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Abstract

In computational fluid simulations, the presence of incoming flow at open boundaries
(backflow) might often yields unphysical oscillations and instabilities issues, even for mod-
erate Reynolds numbers. It is widely accepted that this problem is caused by the incoming
convective energy at the open boundary, which cannot be controlled a priori when the ve-
locity at the boundary is unknown. In this work, we propose a stabilized finite element for-
mulation for the incompressible Navier-Stokes equations, in which the stabilization term is
based on the residual of a weak Stokes problem normal to the open boundary, driven by
an approximated boundary pressure gradient. In particular, the viscous term introduces
additional dissipation which controls the incoming convective energy. This method has
the advantage as it does not require modifications or extensions of the computational do-
main. Moreover, it does not require an a priori assumption of the boundary velocity field.
We illustrate our approach through several numerical examples relevant to blood and res-
piratory flows, including Womersley flows and realistic geometries coming from medical
imaging. The performance of the simulations were compared to recently published ap-
proaches.

1 Introduction

1.1 Problem setting

Let us consider a domain Ω⊂ Rd , d = 2,3, whose boundary is decomposed as

∂Ω := ΓD ∪ ΓN∪Σ,

in a Dirichlet boundary, a Neumann boundary and a no-slip wall. Furthermore, let us assume
that the Neumann boundary is made of nb disjoint surfaces, i.e. ΓN = Γ1∪ ·· ·∪Γnb , with Γi∩
Γ j = /0 for i 6= j. We consider an incompressible, Newtonian fluid in the domain Ω, modeled in
a time interval [0,T ] through the Navier–Stokes equations in convective form for the velocity
u(t) : Ω→ Rd and the pressure p(t) : Ω→ R:

ρ∂tu+ρu ·∇u−µ∆u+∇p = 0 in Ω,

∇ ·u = 0 in Ω,

u = uD on ΓD,

u = 0 on Σ,

µ∂nu− pn =−Pkn on Γk, k = 1, . . . ,nb,

(1)

where ρ and µ are the fluid density dynamic viscosity, respectively. In (1), the Dirichlet data
uD is a known velocity field on the boundary ΓD.

In physiologically realistic blood- and airflow simulations, the Neumann data Pk on the open
boundary Γk are often computed dynamically via so-called lumped-parameter models (LPM),
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see e.g. [20, 30, 31, 34], which relate the boundary pressures to the boundary flow rates, in
order to take into account the effect of the downstream domain. In its most general form, a
LPM consists of several interconnected zero-dimensional compartments where the dynamics
is defined by a system of ordinary differential-algebraic equations of the type

C
dP
dt

= Q−Hᵀ
Ψ,

L
d
dt

+RΨ = HP .

(2)

In (2),
P(t) :=

[
P1 . . . Pnb π1 . . . πnd π̄1 . . . π̄nb

]ᵀ ∈ Rnp

contains the surface pressure P1, . . . ,Pnb at the open boundaries, the set of internal pressure
π1, . . . ,πnd , and the given reference pressures π̄1, . . . , π̄nb . Furthermore, the flow rate vector
Q ∈ Rnp has the form

Qᵀ :=
[

Q1 . . . Qnb 0 . . .0︸ ︷︷ ︸
nd+nb

]
, Qk =

∫
Γk

u ·n,

while Ψ(t) ∈ Rnψ are internal fluxes. The parameters C ∈ Rnp×np , R,L ∈ Rnψ×nψ denote the
symmetric semi-positive capacitance, resistance and inertance matrices of the LPM repre-
senting the elastic, viscous and inertial effects, respectively. The matrix H ∈ Rnψ×np multi-
plied by P gives the pressure drops in the different segments of the LPM. A further property
of the matrix H is that, if C,R and L vanish, System (2) reduces to P1 = π̄, . . . ,Pnb = π̄nb .
Hence, Problem (1) with given Neumann data on ΓN can be seen as a particular case of
3D fluid-LPM model. Finally, the System (1)-(2) must be completed with the initial conditions
u(0),P(0),Ψ(0).

Let us now denote with (·, ·)X the usual scalar product in the Sobolev space L2(X), for an
open set X ⊂ Rd , and let ‖ · ‖0,X be the natural norm associated to the scalar product. Then,
the quantities

EΩ(t) :=
ρ

2
‖u‖2

0,Ω , EL(t) :=
1
2

Ψ
ᵀLΨ , EC(t) :=

1
2

PᵀCP , DΩ(t) := µ‖∇u‖2
0,Ω , DR(t) := Ψ

ᵀRΨ

define the kinetic energy of the fluid, the kinetic energy of the LPM, the elastic energy of the
LPM, the viscous dissipation of the fluid, and the viscous dissipation of the LPM, respectively.

Using standard arguments, in the non-forced case (i.e. uD = 0, π̄1 = · · ·= π̄nb = 0) one obtains
the following energy balance for the System (1)-(2):

d
dt
(EΩ(t)+EL(t)+EC(t)) =−DΩ(t)−DR(t) −

(
ρ

2
|u|2,u ·n

)
ΓN

. (3)

In particular, the last term of the right hand side of (3) might lead to an uncontrolled energy
increase during backflow (i.e., when u ·n < 0 o a subset of ΓN), since this contribution cannot
be bounded a priori, if the velocity field at the open boundary is unknown. In practice, backflow
instabilities might result in the arise of large unphysical oscillations near the open boundary,
which compromise the feasibility and the reliability of the numerical simulations (see the ex-
ample in Figure 1).

Remark 1. Let us notice that the stability issues in presence of backflow pointed out in (3) do
not depend on the particular formulation of the advection term in the Navier–Stokes equation:
for both the convective form (u ·∇)u and the conservative form ∇ · (u⊗u), the same boundary
term arises, i.e. ρ/2(|u|2,u ·n).
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Figure 1: A typical backflow instability arising in blood flow simulations (at Re≈ 400): velocity
vectors on the open boundaries at the time of peak outflow (left) and at the time instant when
backflow starts at one of the open boundaries (center and right).

