

Tim @2, div <21_25V¢> dX = / _a@div (z1—23v¢) dX

m— 400 B; 82

:2/ 27 ¢ | Val? dX > 2/ 2172 |\ val? dX,
BY B

l1—e¢

and so, taking € as small as we like,
lim 2/ 21728\ V|2 dX > 2/ 21728 | val? dX.
mroe 5

This and (8.10) complete the proof of Lemma 8.3. O

Now we can complete the proof of Theorem 1.2:
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Proof of Theorem 1.2. The first relation in (1.10) is a direct consequence of Lemma 8.3.
As for the second, it follows as in Proposition 9.1 of [6] (using Lemma 6.3 to control
the fractional perimeter in Theorem 3.3 of [6]). This completes the proof of (1.10).

Now, in order to show that (@, U) is a minimizing pair in BDQ, we take
(8.11) a competitor (7,V) for (w,U) in B;r/?,

according to Proposition 4.1, and we claim that

/ 272|\Va? dX + cnso / A79\VU P dX
B B
(8 12) 1/2 1/2
< / A72|Vo2dX + cnso / 2 T7IVV P dX.
B B
For this, we use Lemma 6.2 (with (@y,U;) := (7,V) and (d2,Usz) := (Um, Un)) to

find a pair (U, Vi) such that T, = @, and V;;, = U, in a neighborhood of 8[3;'/2.

Hence, (U, Vin) is a competitor for (@, Uy,) in B;/Q according to Proposition 4.1,
and so

/ A2V, 2 dX + enso / A70\VU,, 2 dX
BT BT
(8 13) 3/2 3/2
g/ 272 VO, P dX + cnso / 170\, 2 dX,
BF BT

3/2 3/2
since (U, Upy,) is a minimizing pair.
Moreover, thanks to (6.13) and (6.14), we have that
/ 2TV, P dX + o / 21|V, |2 dX
+ +

3/2 3/2

g/ z1_25|Vﬁ|2dX+cn7s7g/ A7\ VV |2 dX
B B

(8.14) !
+/ 2B VU2 dX + Cnso / 217V, |? dX
33}2 33}2
—/ 2BV P dX = cpso / 2170 VUR? dX + cm(e),
Bf Bl
where
enle) = =2 [ BT [P dX 4+ C 2172 (VB2 o+ Vi 2) dX
BT{»E\B;r—e BT+5\BT75
+C 2OV = Un|?dX + C 270 ([VVP + VU [?) dX,
BT+5\81+—5 BT+E\BT75

with ¢ := ¢. as in Lemma 6.1. Putting together (8.13) and (8.14), we obtain that

/zl—%wamFdXJrcn,s,a/ 27V, 2dX
Bf B

(8.15)
</ z1_23|V6|2dX+cn,s’a/ ANV dX + em(e).
B B

1 1
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Now we take the limit as m — 400 in (8.15). Thanks to (1.10) (which has been
already proved), we have that
(8.16)

the left-hand side converges to / A72IVa2 dX + cpeo / 79\ VU? dX.
Bf Bf

Now we compute the limit of ¢,,(¢) as m — o0, for a fixed ¢ > 0 (and then
send € — 0 at the end). For this, we first observe that ¥ = @ and V = U out-
side Bl+/2’ thanks to (8.11), and so ¢, (g) can be written as

(8.17)
emle) = 05*2/ 7250 — Ty |? dX + O 27 (|Va + |V, |*) dX
B \B, Bi B,
+C A7V U - U2 dX + C 27 ([VUP + VU, %) dX.
BB, Bl B,
Now we claim that
(8.18)
21725T — Ty |* dX — 0 and / A7V PU — U |? dX — 0,
BY B, BY B,

as m — +oo (for a fixed € > 0). Indeed, the first limit follows from (1.9). As for
the second limit, we observe that |U,,| < 1, since U,, is obtained by convolution
between a characteristic function and the Poisson kernel which has integral 1. Hence
also |U| < 1in Bj . This means that, for a fixed e > 0,

ATIVGPIU — Unl® < 42177 |V,

and this function lies in Ll(]RT'l), thanks to (6.4), applied here with §:=1—0 €
(0,1). Moreover, for a fixed € > 0, we have that 21 =7 |V¢|*|U — Up,|*> — 0 as m —
+o0o. Then the second limit in (8.18) follows from the Dominated Convergence
Theorem. This completes the proof of (8.18).

