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ABSTRACT. Stochastic encounter-mating (SEM) models describe monogamous permanent pair forma-
tion in finite zoological populations of multitype females and males. In this article we study SEM with
Poisson firing times. We prove that an infinite population corresponds to a fluid limit, i.e., the stochas-
tic dynamics converges to a deterministic system governed by coupled ODEs. Moreover, we establish
a functional central limit theorem and give a diffusion approximation for the model. Next, we convert
the fluid limit ODEs to the well-known Lotka-Volterra and replicator equations from population dynam-
ics. Under the so-called fine balance condition, which characterizes panmixia for finite populations, we
solve the corresponding replicator equations and give an exact expression for the fluid limit. Finally, we
consider the case with two types of females and males. Without the fine balance assumption, but under
some symmetry conditions, we give an explicit formula for the limiting mating pattern, and then use it
to fully characterize assortative mating.

1. INTRODUCTION

1.1. The model. Consider a zoological population consisting of n females and n males, divided into
k types which are labeled 1, . . . , k. We denote by x(n)

i ≥ 0 the number of type-i females and by

y
(n)
j ≥ 0 the number of type-j males, for i, j ∈ [k] := {1, . . . , k}. To each type-i female (resp. type-
j male) a Poisson process with rate αi (resp. βj) is attached. These Poisson processes are mutually
independent and are called firing times. Consider a k × k matrix P = (pij)i,j∈[k], with 0 < pij ≤ 1,
which we refer to as mating preferences. The dynamics is described as follows. Start with a population
of only singles. At any time, when the Poisson clock of one of the single individuals rings (by the
Poisson assumption no two individuals’ clocks ring at the same time), it chooses a single individual
from the opposite sex, uniformly at random, to form a temporary pair. Next, if this temporary pair is
comprised of a type-i female and a type-j male, it becomes a permanent pair with probability pij
and the individuals in that pair leave the singles pool; otherwise the temporary pair is broken and the
individuals go back to the singles pool. We refer to this two-stage permanent pair formation model as
Poisson encounter-mating (Poisson EM). Observe that the number of types present in the female and
male populations need not be the same, setting, e.g., x(n)

i = 0 would take type-i females out of the
picture. Hence, there can be an unequal number of female and male types, however, the setup above
is notationally convenient.

We designate by Q(n)
ij (t), t ≥ 0, the number of type-ij pairs at time t. Here, the first index always

refers to the female type and the second to the male type. We call the k × k matrix valued process
Q(n)(t) = (Q

(n)
ij (t))i,j∈[k] the pair-type process. Since the Poisson processes are memoryless, Q(n)

is a pure jump continuous-time Markov process. In order to formally define Q(n) we briefly introduce
some notation. LetMk×k(A) denote the set of k × k matrices whose entries are in A ⊆ R. For
M = (Mij)i,j∈[k] ∈ Mk×k(A) we define the i-th row sum, the j-th column sum and the grand total
of M , respectively, via

Mi,· =
k∑

j′=1

Mij′ , M·,j =
k∑

i′=1

Mi′j, Mtot =
k∑

i′=1

k∑
j′=1

Mi′j′ .

We denote by I ij the k × k matrix whose entries are zero except the ij-th entry, which is one.
Throughout this article we use the max norm onMk×k(A) given by |M | = maxi,j∈[k] |Mij|. Since
all matrix norms are equivalent, our results are valid for any choice of norm.

The pair-type process Q(n) is a continuous-time Markov process taking values inMk×k(N ∪ {0})
that has jumps of size 1, more precisely, the transitions are from M to M + I ij for i, j ∈ [k]. The
transition rates are given by

(1.1) ρ(M,M + I ij) =
πij
(
x

(n)
i −Mi,·

)(
y

(n)
j −M·,j

)
n−Mtot
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where
Π = (πij)i,j∈[k], πij = pij(αi + βj),

with the convention that ρ(M, ·) ≡ 0 for M with Mtot = n.

Let us explain the formula in (1.1). When the pair-type formation at a time is M , the number of type-
i females (resp. type-j males) in the singles pool is x(n)

i − Mi,· (resp. y(n)
j − M·,j). Also, by the

description of the model, the total number of single females is always equal to that of males and given
by n−Mtot. A new type-ij pair is formed in two ways: either the clock of a type-i single female rings,
this female encounters a type-j single male to form a temporary pair, and finally, this pair becomes
permanent; or similar has to happen with a type-j single male’s clock ringing. In the first scenario,
the total rate with which the clock of a type-i single female rings is αi(x

(n)
i −Mi,·), the probability

that it samples a type-j male from single males is (y
(n)
j −M·,j)/(n−Mtot), the probability that the

temporary pair formed becomes permanent is pij , and the product of these terms gives the rate of this

event. The corresponding terms in the second scenario are βj(y
(n)
j −M·,j), (x

(n)
i −Mi,·)/(n−Mtot)

and pij . Finally, the sum of the rates of these two events gives (1.1).

Since Q(n) is a pure jump Markov process for all n, it is possible to define the whole family {Q(n) :
n ∈ N} via a collection of independent standard Poisson processes whose joint distribution we denote
by P (see Section 2). Since we are interested in the infinite population asymptotics, we assume that
there are non-negative numbers x1, . . . , xk and y1, . . . , yk such that for all i, j ∈ [k], as n→∞

(1.2)
x

(n)
i

n
−→ xi,

y
(n)
j

n
−→ yj.

Note that x1 + · · ·+ xk = y1 + · · ·+ yk = 1. We refer to such a collection of numbers x1, . . . , xk,
y1, . . . , yk as an infinite population of the species.

The pair-type process Q(n) naturally stops at

Tn := inf{t ≥ 0 : Q
(n)
tot (t) = n},

that is, when the singles pool is depleted and every individual is in a permanent pair.Q(n)(Tn) is called
the mating pattern of the population and is of central importance in this paper. Note that Q(n)(Tn) is a

random k× k matrix (or a contingency table) whose i-th row sum is x(n)
i and j-th column sum is y(n)

j

for all i, j ∈ [k]. We always assume that pij > 0 and αi + βj > 0 for all i, j ∈ [k]. Hence, almost
surely Tn <∞.

One fundamental question about the mating pattern is whether correlations exist between female and
male types. Zero correlations correspond to the case where the frequency of type-ij pair is given by
the product of the frequencies of type-i females and type-j males and has been called “panmixiaïn the
literature. Since we investigate Poisson EM as the population size diverges and establish almost sure
limit theorems for the normalized mating pattern Q(n)(Tn)/n, we naturally use the following definition
of panmixia.

DEFINITION 1.1. The species is said to be panmictic if P-a.s.

lim
n→∞

Q
(n)
ij (Tn)

n
= xiyj, ∀i, j ∈ [k],

for any infinite population x1, . . . , xk, y1, . . . , yk.

Complementing the concept of panmixia is assortative mating. Homogamy (resp. heterogamy) de-
scribes the situations where there are positive (resp. negative) correlations in the mating pattern be-
tween females and males with similar types. To make the definition of assortative mating precise one
needs a (genotypical or phenotypical) distance on the space of types. Such a structure for types must
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be reflected on preferences and this requires a more complex model. However, when k = 2, we can
conveniently define assortative mating since there is a unique metric on {1, 2}. Moreover, in this case,
there is homogamy (resp. heterogamy) for type-1 if and only if there is homogamy (resp. heterogamy)
for type-2. These observations lead to the following definition.

DEFINITION 1.2. For k = 2, the species is said to be homogamous if P-a.s.

lim
n→∞

Q
(n)
11 (Tn)

n
> x1y1,

and heterogamous if P-a.s

lim
n→∞

Q
(n)
11 (Tn)

n
< x1y1

for any infinite population x1, x2, y1, y2 with x1x2y1y2 6= 0.