1.2 An overview of backflow stabilization strategies

A first class of backflow stabilization methods, which has been discussed in several previous
works, is based on modifying the Neumann boundary condition (1)5 as

µ∂nu− pn = Pkn−β
ρ

2
(f(u)−g(u,u0)) on Γk, (4)

where β > 0 is a parameter, such that β f(u) ·u≥ |u|2(u ·n) when u ·n < 0, and u0 : Γk→ R2 is
a given “corrective"boundary velocity profile.

Up to our knowledge, a boundary condition in the form (4) was first introduced in [3, 10, 11]. In
the context of physiological flow simulations, the variant of (4) that is typically employed reads

f(u) = |u ·n|−u , g(u,u0) = 0 , (5)

with |x|− := (|x| − x)/2 being the negative part of x ∈ R. These methods have been widely
employed in blood [2, 17, 29] and respiratory [27, 28] flows, and in what follows we will refer
to (5) as the inertial stabilization. Its main property is that it ensures energy stability if β = 1.0.
Moreover, for β = 1.0 also the existence of weak solutions can be proven, independently of
the viscosity [8].

However, the stabilizing term introduces a boundary condition which is inconsistent with the
original problem, even in the relatively simple cases (e.g., a Womersley flow). In fact, the
inertial stabilization perturbs the boundary traction in (1)5 in an unphysical way, as it might
penalize the velocity entering the domain, hence flattening the boundary velocity profile. The
perturbed boundary condition may strongly compromise its accuracy in cases where Pk ≈
ρ|u|2. In practice, β < 1.0 (in order to reduce the boundary perturbation) has often been
shown to yield stable results, see, e.g., [17, 27].

For the sake of completeness, we mention that a modification of (5) using the smooth function
Θ(x) = 0.5(1− tanh(x/δ )) instead of |x|− was recently proposed in [15, 16].

In order to improve the consistency of the inertial stabilization (5), the corrective term

g(u,u0) = sgn(|u ·n|−)|u0 ·n|−u0 (6)

was recently proposed in the context of respiratory flows [22, 24]. In particular, the corrective
profile u0 was either defined as a parabolic profile of magnitude modulated by a given flow
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rate, or constructed as a superposition of Womersley modes morphed to the open boundary.
The major drawback of this approach is that the computation of the corrective profile typically
relies on strong assumptions on the solution (e.g., that the flow is in a periodic regime [24] or
that the boundary has a particular shape), or it requires the solution of an additional Stokes
problem [11].

All the methods described above are built upon the idea of balancing the convective backflow
energy (the last term in (3)) by penalizing the boundary velocity field. An alternative strategy,
based on the regularization of the tangential derivatives of the velocity at the open boundary,
was recently proposed in [5]. In this case, for each open boundary Γk the following stabilization
term is introduced in the weak formulation of (1):

Tk(u,v) = γk

d−1

∑
j=1

(
|u ·n|−tᵀj ∇u, tᵀj ∇v

)
Γk
, (7)

where γk is a stabilization parameter, the vectors t1, . . . , td−1 stand for the tangential directions
to Γk, and v is a test function. As for the inertial stabilization, the term (7) does not require
assumption on the boundary velocity profile and, as shown in [5], the energy stability can be
ensured if the parameter γk is larger than the Poincaré constant of the domain Γk. Similar
to the methods outlined above, the stabilization (7) introduces a boundary term which is not
consistent with the original problem (1). However, the numerical results showed that the sta-
bilization parameter in (7) can be reduced with the element mesh size. As a consequence, it
was shown that, for the case of a Womersley flow with moderate backflow (in hemodynamic
regime), the tangential regularization delivered asymptotically more accurate results than the
inertial stabilization [5]. Moreover, it was successfully used for the simulation of venous hemo-
dynamics [12]. Nevertheless, the inconsistency of the stabilization term remained an issue
when treating more challenging cases of larger backflow on open boundaries. This situation
is typically faced for the simulation of respiratory flows [14, 26], where a special interest lies
on pressure controlled inflow in mechanical ventilation [35].

For the sake of completeness, it has to be mentioned that other approaches to avoid back-
flow instabilities have been proposed, based on constraints of the velocity profile on the open
boundary. In particular, a first method [25] imposes a given velocity profile (dynamically scaled
by the flow rate) through Lagrange multipliers. However, its implementation might result partic-
ularly intrusive, and, at the same time, it shifts the local velocity instability issues to the global
equilibria of fluxes. A second approach enforces the velocity to be normal to the boundary
(see, e.g., [17]) and it is often used in simulation practice, as it can be implemented adding
simply a penalization at the weak level. However, in view of (3), it does not guarantee en-
ergy stability, as it does not remove the issue of the uncontrolled incoming energy due to the
(normal) incoming velocity. Nevertheless, in practice (i.e., at the discrete level), enforcing zero
tangential velocity might reduce, or delay, the arise of instabilities, and hence be effective for
low backflow regimes. Recently, it was shown in [17] that these two approaches do not deliver
satisfactory results in terms of stability and accuracy in hemodynamic relevant regimes.

Finally, in the case of coupled 3D-1D models, a boundary condition which guarantees a stable
energy balance on the 3D/1D interface (i.e., the open boundary of the 3D domain) has been
recently proposed in [21], based on coupling the total pressures of both bulk (3D) and reduced
(1D) models. This approach, however, shifts the issues of spurious incoming energy to the
distal open boundary of the 1D domain, so the whole system might still be unstable, and its
practical implementation might result particularly intrusive [7].
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1.3 Motivation and goals

The aim of this work is to improve the tangential regularization [5], regularizing the numerical
solution at the open boundary around a Stokes solution, i.e., the closest stable approximation
of Navier–Stokes. Namely, we introduce two additional terms with respect to [5]: the first one
takes into account the inertial effects, while the second one mimics a boundary pressure
gradients directed normal to each open boundary.

One of the main features of the proposed method, in contrast to the approaches based on
(4), is that it is consistent with Womersley flows for arbitrary transients and boundary shapes,
without the need of calculating an additional corrective velocity profile. Furthermore, our nu-
merical experiments show that the stabilization parameter can be decreased with the mesh
size.

