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FOREWORD 

This preprint contains the revised version of two papers presented at the BiOS Europe' 95 
held at Barcelona in September 1995 (to appear in Proc. SPIE 2626). Both papers are devoted 
to inverse problems in optical tomography. The photon migration in highly scattering media is 
decribed by the diffusion equation including some absorption term: and by suitable initial and 
boundary conditions. It represents a good approximation assuming scattering predominates over 
absorption. Algorithms for solving these inverse problems are an essential part in developing 
medical diagnostic methods based on transillumination of tissue. 

In the first paper 

R. MODEL, R. HUNLICH, Parameter sensitivity in near infrared imaging, pp. 2-11 

it is shown that the choice of boundary conditions. sensitively affects the photon propagation 
·and the output fluxes at the boundary. of the object. A compar:ison between measuremeJlts1 of 
the time-resolved transmittance of ps laser pulses and numerical simulations leads to the result, 
that boundary conditions of the third kind must be used. Besides of the optical parameters .the 
corresponding boundary parameters have been identified using an iterat.ion method in analogy 
to the image reconstruction algorithm. 

The second paper 
M. ORLT, M. WALZEL, R. MODEL, Transillumination imaging performance using time 
domain data, pp. 12-23 

is concerned with the question of improving the image reconstruction algorithm itself. Improve-
ments in reconstruction results may be achieved in two ways, first by adapting the detector 
arrangements and, secondly, by using a regularization strategy based on the Tikhonov regular-
ization. The effectiveness of these methods is demonstrated by instructive examples concerned 
with the reconstruction of absorbers and scatterers, respectively. 

R. Hiinlich 

1These measurements were performed by H. RINNEBERG, u. SUKOWSKI, H. WABNITZ, 
"Medical Measuring Techniques" group of the PTB. 
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ABSTRACT 

To model the photon migration in highly scattering media, we use an approximation of the 
Boltzmann equation, the diffusion equation. A prerequisite for handling the inverse problem 
consists in solving the forward problem unc;l.er realistic conditions. We discuss the influence of 
boundary conditions on the light propagation. The boundary conditions at the walls surround-
ing the object highly sensitively influence the photon flux at the boundary which means that 
the time-resolved transmittance is affected. An algorithm for the determination of boundary 
parameters is introduced and demonstrated by an instructive example. We use. the Finite Ele-
ment Method for the time-resolved case as a basic method in combination with a minimization 
strategy. The boundary conditions are determined as conditions of the. third kind, i.e. the 
photon density is proportional to the outward photon flux at the boundary. 

1 INTRODUCTION 

Reconstruction algorithms for optical imaging are in general based on physical models for the 
photon migration describing the relation between the measured values and the optical properties· 
of the object under investigation. The propagation of light in highly scattering media, such 
as biological tissue may be described by the transport theory1 . The Boltzmann equation is 
in general difficult to solve and too complex fot parameter identifications. If the medium is 
predominantly scattering and sufficiently thick, such that the photons are m1:1ltiply scattered 
inside it, the diffusion approximation is a good approach to the Boltzmann equation and widely 
used in optical tomography. The resulting diffusion equation for the photon density <I> is the 
following 

:t <P(x, t) = div (D(x) grad <P(x, t)) - c µ.(x) <P{x, t) + s(x, t) , x E n , 0 :::; t :::; T {1) 
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where c is the speed of light in the medium and µa(x) the absorption coefficient. The optical 
diffusion coE;.fficient D ( x) is given by 

c D(x)------
- 3 (µa(x) + µ~(x)) (2) 

where µ~(x) is the transport scattering coefficient. The light source may be described in two 
ways, first by the photon source term s(x, t) in equation (1) and secondly by the initial function 
<I>(x, 0) = <I>o(x), x En, corresponding to a 6-impulse in time. For ultrashort pulses, the results 
are approximately the same. 

uniqueness of the solution of ( 1) is given if suitable conditions at the boundary an are 
formulated. For the description of light propagation in random media, there are two ways of 
considering the conditions at the surface. Following the first, it is stated that the walls perfectly 
absorb the photons hitting them from inside, especially if the walls are black. With the argument 
that all photons are absorbed at the boundary, the photon density vanishes· and homogeneous 
Dirichlet conditions (boundary conditions of the first kind) 

<I> ( x, t) = o , x E an , o :::; t :::; T ( 3) 

are assumed2- 4 • This type is mostly used in reconstruction algorithms, but it seems to be roughly 
simplified. 

