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Abstract

Define the scale-free Gilbert graph based on a Boolean model with heavy-tailed radius distri-
bution on the d-dimensional torus by connecting two centers of balls by an edge if at least one of
the balls contains the center of the other. We investigate two asymptotic properties of this graph
as the size of the torus tends to infinity. First, we determine the tail index associated with the
asymptotic distribution of the sum of all power-weighted incoming and outgoing edge lengths at
a randomly chosen vertex. Second, we study the behavior of chemical distances on scale-free
Gilbert graphs and show the existence of different regimes depending on the tail index of the
radius distribution. Despite some similarities to long-range percolation and ultra-small scale-free
geometric networks, scale-free Gilbert graphs are actually more closely related to fractal percola-
tion and this connection gives rise to different scaling limits. We also propose a modification of the
graph, where the total number of edges can be reduced substantially at the cost of introducing a
logarithmic factor in the chemical distances.

1 Introduction

The spatial distribution of the population in a country is typically far from homogeneous, but rather
exhibits fractal patterns. Specifically, this has been investigated for Great Britain and the United
States [2, 3] and for Finland [17]. It is pointed out in [2, 17] that fractality has important implica-
tions for the design of wired telecommunication networks in the sense that the number and extent of
various levels of hierarchy should be adapted to the fractal geometry. A trade-off is involved in de-
termining the optimal number of levels. Using few levels has the advantage that most access points
can be connected by a small number of hops. However, this comes at the cost of having to install a
cable network of large total length. Indeed, a high-level node has to be connected to a large number
of low-level nodes in order to guarantee connectivity. Vice versa, using a large number of hierarchies,
one may be able to reduce the length of cables substantially, but this comes at the cost of increasing
the number of hops it takes a low-level node to reach the topmost layer of hierarchy. A related cost
analysis for hierarchical spatial networks is provided by Baccelli and Zuyev [4]. However, the network
structure investigated in that paper is obtained by iteratively considering Voronoi tessellations and
does not exhibit fractal geometries (see however [20] for some results in this direction).

In order to develop a fundamental understanding of the asymptotic behavior of cable lengths and
chemical distances (i.e., minimal number of hops needed to connect two points) in large networks,
it is important to abstract from the types of specific countries and deterministic fractals investigated
in [2, 17] and move to random networks. The spatial nature of the problem calls for models based
on random geometric graphs, and the fractal geometry suggests that one should look for scale-free
random graphs exhibiting a power-law degree distribution. The combination of these two constraints
restricts the list of appropriate choices substantially. We briefly review some of the most well-known
models in literature and discuss their drawbacks with respect to modeling the kind of networks we
have in mind.

One option could be to use long-range percolation, see [5, 6, 7] and the references therein. Here, one
starts from the lattice Zd and connects any pair of sites independently with a probability depending
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only on their distance. This leads to a network with a giant connected component and power-law
degree distributions. However, this model does not offer an inherently defined hierarchy of nodes.
Moreover, if we think of a high-level node as having the purpose of providing access to all low-level
nodes in some region, then this would suggest that the occurrence of edges should be spatially
positively correlated. However, if x, y ∈ Zd are arbitrary sites in Zd and y′ is close to y, then putting
an edge between x and y does not influence at all the probability of seeing an edge between x and
y′.

A second option could be to consider the ultra-small scale-free geometric networks on Zd introduced
in [21]. Two sites x, y ∈ Zd are connected by an edge in this graph if |x − y| ≤ min{Rx, Ry},
where {Rz}z∈Zd denotes a family of iid heavy-tailed random variables. For any site z ∈ Zd the
value Rz can be thought of as the radius of influence of z, so that ultra-small scale-free geometric
networks offer a natural possibility for defining the network hierarchy. Similar remarks apply to scale-
free percolation [9]. Recently, also a Poisson-based continuum analogue of this model has been
investigated, see [10, 11]. From a modeling point of view, this means that there is an excellent degree
of connectivity between high-level nodes. However, conversely, for low-level nodes it may be very
difficult to get connected to a nearby high-level node. This might pose a substantial obstruction to the
build-up of a hierarchical network. Due to the drawbacks of the existing networks models, we propose
two alternatives.