Now, we claim that

(8.19)
lim 272 (|Vaf + [V, |*) dX < C / A2 \va? dX,
meteo Bl BT, B o \Bi .

for a suitable C' > 0. For this, we observe that Bf,_ \ B{__ can be covered by a
finite overlapping family of N, balls of radius ¢, say B.(X;) with j =1,... N,, and

SO
s

1+e€

272V, 2P dX < / 272V, |2 dX
\Bj_. UNe, B (X;)

NE
< C / 21728V, |2 dX.
]Z::l B-(X;)
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By using (1.10) once again, this implies that

lim 2178|VG,, |2 dX < CZ/ 27| va2dXx
Mmoo Bl BT, B.(X;)

<C / 21728\ val? dX,
1+2a\Bl 2e

which shows (8.19) up to renaming constants.
Analogously, one can prove that

(8.20)
lim 270 (|VUP +|VU,[?) dX < C / 77| VU 2 dX,
mete Bl BT, B, \Bf .

for some C' > 0. Using (8.18), (8.19) and (8.20) into (8.17), we get

lim Cmle C/ 7%\ valtdXx 4+ C 177\ VU 2 dX,

1+25\Bl 2e 1+2a\81 2e

up to relabelling constants. Hence, sending € — 0, we obtain that

lim lim ¢,(e) =0.

e—0 m—-+4oo

Using this and (8.16) into (8.15), we obtain that

/ z1*2s|Vﬂ|2dX+cn7s7U/ 70\ VU R dX
BT BT

1 1

N

/ z1*25|vm2dX+cn,s,a/ 77| VV 2 dX,
B B

1
which implies that (@, U) is a minimizing pair in B1+/27 according to Proposition 4.1.
This shows (8.12) and concludes the proof of Theorem 1.2. O

9. LIMIT OF THE BLOW-UP SEQUENCES AND PROOF OF THEOREM 1.3

Here we show that the blow-up limit of a minimizing pair is a minimizing cone
and prove Theorem 1.3.

Proof of Theorem 1.3. First of all, we notice that, for any z, * € R",

1) Jurle) — (@) = rFfulre) - u(rd)] < .

HUHCS—%(Rn

This shows that u, € C*~%(R"), with norm bounded uniformly in 7. So, up to a
subsequence, we may assume that

(9.2) u, converges locally uniformly to some ug € C*~% (R").

We observe that v > 0 in F and v < 0 in E° thus, since 0 € OF, we have
that «(0) = 0. As a consequence u,(0) = 0 and therefore, by (9.1),

(9.3) fr(@)] < ull e 5 o o1 %,
and so
(9.4) w0 (@)] < [l e g g 21° 3
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Since (u,, Ey) is a minimizing pair in Bi/., we can fix any R > 0, take r €
(0,1/(4R)) and use Theorem 1.1: we obtain that

Jur(2) = ur (y)]*
// —+2 dﬂl‘ dy + Perg(ET., BR)
R2n\(Bg)? T — Y[

‘ur(y)|2 )
<C (1 —l—/ ———dy | <C,
(14 . T o

for some C' > 0, possibly different from step to step, where (9.3) was used in the
last passage. In particular, we have that Per,(E,, Bg) is bounded uniformly in r.
By compactness, this shows that, up to a subsequence, F, converges in LIIOC(]R”)
to some Ej.

Now, let @, and U, be the extension functions of w, and E,, as in (1.7) and (1.8).
Similarly, let @y and Uy be the extension functions of ug and Fy.

By (9.3) and (9.4), if we fix p > 0 and we take z € B, and z € (0, p), we have
that

2n,slull o 5 oy 0 (0 + 1) 2
ly[+2s '

Py(y, 2) Jur(z — y) — uo(z —y)| <
This implies that
[ Pwa) lunle =) — ol - )l dy < 400