A second approach as regards the boundary conditions is derived from Boltzmann's transport 
equation, in the same way as it is done with the diffusion equation. Here, the diffuse intensity, 
approximated by the weighted sum of the photon density and the photon flux :1 in the outside 
direction of the medium, must ~anish l,S,B. The result is a boundary co~dition of the third kind 

a<I>(x t) 
:J(x, t) = - D an' = h <I>(x, t) , x E an , 0:::; t:::; T . (4) 

It can be approximated by theoretically shifting the boundary outward by a small distance and 
. using conditions of the first kind there7'8 . If the Finite Element Method (FEM) is applied, 
boundary conditions of the third kind can be easily realized without such manipulations. For 
h = O, the flux vanishes or, in other words, a total reflection at the surface is described. This 
boundary condition is called a condition of the second kind which is independent of the density 
itself. For h ---+ oo, the flux must remain finite, therefore <I>(x, t) = 0 must be true at the 
boundary and ( 4) turns into the condition of the first kind. In reality, 0 < h < oo is valid, but 
the exact value depends on the experimental setup. The time-resolved transmittance, assumed 
to be proportional to :1, very sensitively responds to changes at the boundary. It is, however, 
the input for reconstruction procedures in the case of time-domain imaging. Careful modelling 
of the situation at the object surface is therefore a prerequisite for handling the inverse problem. 

In the next .section, the forward simulation for a test structure, i.e. a cuvette containing 
·a diffusely scattering liquid and a movable baffle, is explained. The influence of the boundary 
parameter h on :J and on some related parameters is shown in section 3. A method for fitting 
the boundary parameter based on given transmittance is described in section 4 and applied to 
experimental d~ta. Measurements of the time-resolved transmittance of ps laser pulses were 
performed by the group "Medical Measuring Techniques" of the PTB using time-correlated 
single photon counting (for details see4). These measurements were performed in a way which 
allowed a quantitative comparison to be made with the simulations described below. 
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2 THE FORWARD PROBLEM 

The diffusion equation (1) _is solved by a 2D FEM with adaptive grid refinement and time 
step size control which is an effective tool, in particular for complicated geometries and arbitrary 
distributions of the optical properties. 

[mm] Y. 

detector 

he cuvette 

hb 

I c, µ~,µa I baffle 
source 

o---~~~~~~~~~~~---~~---~~~~~~~~~~~-t-~-- x 
-81 0 Xb 105 [mm] 

Fig. 1. Test structure. The source position is Xs = 0 mm, Ys = 1 mm, the detector position 
is Xd = 0 mm, Yd = 40 mm, the left position of the baffle Xb is variable. Indicated are the 
physical parameters c, µ~, µa describing the properties ·of the homogeneous medium inside 
the cuvette, and he, hb describing the absorption and reflection properties of the wall of 
the cuvette and of the baffle, respectively. 

In Fig. 1, the test structure is illustr:ated whicP. is a cross section of a rectangular cuvette 
with a movable baffle inside. The parameters· he, hb of the boundary conditions 

_ D 8<f!(x, t) 
- he <f!(x, t) on the wall of the cuvette, an 

(5) 
_ D 8<f!(x, t) - hb <f!(x, t) on the baffle an 

may be different. In the following example of a for~ard simulation we use the optical parameters4 

c = 22.56cmns-1 , µa= 0.0308cm-1 , µ~ = 9.15cm-1. 

The boundary parameters he and hb are both set to 7.5 cm ns-1. The ultrashort pulse is modeled 
by the initial condition 

<f!o(x, y) =Cs d(x, y), ( ) { 
1 if J(x - Xs)2 + (y - Ys)2 < Ts 

d x,y = 
0 else 

setting Cs = 10 6 cm-3 , rs = 0.1 mm. For the same structure, simulations were done earlier 
with homogeneous. Dirichlet conditions4• 
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Resulting surface plots of the photon density for different times ( t=0.2, 0.5, 1.0, 2.0, 3.0, 4.0 
ns) are given in Fig. 2. Note that eu.ch of the plots is normalized to the maximum density of 
the actual time which quickly decreases as indicated explicitly. It is clearly visible that the light 
turns around the baffle depending on time. 