Note that definitions of both panmixia and homogamy/heterogamy assume the existence of the infinite
population limit of the normalized mating pattern and that the limit is the same for all sequences of
finite populations satisfying (1.2), which are established in Section 2. For the corresponding definitions
for finite populations, one has to replace limits with expectations. Also, observe that in the definition of
homogamy/heterogamy we exclude the cases where one type is absent, since otherwise the system
is trivial and there is panmixia for all choices of parameters.

1.2. Previous results. In [8], Gimelfarb introduced two discrete-time models for permanent pair for-
mation: individual and mass encounter-mating. In the first model, at each time step, one single female
and one single male are selected, both uniformly at random, to form a temporary pair and this pair be-
comes permanent exactly as in the Poisson EM model with probability pij . Observe that if we set, say,
αi = 0 and βj = 1 for all i, j ∈ [k], then the dynamics of Gimelfarb’s individual encounter-mating
model is the same as the embedded discrete-time chain of the pair-type process Q(n) of Poisson EM,
and in particular, the mating patterns of the two models coincide. The mass encounter-mating model
has a very different encounter mechanism where, at each time step, all the single females and males
form temporary pairs according to a permutation chosen uniformly at random, while the mechanism
of permanent pair formation from temporary pairs is as before. The main conceptual conclusion of
Gimelfarb was that the mating pattern depends not only on the preferences but also on the encounter
mechanism. Moreover, given the encounter mechanism, different mating preferences can lead to the
same mating pattern. He then stated conditions on the parameters of the models that he conjectured
to be sufficient for panmixia, supported the one for mass encounter using a non-rigorous argument,
and provided only numerical evidence for the individual encounter case.

In [9], we introduced the stochastic encounter-mating (SEM) model to generalize Gimelfarb’s models.
The key feature of this generalization is the introduction of firing times which allows one to define a
wide range of models and take advantage of their invariance under certain changes of parameters.
We investigated in detail the generic case where pij = 1 for all i, j ∈ [k], that is, there are no
preferences, and proved among other things that there is panmixia for all firing time distributions and
that the firing times and the mating pattern are independent. As we have already seen, the pair-type
process of Poisson EM is a continuous-time Markov process whose rates depend on the parameters of
the model through πij = pij(αi+βj). Hence, one can play with the parameters without changing the
model as long as πij ’s stay the same. Using this and our analysis of the case with no preferences, we
concluded that the model exhibits panmixia if it can be changed into a model with no preferences, more
precisely, if there are non-negative numbers ᾱi and β̄j such that πij = pij(αi + βj) = 1(ᾱi + β̄j)
for every i, j ∈ [k]. We record this condition for future reference.
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DEFINITION 1.3. We say that Poisson EM satisfies the fine balance condition if there exist non-negative
numbers ᾱ1, . . . , ᾱk and β̄1, . . . , β̄k such that

(1.3) πij = ᾱi + β̄j, ∀i, j ∈ [k].

Equivalently,
πij + πi′j′ = πij′ + πi′j, ∀i, i′, j, j′ ∈ [k].

The fine balance condition is exactly what Gimelfarb had conjectured in [8] to be sufficient for panmixia.
In [9], we not only settled this conjecture, but also used a recursive argument to prove that the fine
balance condition is necessary for panmixia. Moreover, under the fine balance condition we gave the
distributions of the pair-type process Q(n)(t) and the mating pattern Q(n)(Tn). Finally, we answered
the assortative mating question in the case k = 2: if π11+π22 > π12+π21, then the (finite) population
exhibits homogamy; and if π11 + π22 < π12 + π21, then it exhibits heterogamy.

1.3. Overview of results. In this article, we analyze the Poisson EM model as the population size
diverges. In Section 2 we start our investigation by establishing various limit theorems forQ(n). We first
prove that the pair-type process rescaled by n converges P-a.s. in the sup norm up to any finite time,
where the limiting (deterministic) process Q(t) solves a system of coupled ODEs. More precisely, in
Theorem 2.1 we prove that, P-a.s.

lim
n→∞

sup
0≤s≤t

∣∣∣∣Q(n)(s)

n
−Q(s)

∣∣∣∣ = 0,

where, for every t > 0, Q(t) = (Qij(t))i,j∈[k] satisfies

(1.4)
d

dt
Qij(t) = πij

(
xi −Qi,·(t)

)(
yj −Q·,j(t)

)
1−Qtot(t)

, with Qij(0) = 0.

This type of generalization of LLN to Markov processes, more precisely, the convergence of a rescaled
pure jump Markov process to a (deterministic) solution of a system of ODEs, is known as the fluid
limit and is due to [13]. Here, Q represents the infinite population pair-type process and we use the
terms pairs, singles etc. for Q as well. As an easy consequence of the fluid limit, we prove that P-a.s.
limn→∞Q

(n)(Tn)/n = Q(∞), that is, the limit as t→∞ ofQ(t) is the mating pattern of the infinite
population (see Corollary 2.2). Next, we prove a functional CLT for the process Q(n) and provide an
SDE for the weak limit of the rescaled fluctuations (see Theorem 2.3). Finally, we give a diffusion
approximation for Q(n) (see Theorem 2.4) which is stronger than the CLT as it is an almost sure limit
theorem with concentration bounds. For the proofs of these results we basically follow Chapter 11 of
the classical book of Ethier and Kurtz [3].

After establishing these limit theorems we focus on the evolution of Q. In Section 3, we relate the
system of ODEs that describeQ to the well-known Lotka-Volterra and replicator equations from popu-
lation dynamics. Let Xi(t), Yj(t) and Z(t) denote the number of type-i single females, type-j single
males and all single females (or males):

(1.5) Xi(t) := xi −Qi,·(t), Yj(t) := yj −Q·,j(t), Z(t) := 1−Qtot(t).

Then, for all i, j ∈ [k],

(1.6)
d

dt
Xi(t) = −Xi(t)

Z(t)

k∑
j=1

πijYj(t),
d

dt
Yj(t) = −Yj(t)

Z(t)

k∑
i=1

πijXi(t),

with Xi(0) = xi and Yj(0) = yj . Hence, up to a time change due to the Z(t) term, this is a system
of 2k Lotka-Volterra equations where intrinsic growth (or decay) rate is 0 for all types and sexes.
See Theorem 3.1 for the precise statement. Another important equation in population dynamics is
the replicator equation, first introduced in [17]. Replicator equations describe the evolution of different



5

types in a population under density dependent fitness functions and are often used in the context
of evolutionary game theory. In general, a Lotka-Volterra equation with l variables is equivalent to
a replicator equation with l + 1 variables, see [10, Theorem 7.5.1]. However, when intrinsic growth
rates are constant, one does not need to increase the dimension to obtain a replicator equation.
Indeed, the frequencies of types in the Lotka-Volterra system, up to a time change, solve the replicator
equation with the same interactions. In particular, we also prove in Theorem 3.1 that, setting Ai(t) :=
Xi(t)/Z(t) and Bj(t) := Yj(t)/Z(t) for all i, j ∈ [k],
(1.7)

d

dt
Ai(t) = −Ai(t)

[
k∑
j=1

πijBj(t)− C̄(t)

]
,

d

dt
Bj(t) = −Bj(t)

[
k∑
i=1

πijAi(t)− C̄(t)

]
,

where

C̄(t) :=
k∑
i=1

k∑
j=1

πijAi(t)Bj(t).

We use (1.5)-(1.7) to deduce that

(1.8)
d

dt
Z(t) = −Z(t)

k∑
i=1

k∑
j=1

Ai(t)Bj(t).

By (1.4), we observe that

(1.9)
d

dt
Qij(t) = πijZ(t)Ai(t)Bj(t),

and thus find a three-step procedure for obtaining a formula for Q(t): (i) solve the replicator equations
(1.7) for Ai’s and Bj ’s; (ii) solve (1.8) to find the total mass Z(t) of the corresponding (time-changed)
Lotka-Volterra equations; and finally (iii) solve (1.9).