In order to validate the method, we first consider transient three dimensional Womersley flows
in relevant physiological regimes (blood and air), monitoring both velocity and pressure profiles
against a stable reference solution. In order to demonstrate the importance of the additional
terms, we compare our results with the ones obtained with the tangential regularization (7)
and with the inertial stabilization (5). As next, we perform numerical simulations for three-
dimensional geometries obtained from medical imaging, using physiological input data. It is
important to notice that these two flow regimes are characterized by different Reynolds and
Womersley numbers, hence making particularly challenging the development of a backflow
stabilization suitable for both cases.

The rest of the paper is organized as follows. The stabilized formulation is introduced and
analyzed in Section 2. In Section 3 the performance of the method is assessed considering
three dimensional transient Womersley flows in blood and air flow regimes, while in Section
4 we presents results for real aortic and bronchial geometries. Finally, Section 5 draws the
conclusions.

2 The Stokes-residual stabilization

2.1 The stabilized formulation

In order to define the stabilized formulation, we introduce the space

H1
T :=

{
v ∈ H1(Ω) | (tᵀ1∇v)|ΓN , . . . ,(t

ᵀ
d−1∇v)|ΓN ∈ L2(ΓN)

}
⊂ H1(Ω),

of the functions whose tangential derivatives are integrable on the open boundary, and the set

H1
T,0(Ω) :=

{
v ∈ H1

T(Ω) | v = 0 on ΓD∪Σ
}

of the functions in H1
T which vanish on the Dirichlet boundary. We consider then the following

stabilized variational formulation of Problem (1): Find u(t) ∈ H1
T(Ω) satisfying the Dirichlet

boundary conditions (1)3−4, p(t)∈ L2(Ω), P(t)∈Rnp , and Ψ(t)∈Rnψ , such that, for all 0 < t ≤
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T , 

A(u,v)+
nb

∑
k=1

Sk(u,v)−B(p,v) =−
nb

∑
k=1

(Pkn,v)
Γk

,

B(q,u) = 0,

C
dP
dt

= Q−Hᵀ
Ψ,

L
dΨ

dt
+RΨ = HP

(8)

for all v ∈ H1
T,0(Ω) and q ∈ L2(Ω). In (8), the classical bilinear forms are defined by

A(u,v) := ρ (∂tu,v)Ω
+ρ (u ·∇u,v)

Ω
+µ (∇u,∇v)

Ω
+

ρ

2
(∇ ·u,v ·u)

Ω
,

B(p,v) := (p,∇ · v)
Ω
.

(9)

where the last term in (9)1 is the so-called Temam stabilization [33], used for improving the
energy balance at the space-semidiscrete level, since the divergence-free condition holds in
general only in a weak sense. Note that using the conservative form of the advection term, the
Temam term to be included has the same form, but with opposite sign.

Finally, the stabilization term Sk(u,v) is defined considering the weak residual of a Stokes
problem at the open boundary Γk, driven by a given pressure gradient normal to the boundary:

Sk(u,v) := `ek
(∫

Γk

(ρ∂tu+ak(t)n) · v+µV(u,v) .
)

(10)

In (10) the viscous term is defined by

V(u,v) :=
d−1

∑
j=1

(
(tᵀj ∇(v ·n))ᵀ

(
tᵀj ∇(u ·n)

)
+

d−1

∑
i=1

(tᵀj ∇(v · t i))
ᵀ
(

tᵀj ∇(u · t i)
))

, (11)

`ek ≥ 0 denotes a stabilization parameter and ak(t) is an approximation of the open boundary
pressure gradient, whose computation will be discussed in detail in the next Section 2.2.

Note that choosing `ek = 0 (for k = 1, . . . ,nb) we retrieve the variational form of the original
Problem (1)-(2), up to the Temam term. In practice, as it will be shown in Section 2.3, the sta-
bilization parameter `ek can be defined according to the physical parameters of the problem. In
particular, taking `ek 6= 0 only in presence of backflow on the boundary Γk yields a variational
form consistent with the original Problem (1)-(2) during outflow, as for the other approaches
reviewed in Section 1.2.

Remark 2. It is worth mentioning that the definition of the stabilization term (10) does not
depend on the (symmetric or non-symmetric) formulation of the strain rate tensor used in the
bulk domain. In particular, the numerical examples that we will shown in Sections 3 and 4 are
based on the non-symmetric formulation. However, in our experience we did not observe any
substantial differences in terms of arise of instabilities nor in the performance of the stabiliza-
tion methods, when using the symmetric formulation.

2.2 Approximation of the open boundary pressure gradient

In practice, a key issue for the definition of the stabilized formulation (8) is the choice of the
pressure gradient ak(t) on the open boundary Γk. In the general case, this function is not
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available a priori, and it has to be approximated from the numerical solution. To this aim, we
propose to use a simple lumped parameter model

ak(t) =−LkQ̇k(t)− rkQk(t) (12)

in order to relate the sought pressure gradient on Γk with the flow rate Qk =
∫

Γk
u(x, t) ·n.

In order to define the parameters Lk and rk, let us first consider the case of a unidirectional
Stokes flow, i.e., with a velocity profile u(x, t) = Uk(x, t)n normal to the open boundary, and
satisfying the equation

ρ∂tUk +µ∆Uk +ak = 0 (13)

Integrating (13) over Γk, and comparing the result with (12) yields

Lk =
ρ

|Γk|
,

rk =
µ

|Γk|

∫
Γk

∆Ūk =
µ

|Γk|

∮
∂Γk

∇Ūk ·νk

(14)

where Uk stands for a renormalized velocity profile (i.e. having a unitary integral on Γk), and
νk is the normal to ∂Γk pointing outwards Γk.

In view of (14)2, we then consider two possible approaches for computing the resistance rk in
general cases:

1 the Poiseuille approximation, assuming that the unitary profile Uk(t) has a parabolic
shape:

rk = rpois
k :=


12µ

|Γk|3
, for d = 2,

8µπ

|Γk|2
for d = 3.