Fig. 3 shows isolines of the photon density for t = 2 ns and, in addition, the source position 
and six detector positions (detector 5 corresponds to the only detector in Fig. 1) for which 
the photon densities are compared in Fig. 4 . As expected, the influence of the baffle is most 
remarkable for detector 6 which is reached by the smallest number of photons. However, there 
is also an effect on the densities at the other detector positions. Because bou~dary conditions 
of the third kind were used, the density is proportional to the photon flux and therefore to the 
diffuse transmittance. 

t =0.02 ns 
max.dens = l.36E3 

t=2.0 ns 
max.dens = l.72E-l y 

t=0.5 ns 
max.dens = l.OOEl 

t=3.0 ns 
max.dens = 3.07E-2 y 

t = 1.0 ns 
max.dens = 2.09EO 

Vlll'VT\l\"-N{. :z I 
t=4.0ns , 
max.dens = 7.02E-3 y 

Fig. 2. Light propagation depending on time. Here the photon density surface is seen from 
the detector side such that the baffle is located on the left-hand side. The baffle position is 
Xb = -6mm. 
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detectors 
50. 1 2 3 4 5 6 

40. 

30. 

20. 

10. 

o. 

-10. source 

Fig. 3. Photon density in the cross section of 
the cuvette for t = 2.0 ns. 

dens 

0.008 

I: detector _I 
2: detector _2 

0.006 3:detector _3 
4: detector _4 
5: detector _s 

0.004 
6: detector _6 

0.002 

t. 2. . 3. 4. 5. t [nsl 

Fig. 4. Photon density [cm-3] as a function of 
time at various detector positions. · 

3 PARAMETER SENSITIVITY 

Now the influence of the boundary· parameters he and hb on the light propagation inside the 
· cuvette and ~:m the photon density at some detector position as a function of time is discussed. 
We use the following characteristics of these photon density curves: 

Imax - max. of photon density , ltot = f" <I>(t) dt ' 

tmax - time realizing Imax , tmean - -j- fn00 

t if!(t) dt , 
tot 0 

thalf - full width of half max. , ()" - [ 
1 r r ltot 

0 
(t - tmean) 2 if!(t) dt 

Fig. 5 shows these characteristics as a function of the baffle position Xb (from the most closed 
position at -15 mm to the widest open position at 36 mm) for some selected values of he and hb 
where the other parameters c, µa, µ~ remain unchanged as above. Source and detector are chosen 
as shown in Fig. 1. Case 1 (with he = hb = 10 ~) corresponds approximately to the boundary 
condition of the first kind. Case 2 (with he = hb = ~) is the most realistic one, in cases 3 and 4 

· the reflection increases. Case 5 and 6 consider different boundary parameters on the wall and on 
the baffle, respectively. For example, in all cases the maximum value Imax decreases when the 
baffle is moved to more closed positions. In the case with the highest reflection, the maximum 
values are largest (curve 4) as expected. When the baffle's influence becomes greater, curve 6 
differs from curve 4 due to the changed parameter hb· In general, the influence of the baffle 
appears clearer at the higher moments. Note that tmax, tmean, thalf and O" have a minimum at 
a baffle position between 0 mm and 5 mm. 
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0.1 
0.05 0.1 

0.05 

0.01 
0.005 0.01 

0.005 

0.001 
5.E-4 0.001 

5.E-4 

1.E-4 I Imax [cm-3] I Itot [cm-3 ns] 5.E-5 1.E-4 
5.E-5 

-10. -5. o. 5. 10. 15. 20. 25. 30. xb -10. -5. o. 5. 10. 15. 20. 25. 30. xb 

1. 9 2.4 

1.8 tmax [ns] 2.3 tmean [ns] 
1.7 2.2 

1. 6 2.1 

1.5 
2. 

1. 9 
1.4 

1.8 
1.3 

1.7 
1.2 

1.6 
-10. -5. o. 5. 10. 15. 20. 25. 30. xb -10. -5. o. 5. 10. 15. 20. 25. 30. xb 

1. 9 

thalf [ns] 
0.98 

1. 8 0.96 a [ns] 
0.94 

1.7 0.92 
0.9 

1.6 0.88 
0.86 

1.5 0.84 
0.82 

1.4 0.8 
0.78 

1.3 0.76 
0.74 

-10. -5. o. 5. 10. 15. 20. 25. 30. xb -10. -5. o. 5. 10. 15. 20. 25. 30. xb 

Fig. 5. Variation of the boundary parameters he, hb [cm ns-1] and of the baffle position Xb [mm]. 
The following values of he, hb have been used: 

case 1: he - 75.2 hb = 75.2 
case 2: he = 7.52 hb = 7.52 case 5: he = 7.52 hb - 1.88 
case 3: he = 3.76 hb = 3.76 
case 4: he - 1.88 hb = 1.88 case 6: he = 1.88 hb - 7.52. 
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From this it follows that the boundary parameters highly sensitively affect all characteristics. 
The solution of reconstruction problems therefore seems to require a reliable knowledge of the 
boundary parameters. 