R™\ B,
and therefore for any fixed € > 0 there exists R := R, . > 0 such that

[ P funle — ) = wnl )l dy <

R"\Bx

Consequently, for any p > 0 and any « € B, and z € (0, p), we have that

[, (2, 2) = Tio(x,2)] < /B Pu(y,2) llur — toll () dy + €
R
< Jur = woll Lo (Bpy,) + €
That is
@ — ol Lo (B, x(0,0)) < [ltr — wollLoo(BRy,) + €

and therefore, by (9.2),

lim @ — 0| L (B, % (0,p)) < €-
Since € > 0 may be taken arbitrarily small, we infer that

lim @ — o || Lo (B,x(0,0)) = 0,

hence w, converges locally uniformly to ug.
Moreover, as in Proposition 9.1 in [6], we have that U, converges, up to subse-
quence, to some Uy locally in L2 /2- These observations give that (1.9) is satisfied

in this case. Now we claim that @y is continuous on IR’J_H. For this, we take a
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sequence (zy,z) € R, with (zy,2) — (2,2) € RTH" as k — 400. We have

Uo (T, 2K) = / Py (y, zx) uo(xr — y) dy

_ / T Pa(ep 1) ok — y) dy = / Pu(i, 1) ok — 243 i

n

Now we observe that

lim wug(zr — 21y) = uo(x — 27),
k——+oo

due to (9.2). Also, by (9.4),
Cns HUHCS’%(]Rn)(l + |’I‘ + Z|ﬂ|)57%
(1+ o) ’

for k large, which is integrable in §y € R™. Accordingly, by the Dominated Conver-
gence Theorem,

Py(9,1) luo(zr — 229)| <

lim o(zx, 2) = / P 1) wolx — =) dj = To(x, 2),
k— oo Rn
that proves the continuity of %y in IRT‘l.

Therefore, we can use Theorem 1.2 and obtain that (g, Up) is a minimizing pair.
Thus, by Proposition 4.1, we have that (ug, Ey) is a minimizing pair.

It remains to show that (ug, Ep) is homogeneous (hence it is a minimizing cone).
For this, we recall (2.1) and we use (1.10) to see that

lir% D, (1) = Dy, ().
This and (4.12) give that

lin%) D, (1rt) = Dy (2).
That is

D, (1) = lir% D, (1),

and this limit exists since ®,, is monotone (recall Theorem 2.1). In particular, ®,,,
is constant and so, by Theorem 2.1, we have that (ug, Fp) is homogeneous. This
completes the proof of Theorem 1.3. O

10. A MAXIMUM PRINCIPLE IN UNBOUNDED DOMAINS FOR THE FRACTIONAL
LAPLACIAN AND PROOF OF THEOREMS 2.3 AND 2.4

The purpose of this section is to prove Theorems 2.4 and 2.3.

Proof of Theorem 2.4. First we observe that
(10.1) (—A)%vT < 0 in the whole of R™

in the viscosity sense. To check this, let ¢ be a competing function touching v+
from above at p.

If vT(p) > 0, then p € D, since v+ = 0 outside D. Notice also that ¢ > vT > v
and ¢(p) = v (p) = v(p), thus ¢ touches v from above at p, and therefore, by (2.2),
we obtain that (—A)*¢(p) < 0.
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On the other hand, if v*(p) = 0, then we have that ¢ > v™ > 0 and ¢(p) =
v (p) = 0, which gives directly that

¢ +y) +olp—y) —26(p) ,

y = 0.
- PR
This proves (10.1).
Now we show that
(10.2) vT vanishes identically.

Suppose not, then we can define

A:=supv’ € (0, +00).
Rn

So we fix any q = (¢, g,) € R™ such that v™(g) > 0. Notice that g, > 0 since v =0
in {z, < 0}. So we can set r := 2¢, > 0 and ¢ := (¢, —r/4), and we remark that
Accordingly,

|Br(g) N {v" <0} > |Br(q) N {wn <O} > [B,a(q)] = or"

for some universal § > 0. So we are in the position of applying a Harnack-type
inequality (see e.g. Corollary 4.5 in [21]) and we conclude that vt < (1 —~)A
in B,/2(q), and so, in particular v*(¢q) < (1 — 7)A, for some v € (0,1). As a
consequence, since ¢ is arbitrary,

A= sup v(g) <(1-7)4
ge{vt>0}

which is a contradiction. This proves (10.2) which in turn implies Theorem 2.4. O
As a consequence of Theorem 2.4 we have the following classification result:

Corollary 10.1. Let A > 0. Let E be a cone in R™ such that

(10.3) E C {x, > 0}.