According to our discussion, it would be desirable to consider a variant of the ultra-small scale-free
geometric network, where two sites x, y ∈ Zd are connected by an edge if |x− y| ≤ max{Rx, Ry}
(instead of |x − y| ≤ min{Rx, Ry}). In other words, in order to connect x and y by an edge it is
no longer necessary that both x lies within the radius of influence of y and y lies within the radius of
influence of x. It suffices that x lies within the radius of influence of y or y lies within the radius of
influence of x. We consider a spatial variant of this network model, called scale-free Gilbert graph,
where the vertices are given by a homogeneous Poisson point process on the d-dimensional torus
with side length n, for some d, n ≥ 2. See Figure 1a for an illustration of this graph in dimension
d = 2.

(a) Scale-free Gilbert graph (b) Thinned scale-free Gilbert graph

Figure 1: Planar scale-free and thinned scale-free Gilbert graphs

As n→∞, we investigate the asymptotic distribution of the power-weighted sum of all incoming and
all outgoing edge lengths considered from a vertex that is picked uniformly at random, see Theorems 1
and 2. In particular, our results imply that the asymptotic out-degree and in-degree distributions admit
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polynomial tails. We also investigate the growth of the expected power-weighted sum of all outgoing
edge lengths as n → ∞, see Theorem 3. In Section 4, we show that different scaling regimes of
chemical distances emerge depending on the tail index of the radius distribution.

Since the scale-free Gilbert graph exhibits a large degree of redundancy of connections, in Section 5
we present a variant, called thinned scale-free Gilbert graph, that substantially decreases these re-
dundancies by introducing a multi-layer topology. Loosely speaking, an edge in the original graph from
a low-level node x to a high-level node y is removed if y can also be reached from x via an intermedi-
ate node z. See Figure 1b for an illustration of the thinned scale-free Gilbert graph. A precise definition
of this graph will be given in Section 2, but we note already at this point that removing redundancies
does not alter the family of connected components. Furthermore, under suitable assumptions on the
tail behavior of the radius distribution, we show in Theorem 7 that the sum of power-weighted edge
lengths at a randomly picked vertex decreases significantly. Of course, reducing edge lengths comes
at the price of longer connection paths, but we will show in Theorem 8 that chemical distances grow
at most by a logarithmic factor in the size of the torus.

The present paper is organized as follows. In Section 2, we provide precise definitions of the scale-free
and thinned scale-free Gilbert graphs and state our main results. Next, in Section 3, we investigate
power-weighted sums of edge lengths at a typical point and prove Theorems 1, 2 and 3. Section 4
is devoted to the analysis of chemical distances for different regimes of the tail index. Finally, in
Section 5, we investigate the changes in terms of the asymptotic behavior of power-weighted sums of
edge lengths and of chemical distances as we move from the scale-free Gilbert graph to its thinning.

2 Model definition and statement of main results

In Sections 2.1 and 2.2, we provide precise definitions of the network models under consideration and
present our main results. In the following, d ≥ 2 is always assumed to be an arbitrary fixed integer.
Moreover, Br(ξ) = {η ∈ Rd : |η − ξ| ≤ r} denotes the ball of radius r > 0 centered at ξ ∈ Rd.

2.1 Scale-free Gilbert graph

Let X(n) be an independently [0,∞)-marked homogeneous Poisson point process with intensity 1
in the torus Tn, where Tn is obtained from the cube [−n/2, n/2]d by the standard identification of
its boundaries. If n ≥ 1, r > 0 and ξ ∈ Tn, then we write BTn

r (ξ) = {η ∈ Tn : dTn(ξ, η) ≤ r}
for the closed ball in Tn with radius r centered at ξ, where dTn(ξ, η) denotes the toroidal distance
between ξ and η. The mark of a point from X(n) is interpreted as the radius of a ball centered at
this point. Throughout the paper, we assume that the distribution of the typical mark R is absolutely
continuous and heavy-tailed. That is, there exist β, s ∈ (0,∞) such that limh→∞ h

sP(R > h) = β.
For every ε ∈ (0, 1), we also fix t0 = t0(ε) > 0 such that tsP(R > t) ∈ (β(1 − ε), β(1 + ε)) for
all t ≥ t0(ε).