In Section 3.2, we focus on the fine balance case. We carry out the three-step procedure and obtain a
formula for Q(t) for all t, and in particular for the mating pattern Q(∞). Namely, in Theorem 3.3 we
show that

Ai(t) =
xie
−ᾱit∑

i′ xi′e
−ᾱi′ t

, Bj(t) =
yje
−β̄jt∑

j′ yj′e
−β̄j′ t

,

Qij(t) = xiyj(1− e−πijt), and Qij(∞) = xiyj.

Here, recall that ᾱi and β̄j are from the fine balance condition given in Definition 1.3. This verifies the
results obtained in [9] for the expectations of the pair-type process and the mating pattern in the finite
population setting, albeit this time employing a totally different approach via the replicator equations.

Finally, in Section 4 we study the case k = 2 with π12 = π21 and x1 = y1. Due to these symmetries,
the evolution of the system can be reduced to that of only, say, females. As a result, the corresponding
replicator dynamics is one dimensional. More precisely, Ai(t) = Bi(t) for all t ≥ 0 and i = 1, 2, and
setting A2(t) = 1− A1(t), we get

(1.10)
d

dt
A1(t) = −(π11 + π22 − 2π12)A1(t)

(
1− A1(t)

)(
A1(t)− γ

)
,

where

(1.11) γ =
π22 − π12

π11 + π22 − 2π12

.

Note that in Section 3 we explicitly solve the fine balance case which corresponds to π11 + π22 −
2π12 = 0, so we can exclude it, and (1.11) is then well-defined. We give formulas for Q12(t) in terms
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of A1(t) that depend on the value of γ: For γ = 1

Q12(t) =
θ1

1− x1

∫ A1(t)

x1

(
1− x
1− x1

)θ1−1(
x

x1

)−θ1−1

exp

{
−θ1

(
1

1− x
− 1

1− x1

)}
dx,

for γ = 0

Q12(t) =
θ2

x1

∫ 1−A1(t)

1−x1

(
1− x
x1

)θ2−1(
x

1− x1

)−θ2−1

exp

{
−θ2

(
1

1− x
− 1

x1

)}
dx,

and for γ /∈ {0, 1}

Q12(t) = − π12(x1 − γ)−1

π11 + π22 − 2π12

∫ A1(t)

x1

(
x

x1

)−θ1−1(
1− x
1− x1

)−θ2−1(
x− γ
x1 − γ

)θ1+θ2

dx.

Here, θ1 = π12/(π22−π12) and θ2 = π12/(π11−π12). The stability analysis ofA1 is then carried out
simply using (1.10), and we get explicit formulas for the mating pattern. Lastly, we directly use these
formulas to give a complete characterization of heterogamy/panmixia/homogamy (see Theorem 4.1),
verifying the corresponding result in [9], but this time in the infinite population setting.

1.4. Discussion and open problems. Several authors have studied mating models that are similar to
the ones in [8], for general references regarding pair formation models see [9]. One article of particular
interest is [16], where the ODE describing Q(t) was given for two types and studied numerically.

Panmixia is an important concept in population genetics. It is one of the main assumptions of the
Hardy-Weinberg law which states that genotype frequencies remain constant in a population to which
no evolutionary force acts on, see e.g. [5]. In the literature, panmixia is also referred to as “random
mating", however, this term is obviously misleading since the matings can be random yet assortative.
Moreover, this confusion is even greater for a bottom-up approach such as in SEM, where “random
mating” suggests that there are no preferences. However, we show in Theorem 3.3 that there are
instances where the mating pattern exhibits zero correlations between female and male types even
though there are non-trivial preferences.

In the case of assortative mating, the genotype frequencies might differ greatly from the ones predicted
by the Hardy-Weinberg law, see [6, Chapter 4] and the references therein. Moreover, assortative mat-
ing is one of the key concepts of sexual selection, that is, the evolutionary force driven by mating. In
the sexual selection literature, most models of pair formation assume that the females unilaterally ac-
cept or reject the males. Various consequences of female choice have been studied in, e.g., [11, 14].
Observe that in the SEM model there is no specification of which sex makes the choice. Actually, this
is an advantage of the model: unilateral decisions and choosiness can be incorporated into SEM by
appropriately tuning the parameters, while retaining certain degrees of freedom that can be exploited
for the purpose of finding exact formulas. However, to enable a self-contained study of sexual selection
through SEM we need to extend the model which we discuss next.

SEM is about permanent pair formation and can be seen as a model of monogamous mating of an-
imals in one mating season. Then, one natural direction in which to extend this model is to change
the permanent pair structure. A simple way to do this would be to let the pairs separate with a certain
rate and send the individuals that form it back to the singles pool. The life-time of a pair corresponds
to “latencyïn the biological context. These kinds of models are important in the study of the evolu-
tion of female choice (via certain payoff functions for staying together with males depending on their
types, see, e.g., [4]) and also suitable for studying sexually transmitted diseases, see [2]. SEM can be
generalized also by introducing polygamy with each male having a limited number of mates, see [15]
for such a model in a simpler setting. Finally, adding offspring production might lead to more general
Lotka-Volterra systems.
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In Section 2, we use the fluid limit of the pair-type process for large times to prove the LLN for the
mating pattern. One can similarly try to establish a CLT for the mating pattern via the functional CLT
for the pair-type process. Here, one would need to control the covariance of the fluctuations of the
pair-type process as t→∞. We plan to address this issue in a future work.

In Section 4, we solve the dynamics of the pair-type process in the symmetric 2 × 2 case, where
the corresponding replicator equation is one dimensional. Following a similar strategy, one can try
to extend our results to k = 3 and get exact formulas for the mating pattern. Phase portraits of all
possible Lotka-Volterra equations on the plane, hence, equivalently, of all three dimensional replicator
equations, are given in [1]. This suggests that it should be possible to solve the mating pattern prob-
lem. However, much less is known for Lotka-Volterra equations in higher dimensions. In particular,
numerical simulations show that the behavior in higher dimensions is chaotic and the type of chaos
they exhibit is not understood at all, see [7] for an example of chaos with three types.

2. LIMIT THEOREMS

2.1. The LLN and the fluid limit. We begin this section by putting Poisson EM into the framework
of density dependent families of Markov processes as described in [3, Chapter 11]. For notational
convenience we assume WLOG that x(n)

i /n ≤ xi and y(n)
j ≤ yj for all i, j ∈ [k] and n ∈ N. Let

(2.1) E :=
{
M ∈Mk×k([0,∞)) : Mi,· ≤ xi,M·,j ≤ yj,∀i, j ∈ [k]

}
.

Hence, the state space of the rescaled pair-type process, n−1Q(n)(t), is E ∩Mk×k(n−1N ∪ {0}).
Define F = (Fij)i,j∈[k] : E →Mk×k([0,∞)) by

(2.2) Fij(M) :=

{
πij

(
xi−Mi,·

)(
yj−M·,j

)
1−Mtot

if Mtot 6= 1,
0 if Mtot = 1.

Then, we can rewrite the transition rates of Q(n), given in (1.1), as

ρ(M,M + I ij) = nFij(M/n).

Therefore, the processes
(
n−1Q(n)(t) : t ≥ 0

)
, on state spaces E∩Mk×k(n−1N∪{0}), constitute

a density dependent family corresponding to F , as defined in [3, Chapter 11]. Consequently, we have
the following representation

(2.3) Q
(n)
ij (t) = Jij

(
n

∫ t

0

Fij(n
−1Q

(n)
ij (s))ds

)
.

Here,
{
Jij : i, j ∈ [k]

}
is a collection of independent standard Poisson processes defined on

a common probability space (Ω,F ,P). Therefore, n−1Q(n) is defined for all n ∈ N on the same
probability space, too.