Let uw € C*(E) and continuous on E, with [u]c(g) < +oo for some v € (0,s].

Assume that
(—A)’u<0 inkE,

u =0 mn F,
u<0 in E°.
Then
(10.4) w(z) < Calzy)
for any x € EN{x, < A} with
(10.5) Ca = A" [ulcv(p)-

Also, if u is homogeneous of degree o < s then u vanishes identically in E.
Proof. First we focus on the proof of (10.4). For this, we first observe that
(10.6) for every x € E, u(x) < [u]cv(p)2)).

Indeed, by (10.3), for any « = (2/,z,) € E there exists 7 € [0,z,) such that
y:= (2/,7) € OE. Therefore u(y) = 0 and so

u(z) = u(r) —uly) < [Ulcvmlr —y|” = [ulcvp)lzn — 77 < [U]er(m)27,
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that establishes (10.6). In particular, we have that
(10.7) for every x € E N {z, < A}, u(z) < AVulcv(p)-

So we define v(z) := u(x) — Ca(xy)35, with C4 as in (10.5). By [16], we know
that (—A)*(z,)% = 0 in {x, > 0}, therefore (—A)*v < 0in D := EN{x, < A}.

Moreover, if € E° we have that v(z) < —Ca(z,)% <0, andifx € En{z, > A}
we have that

v(z) < [Wevpz), — Caz) =z ([Ulcvs) — Cazy )
< 2} ([u]evp) — CaA®™7) <0,

thanks to (10.6) and (10.5) (recall also that v < s). As a consequence v(z) < 0 for
any x € ECU(EN{z, > A}) = (EN(EN{z, > A})C)C =(En{z, < A})¢ = D°.
Also v € L*(D) thanks to (10.7). So we can apply Theorem 2.4 and obtain that
v < 0in D, which is (10.4).

Now we establish the second claim in the statement of Corollary 10.1. For this
we suppose in addition that u is homogeneous of degree o < s: then, fix any x € F
and any A > z,. By (10.4) we have

u(x) =t “u(tr) < Cat® “(z,)%

for any t € (0,1), hence, by taking ¢t — 0 the second claim of Corollary 10.1
follows. 0

Proof of Theorem 2.3. We make some preliminary observations. First, we notice
that if u vanishes identically then the thesis trivially follows. Therefore, we can
suppose that u # 0, and so

(10.8) there exists w € S"~! such that u(w) # 0.

Now, we claim that s — ¢ > 0. For this, we observe that u € C7(R"), in
particular it belongs to C7(Bs). Therefore, from Weierstral’s theorem, we have
that u is bounded in By. On the other hand, u is homogeneous of degree s — %

2
and so
(10.9) u(re) = r°~ 2u(x)

for any x € By and r € (0,1]. Since z,rz € By, we have that both u(z) and u(rz)
are bounded. Therefore, sending r ™\, 0 in (10.9), we obtain that s — § > 0.

Now, if s — Z = 0, then u = c for some constant ¢ € R. Then, the claim of the
theorem easily follows: indeed, for instance, if the positivity set E is contained in
a halfspace then u = ¢ < 0.

Hence, from now on we assume that

(10.10) s—=>0.

o

2

We prove that

(10.11) u(0) = 0.

Indeed, since u is homogeneous of degree s — Z, we have that
u(0) = 75~ 2u(0)

for any r > 0, which implies (10.11).
Now, we recall that u € C7(R™) and we prove that
o

10.12 —5— 2,
(10.12) T=5-3



37

For this, we take w as in (10.8) and we obtain that, for any r > 0,
u(rw) = uw(0)] < [u]crmeyr”-
On the other hand,
[u(rw) — u(0)] = Ju(rw)| = r*~ Flu(w)],
thanks to (10.11). Therefore,
(10.13) 575 u(w)] < [u] o (mmy T
Since |u(w)| # 0 (recall (10.8)), this implies that

[u] e ()
[u(w)|
for a suitable positive constant C';. Moreover, u is not identically a constant, thanks

to (10.10), and so [u]c+(rn) # 0. Hence, (10.13) implies that

(10.14) I =: Oy,

(10.15) s R L B
[U]CW(]R")

for some constant Cy > 0. Now, if v < s — % then, we send r to 400 in (10.14) and
we obtain a contradiction. If v > s — §, we send r \, 0 in (10.15) and we reach
again a contradiction. This proves (10.12).