4 THE INVERSE PROBLEM 

At first sight, the two parameters in the boundary conditions (5) for cuvette he and baffle hb 
must be fitted. However, the optical properties µa and µ~ are usually determin~d by comparing 
experimental data with an analytical approximation for the solution of (1) using Dirichlet con-
ditions in a bounded domain2'9 . For boundary conditions of the third kind (4), an analytical 
solution in a bounded domain is not on hand, so µa andµ~ are included in the inverse problem 
as unkown parameters. Furthermore, sometimes the absolute number of photons of the laser 
pulse entering the object and the exact start time of the pulse are not known either. A scaling 
factor <.P 1 and a time shift tsh are therefore added to the set of unkowns. In addition, a given. 
response function of the experimental setup must be taken into account. 

For the identification of the six parameters, an iteration method was developed in analogy 
to the image reconstruction method4,9- 11 • It is based on the minimization problem of the error 
norm 

p n 

L L IJ"5 (Xbi' tk, he, hb, µa,µ~, <.P1, tsh) . 
k=l i=l 

(6) 
np 

= L IFs (he, hb, µa,µ~, <.PI' tsh) 12 = min! 
s=l 

where n is the number of baffle positions, p the number of times, and the supercripts s and m 
denote the simulated and measured values, respectively. The algorithm can easily be adapted 
to other objects, for example to those without baffle inside. The least squares problem (6) is 
solved by a modified Levenberg-Marquardt-Method. 

The method was applied to experimental data, where a 2D situation was realized in the 
experiment (see for details4,12). An earlier comparison between these experimental results and 
numerical simulations using Dirichlet conditions at the boundaries had furnished unsatisfactory 
results4• Even by a new identification of the parameters µa,µ~, <.P 1 and tsh according to (6) (the 
dependence on he, hb is cancelled here), better agreement could not be achieved as can be seen 
in Fig. 6. Note that a single curve normalized to its maximum compared with the corresponding 
measurement data normalized to their maximum has led to good results. However, for more 
than one baffle position, a comparison is impossible. 

Now, boundary conditions of the third kind are applied. Here six parameters including he, hb 
have been identified according to (6). Excellent agreement is achieved as shown in Fig. 7. he 
is greater than hb which suggests that the baffle reflects the light more than does the wall of 
the cuvette. But the uncertainty is estimated at about ten per cent, because the problem is 
bad conditioned and has a flat minimum. Higher precision may be reached when reliable values 
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counts 

8000. 

6000. 

4000. 

2000. 

1. 2. 3. 4. t [n s J. 

Fig. 6. Measured and computed transmittance for different positions of the baffle (xb -
36, 9, 6, 3, 0, -3, -6 mm from top to bottom) using boundary conditions of the first kind. 
Optimal values: µa= 0.028cm-1, µ~ = 8.96cm-1 . 

counts 

8000. 

6000. 

4000. 

2000. 

I 1. 2. 3. 4. 

Fig. 7. Measured and computed transmittance for different positions of the baffle (xb -
36, 9, 6, 3, O, -3, -6 mm from top to bottom) using boundary conditions of the third kind. 
Optimal values: µa= 0.028cm-1, µ~ = 8.lcm-1, he= 8.99cmns-1, hb = 6.83cmns-1. 

9 
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of the optical parameters µa, µ~ are used which have been independently determined. Finally, 
mention should be made of the fact that the identification results are clearly influenced by the 
given response function. Some questions arise here which require further investigations. 

5 CONCLUSIONS 

The question about the correct determination of the boundary conditions in optical imaging 
problems using the diffusion theory may be answered by a constructive method which allows 
the boundary parameters to be determined as well. The assumption of the photon density's 
vanishing at the boundary did not furnish a satisfactory result. The excellent agreement between 
experimental and simulated data in the case of boundary conditions of the third kind strongly 
suggests the application of this condition. Corresponding to the experimental data, optimal 
boundary parameters are found which are different for ·the glass wall and the metal baffie . 
. This shows that the parameters also depend on the experimental setup. A reconstruction of 
spatially dependent optical properties must therefore include the determination of the boundary 
parameters. Because of the ill posedness of the resulting numerical problem, these parameters 
should be obtained by an independent reference measurement avoiding convergence difficulties 
in the reconstruction procedure itself. 