The following theorem establishes the fluid limit of the rescaled pair-type process, where the limiting
process is identified through a coupled system of ODEs.

THEOREM 2.1. There exists a function Q = (Qij)i,j∈[k] : [0,∞)→ E satisfying

(2.4) Q(t) =

∫ t

0

F (Q(s))ds,

and for any t ≥ 0, P-a.s.

(2.5) lim
n→∞

sup
0≤s≤t

∣∣∣∣Q(n)(s)

n
−Q(s)

∣∣∣∣ = 0.
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Proof. First, note that for any M ∈ E
(2.6) Fij(M) ≤ πij(xi ∧ yj).
Second, we have

(2.7)
∂Fij(M)

∂Mi′j′
= πij

[(
xi −Mi,·

1−Mtot

)(
yj −M·,j
1−Mtot

)
−
(
xi −Mi,·

1−Mtot

)
δjj′ −

(
yj −M·,j
1−Mtot

)
δii′

]
for every M ∈ E , where δij denotes the Kronecker delta function. This yields∣∣∣∣∂Fij(M)

∂Mi′j′

∣∣∣∣ ≤ πij.

Therefore, F is Lipschitz on E and (2.4) has a unique solution Q. Now we prove that this solution
exists for all times. Recall that πij > 0 for all i, j ∈ [k]. Thus, c1 := mini,j∈[k] πij > 0. Setting
c2 := maxi,j∈[k] πij and using (2.2), we get

c1(1−Qtot(t)) ≤
d

dt
Qtot(t) ≤ c2(1−Qtot(t)).

Since Qtot(0) = 0, this implies

(2.8) 1− e−c1t ≤ Qtot(t) ≤ 1− e−c2t.
Thus, Qtot(t) < 1 for any t, and as a result, Q exists for all times.

To prove (2.5) we simply need to check that the conditions of [3, Chapter 11, Theorem 2.1] are satis-
fied. However, these two conditions are boundedness and Lipschitz continuity of F on E , and we have
proved them in the previous paragraph. �

Next, we extend the LLN for the pair-type process to a LLN for the mating pattern. We first describe
the state space of Q(n)(Tn)/n. Define

E ′ :=
{
M ∈Mk×k([0,∞)) : Mi,· = xi,M·,j = yj,∀i, j ∈ [k]

}
.

As mentioned earlier, at time Tn there are no singles left and thus, Q(n)(Tn)/n ∈ E ′ ⊂ E . Also note
that, for M ∈ E , F (M) = 0 if and only if M ∈ E ′, as a result, using (2.8), we can conclude that
limt→∞Q(t) =: Q(∞) exists and Q(∞) ∈ E ′.

COROLLARY 2.2. P-a.s.

lim
n→∞

Q(n)(Tn)

n
= Q(∞).

Proof. We define
T δ := inf

{
t ≥ 0 : Qtot(t) ≥ 1− δ

}
, δ > 0.

By (2.8), we have T δ <∞, and T δ →∞ as δ → 0. Also, it is clear that

(2.9)
∣∣Q(T δ)−Q(∞)

∣∣ ≤ δ.

Now we define the corresponding stopping time for the Markov process Q(n) by

T δn := inf{t ≥ 0 : Q
(n)
tot (t)/n ≥ 1− δ}, δ > 0.

Then, since obviously Tn ≥ T δn , for any δ > 0 and n ≥ 1 we have

(2.10)

∣∣∣∣Q(n)(Tn)

n
− Q(n)(T δn)

n

∣∣∣∣ ≤ δ.

Fix δ > 0. For any ε < δ we have again T δ−ε < ∞. Thus, via Theorem 2.1, P-a.s., for all n large
enough

Q
(n)
tot (T

δ−ε)

n
≥ Qtot(T

δ−ε)− ε/2 = 1− δ + ε/2 > 1− δ.
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Hence, P-a.s., lim supn→∞ T
δ
n ≤ T δ−ε. Now we use Theorem 2.1 on the time interval [0, T δ]. P-a.s.,

for all n large enough, and for t ≤ T δ with Q(n)
tot (t)/n ≥ 1− δ,

Qtot(t) ≥
Q

(n)
tot (t)

n
− ε/2 ≥ 1− δ − ε/2 > 1− δ − ε.

Thus, t ≥ T δ+ε for any such t. Also, for any t > T δ, since T δ ≥ T δ+ε, we have t > T δ+ε. Hence,
P-a.s., for all n large enough, and t ≥ 0 with Q(n)

tot (t)/n ≥ 1 − δ, we have t ≥ T δ+ε, that is,
lim infn→∞ T

δ
n ≥ T δ+ε. Since Qtot is continuous, as ε → 0, both T δ+ε → T δ and T δ−ε → T δ.

Therefore, P-a.s., T δn → T δ as n → ∞. As a result, for any ε′ > 0 given, P-a.s., for all n large

enough T δ − ε′ ≤ T δn ≤ T δ + ε′. Since Q(n)
ij (t) is non-decreasing in t for any i, j ∈ [k], we have

Q
(n)
ij (T δ − ε′)

n
−Qij(T

δ) ≤
Q

(n)
ij (T δn)

n
−Qij(T

δ) ≤
Q

(n)
ij (T δ + ε′)

n
−Qij(T

δ).

Via the inequalities∣∣∣Q(n)
ij (T δ − ε′)

n
−Qij(T

δ)
∣∣∣ ≤ ∣∣∣Q(n)

ij (T δ − ε′)
n

−Qij(T
δ − ε′)

∣∣∣+
∣∣∣Qij(T

δ − ε′)−Qij(T
δ)
∣∣∣

and∣∣∣Q(n)
ij (T δ + ε′)

n
−Qij(T

δ)
∣∣∣ ≤ ∣∣∣Q(n)

ij (T δ + ε′)

n
−Qij(T

δ + ε′)
∣∣∣+
∣∣∣Qij(T

δ + ε′)−Qij(T
δ)
∣∣∣,

using once again Theorem 2.1, and the fact thatQ is continuous, we conclude that P-a.s., as n→∞

(2.11)
Q(n)(T δn)

n
→ Q(T δ).

Using the triangle inequality, we get∣∣∣Q(n)(Tn)

n
−Q(∞)

∣∣∣ ≤ ∣∣∣Q(n)(Tn)

n
− Q(n)(T δn)

n

∣∣∣+
∣∣∣Q(n)(T δn)

n
−Q(T δ)

∣∣∣+
∣∣∣Q(T δ)−Q(∞)

∣∣∣.
Finally, (2.9), (2.10) and (2.11) finish the proof. �

2.2. The CLT and the diffusion approximation. In this section, we further assume that the conver-
gence in (1.2) is such that, as n→∞,

x
(n)
i − nxi√

n
→ 0 and

y
(n)
j − nyj√

n
→ 0.

First, we prove the following functional CLT for the pair-type process.

THEOREM 2.3. Denote by V (t) = (Vij(t)) theMk×k(R) valued process satisfying

Vij(t) = Wij

(
Qij(t)

)
+
∑

i′,j′∈[k]

∫ t

0

∂Fij(Q(s))

∂Mi′j′
Vi′j′(s)ds,

where (Wij) are independent standard Brownian motions. Then

Q(n)(·)− nQ(·)√
n

⇒ V (·)

weakly onD([0,∞),R) equipped with the topology of uniform convergence on bounded subintervals
of [0,∞).
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Proof. We need to verify the conditions of [3, Chapter 11, Theorem 2.3]. Since Q(t) 6∈ E ′ for any
t ≥ 0, an inspection of the proof of the aforementioned theorem reveals that it is enough to check
everything for compact K ⊆ E \ E ′. The inequality in (2.23) of [3, Chapter 11, Theorem 2.3] fol-
lows immediately from (2.6). The continuity of Fij is obvious. Finally, the continuity of the first partial
derivatives of Fij follows from (2.7). This yields weak convergence on D([0,∞),R) equipped with
the Skorohod J1 topology. However, since V has a.s. continuous paths, weak convergence is valid
under the stronger topology of uniform convergence on bounded subintervals of [0,∞) by [3, Chapter
3, Theorem 10.2]. �

Next, we give a diffusion approximation for Q(n). Theorem 2.3 describes the fluctuations of n−1Q(n)

in distribution. Alternatively, one can find a diffusion process Z(n) defined on the probability space
(Ω,F ,P) and obtain a direct comparison between the two processes. Naturally, the generator of
the diffusion process Z(n) approximates that of n−1Q(n) up to the second order term in the Taylor
expansion. That is, the generator of Z(n), denoted by L(n), is given by

L(n)g(M) =
1

2n

∑
i,j∈[k]

Fij(M)
∂2g(M)

∂M2
ij

+
∑
i,j∈[k]

Fij(M)
∂g(M)

∂Mij

.