Now, we prove the first claim in Theorem 2.3 (the proof of the second claim
is similar, and then the last claim clearly follows). For this, we suppose, up to a
rigid motion, that £ C {z, > 0} and we show that v < 0. So we assume, by
contradiction, that

ET:={u>0}# 2.

By construction, v < 0 in E¢ D {z,, < 0}, therefore £+ C {x, > 0}. Also, by
Lemma 3.2, (—A)%u = 0 in E*, and u < 0 outside E*. Moreover, [u]C%%(Rn) <
+00, thanks to (10.12). Therefore, by the second claim in Corollary 10.1, we obtain
that u vanishes identically in £+, hence v is identically zero, and so u < 0. [

11. FUNCTIONS, SETS AND PROOF OF REMARK 1.5

We observe that the scaling properties in (1.11) suggest that when s = ¢/2,
homogeneous functions of degree zero play a crucial role for the problem.

This may lead to the conjecture that, at least in this case, a minimizing pair (u, F)
reduces to the set F itself, i.e. w = xg — xEgc, provided that the boundary data
allow such configuration (notice that when s = ¢/2 then s € (0,1/2) and so the
Gagliardo seminorm of the characteristic function of a smooth set is finite, thus the
energy is also well defined).

The content of Remark 1.5 is that this is not true.

Proof of Remark 1.5. Suppose by contradiction that u = xg — xge, with E # @
and E° # O, that is, in the measure theoretic sense,

(11.1) |E| > 0 and |E¢| > 0.

Notice that either |E N B1| > 0 or |E°N By| > 0. So, for concreteness, we may
suppose that |[E N By| > 0. As a consequence, there exists r € (0, 1) such that

(11.2) |[EN B,| > 0.
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Let now R € (r,1) and 7 € C§°(Bg, [0,1]), with
(11.3) r=1in B,.

For any ¢ € [0, 1), let us(x) := (1 — t7(z))u(z).

We observe that ug = u. In addition, u; = u outside B;. Also 1 — tr(x) >
1 —t > 0, hence the sign of u is the same as the one of u;. As a consequence, the
pair (u;, E') is admissible, hence F(u, E) < F(u, E) by minimality. Accordingly

0 < Flug, ) — F(u, E)

_ lut(z) — ue(y)|? — |u(z) — uly)|? y
(114) N //1;271\(31‘3)2 |x _ y|n+2s d dy

_ lug(z) — Ut(y)|2 — |u(z) — u(y)|2 .

o //]Rz" |(L‘ _ y|n+2s d dy

| 2

Notice that

[ut(z) — ue(y)
= (I—tr(@)u®(x) + (1 = tr(y)*u®(y) — 2(1 — t7(2)) (1 — t7(y)) u(z) u(y)
= Ju(z) —u(y)]?

+2t] = (@ () = ry)ud(y) + (1(@) + 7(y)) ulw) u(y)

+t2‘7'(x) u(z) — 7(z) u(z) ’
By inserting this into (11.4) and dividing by 2¢ we thus obtain

—7(@)u’(z) — 7(y)u*(y) + (r(z) + 7(y)) u(z) u(y)
o< /...

|z — |2

dx dy + =t,

for some = € R depending on v and 7 but independent of ¢. Hence we may
send t \, 0 and we conclude that

(s o< f[ TOEEZTCG D ) )l o g
R2n

|z —y|t+2e

Now, if either (z,y) € E x E or (z,y) € E° x E° we have that u?(z) = u?(y) =
u(z)u(y) = 1 hence the integrand in (11.5) vanishes. Hence, since the role of x
and y is symmetric, we obtain from (11.5) that

—7(2)u?(x) — 7(y)u?(y) + (1(2) + 7(y)) u(@) u(y)
2//15fo dx dy

|z —y|t2e

_ —7(2) —7(y) — (r(x) +7(y))
B 2//E><EC a dy

|£L‘ _ |n+2$

7(2) +7(y)
= 74// dx dy.
ExEe¢ |3U - |"+25

Since the integrand above is nonnegative, recalling (11.1) we infer that 7(z)+7(y) =
0 for a.e. (z,y) € E x E°.