ACKNOWLEDGEMENTS 

We would like to thank H. Wabnitz, U. Sukowski and H. Rinneberg of the PTB for providing 
the experimental data and for helpful discussions. 

Thi~ work was supported by the German Federal Ministry of Education and Research 
(BMBF) project number 13N6307. 

REFERENCES 

[1] A. ISHIMARU, Wave propagation in random scattering media. Academic Press, New York 
(1978). 

[2] M. S. PATTERSON, B. CHANCE, B. C. WILSON, Time-resolved reflectance and trans-
mittance for the noninvasive measurement of tissue optical properties. Appl. Optics, 28, 
2331-2336 (1989). 

[3] S. R. ARRIDGE, M. SCHWEIGER, M. HIRAOKA, D. T. DELPY, Performance of an itera-
tive reconstruction algorithm for near-infrared absorption and scatter imaging. Proc. SPIE 
1888, 360-371 (1993). 

[4] R. MODEL, R. HUNLICH, D. RICHTER, H. RINNEBERG, H. WABNITZ, M. WALZEL, Imag-
ing in random media: Simulating light transport by numerical integration of the diffusion 
equation. Proc. SPIE 2326, 11-22 (1995). 



Parameter sensitivity in near infrared imaging 11 

[5] F. LIU, K. M. Yoo, R.R. ALFANO, How to describe .the scattered ultrashort laser pulse 
profiles measured inside and at the surface of a random medium using the diffusion theory. 
Proc. SPIE 1888, 103-106 (1993). 

[6] C. P. GONATAS, M. M1w.A., M. ISHII, J. ScHOTLAND, B. CHANCE, J. S. LEIGH, Effects 
due to geometry and boundary conditions in multiple light scattering. Proc. SPIE 1888, 
402-406 (1993). 

[7] R. ARONSON, Extrapolation distance for diffusion of light. Proc. SPIE 1888, 297-305 
(1993) .. 

[8] L. 0. SVAASAND, D. HASKELL, B. TROMBERG, M. McADAMS, Properties of photon 
density waves at boundaries. Proc. SPIE 1888, 214-226 (1993). 

[9] R. MODEL, R. HUNLICH, M. ORLT, M. WALZEL, Image reconstruction for random media 
b:y diffusion tomography. Proc. SPIE 2389, 400-410 (1995). 

[10] R. MODEL, R. HUNLICH, Optical imaging of highly scattering media. ZAMM (1996). In 
p~ess. 

[11] M. ORLT, M. WALZEL, R. MODEL, Transillumination imaging performance using time 
domain data. This volume. · 

[12] H. WABNITZ, R. WILLENBROCK, J. NEUKAMMER, u. SUKOWSKI, H. ~INNEBERG·, Spatial 
resolution in photon diffusion imaging from measurements of time-resolved transmittance. 
Proc. SPIB 1888, 48-61 (1993). 



Transillumination imaging performance using time domain data 

M. Orlt, M. Walzel, R. Model 

Physikalisch-Technische Bundesanstalt, 
Department of Medical Physics and Information Technology, 

Abbestra:Be 2-12, D-10587 Berlin, Germany 

ABSTRACT 

Light propagation in highly scattering medi·a can be numerically simulated by solving the 
diffusion equation by the Finite Element Method (FEM). Employing an iterative algorithm, 
th~ FEM solution of the forward problem is applied to the inverse imaging problem. Good 
test results were· previously achieved when absorbers were searched in different objects. Now 
the reconstruction of scattering is also taken into account. Simulated measurement data are 
used to test and evaluate the method at various objects with tissue-like properties. Resulting 
problems are very ill posed. The algorithm is specially adapted to the illposedness of. the 
problem. Improvements in reconstruction results can be achieved in two ways,.:first by adap~ing 
the detector arrangements and, secondly, by using a regularization strategy. The effectiveness 
of these methods is demonstrated by instructive examples. 

1 INTRODUCTION 

When a laser light pulse is sent through tissue, the spatial and time-resolved measurement 
of the output flux contains some information about the inner distribution of optical param-
eters.2,5,n-13 Light propagation in highly scattering media can be described by the diffusion 
theory. 6 The inverse imaging problem of the optical tomography then appears as a parameter 
identification problem of a partial· differential equation. As there are effective numerical tools 
to solve the diffusion equation even for inhomogeneous objects, for example the Finite Element 
Method (FEM), we include it for application to the inverse problem.8 •9 

However, parameter identification problems are ill posed in most cases, meaning that large 
differences of the optical parameters cause only small differences in the measured or simulated 
output flux. Basic numerical methods are known· to handle such problems, but a lot of detailed 
investigations are needed to apply them to the inverse imaging problem of optical tomography. 
Algorithms must be developed which can use the full information contained in a spatial and 
time-resolved measurement. 