For n ≥ 1 we investigate the directed random geometric graph G(X(n)) on the vertex set X , where
an edge in G(X(n)) is drawn from x = (ξ, r) ∈ X(n) to y = (η, t) ∈ X(n) if η ∈ BTn

r (ξ).

First, we investigate the asymptotic distributions of the power-weighted sum of all outgoing and all
incoming edge lengths. To be more precise, fix α ≥ 0, n ≥ 1 and let R∗ be a copy of R that is
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independent of X(n). Then,
D

(α)
out,n =

∑
(ξ,r)∈X(n)

|ξ|α1BTn
R∗ (o)

(ξ),

denotes the sum of αth powers of the lengths of all outgoing edges at the node (o,R∗), where we
put |ξ| = dTn(ξ, o). Considering the limit n → ∞, i.e., letting the size of the torus tend to infinity, it

is intuitive (and will be shown rigorously in Theorem 1 below) that the random variables
{
D

(α)
out,n

}
n≥1

converge in distribution to the random variable

D
(α)
out =

∑
(ξ,r)∈X

|ξ|α1BR∗ (o)(ξ),

where X denotes an independently [0,∞)-marked homogeneous Poisson point process in Rd with

intensity 1. In addition to showing the convergence ofD(α)
out,n toD(α)

out , we also investigate the behavior

of the tail probabilities p(α)
out,t = P

(
D

(α)
out > t

)
as t → ∞. In the following, κd denotes the volume of

the unit ball in Rd.

Theorem 1. For every α > 0 the random variables
{
D

(α)
out,n

}
n≥1

converge to the random variable

D
(α)
out in distribution. Moreover,

lim
t→∞

ts/(α+d)p
(α)
out,t = (dκd/(α + d))s/(α+d)β.

In particular, the degree distribution of out-degrees admits asymptotically polynomial tails of order s/d.
In contrast, when considering in-degrees an entirely different asymptotic behavior emerges. Indeed,
in Theorem 2 below we show that for s ≤ d the degree distribution is asymptotically degenerate,
whereas for s > d it is Poissonian (with finite mean). In order to make this precise, let

D
(α)
in,n =

∑
(ξ,r)∈X(n)

|ξ|α1BTn
r (o)(ξ),

denote the sum of αth powers of the lengths of all incoming edges at the node (o,R∗), where α ≥ 0,

n ≥ 1. As in the case of D(α)
out,n, we will see that the random variables D(α)

in,n converge in distribution

to a random variable D(α)
in given by

D
(α)
in =

∑
(ξ,r)∈X

|ξ|α1Br(o)(ξ),

where as before X denotes an independently [0,∞)-marked homogeneous Poisson point process

in Rd with intensity 1. The following result is devoted to the tail probabilities p(α)
in,t = P

(
D

(α)
in > t

)
Theorem 2. For every α ≥ 0 the random variables

{
D

(α)
in,n

}
n≥1

converge to the random variable

D
(α)
in in distribution. Moreover, P

(
D

(α)
in = ∞

)
= 1 for s ≤ d, whereas if s > d, then D(0)

in is a
Poissonian random variable with mean κdERd. Finally, if α > 0 and s > d, then

lim
t→∞

t(s−d)/αp
(α)
in,t = dκdβ(s− d)−1.

Besides considering limit distributions, we also determine leading-order asymptotics for the expecta-
tions

{
ED(α)

in,n

}
n≥1

as n→∞. Note that here it is not necessary to distinguish between ingoing and

outgoing edges, since ED(α)
out,n = ED(α)

in,n for all n ≥ 1.
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Theorem 3. Let α > 0 be arbitrary. Then one can distinguish between three limiting regimes for the
random variable ED(α)

in,n depending on the sign of α + d− s.