As a consequence, 7(x) = 0 for a.e. z € E, and so, in particular, for a.e. z €
E N B,.. This set has indeed positive measure, thanks to (11.2), hence we get that
there exists p € EN B, such that 7(p) = 0. But this is in contradiction with (11.3)
and thus it proves Remark 1.5. ]

0

N
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12. REMOVABLE SINGULARITIES AND PROOF OF REMARK 1.6

In this section we give the simple proof of Remark 1.6. As a matter of fact,
we stress that Remark 1.6 only aims at pointing out the possible development of
plateau in a simple, concrete example, using as little technology as possible (more
general results may be obtained by capacity considerations, and with the use of the
fundamental solution of the fractional Laplacian when n > 2s).

Proof of Remark 1.6. Assume that

(12.1) {u=0}n(-1,1) C {p1,....pn}-

We show that (—A)Y2u =0 in (—1,1).
For this, we take u to be the harmonic extension of u in Ri. Namely @ has
finite H'(RR2 )-seminorm and satisfies

(12.2) Atu(z,y) =0 for any x € R and any y > 0,
' a(z,0) = u(x) for any z € R.

By Lemma 3.2 and (12.1) we have that (—A)'/?u(z) = 0 for any = € R\{p1,...,pn},
hence

(12.3) Oyt(x,0) =0 for any z € R\ {p1,...,pn}.
Now we take the even symmetric extension of u, that is, we define

*(z,y) = (z,y) =0 for any x € R and any y > 0,
YY) = Ve, —y) =0 for any 2 € R and any y < 0.

We observe that
Au* =0 for any (z,y) € R*\ {(p1,0), ..., (pn,0)}.

Therefore, by the removal of singularities result for harmonic functions, we conclude
that Au* = 0 in the whole of R? and therefore d,u* is continuous also in the vicinity
of (p1,0),...,(p~n,0). This implies that d,u(x,0) = 0 for any = € (—1,1), which
means (—A)Y2u =0in (—1,1). O

APPENDIX A. REGULARITY OF CONES IN THE PLANE AND PROOF OF
THEOREM 1.4

This section is devoted to the regularity of the two-dimensional cones. Namely,
in order to prove Theorem 1.4, we follow the methods introduced in [18, 19] to
prove the regularity of o-minimal surfaces and used in [8] to obtain the regularity
of the minimizers of the functional (1.4).

We first introduce some notations. We define, for any r > 0,

(A1) E(T,V) ::/ 21’25|V@\2dX+cn7s,a/ A7\ VV[FdX.
B B

T T

We consider a cutoff function ¢ € C*°(RR) such that
¢ =11in[-1/2,1/2] and ¢ = 0 outside (—3/4,3/4),
and, for any R > 0, we introduce the following diffeomorphism in IR’_T_H, defined
for every X € Ri“ as
RS

(A.2) X»—>Y:—X+<p(R> er.
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Then, we define
HE(Y) =u(X) and UE(Y) =U(X).

We may also define @y, and Uy by simply changing e; into —e; in (A.2).

The argument that we perform is similar to the one of Proposition 6.2 in [§].
The main difference here is that the two terms involved in the functional (A.1)
are defined in the extension, and therefore we have to consider domain variations
in RT‘I both for @ and for U.

First we prove an estimate for the second variation of the energy £g.

Lemma A.1. Let (w,U) be a minimizer of Eg. Suppose that w and U are homo-

geneous of degree s — % and 0, respectively. Then, there exists a constant C' > 0

independent of R such that
Er(Uh, UL) + Er(ug, Uy) — 26r (W, U) < C R 277,

Proof. By direct computations (see formula (11) in [18]), one can prove that

27 (IVag)? + [Vag?) dy = 2217% (1+O(1/R2)X5;\B;/2)|Vﬂ|2dX,

1—0 +12 —12 _ 1—0 2 2

A (VUER + [VUR ) dY = 22 (1+0(1/R )XBE\B;/2)|VU| dXx.
Therefore

/z1‘25(|VﬂR|2+\VH§\2) dY—2/ 2172 | val? dX

+ +
5% B

R
< 03—2/ 21725 |Val? dX.
B;\B§/2

ag

Now, since u is homogeneous of degree s — 3, we have that 21725 |Vu)? is homoge-

neous of degree —1 — o, and so

(A.3) / 27 (|Vag]? + [Vug?) dy — 2/ 2172 |\ ValPdX <CR™2-R"°.
B}, BY,

Similarly, U is homogeneous of degree 0, and therefore 2!~ |[VU|? is homogeneous

of degree —1 — 0. Hence

Cn,s,o /B+ 2o (|VU§\2 + \VU};\Q) dY —2¢, 5.6 /+ A7\ VU dX

<CR™? 2177 | VU|?dX < CR™%-R"°.
BE\B;p
By summing up this and (A.3), we obtain the thesis (recall (A.1)). O