The algorithm is tested using simulated measurement data computed for 2D objects~ several 
centimeters in size and with tissue-like optical parameters. The performance of the reconstruc-
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tion algorithm is demonstrated by the fact that absorbers and scatterers of small dimensions 
(several millimeters) and small parameter deviations ( 4-10 times of the underground) are found 
in these test objects. 

2 MATHEMATICAL MODEL 

With certain restrictiom which apply to the present problem, light propagation can be 
described by the diffusion theory.6 In this c_ase, the solution of a parabolic differential equation 

:t <!>( x, t) - div ( D( x) grad <!>(x, t)) + cµ.(x )<!>( x, t) = s( x, t) , (x, t) En x (0, T) (1) 

provides the spatial and time-dependent photon density cl>( x, t) in the object investigated. µa 
and µ~ are the spatially dependent optical parameters· of absorption and reduced scattering. 
The optical diffusion coefficient D ( x) is related to µa ( x) and µ~ ( x) by the equation 

D(x) = G 
(2) 

3 (µa ( X) + µ~ ( X)) 

The initial condition cl>( x, 0) = cl>o( x) for a known photon distribution cl>~( x) at the time t = O 
and the boundary condition 

D(x) ~= (x, t) + M(x, t) = 0, . (x, t) E &!1 x (0, T) (3) 

complete the niathematiCal formulation of the forward model. The boundary condition of the 
third kind ( 3) is derived applying the diffusion approximation to the general boundary condition 
of Boltzmann's transport equation stating that no diffuse intensity enters the medium from 
outside.6•7 The constant h depends ~m the speed of light c an'd the experimental setup and 
should be determined in advance by a reference measurement and a parameter identification 
procedure.10 The output photon flux 

J(x, t) = . 8cl> I -D(x) -
8 

(x,t) 
n an 

(4) 

is assumed to be proportional to the time-resolved measurements. 

The Finite Element Method is an effective numerical tool to solve the problem ( 1)-(4) even 
for inhomogeneous distributions of the optical parameters and for complicated geometries and 
boundary conditions. On the basis of a discretization in space and time, the unknown photon 
density is approximated by a piecewise linear function. 8 Figure 1 shows an example of the 
discretization of a rectangular object. Because of the large gradients of the photon density in a 
first short time interval, an additional refinement is necessary t9 achieve an appropriate accuracy 
of the numerical simulation. 

In the inverse imaging algorithm, the (given) measured information about the time-resolved 
transmittance Jmes = (J}e8(x11, ±111), ... , Jies(Xij, tijk), .. . )) is used. The subscripts i, j, k 
indicate the actual source, detector and time respectively such that one entry of the measurement 
vector Jies(Xij, tijk) is the photon flux which can be detected at the position Xij and the time 
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40 

mm 

i 20 
y 

10 

0 
0 10 20 mm 40 x ----+. 

Figure 1: FEM grid for the solution of the forward problems 
within the reconstructfon algorithm. · · 

tijk if the sour'ce distribution <Pai( x) has been applied to the object. This notation allows the 
number of detectors and the detector positions to be chosen separately for each source. and 
different times to be taken into account for each detector. 

The model (1)-(4) and its numerical solution allow a corresponding vector pim(µa,µ~) to 
be simulated on the assumption that µa( x) and µ~( x) are the actual spatially dependent opticp,l 
parameters of the object. The goal now is to find such µa(x) and µ~(x) which well fit the 
simulated data pim(µa, µ~)to the measured data J7nes. The basic strategy of the fit consists in 
an iterative correction of the optical parameters and can be demonstrated in a formal procedure: 

1. Choose a start approximation µa and/ or µ~. 

2. Solve the forward p.roblem, i.e. compute Jsim(µa, µ~). 

Compare Jsim (µa, µ~) and Jmes, 
if llJsim(µa,µ~)- Jmesll < E then go to 5. 

3. (5) 

4. Correct µa and/orµ~ go to 2. 

5. end 

With the choice of the l2-norm to compare the vectors of simulated and measured data, the 
optimization problem (5) becomes a least squares problem. 