(15)

2 the dynamic approximation, using (14)2 in a time-discrete setting, and choosing Uk(t)
as the solution un at the previous time step:

rk = rdyn
k :=


µ

|Γk|Qn
k

∮
∂Γk

∇(un ·n) ·νk, if Qn
k 6= 0

0, if Qn
k = 0

(16)

with Qn
k =

∫
Γk

un ·n.

It is worth noticing that in order to define the resistance as in (16) at the continuous level,
one has to restrict the solution space to the functions whose normal derivative is integrable
along ∂Γk. However, this additional assumption is not strictly required for defining the Stokes-
residual (10) on the boundary, as the function ak(t) could be either a given function of time, or
computed through (12) with values of rk and Lk depending only on physical and geometrical
parameters (e.g., using the Poiseuille approximation of the resistance (15)).

Furthermore, in the numerical tests considered in this work, the flow rate and its time derivative
in expression (12) have been approximated explicitly using the solution at two previous time
steps, i.e.

Qk = Qn
k =

∫
Γk

un ·n , Q̇k =
1
τ

∫
Γk

(un−un−1) ·n (17)

where n and n−1 indicate the indices of the last two time steps, and τ stands for the time step
size.
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2.3 Energy-based time-stability analysis

As a preliminary step, let us define

Ee(t) :=
ρ

2

nb

∑
k=1

`ek
|Γk|

{
|Γk|

∫
Γk

|u(t)|2−Q2
k(t)
}
.

Applying Cauchy–Schwarz to the flux integral, one obtains

Q2
k(t) =

(∫
Γk

u(t) ·n
)2

≤
(∫

Γk

|u(t)|2
)(∫

Γk

|n|2
)
= |Γk|

∫
Γk

u(t)2

which implies Ee(t)≥ 0. Then, we can derive the following inequality for the stabilized formu-
lation.

Proposition 1. Let u(t), Ψ(t) and P(t) be the solution of Problem (8) in the case of an unforced
system (i.e., uD = 0, π̄1 = · · · = π̄nb = 0). Then, there exists a set of parameters `e1, . . . , `enb
(large enough) so that the following energy inequality holds

d
dt
(EΩ(t)+EL(t)+EC(t)+Ee(t))≤−DΩ(t)−DR(t)+

nb

∑
k=1

`ekrkQ2
k(t) . (18)

Proof. Testing Equations (8)1−2 with v = u and q = p, and by pre-multiplying (8)3 and (8)4 by
Pᵀ and Ψᵀ, respectively, one obtains

d
dt
(EΩ(t)+EL(t)+EC(t)+Ee(t))

=−DΩ(t)−DR(t)+
nb

∑
k=1

`ekRkQ2
k(t)

− ρ

2

∫
Ω

u ·∇|u|2− ρ

2
(
∇ ·u, |u|2

)
Ω
−

nb

∑
k=1

`ekµ

∫
Γk

V(u,u)

=−DΩ(t)−DR(t)+
nb

∑
k=1

`ekRkQ2
k(t)−

ρ

2

nb

∑
k=1

(∫
Γk

|u|2(u ·n)+ 2µ

ρ
`ek
∫

Γk

V(u,u)
)

︸ ︷︷ ︸
Ik

.

In the case u ·n ≥ 0 on Γk (outflow) it holds Ik > 0, which implies (18). In the case of u ·n < 0
(backflow) on a subset Γk,b ⊆ Γk, one can write

Ik =
∫

Γk\Γk,b

|u|2(u ·n)︸ ︷︷ ︸
>0

−
∫

Γk,b

|u|2|u ·n|+ 2µ

ρ
`ek
∫

Γk

V(u,u)

which, since V(u,u)> 0, yields

Ik ≥ −
∫

Γk,b

|u|2|u ·n|+ 2µ

ρ
`ek
∫

Γk,b

V(u,u)

> −U (k)
b

∫
Γk,b

|u|2 + 2µ

ρ
`ek
∫

Γk,b

V(u,u) , (19)
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where
U (k)

b ≥ max
x∈Γk,b(t)

(|u(x, t) ·n|)

is an upper bound for the backflow velocity.

If we then choose the stabilization parameter `ek in the form

`ek =
ρσkU

(k)
b

2µ
, (20)

(with σk > 0), we can rewrite (19) as

Ik >
U (k)

b ρ

2µ

(
−
∫

Γk,b

|u|2 +σk

∫
Γk,b

V(u,u)
)
. (21)

Hence, taking σk equal to the Poincaré’s constant of the domain Γk, the following relation holds∫
Γk,b

|u|2 =
∫

Γk,b

(u ·n)2 +
∫

Γk,b

(u · t i)
2

< σk

d−1

∑
j=1

∫
Γk,b

|tᵀj ∇(u ·n)|2 +σk

d−1

∑
j,i=1

∫
Γk,b

|tᵀj ∇(u · t i)|2,
(22)

which substituted into (21) yields Ik > 0.

The above proof (Equation (20)) suggests also a possible choice of `ek as a function of the
material constants ρ and µ , of an upper bound for the backflow velocity, and of the Poincaré
constant σk of the open boundary Γk. In the numerical results presented in the next sections,
the stabilization parameter will be defined as a function of the backflow velocity. However,
numerical evidence showed that σk depends on the discretization, and that it can be reduced
with the mesh characteristic size, similarly to what was observed for the stabilization method
proposed in [5].

In general, proposition 1 states only the conditional stability of the formulation (8) in general.
However, in several situations of practical interests, a stable energy balance can be assured:

Corollary 1. The non-forced solution u(t),P(t),Ψ(t) of Problem (8) is stable in the sense of
Lyapunov if one of the following conditions is fulfilled:

1 There is only one open boundary (nb = 1). In fact, in this case global mass conservation
implies Q1(t) = 0.

2 The physical LPM (2) used for computing the Neumann data on the open boundary
boundaries is such that

DR(t)≥
nb

∑
k=1

`ekrkQ2
k(t). (23)

In other words, energy stability holds if the physical LPM is more dissipative than the
LPM (12) used for computing the pressure gradient ak(t).
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In practice, a sufficient condition for satisfying inequality (23) is that the physical resistance
proximal to each open boundary Γk is larger to the resistance of the backflow stabilization
term `ekrk. In the numerical examples, we will verify the fulfillment of (23) according to this
criterion. Notice that, using the Poiseuille approximation (15) for the resistance rk, the stability
condition (23) can be verified a priori, if a bound on the backflow velocity is available (using
(20)).