Corollary A.2. Let (u,U) be a minimizer of Er. Suppose that w and U are
homogeneous of degree s—Z and 0, respectively. Then, there exists a constant C > 0
independent of R such that

Er(@h,Uf) < Er(@,U) + C R"27°.

In particular, if n = 2, we have

C
(A.4) Er(Uh, UR) < Er(w,U) + TR
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Proof. Thanks to Proposition 4.1, the minimality of (u, U) gives
5R(ﬂ7 U) g ER(ﬂga U];)
From this and Lemma A.1 we get the desired claim. O

Proof of Theorem 1.4. We follow the line of the proof of Proposition 6.2 in [8]. For
the sake of completeness we repeat the proof here.

We suppose that n = 2 and we argue by contradiction, assuming that F is not a
halfplane. Hence, we can find a point p € B)y, for some M > 0, say on the es-axis,
such that p lies in the interior of E but p 4+ e; and p — e; lie in E€. Therefore,
recalling the notation introduced at the beginning of this section, we have that,
for R > 4M,

UL(X)=u(X —ey) forany X € By,
Ub(X)=U(X —e1) forany X € By,
uh(X)=u(X) forany X € R} \ Bf,

Ut (X)=U(X) forany X € R\ Bj.

(A.5)

Now, we define
V(X)) = min{u(X),u;(X)}, wWr(X):=max{u(X),u;(X)},
Vr(X) :=min{U(X),U4(X)} and Wg(X):=max{U(X),UL(X)}.
Moreover, we set P := (p,0) € R3. We claim that
(A.6) Uj < Wg =U in a neighborhood of P
(A7) and U < Wg = U}, in a neighborhood of P + e;.
Indeed, by (A.5)
Ug(P)=U(P—e1) = (xp — xpe) (p—e1) = —1,
U(P) = (xe — xe) (p) = 1,
Uf(P+e)=UP)=1
and UP+e1)=(xg—xpe)(pte)=-1.

Then, the claim follows from the continuity of the functions U and Ul‘{ at P and P+
€1.
By Proposition 4.1, the minimality of (@, U) gives

Er(W,U) < Er(TR, Vr).
Moreover, we have that
ErR(WR, VR) + Er(WR, Wr) = Er(u,U) + Er(uf, UR).
Therefore
(A.8) Er(Wr, Wg) < Er(ug, UR).

Now, we prove that (wg, Wg) is not a minimizer for £, with respect to compact
perturbations in B, x B3,,. Indeed, if (Wg, Wg) was a minimizer, then Wg would
be a minimizer for the o-perimeter, thanks to Proposition 4.1 (one can fix Wg
and perturb only Wg, and notice that compact perturbations inside B;r M X B;r M
do not touch the trace). On the other hand, from the definition of Wx we have
that U < Wg. Moreover, U and Wx satisfy the same equation in B;M X B;M.
Hence, (A.6) and the strong maximum principle imply that U = Wg in Bg‘ > Which
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is a contradiction to (A.7). Therefore, there exists § > 0 and a competitor (@, Us)
that coincides with (wg, Wg) outside By, x By, (actually we take u, = wg) and
such that

Eamt (U, Us) + 0 < Eop (WR, Wr).
Notice that § does not depend on R, since (g, Wr) does not depend on R in By, x
B, thanks to (A.5). Since (@, U.) agrees with (wg, Wr) outside B, x B3, we
conclude that

Er(Us, Us) + 6 < Ep(Wr, Wr).

From this, (A.4) and (A.8) we obtain

Er(Us,U,) 4+ 6 < Er(Wr,Wr) < SR(EE, UE) <Er(@U)+CR™".
Therefore, if R is large enough, we have that
gR(ﬂw U*) < ER(ﬂa U),

and this is a contradiction to the minimality of (@, U). O
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