The coupling of Q(n)/n and Z(n) under P is due to [12] and is also explained in [3, Chapter 7,
Corollary 5.5]. Since Fij is continuous on E for all i, j ∈ [k], Z(n) can be obtained as the unique
solution of

Z
(n)
ij (t) =

1

n
Wij

(
n

∫ t

0

Fij(Z
(n)(s))ds

)
+

∫ t

0

Fij(Z
(n)(s))ds, i, j ∈ [k],

where Wij are independent standard Brownian motions and are, this time, coupled with Jij ’s. See [3,
Chapters 7 and 11] for the details of this coupling.

THEOREM 2.4. Let T > 0 be fixed. For n ≥ 2 there is a random variable ΓTn defined on (Ω,F ,P)
and positive constants λT , CT and KT depending only on T , Π and x1, . . . , xk, y1, . . . , yk such that
P-a.s.

sup
t≤T

∣∣∣Q(n)(t)

n
− Z(n)(t)

∣∣∣ ≤ ΓTn
log n

n

and

P(ΓTn > CT + x) ≤ KT

n2
exp

(
−λT
√
x− λTx

log n

)
.

Proof. Since Fij is Lipschitz on all of E for every i, j ∈ [k], we can use [3, Chapter 11, Theorem
3.1], without needing to truncate the time Tn, to conclude the proof. Here, the constants λT , CT and
KT depend only on Π and the type frequencies x1, . . . , xk, y1, . . . , yk, because the function F is
determined by these parameters. �

3. ANALYSIS OF THE FLUID LIMIT

3.1. Lotka-Volterra and replicator equations. Recall from Section 1 that

Xi(t) = xi −Qi,·(t), Yj(t) = yj −Q·,j, Z(t) = 1−Qtot(t)

denote the number of type-i single females, type-j single males, and all single females (or males),
respectively. We have also introduced

Ai(t) =
Xi(t)

Z(t)
and Bj(t) =

Yj(t)

Z(t)
.
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In words, Ai is the fraction of type-i females among all single females, and Bj is the fraction of type-j
males among all single males. Then, for any t ≥ 0,

A1(t) + · · ·+ Ak(t) = B1(t) + · · ·+Bk(t) = 1.

For the following we define the 2k × 2k matrix

Π̂ :=

(
0 Π
ΠT 0

)
.

THEOREM 3.1. Set U(t) :=
(
X1(t), . . . , Xk(t), Y1(t), . . . , Yk(t)

)
. Then U satisfies

(3.1)
d

dt
Ui(t) = − 1

Z(t)
Ui(t)(Π̂U(t))i, i = 1, . . . , 2k,

that is, up to a time change, U is the solution of a system of Lotka-Volterra equations. Moreover, set-
ting C(t) := 1

2

(
A1(t), . . . , Ak(t), B1(t), . . . , Bk(t)

)
, C satisfies the following system of replicator

equations:

(3.2)
d

dt
Ci(t) = −2Ci(t)

(
(Π̂C(t))i − CT (t)Π̂C(t)

)
, i = 1, . . . , 2k.

REMARK 3.2. When the matrix Π is symmetric, which means that its entries do not depend on the
sexes but only on the types, and if xi = yi for all i ∈ [k] it is clear that Xi(t) = Yi(t) and Ai(t) =
Bi(t), for all t ≥ 0 and i ∈ [k]. Consequently, the 2k replicator equations in (3.2) simplify to the
following replicator system with k variables:

(3.3)
d

dt
Ai(t) = −A(t)

(
(ΠA(t))i − AT (t)ΠA(t)

)
, i = 1, . . . , k.

We use this observation in Section 4 while studying the symmetric 2× 2 case. A similar simplification
also applies to the Lotka-Volterra equations in (3.1).

Proof of Theorem 3.1. Let us write X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk). Using (2.2), (2.4),
and the definitions of Xi, Yj and Z, we get

(3.4)
d

dt
Qij(t) = πij

Xi(t)Yj(t)

Z(t)
.

Thus, for i ∈ [k]
(3.5)

d

dt
Ui(t) =

d

dt
Xi(t) = −

k∑
j=1

d

dt
Qij(t) = − 1

Z(t)
Xi(t)

k∑
j=1

πijYj(t) = − 1

Z(t)
Ui(t)(ΠY (t))i.

Similarly, for j ∈ [k]

(3.6)
d

dt
Uk+j(t) =

d

dt
Yj(t) = − 1

Z(t)
Uk+j(t)(Π

TX(t))j.

Hence, noting that (Π̂U)i = (ΠY )i and (Π̂U)k+j = (ΠTX)j for i, j ∈ [k] gives (3.1). Now
summing (3.5) over i (or equivalently (3.6) over j) and using the definitions of Ai and Bj , we get

(3.7)
d

dt
Z(t) = −Z(t)

(
AT (t)ΠB(t)

)
= −Z(t)

(
BT (t)ΠTA(t)

)
.

As a result, using (3.5), for i ∈ [k]

(3.8)
2
d

dt
Ci(t) =

d

dt
Ai(t) =

d

dt
Xi(t)

1

Z(t)
− Xi(t)

Z2(t)

d

dt
Z(t)

= −Ai(t)
[
(ΠB(t))i − AT (t)ΠB(t)

]
.
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Similarly, using (3.6), for j ∈ [k]

(3.9) 2
d

dt
Ck+j(t) =

d

dt
Bj(t) = −Bj(t)

[
(ΠTA(t))j −BT (t)ΠTA(t)

]
.

By the definition of Π̂ we have

(Π̂C(t))i =
1

2
(ΠB(t))i, (Π̂C(t))k+j =

1

2
(ΠTA(t))j, i, j ∈ [k],

and

CT (t)Π̂C(t) =
1

4
AT (t)ΠB(t) +

1

4
BT (t)ΠTA(t) =

1

2
AT (t)ΠB(t) =

1

2
BT (t)ΠTA(t).

Thus, using (3.8), for i ∈ [k]

d

dt
Ci(t) =

1

2

d

dt
Ai(t) = −2Ci(t)

(
(Π̂C(t))i − CT (t)Π̂C(t)

)
,

and using (3.9), for j ∈ [k]

d

dt
Ck+j(t) =

1

2

d

dt
Bj(t) = −2Ck+j(t)

(
(Π̂C(t))k+j − CT (t)Π̂C(t)

)
.

Therefore, we are finished with the proof of (3.2). �

3.2. Exact solution in the fine balance case. As we have mentioned in Section 1, in [9] we proved
that the fine balance condition, given in Definition 1.3, characterizes panmixia for any finite population.
The next theorem gives explicit formulas for the solution of the system of replicator equations and for
the pair-type process under the fine balance condition.

THEOREM 3.3. Assume that the fine balance condition (1.3) is satisfied. Then

Ai(t) =
xie
−ᾱit∑

i′ xi′e
−ᾱi′ t

, Bj(t) =
yje
−β̄jt∑

j′ yj′e
−β̄j′ t

and
Qij(t) = xiyj(1− e−πijt).