3 Numerical experiments for Womersley flows

In this section we assess the performance of the Stokes-residual based stabilization for blood
flows through different numerical tests based on a transient Womersley flow.

The Womersley solution describes a flow in a pipe driven by an oscillating pressure gradient,
and it is very popular in physiological flow simulations. In particular, it has already been used
to benchmark stabilization methods in [22, 24], where, however, only results in terms of mean
flow rates and pressures were reported. Hereafter, we compare the stabilized solution for
velocity and pressure against a stable reference solution. To the authors best knowledge, such
detailed comparison with a reference solution (as the one discussed in Sections 3.2–3.3) has
not been presented yet for other backflow stabilization methods.

3.1 Numerical method

For all examples reported in this work, the numerical solutions were computed using a non-
incremental Chorin-Temam pressure projection method [13, 23, 33], treating the time deriva-
tive of the velocity with a backward Euler method, and treating explicitly the advective velocity
in the convection term. Stabilized P1/P1 finite element have been used for the spatial dis-
cretization, together with an SUPG stabilization for the convection [9] (the SUPG-factor was
set as small as possible so that the simulation still remains stable during outflow).

For the time discretization of the stabilization term (10), we treat implicitly the linear inertial
and viscous terms, while the open boundary pressure gradient is computed explicitly approxi-
mating the flow rate with (17), in order to avoid a non-local coupling of the degrees of freedom
at the open boundaries.

Furthermore, in view of the proof of Proposition 1 (Equation (20)), we compute explicitly the
parameter `ek at time step n+1, proportional to the maximum backflow velocity on Γk at time
step n:

`ek =
ρσU (k)

b,n

2µ
, (24)

with
U (k)

b,n = max
x∈Γk

(|un(x) ·n|−).

In all cases, the parameter σ has been chosen as small as possible so that the simulation
remained stable during backflow, and equal for all open boundaries. Note that doing so, the
stabilization term is only active during backflow, as for the inertial stabilization and tangential
regularization methods.

In what follows, all quantities are expressed in CGS units.
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3.2 Blood flow regime

We consider an incompressible flow in a cylindrical domain of radius R = 1 and length B = 5,
driven by an oscillating pressure drop of amplitude δ p = 2000 and frequency ω = 2π . The
physical properties of the fluid are taken as ρ = 1.0 and µ = 0.035, corresponding to typical
values for blood flows in large arteries, resulting in a Womersley number of α = R

√
ωρ/µ =

13.3.

Figure 2: The coarse (left) and fine (right) meshes used for the Womersley testcases.

For the numerical tests, the domain has been discretized with two mesh characteristic sizes:
h = 0.12 (coarse) and h = 0.06 (fine), see Figure 2.

The simulations for the Navier–Stokes problem were setup as follows. First, a numerical so-
lution was computed solving a Stokes equation (validated against the periodic analytical so-
lution, see, e.g., [19]), with a given pressure gradient (δ p/B)sinωt between ΓD (z = 0) and
ΓN= Γ1 (z = B). The resulting inlet transient velocity profile between t = 0 s and t = 1.0 s
was then used in the Navier–Stokes simulations as a Dirichlet boundary condition on ΓD,
while a homogeneous pressure was enforced at the open boundary ΓN. In this configuration,
the Reynolds number during backflow reaches the value Re = 1000. We employed a uniform
time-step of size 5 ·10−4.

Notice that since the velocity profile does not vary along the z-direction, there is no physical
convection and thus the analytical solutions for Stokes and Navier–Stokes problems coincide.
Nevertheless, due to the numerical approximations (e.g. weak incompressibility of the solution,
mesh asymmetries, linear solver, etc.) spurious convective effects are introduced in the non-
linear case, and without any stabilization the Navier–Stokes solution becomes unstable during
backflow. However, a stable reference solution can be computed solving a Stokes problem on
the same geometry, which can be then used to assess the accuracy of the stabilized Navier–
Stokes formulation.

The results of the stabilized formulation are shown in Figures 3 (coarse mesh) and 4 (fine
mesh). In particular, we compare the velocity profile at the open boundary and the pressure
along the centerline obtained with the stabilized Navier–Stokes solution with the reference
Stokes solution. Besides the results of the two different versions of the Stokes-residual sta-
bilization (Figures 3–4, top), also the results of the inertial stabilization and tangential regu-
larization (in both cases selecting the respective stabilization parameter as small as possible)
are shown (Figures 3–4, bottom).
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Figure 3: Results of the 3D-Womersley flow (blood regime) with the coarse mesh size (h =
0.12): normal component of the velocity on a longitudinal cut of the outlet boundary (left)
and pressure along the centerline x = y = 0 normalized by δ p (right) at the time instant of
peak backflow (t = 1.0s). Top: comparisons of the reference Stokes solution (green) and the
Navier–Stokes solutions obtained with the Stokes-residual stabilization (σ = 0.002), with the
two proposed approximations of the boundary pressure gradient (cyan: Poiseuille resistance
approximation (15); magenta: dynamic resistance approximation (16)). Bottom: comparisons
of the reference Stokes solution (green) with the inertial stabilization with β = 0.6 (black) and
of the tangential regularization with γ = 0.01 (orange).