I m; n;j 

L L L I J/im(Xij' tifk, µa,µ~) - Jtes (Xij 1tijk)1
2 min ! (6) 

i=li=lk=l 
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In this paper, µa and µ~ have been set piecewise constant on a special rectangular grid (see 
Fig. 2) which must be interpolated to the FEM grid. As expected, this inverse problem is very 
ill-conditioned. Large differences of the optical parameters cause only small differences in the· 
simulated output flux. This behaviour will be demonstrated in Figures 3-5. The implementation 
of the Levenberg-Marquardt.-Method from the IMSL program library was used to solve the 
optimization problem (6). Because of its trust region approach3 it is appropriate to handle 
badly conditioned problems. 
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Figure 2: Grid of the setup for the optical parameters µa and/ or µ~ and 
source distribution used for the numerical tests. 

Both numeri~al tools, the FEM code and the Levenberg-Marquardt algorithm for solving 
the forward and the inverse problem, respectively required a: lot of modifications and adaptions 
of parameters when these methods were applied to the imaging problem. Many numerical tests 
had therefore to be done before the following results were achieved. 

3 RECONSTRUCTION RESULTS 

3.1 Test object and measurement simulation 

A two-dimensional rectangle with a size of 4cm x 4cm, an underground absorption of µa = 
0.033cm-1 and a reduced scattering ofµ~ = lOcm-1 served as a test object. We approximated 
the absorption or the reduced scattering on a rectangular grid with ~ pixel size of 2.67mm. 
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For the test object and given inhomogeneities, the forward problem is solved in order to get 
the time-resolved transmittance as a quasi measurement. The iterative reconstruction procedure 
begins using constant optical parameters as the initial approximation and the quasi measurement 
data as the input. In this way a step-by-step approach to the difficulties of imaging from real 
measurement data is possible. 

Two ways of improving the algorithm are discussed in our pa.per. The first strategy consists 
in. finding an appropriate measurement configuration. Four sources are located at the respective 
middle point of the boundary pieces and moved into the object at a distance of lmm (Fig. 2) 
corresponding to the mean free path length. The aim is to determine a detector arrangement 
and times for a good detection of inhomogeneities. The. second way is-_ the application of a 
regularization method. 

3.2 Arrangement of sources and detectors 

In this section the influence of the detector arrangement on th.e reconstruction result is 
demonstrated ~y examples,_ and a method is presented to improve the detector arrangement. 
The basic idea is to use as much as possible of the measurement information available while 
taking into account as few measurement data as possible. · 

First we set a start configuration (A) (32 detectors per source), where the detectors are dis-
tributed equidistantly on the boundary of the·object (Fig. 3 right), and apply the reconstruction 
algorithm. The right side of Figure 3 shows the reconstruction result as a grey level picture. It 
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has been achieved with this detecto~ arrangement (A). In the example, the structure contains 
3 absorbers (Fig. 2) 2.67mm X 2.67mm in size, with an absorption coefficient µa = 0.165cm-1 

(5 times the underground). 

Using the reconstruction result, we simulate the output flux in additional test points between 
the detectors and compare it. with the corresponding additional quasi measurement data. In 
other words, we test whether or not the simulated transmittance of the reconstruction result is 
fitted to the "measurement" data in additional test points, too. Fig. 3 shows this investigation 
for one of four sources at the position x = 1.0, y = 20.0 and the detectors and test points on 
the lower left side of the right illustration. The numbers 1-7 at the detectors and test points 
on the right side refer to the difference curves on the left side of the figure. These curves are 
normalized using the maximum of output flux at the detector denoted by 1. 

If the differences between the output flux of the test object and the reconstructed structure 
are considerably higher in the test points (curves 2, 4, 6 in Fig. 3 left) compared with those in 
the previous detector points (curves 1, 3, 5, 7 in Fig. 3 left), it can be assumed that there is 
some measurement information available at these test points, which has not yet been used in 
the reconstruction. It may be expected that additional detectors in such regions can provide 
more information and improve the reconstruction result. On the other hand, in regions where 
the deviations between the simulated and measured transmittance in the test points are small, 
detectors can be removed. 
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Figure 4: Arrangement (B) of detectors and reconstruction result after 6 iterations. 

The described correction of the detector arrangement leads to configuration (B). As ex-
pected, this arrangement provides a better reconstruction result (see Figure 4 ). This config-
uration could be tested by repeating the procedure suggested above. It is summarized in the 
following formal procedure: 



1. 