In particular,
Qij(∞) = xiyj.

REMARK 3.4. This result can also be obtained from [9, Theorem 3.6] via the fluid limit and the domi-
nated convergence theorem. However, our method here is completely different and self-contained.

Proof. Using (3.8), for i ∈ [k] we get

(3.10)

d

dt
log
(
Ai(t)/A1(t)

)
=

d

dt
logAi(t)−

d

dt
logA1(t)

= −
[
(ΠB(t))i − AT (t)ΠB(t)

]
+
[
(ΠB(t))1 − AT (t)ΠB(t)

]
= − [(ΠB(t))i − (ΠB(t))1] .

Similarly, by (3.9), for j ∈ [k] we have

(3.11)
d

dt
log
(
Bj(t)/B1(t)

)
= −

[
(ΠTA(t))j − (ΠTA(t))1

]
.

Using (1.3), for i ∈ [k] we get

(ΠB(t))i =
k∑
j=1

πijBj(t) =
k∑
j=1

(ᾱi + β̄j)Bj(t) = ᾱi +
k∑
j=1

β̄jBj(t).
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Then, (3.10) yields

d

dt
log
(
Ai(t)/A1(t)

)
= −(ᾱi − ᾱ1).

Hence,

Ai(t)

A1(t)
=
Ai(0)

A1(0)
e−(ᾱi−ᾱ1)t.

Finally, since A1(t) + · · ·+ Ak(t) = 1, we get

Ai(t) =
xie
−ᾱit

Ā(t)
, where Ā(t) =

k∑
i′=1

xi′e
−ᾱi′ t

is the normalization term. Similarly, using (3.11), we get

Bj(t) =
yje
−β̄jt

B̄(t)
, where B̄(t) =

k∑
j′=1

yj′e
−β̄j′ t.

Next, we compute Z(t). Note that we can use (3.7) to write

d

dt
logZ(t) = −AT (t)ΠB(t) = −

k∑
i=1

k∑
j=1

(ᾱi + β̄j)Ai(t)Bj(t)

= −
k∑
i=1

k∑
j=1

ᾱiAi(t)Bj(t)−
k∑
i=1

k∑
j=1

β̄jAi(t)Bj(t)

= −
k∑
i=1

ᾱiAi(t)−
k∑
j=1

β̄jBj(t)

= −
k∑
i=1

xiᾱie
−ᾱit

Ā(t)
−

k∑
j=1

yjβ̄je
−β̄jt

B̄(t)

=
1

Ā(t)

d

dt
Ā(t) +

1

B̄(t)

d

dt
B̄(t) =

d

dt
log Ā(t) +

d

dt
log B̄(t) =

d

dt
log
[
Ā(t)B̄(t)

]
.

Since Ā(0) = B̄(0) = Z(0) = 1, we conclude that

Z(t) = Ā(t)B̄(t) =
k∑
i=1

xie
−ᾱit

k∑
j=1

yje
−β̄jt =

k∑
i=1

k∑
j=1

xiyje
−πijt.

Finally, we compute Qij(t). We can use (3.4) to write

d

dt
Qij(t) = πijZ(t)Ai(t)Bj(t) = πijĀ(t)B̄(t)

xie
−ᾱit

Ā(t)

yje
−β̄jt

B̄(t)
= πijxiyje

−πijt.

Finally, Qij(0) = 0 yields

Qij(t) = xiyj
[
1− e−πijt

]
.

�
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4. THE SYMMETRIC 2× 2 CASE

In this section we use the shorthand notation ḟ to denote the time derivative d
dt
f(t) of any function f .

We assume that k = 2, π12 = π21 and x1 = y1. Setting A2 = 1 − A1, the replicator equation in
(3.3) becomes a one dimensional ODE given by

(4.1) Ȧ1 = −A1(1− A1)
[
(π11 + π22 − 2π12)A1 − (π22 − π12)

]
,

with A1(0) = x1, and (3.7) is equivalent to

(4.2)
Ż

Z
= −(π11 + π22 − 2π12)A2

1 + 2(π22 − π12)A1 − π22,

with Z(0) = 1. We already solved for Q in the previous section under the fine balance condition so
we exclude that case, i.e., we assume that π11 + π22 6= 2π12. Hence, setting

γ =
π22 − π12

π11 + π22 − 2π12

,

the equation in (4.1) becomes

(4.3) Ȧ1 = −(π11 + π22 − 2π12)A1(1− A1)(A1 − γ).

Recall that our goal is to find a formula for the mating pattern. As we discussed in Section 1, when
k = 2 it suffices to find Q12(∞) because

Q11(∞) = x1 −Q12(∞), Q21(∞) = y1 −Q11(∞), and Q22(∞) = x2 −Q21(∞).

For this we use (3.4), which can be written in the form

(4.4) Q̇12 = π12ZA1(1− A1).

We first study the case γ ∈ {0, 1}, that is, π11 = π12 or π22 = π12.

4.1. γ ∈ {0, 1}. We investigate the case γ = 1, that is, π11 = π12, the case γ = 0 is analogous.

Note that (4.3) and (4.2) become, respectively,

(4.5) Ȧ1 = (π22 − π12)A1(1− A1)2

and

(4.6)
Ż

Z
= −(π22 − π12)(1− A1)2 − π12.

We can use partial fractions to write (4.5) as(
1

A1

+
1

1− A1

+
1

(1− A1)2

)
Ȧ1 = π22 − π12.

Integrating both sides and using the initial condition A1(0) = x1, we get

(4.7)
(1− x1)A1(t)

x1(1− A1(t))
exp

{
1

1− A1(t)
− 1

1− x1

}
= e(π22−π12)t.

This is an implicit formula for A1(t).

Next, we find a formula for Z(t). We know from (4.5) that

(π22 − π12)(1− A1)2 =
Ȧ1

A1

.

Substituting this in (4.6), we see that

Ż

Z
= −Ȧ1

A1

− π12.
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Integrating both sides and using the initial condition Z(0) = 1, we get

(4.8) Z(t) =

(
x1

A1(t)

)
e−π12t.

We can express Z(t) in terms of A1(t) only (i.e., without any explicit t dependence.) Indeed, raising
both sides of (4.7) to power −θ1 where

θ1 :=
π12

π22 − π12

gives (
(1− x1)A1(t)

x1(1− A1(t))

)−θ1
exp

{
−θ1

(
1

1− A1(t)
− 1

1− x1

)}
= e−π12t.

Plugging this into the RHS of (4.8), we get

(4.9) Z(t) =

(
1− A1(t)

1− x1

)θ1 (A1(t)

x1

)−θ1−1

exp

{
−θ1

(
1

1− A1(t)
− 1

1− x1

)}
.

Finally, we express Q12(t) in terms of A1(t). We put (4.5) in the form

A1(1− A1) =
Ȧ1

(π22 − π12)(1− A1)
.

We can use this and (4.9) to write

Q̇12 = π12ZA1(1− A1) =
θ1ZȦ1

(1− A1)

=
θ1

1− x1

(
1− A1

1− x1

)θ1−1(
A1

x1

)−θ1−1

exp

{
−θ1

(
1

1− A1

− 1

1− x1

)}
Ȧ1.

Integrating both sides, using the initial conditionsA1(0) = x1 andQ12(0) = 0, and making a change
of variables, we get

Q12(t) =
θ1

1− x1

∫ A1(t)

x1

(
1− x
1− x1

)θ1−1(
x

x1

)−θ1−1

exp

{
−θ1

(
1

1− x
− 1

1− x1

)}
dx

= x1θ1

∫ ζ(t)

1

x−(θ1+1)e
−

“
x1

1−x1

”
θ1(x−1)

dx

where

ζ(t) =
(1− x1)A1(t)

x1(1− A1(t))
.