Figure 4: Results of the 3D-Womersley flow (blood regime) with the fine mesh size (h = 0.06):
normal component of the velocity on a longitudinal cut of the outlet boundary (left) and pres-
sure along the centerline x= y= 0 normalized by δ p (right) at the time instant of peak backflow
(t = 1.0s). Top: comparisons of the reference Stokes solution (green) and the Navier–Stokes
solutions obtained with the Stokes-residual stabilization (σ = 0.0005), with the two proposed
approximations of the boundary pressure gradient (cyan: Poiseuille resistance approximation
(15); magenta: dynamic resistance approximation (16)). Bottom: comparisons of the reference
Stokes solution (green) with the inertial stabilization with β = 0.4 (black) and of the tangential
regularization with γ = 0.005 (orange).
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From these results, one can conclude that the Stokes-residual stabilization outperforms both
the inertial stabilization and the tangential regularization concerning the outlet velocity pro-
file (Figures 3–4, left). While the inertial stabilization tends to flatten the profile and for the
tangential regularization the boundary profile gets close to a parabola, the Stokes-residual
stabilized solution has a shape much similar to the reference Stokes solution. Concerning the
pressure (Figures 3–4, right), the Stokes-residual stabilization yields peak errors of about 5%
(dynamical resistance (16)) and 12% (Poiseuille resistance (15)), which decrease to 4% and
9%, respectively, refining the mesh. The tangential regularization has a comparable perfor-
mance for the coarse and fine meshes (peak pressure error 8%). In both cases, the inertial
stabilization has the largest pressure errors, with peaks close to 18%.

Finally, Figure 5 shows the boundary pressure gradients approximated using the lumped pa-
rameter model (12), with the Poiseuille (15) and the dynamic (16) resistance approximations.
The curves are compared with the analytical profile, showing that both approaches achieve a
very good agreement with the analytical curve, and that the precision improves on the finer
mesh. In particular, the dynamic approximation appears slightly more accurate, especially
during backflow (starting from 0.8 s), consistently with what is observed in Figures 3–4.
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Figure 5: Comparison of the different approximations for the open boundary pressure gradi-
ents a(t) to be used for the Stokes-residual stabilization for the 3D-Womersley blood flow:
Poiseuille pressure gradient (cyan); dynamic pressure gradient (magenta). For reference, the
analytical pressure gradient is also shown ((dashed red). Left: coarse mesh (h = 0.12). Right:
fine mesh (h = 0.06).

It is important to observe that, using a finer mesh, we were able to decrease the stabilization
parameter (from σ = 0.002 to σ = 0.0005). This phenomenon was already observed in [5],
where it was also shown that, in a simplified setting, the spurious frequencies of the discrete
solution can be controlled by the viscous part of the stabilization choosing the parameter as
O(h2).

3.3 Respiratory flow regime

In this section we deal with a transient Womersley flow relevant to respiratory physiology,
setting the physical constants equal to ρ = 0.0011176, µ = 0.000186, δ p = 2.526, ω = 0.5π

(Womersley number α = 3.0). In this configuration, the Reynolds number at peak backflow
reaches Re = 2100. The geometry and the numerical scheme are the same as for the blood
flow benchmark, but for the current case we employ a time step equal to 10−3.
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The velocity and the pressure profiles are shown in Figures 6–7, confirming the findings of
Section 3.2. Firstly, the numerical solutions with the different variants of the Stokes-residual
stabilization remain stable also during backflow. Secondly, the solution obtained using the
dynamic resistance lies closer to the reference Stokes solution than the one obtained with the
Poiseuille resistance. Finally, the stabilization parameter σ can be reduced with the mesh size
h, which also allows to obtain a more accurate solution with the fine mesh.

Figure 6: Results of the 3D Womersley flow (air regime) with the coarse mesh size (h =
0.12): normal component of the velocity on a longitudinal cut of the outlet boundary (left) and
pressure along the centerline x = y = 0 normalized by δ p on z = 0 (right) at the time instant of
peak backflow (t = 3.6s). Top: comparisons of the reference Stokes solution (green) and the
Navier–Stokes solutions obtained with the Stokes-residual stabilization (σ = 0.002), with the
two proposed approximations of the boundary pressure gradient (cyan: Poiseuille resistance
approximation (15); magenta: dynamic resistance approximation (16)). Bottom: comparisons
of the reference Stokes solution (green) with the inertial stabilization with β = 0.5 (black) and
of the tangential regularization with γ = 0.005 (orange).

In the air flow regime, the Stokes-residual stabilization (Figures 6–7, top) largely outperforms
both inertial stabilization and tangential regularization (Figures 6–7, bottom), for both velocity
and pressure. In fact, the results for the velocity confirm that the inertial stabilization tends
to flatten the boundary profile, while the tangential regularization achieves a more paraboloid
shape, which, in the particular case of respiratory flow, is closer to the reference solution. For
all methods, although the approximation of the velocity fields have an accuracy comparable
with the blood flow case, the errors in pressure resulted larger than in blood flows.

However, the Stokes-residual stabilizations deliver a pressure profile considerably closer to the
reference solution than the other stabilizations. Moreover, the accuracy of the Stokes-residual
stabilizations drastically improves refining the mesh, especially using the dynamic resistance
approximation, while the errors of the tangential regularization and inertial stabilization remain
of the same order.

Finally, Figure 8 shows the boundary pressure gradients approximated using the lumped pa-
rameter model (12), with the Poiseuille (15) and the dynamic (16) resistance approximations.
The curves are compared with the analytical profile, showing that the dynamic approximation
achieves a very good agreement with the analytical curve both in outflow and in backflow
(between 2.5s and 4s), outperforming the Poiseuille approximation. Moreover, the precision
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Figure 7: Results of the 3D Womersley flow (air regime) with the fine mesh size (h= 0.06): nor-
mal component of the velocity on a longitudinal cut of the outlet boundary (left) and pressure
along the centerline x = y = 0 normalized by δ p (right) at the time instant of peak backflow
(t = 3.6s). Top: comparisons of the reference Stokes solution (green) and the Navier–Stokes
solutions obtained with the Stokes-residual stabilization (σ = 0.0005), with the two proposed
approximations of the boundary pressure gradient (cyan: Poiseuille resistance approximation
(15); magenta: dynamic resistance approximation (16)). Bottom: comparisons of the reference
Stokes solution (green) with the inertial stabilization with β = 0.2 (black) and of the tangential
regularization with γ = 0.0005 (orange).

improves on the finer mesh. These results are consistent with the accuracy of velocity and
pressure (Figures 6–7).
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Figure 8: Comparison of the different approximations for the open boundary pressure gra-
dients a(t) to be used for the Stokes-residual stabilization for the 3D-Womersley air flow:
Poiseuille pressure gradient (cyan); dynamic pressure gradient (magenta). For reference, the
analytical pressure gradient is also shown ((dashed red). Left: coarse mesh (h = 0.12). Right:
fine mesh (h = 0.06).
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4 Patient-specific testcases

As next, we assess the performance of the Stokes-residual stabilization for the simulation of
blood and respiratory flow in complex geometries obtained from medical imaging. In these
cases, a reference stable solution is not available. Hence, the goal of these examples is to
confirm the robustness of the proposed stabilization method also in more challenging and
relevant situations.