2. 

3. 

4. 

5. 

6. 

M. Orlt, M. Walzel, R. Model 

Choose a test object. 

Choose a start configuration of detectors. 

Simulate measurements for this configuration and 
reconstruct' the object from these "measurement" data. 
Choose additional test points on the boundary between 
the detectors and simulate measurement for these points. 
Test if the simulated output flux of the reconstructed object 
is well fitted to the "~easurement" in the test points too. 
If not, modify detector arrangement and go to 3. 
end 

Figure 5 shows another correction of the detector arrangement and the corresponding recon-
struction result. Now the behaviour of the deviation curves in the test points is very similar 
to that in the detector points (Fig. 5 left). It is no~ to be expected that more detectors would 
provide additional information and improve the reconstruction results. 
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Figure 5: Arrangement ( C) of detectors and reconstruction result after 6 iterations. 

The right sides of Figures 4 and 5 (arrangements (B) ·and (C)) show the detectors for 
only one of t.he four sources. However, the arrangement in relation to each source is the same. 
Application of such a method requires the investigation of the output flux for all detectors and 
test points for each source and various objects in order that a configuration is obtained, which 
is independent of a specific object. However, it is worthwhile for a final diagnostic measurement 
configuration. 
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A similar procedure had to be followed with the sources to get an optimal measurement 
configur~tion. Contrary to the increase in the number of detectors, the addition of a source 
leads to a considerable growth of the computation time. However, an analogous procedure 
could be applied to the sources. 

The improved measurement configuration ( C) was used to reconstruct a more complicated 
structure of absorbers (Fig. 6), which could hardly be detected when only configuration (A) 
was used. · 
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Figure 6: Object (left) and reconstruction result after 6 iterations (right). 

3.3 Improvement of the results using Tikhonov regularization 

Regularization is a widely used stabilization strategy for algorjthms handling ill-conditioned 
problems. Here, the actual problem is replaced by a better conditioned problem which approx-
imates the original problem if some additional regularization parameters tend to zero. .The 
well-known Tikhonov regularization can be considered as the addition of penalty terms to the 
error function (6) 

(7) 

Each penalty term contains the norm of the optical parameter which must be reconstructed. 

When Tikhonov regularization is used, the reconstruction results may be considerably im-
proved. Figure 7 shows an example where the measurement data have been simulated using the 
test object of section 3.2 (compare Figure 2) with a fixed reduced scattering µ~ = lOcm-1 and 
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Figure 7: Object with 3 absorbers (top left) reconstruction result after 8 iterations without 
regularization (top right), with regularization f3a = 10-6 (left) and f3a = 10-7 (right). 

an underground absorption µa = 0.033cm-1 . Unlike the example in section 3.2 (Fig. 3-5), the :3 
absorbers shown in figure 2 had only the 4-fold underground absorption.- A comparison of the 
grey level pictures in Figure 7 shows the effect. of the regularization. 

The dependence on the appropriate choice of the regularization parameter f3a can be dearly 
seen. Best results were achieved when the parameter f3a was chosen so that the penalty term 
and the error function were of the same order of magnitude in the final step of the iteration (5), 

(8) 
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Ip. the first tests the regularization parameter was determined from condition (8) using llµall 2 

and llJSim(µa) - Jmesll 2 of the corresponding unregularized reconstruction result. However, it 
.seems possible to include a strategy into the iteration procedure (5) by which the regularization 
parameter cari be determined automatically. 

For the reconstruction of scatterers, (3~ is chosen in analogy. An example-of the regularization 
of reduced scattering is given in Figure 8. 
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4 CONCLUSIONS 

The inverse imaging problem is ill-conditioned. Reconstruction results therefore very sensi-
tively depend both on the measurement data and on the choice of the reconstruction method 
and the parameters controlling the algorithm. The development of appropriate algor.ithms makes 
systematic numerical tests neces.sary. 

The measurement configuration, especially the arrangement of the detectors, has a great 
influence on the reconstruction result obtained. It is possible to improve the results using appro-
priate configurations. Regularization methods can improve the reconstruction results or reduce 

. the computation time because of faster convergence. An automatic control of the regularization 
parameter should be included. 

Tests with simulated measurement data are an effective tool for developing· and improving 
reconstruction algorithms. In a next step, the measurement simulation should be more realistic, 
for example by addition of an artificial noise to the data. The test results achieved encourage 
us to also take real measurements into consideration. 
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