If π11 = π12 < π22, then it is easy to see from the stability analysis of (4.5) that

lim
t→∞

A1(t) = 1 and, hence, lim
t→∞

ζ(t) =∞.

Therefore, the mating pattern has the following formula:

(4.10) Q12(∞) = x1θ1

∫ ∞
1

x−(θ1+1)e
−

“
x1

1−x1

”
θ1(x−1)

dx =

∫ ∞
0

(
1 +

y

x1θ1

)−θ1−1

e
− y

1−x1 dy.

Here, observe that θ1 > 0. Similarly, if π11 = π12 > π22, then

lim
t→∞

A1(t) = 0 and, hence, lim
t→∞

ζ(t) = 0.
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Therefore, the mating pattern has the following formula:

(4.11)

Q12(∞) = −x1θ1

∫ 1

0

x−(θ1+1)e
−

“
x1

1−x1

”
θ1(x−1)

dx

=

∫ −x1θ1

0

(
1 +

y

x1θ1

)−θ1−1

e
− y

1−x1 dy.

Here, observe that θ1 < 0.

For γ = 0, that is, π22 = π12, we relabel type-1 individuals as type-2 and type-2 individuals as
type-1 (for each sex). Hence, we have once again the situation where γ = 1. Also, observe that
Q12(t) = Q21(t) for all since Xi(t) = Yi(t) for all t ≥ 0. Hence, we get formulas for Q12(∞)
analogous to the ones in (4.10) and (4.11) by simply swapping π11 with π22 and x1 with 1− x1 (recall
that x2 = 1− x1). More precisely, setting

θ2 =
π12

π11 − π12

,

we have

Q12(t) =
θ2

x1

∫ 1−A1(t)

1−x1

(
1− x
x1

)θ2−1(
x

1− x1

)−θ2−1

exp

{
−θ2

(
1

1− x
− 1

x1

)}
dx.

As before, by the stability analysis of A1(t), we have the following formulas for the mating pattern. If
π22 = π12 < π11

Q12(∞) = (1− x1)θ2

∫ ∞
1

x−(θ2+1)e
−

“
1−x1
x1

”
θ2(x−1)

dx

=

∫ ∞
0

(
1 +

y

(1− x1)θ2

)−θ2−1

e
− y
x1 dy,

where θ2 > 0. If π22 = π12 > π11

Q12(∞) = −(1− x1)θ2

∫ 1

0

x−(θ2+1)e
−

“
1−x1
x1

”
θ2(x−1)

dx

=

∫ −(1−x1)θ2

0

(
1 +

y

(1− x1)θ2

)−θ2−1

e
− y
x1 dy,

where θ2 < 0.

4.2. γ /∈ {0, 1}. x1 = γ constitutes a special case and we study it first.

4.2.1. x1 = γ ∈ (0, 1). By (4.3) we have Ȧ1 = 0 and, therefore, A1(t) = x1. Plugging this in
(4.2) gives

Ż

Z
= −π12x1 − π22(1− x1).

Using the initial condition Z(0) = 1, we get

Z(t) = e−(π12x1+π22(1−x1))t.

Finally,
Q̇12 = π12ZA1(1− A1) = π12x1(1− x1)e−(π12x1+π22(1−x1))t

is easily solved with initial condition Q12(0) = 0 to get

Q12(t) =
π12x1(1− x1)

π12x1 + π22(1− x1)

(
1− e−(π12x1+π22(1−x1))t

)
.



17

In particular, the mating pattern is given by

(4.12) Q12(∞) =
π12x1(1− x1)

π12x1 + π22(1− x1)
= x1(1− x1)

[ π12(π11 + π22 − 2π12)

π12(π22 − π12) + π22(π11 − π12)

]
.

Note that, by the definitions of θ1 and θ2, we have

1 +
1

θ1 + θ2

=
π12(π22 − π12) + π22(π11 − π12)

π12(π11 + π22 − 2π12)
.

Hence, we get

Q12(∞) =
x1(1− x1)

1 + 1
θ1+θ2

.

4.2.2. x1 6= γ. Using partial fractions, (4.3) can be written as

(4.13)

(
− 1

γA1

+
1

γ(1− γ)(A1 − γ)
+

1

(1− γ)(1− A1)

)
Ȧ1 = −(π11 + π22 − 2π12).

It is clear from (4.3) that A1(t) never crosses γ. Integrating both sides of (4.13) and using the initial
condition A1(0) = x1, we get(

x1(A1(t)− γ)

(x1 − γ)A1(t)

) 1
γ
(

(1− x1)(A1(t)− γ)

(x1 − γ)(1− A1(t))

) 1
1−γ

= e−(π11+π22−2π12)t.

Raising both sides to power π12

π11+π22−2π12
gives

(4.14)

(
x1(A1(t)− γ)

(x1 − γ)A1(t)

)θ1 ((1− x1)(A1(t)− γ)

(x1 − γ)(1− A1(t))

)θ2
= e−π12t.

This is an implicit formula for A1(t).

Next, we find a formula for Z(t). We can rewrite (4.2) as

(4.15)
Ż

Z
= −(π11 + π22 − 2π12)A1(A1 − γ)− π12A1 − π22(1− A1).

Note that (4.3) gives

− (π11 + π22 − 2π12)A1(A1 − γ) =
Ȧ1

1− A1

,

− A1 =
Ȧ1

(π11 + π22 − 2π12)(A1 − γ)(1− A1)
, and

− (1− A1) =
Ȧ1

(π11 + π22 − 2π12)A1(A1 − γ)
.

Substituting these into the RHS of (4.15) and using partial fractions, we get

Ż

Z
=

(
1

1− A1

+
π12

(π11 + π22 − 2π12)(A1 − γ)(1− A1)
+

π22

(π11 + π22 − 2π12)A1(A1 − γ)

)
Ȧ1

=

(
−θ1 + 1

A1

+
θ2 + 1

1− A1

+
θ1 + θ2 + 1

A1 − γ

)
Ȧ1.
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We integrate both sides, use the initial conditions A1(0) = x1 and Z(0) = 1, and (4.14) to deduce
that

Z(t) =

(
A1(t)

x1

)−θ1−1(
1− A1(t)

1− x1

)−θ2−1(
A1(t)− γ
x1 − γ

)θ1+θ2+1

(4.16)

=

(
x1(1− x1)(A1(t)− γ)

(x1 − γ)A1(t)(1− A1(t))

)(
x1(A1(t)− γ)

(x1 − γ)A1(t)

)θ1 ((1− x1)(A1(t)− γ)

(x1 − γ)(1− A1(t))

)θ2
=

(
x1(1− x1)(A1(t)− γ)

(x1 − γ)A1(t)(1− A1(t))

)
e−π12t.(4.17)

Here, (4.16) is in terms of A1(t) only. On the other hand, (4.17) is somewhat simpler.

Finally, we provide a formula for the limiting pair-type process. Note that (4.3) gives

A1(1− A1) = − Ȧ1

(π11 + π22 − 2π12)(A1 − γ)
.

Using this and (4.16), we get

Q̇12 = π12ZA1(1− A1)

= − π12(x1 − γ)−1

π11 + π22 − 2π12

(
A1

x1

)−θ1−1(
1− A1

1− x1

)−θ2−1(
A1 − γ
x1 − γ

)θ1+θ2

Ȧ1.

Integrating both sides, using the initial conditionsA1(0) = x1 andQ12(0) = 0, and making a change
of variables, we get

Q12(t) = − π12(x1 − γ)−1

π11 + π22 − 2π12

∫ A1(t)

x1

(
x

x1

)−θ1−1(
1− x
1− x1

)−θ2−1(
x− γ
x1 − γ

)θ1+θ2

dx

=
π12

π11 + π22 − 2π12

∫ ξ(t)

0

(
1 +

γy

x1

)−θ1−1(
1 +

(1− γ)y

1− x1

)−θ2−1

dy

where

ξ(t) =
x1 − A1(t)

A1(t)− γ
.