4.1 Blood flow in the ascending aorta

The first example consists in the simulation of the blood flow in a patient-specific aorta, ob-
tained from the euHeart database (www.euheart.eu), see Figure 9. The geometry was
segmented from medical images using a segment growing registration algorithm [1], and the
finite element mesh was generated on a cut of the original geometry using 3-matic (Materi-
alise, Leuven, Belgium) and TetGen [32]. For the numerical simulations, we considered two
different level of refinement for the computational mesh (Figure 9), denoted in what follows
as coarse (characteristic element size hmax= 0.11) and fine (characteristic element size hmax=
0.055).

Figure 9: Left: original patient-specific aortic geometry (grey) and the computational geometry
(red). Frontal and top views of the coarse (center) and fine (right) meshes used in the numer-
ical simulations. The open boundaries (1 to 4) are numbered according to the initial direction
of the flow.

At the inlet boundary (ascending aorta), we impose a plug flow profile with amplitude based on
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the phase contrast MRI measured flow rate from the same patient (peak flow rate of 350), with
a Reynolds number at peak backflow of Re = ρUmean(2R)/µ ≈ 200. At each open boundary
Γk, three-elements Windkessel models were used to represent the effect of the neglected
downstream circulation, i.e.

Ck =

[
0 0
0 Cd

k

]
, Lk =

[
0 0
0 0

]
, Rk =

[
Rp

k 0
0 Rd

k

]
, Hk =

[
1 −1
0 1

]
.

Γ1 Γ2 Γ3 Γ4

Rp [g/(s · cm4)] 250 683 615 94
Rd [g/(s · cm4)] 10000 12960 11664 1794
Cd [s2 · cm4/g] 0.0004 0.0002 0.0002 0.0014

maxt{`ek rpois
k } [s2 · cm4/g] 3.9 32.1 4.8 0.45

maxt{`ek rdyn
k } [s2 · cm4/g] 6.75 39.2 9.8 0.62

Table 1: The parameters of the three-elements Windkessel models for the ascendig aorta (first
to third row), and the maximum values over time of the resistances due to the stabilization term
(for the coarse mesh), using the Poiseuille and dynamics approximations (fourth and fifth row,
respectively).

The values of the parameters Rp
k ,R

d
k ,C

d
k > 0 at each open boundary, detailed in Table 1, were

calibrated in order to approximate the available measured pressures and the measured flows
[4]. The time-coupling of the Windkessel models and the 3D fluid is managed semi-implicitly
[6], so that no spurious power is injected by the coupling.

Without any boundary stabilization, the solution blows up around t = 0.34, when the backflow
starts at the first open boundary (see also Figure 1). The stabilized results are presented
in Figures 10–11, showing the snapshots of the velocity vectors on the different Neumann
boundaries Γ1−Γ4, at a selected instant during backflow. In each case, we report the re-
sults obtained with the Stokes-residual stabilization (with Poiseuille and dynamics resistance
approximations) computing the stabilization parameter `ek using Equation (24) and taking
σk = 0.002 and σk = 0.0005 (k = 1 . . . ,4), for the coarse and fine meshes, respectively. The
two approaches for computing the open boundary pressure gradient produce similar results.

For this example, the analytical solution is not available and the approaches can only be
compared on a qualitative level. For comparisons, we also report in Figures 10–11 (bottom)
the results of a Stokes simulation, in order to show that the stabilized Navier–Stokes solution
is qualitatively and quantitatively different from a Stokes flow, confirming that the proposed
stabilization term acts only as a regularization. In particular, we observe that the boundary
velocity profiles obtained with the stabilized formulation (8) are in general non-symmetric,
which might be a result of the shape of the three-dimensional domain near the boundary.

We observe that also in this example, where the physical convection term does not vanish
(unlike in the case of the Womersley flow) we were able to reduce the stabilization parameter
when decreasing the characteristic mesh element size.

As a further comparison, Figure 12 depicts the estimated pressure gradients at all four open
boundaries, confirming that the two resistance approximations yields very similar profiles.
Moreover, note that the frequency content of the pressure gradient is relatively high. Hence,
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Figure 10: Results of the stabilized formulation for the patient-specific aorta (coarse mesh).
From left to right: Γ1 (t = 0.36 s), Γ2 (t = 0.36 s), Γ3 (t = 0.36 s), Γ4 (t = 0.64 s). Top: Stokes-
residual stabilization (σ = 0.002) with Poiseuille resistance (cyan); middle: Stokes-residual
stabilization (σ = 0.002) with dynamic resistance (magenta); bottom: results of a Stokes sim-
ulation (green).
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Figure 11: Results of the stabilized formulation for the patient-specific aorta (fine mesh).
From left to right: Γ1 (t = 0.36 s), Γ2 (t = 0.36 s), Γ3 (t = 0.36 s), Γ4 (t = 0.64 s). Top: Stokes-
residual stabilization (σ = 0.0005) with Poiseuille resistance (cyan); middle: Stokes-residual
stabilization (σ = 0.0005) with dynamic resistance (magenta); bottom: results of a Stokes
simulation (green).
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the direct computation of a time-dependent stabilizing velocity profile, which is needed for
some of the methods based on a corrected Neumann boundary condition, i.e. [10, 22, 24, 25]
(see also Section 1) could be a challenging issue.
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Figure 12: Patient-specific aorta: approximated open boundary pressure gradients at the four
open boundaries (Γ1, . . . ,Γ4, from left to right), comparing the Poiseuille resistance approxi-
mation (cyan) and dynamic resistance approximation (magenta). Top: coarse mesh. Bottom:
fine mesh.

Finally, In Table 1 we report also the maximum values of the boundary resistance due to the
stabilization term, for both the Poiseuille and dynamic approximations for the coarse mesh.
In particular, for each outlet, these values (`ek rpois

k and `ek rdyn
k , respectively) are below the

corresponding proximal resistances Rp
k , hence fulfilling the stability condition (23) of Corollary

1. The inequality (23) is satisfied also for the fine mesh, as the stabilization parameter σ has
been decreased of a factour of four, while the boundary resistances remain of the same order,
as it can be seen from the approximated pressure gradients in Figure 12.

4.2 Respiratory flow in a pulmonary tract geometry

Finally, we consider a respiratory flow in a realistic pulmonary tract with three open boundaries
(Figure 13), obtained as a section of a geometry recovered from medical imaging [18]. For the
numerical simulations, we then considered two different level of refinement, denoted in what
follows as the coarse (characteristic size h = 0.11) and the fine (characteristic size h = 0.055)
mesh.

To set up the simulations, we first simulated a Stokes flow driven by a periodic imposed inlet
pressure, with period T = 4 s. On the one hand, this step allowed to calibrate the param-
eters of the open boundary Windkessel models in order to obtain a physiological flow split
between right and left lungs (about 40% and 60%, respectively). On the other hand, from the
Stokes simulation we recovered a smooth inlet flow profile consistent with the geometry and
the considered flow split, that was used as Dirichlet boundary condition on the velocity for the
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Figure 13: Left: The original geometry of respiratory tract (grey) and the computational domain
used for the simulation (blue). Right: The computational meshes: coarse (characteristic size
h = 0.11) and fine (characteristic size h = 0.055).

Navier–Stokes simulation. In this configuration, the peak backflow Reynolds number at the
inlet reaches Re = 1200.

At the open boundaries, purely resistant lumped parameter models have been used, i.e. Pk =
Rp

k Qk in (1), with Rp
1 = 10g/(s ·cm4), Rp

2 = Rp
3 = 15g/(s ·cm4).

Without any stabilization the solution blows up during backflow. The following figures show the
numerical results using the Stokes-residual stabilization, comparing the two levels of refine-
ment and the two approaches for computing the boundary pressure gradient.

The stabilization parameter for the Stokes-residual method was also computed using equation
(24) with σk = 0.002 and σk = 0.0005 (k = 1,2,3) for the coarse and fine meshes, respectively.

Figures 14–15 show the open boundary velocity field at selected instants for the coarse and
fine mesh, respectively, while Figure 16 depicts the pressure gradients at the different open
boundaries for the Stokes-residual stabilization, using the two approaches for the pressure
gradient approximation.

Note that, also in this case, the simulations remain stable using the Stokes-residual stabi-
lization, with the stabilization parameter σ derived from the Womersley flow simulation. We
also observe that the solution is more similar to the Stokes flow, than in the previous exam-
ple (blood flow in the ascending aorta). This difference might not be only due to the backflow
stabilization but on the lower frequency content of the input data.

Finally, in Table 2 we report the maximum values of the boundary resistances due to the sta-
bilization term (for the coarse mesh), compared with the corresponding proximal resistances
of the physical LPM. Also in this case, both the terms `ekrpois

k and `ekrdyn
k are smaller than the

physical resistances, hence fulfilling the stability condition (23). As in the case of the aortic
geometry, the inequality holds also for the fine mesh, as the stabilization parameter σ has
been decreased, while the boundary resistances are of the same order as in the case of the
coarse mesh (see, e.g., the approximated boundary pressure gradients in Figure 16).
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Figure 14: Velocity profiles at the three open boundaries of the pulmonary tract at peak back-
flow (t = 3.4 s) for the coarse mesh (h = 0.12). Top: Stokes-residual stabilization (σ = 0.002)
with Poiseuille resistance; middle: Stokes-residual stabilization (σ = 0.002) with dynamic re-
sistance (magenta); bottom: solution of a Stokes problem (green).

Γ1 Γ2 Γ3

Rp [g/(s · cm4)] 10 15 15
maxt{`ek rpois

k } [s2 · cm4/g] 0.38 1.34 0.21
maxt{`ek rdyn

k } [s2 · cm4/g] 0.35 1.01 0.23

Table 2: The proximal resistances for the bronchial geometry (first row) and the maximum
values over time of the resistances due to the stabilization term, using the Poiseuille and
dynamics approximations (second and third row, respectively).

5 Conclusions

We proposed a stabilization term for the incompressible Navier–Stokes equations proportional
to the residual of a Stokes problem on the boundary, in order to handle backflow instabilities
at open (Neumann) boundaries. The approach has the advantages that it does not require
modifications (e.g., extensions) of the computational domain nor a priori information about the
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Figure 15: Velocity profiles at the three open boundaries of the pulmonary tract at peak back-
flow (t = 3.4 s) for the fine mesh (h = 0.06). Top: Stokes-residual stabilization (γ = 0.0005)
with Poiseuille resistance; middle: Stokes-residual stabilization (γ = 0.0005) with dynamics
resistance (magenta); bottom: solution of a Stokes problem (green).

shape of the solution. Moreover, it is based on the computation of few additional boundary
integrals, hence adding only a negligible additional computational cost to a standard finite ele-
ment method. The performance of the method has been assessed through several numerical
tests. First, we considered a transient Womersley flow in blood and airflow regimes, in which
the numerical results have been compared with a stable reference solution. For both regimes,
the numerical results showed that the Stokes-residual stabilization outperforms previously re-
ported methods in terms of accuracy. As next, we applied the stabilization to the simulation of
physiologically realistic aortic and bronchial geometries obtained from medical imaging. In all
cases, the results show that the size of the stabilization parameter may be decreased with the
mesh size.
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Figure 16: Pulmonary tract: approximated open boundary pressure gradients at the four open
boundaries (Γ1, . . . ,Γ3, from left to right), comparing the Poiseuille resistance approximation
(cyan) and dynamic resistance approximation (magenta). Top: coarse mesh. Bottom: fine
mesh.
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