In particular, the mating pattern is given by

(4.18) Q12(∞) =
π12

π11 + π22 − 2π12

∫ ξ(∞)

0

(
1 +

γy

x1

)−θ1−1(
1 +

(1− γ)y

1− x1

)−θ2−1

dy.

The value of ξ(∞) can be deduced from (4.3) using stability analysis:

(i) If π11 > π12 and π22 > π12, then 0 < γ < 1, A1(∞) = γ and ξ(∞) =∞.
(ii) If π11 < π12 and π22 < π12, then 0 < γ < 1 and there are two subcases.

� If x1 < γ, then A1(∞) = 0 and ξ(∞) = −x1/γ.
� If x1 > γ, then A1(∞) = 1 and ξ(∞) = −(1− x1)/(1− γ).

(iii) If π11 > π12 and π22 < π12, then there are two subcases.
� If π11 + π22 < 2π12, then γ > 1, A1(∞) = 0 and ξ(∞) = −x1/γ.
� If π11 + π22 > 2π12, then γ < 0, A1(∞) = 0 and ξ(∞) = −x1/γ.

(iv) If π11 < π12 and π22 > π12, then there are two subcases.
� If π11 + π22 < 2π12, then γ < 0, A1(∞) = 1 and ξ(∞) = −(1− x1)/(1− γ).
� If π11 + π22 > 2π12, then γ > 1, A1(∞) = 1 and ξ(∞) = −(1− x1)/(1− γ).

Hence, we have an explicit formula for the mating pattern in each case.
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FIGURE 1. Level curves of Q12(∞) as a function of π11 (x-axis) and π22 (y-axis) for
fixed π12 = π21 = 1/2 and x1 = x2 = y1 = y2 = 1/2. The value of Q12(∞) on
each level curve is separated by 1/64. The diagonal line π11 + π22 = 1 corresponds
to panmixia.

4.3. Characterization of heterogamy/panmixia/homogamy. Having established explicit formulas
for the mating pattern, we analyze these formulas to prove the following trichotomy result for the
assortativeness of Poisson EM.

THEOREM 4.1. The species is

(i) heterogamous if π11 + π22 < 2π12,
(ii) panmictic if π11 + π22 = 2π12,
(iii) homogamous if π11 + π22 > 2π12.

Proof. We already showed in Theorem 3.3 that Qij(∞) = xiyj under the fine balance assumption.
Hence, part (ii) of Theorem 4.1 has been proven, actually, in a much more general setup.

Part (i) is equivalent to part (iii), simply by relabeling. More precisely, we relabel, say, males, that is, we
relabel type-1 males as type-2 males and type-2 males as type-1 males. Then, in this new relabeled
model, at all times, the number of type-1 single females is equal to the number of type-2 single males,
and the number of type-2 single females is equal to the number of type-1 single males (we have
the same initial conditions as before). The equations in (4.3) and (4.2) stay the same, moreover, the
type-11 pair-type process of the relabeled model is the same as the type-12 pair-type process of the
original model. Thus, we only need to prove (iii), so we assume that π11 + π22 > 2π12. We proceed
with the proof by analyzing the formula we have found for Q12(∞) which depends on γ.

γ ∈ {0, 1}: Consider the case γ = 1, that is, π11 = π12. Since we assume that π11 + π22 > 2π12

we have π11 = π12 < π22. Then (4.10) holds for the mating pattern:

Q12(∞) =

∫ ∞
0

(
1 +

y

x1θ1

)−θ1−1

e
− y

1−x1 dy,

with θ1 > 0. Note that, since ey > (1 + y/c)c for any c, y > 0, we have

e
− y

1−x1 <

(
1 +

y

x1θ1

)− x1
1−x1

θ1
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for every y > 0. Therefore,

Q12(∞) <

∫ ∞
0

(
1 +

y

x1θ1

)−θ1−1− x1
1−x1

θ1

dy = x1(1− x1),

i.e., we have homogamy. The proof of homogamy for γ = 0, that is, π22 = π12, is exactly the same.

γ /∈ {0, 1}: In the case where x1 = γ ∈ (0, 1), recall that

Q12(∞) =
x1(1− x1)

1 + 1
θ1+θ2

.

Since γ ∈ (0, 1) and π11 + π22 > 2π12, we have π11 > π12 and π22 > π12. Hence, θ1 + θ2 > 0,
which implies that Q12(∞) < x1(1− x1), and we have homogamy.

Now assume that x1 6= γ. We consider first the case π11 > π12 and π22 > π12. Then γ ∈ (0, 1),
A1(∞) = γ, ξ(∞) =∞, and θ1, θ2 > 0. By the formula in (4.18) we have

Q12(∞) = θ1γ

∫ ∞
0

(
1 +

γy

x1

)−(θ1+1)(
1 +

(1− γ)y

1− x1

)−(θ2+1)

dy.

If x1 > γ, then

(4.19) 0 <
1− x1

1− γ
< 1 <

x1

γ
.

Thus, since (1 + y/c1)c1 < (1 + y/c2)c2 for every y > 0 and 0 < c1 < c2, we get(
1 +

(1− γ)y

1− x1

) 1−x1
1−γ

<

(
1 +

γy

x1

)x1
γ

for every y > 0. The above inequality gives(
1 +

γy

x1

)−(θ1+1)

<

(
1 +

(1− γ)y

1− x1

)−(θ1+1)
γ(1−x1)
(1−γ)x1

.

Therefore,

Q12(∞) < θ1γ

∫ ∞
0

(
1 +

(1− γ)y

1− x1

)−(θ1+1)
γ(1−x1)
(1−γ)x1

−(θ2+1)

dy =
x1(1− x1)

1 + (1− x1)/θ1

< x1(1− x1),

and we have homogamy. Similarly, if x1 < γ, then we get

Q12(∞) <
x1(1− x1)

1 + x1/θ2

< x1(1− x1).

In particular, we again have homogamy.

Next, consider the case π11 > π12 > π22. Then γ < 0, A1(∞) = 0, ξ(∞) = −x1/γ, θ2 > 0,
θ1 < −1 and θ1 + θ2 < 0. By (4.18), we have

Q12(∞) = θ1γ

∫ −x1/γ

0

(
1 +

γy

x1

)−(θ1+1)(
1 +

(1− γ)y

1− x1

)−(θ2+1)

dy.

Since γ < 0,

(4.20)
1− x1

1− γ
> 0 >

x1

γ
,

which implies

(4.21)

(
1 +

γy

x1

)x1
γ

>

(
1 +

(1− γ)y

1− x1

) 1−x1
1−γ
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for every y ∈ (0,−x1/γ). Note that (1 − γ)θ2 = γθ1. Hence, raising both sides of the above
inequality to power − γθ1

γ−x1
= − (1−γ)θ2

γ−x1
> 0, we get(

1 +
γy

x1

)− x1θ1
γ−x1

>

(
1 +

(1− γ)y

1− x1

)− (1−x1)θ2
γ−x1

.

Therefore,

Q12(∞) < θ1γ

∫ −x1/γ

0

(
1 +

γy

x1

)−(θ1+1)− x1θ1
γ−x1

(
1 +

(1− γ)y

1− x1

)−(θ2+1)+
(1−x1)θ2
γ−x1

dy

= θ1γ

∫ −x1/γ

0

(
1 + γy

x1

1 + (1−γ)y
1−x1

)− θ1γ
γ−x1

−1(
1 +

(1− γ)y

1− x1

)−2

dy

= x1(1− x1)

(
θ1γ

x1 − γ

)∫ 1

0

u
− θ1γ
γ−x1

−1
du

= x1(1− x1),

i.e., we have homogamy. Finally, the proof of homogamy for the case π22 > π12 > π11 simply follows
by switching the roles of π11 and π22 (and of x1 and 1− x1) in the previous case. �
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