(i) If s > α + d, then limn→∞ ED(α)
in,n = dκd(α + d)−1ERα+d.

(ii) If s = α + d, then limn→∞(log n)−1ED(α)
in,n = dκdβ.

(iii) If s < α + d, then limn→∞ n
s−α−dED(α)

in,n = β
∫

[−1/2,1/2]d
|η|α−sdη.

Next, we investigate the asymptotic behavior of chemical distances in scale-free Gilbert graphs, where
we allow a directed edge in G(X(n)) to be traversed in both directions. For the analysis of G(X(n)),
it will be convenient to distinguish between the regimes s < d, s = d and s > d. We say that a family
of events occurs with high probability (whp) if the probabilities of the events tend to 1 as n → ∞.
In the case where s < d, whp there exists some point of X(n) that is connected to all other points
by an edge in G(X(n)). In particular, the diameter of G(X(n)) is at most 2 whp. The cases s = d
and s > d are more subtle. If s > d, then as n→∞ the probability that G(X(n)) contains isolated
vertices is bounded away from 0, see Proposition 10. Still, if β is sufficiently large, then it follows from
continuum percolation that whp there exists a giant component containing a positive proportion of the
vertices. But even inside this giant connected component the effects of the heavy-tailed nature of R
are barely noticeable. This is to be understood in the sense that chemical distances (i.e., minimal
number of hops) between nodes at distance n grow almost linearly in n. To be more precise, putting
e1 = (1, 0, . . . , 0) ∈ Tn and denoting by q(x) the closest point of X seen from a given point
x ∈ Tn, we have the following result.

Theorem 4. Assume that s > d and let α > 0 be arbitrary. Then, the chemical distance between
q(−ne1/4) and q(ne1/4) is at least n/(log n)α whp.

We conjecture that the sublogarithmic correction factor is only an artifact of our proof.

Conjecture 5. Assume that s > d. Then, there exists a constant c = c(β, d) > 0 such that the
chemical distance between q(−ne1/4) and q(ne1/4) is at least cn whp.

Finally, we assume that s = d. On the one hand, in contrast to the case s > d the heavy-tailedness
of the radius distribution has a substantial effect on chemical distances. On the other hand, the con-
nectivity structure still does not degenerate as in the case s < d. Therefore, from the point of view of
modeling scale-free network structures, the regime s = d might be considered to be the most inter-
esting one. In Theorem 6 below, we show that if the parameter β is sufficiently large, then not only the
graphG(X(n)) is connected whp, but, moreover, its diameter remains bounded in the sense that whp
it is dominated by the total progeny of a subcritical Galton-Watson process. This asymptotic behavior
differs decisively from the one of either long-range percolation [5, 6] or ultra-small scale-free geomet-
ric networks [21]. As we will see in the proof of Theorem 6, this scaling regime is a consequence of
the close relationship between scale-free Gilbert graphs and fractal percolation processes.

Theorem 6. Assume that β > dd/222d+1(d + 1) log 2. Then, the graph G(X(n)) is connected
whp, and, moreover, the diameter diamG(X(n)) ofG(X(n)) is stochastically dominated by an affine
function in the total progeny of a subcritical Galton-Watson process whp. To be more precise, there
exists a coupling between X(n) and the total progeny T of a subcritical Galton-Watson process such
that P(diamG(X(n)) > 2 + 2dT ) ∈ O(n−1).
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2.2 Thinned scale-free Gilbert graph

As explained in Section 1, the scale-free Gilbert graphG(X(n)) contains a large number of redundant
edges, which can be removed without affecting its connected components. To be more precise, if
x1 = (ξ1, r1), x2 = (ξ2, r2), x3 = (ξ3, r3) ∈ X(n) are such that r1 > r2 > r3, ξ2 ∈ BTn

r1
(ξ1) and

ξ3 ∈ BTn
r1

(ξ1)∩BTn
r2

(ξ2), then inG(X(n)) the point x3 is connected both to x1 and x2. However, the
edge from x3 to x1 is redundant since one can also reach x1 from x3 by first moving from x3 to x2

and then from x2 to x1. See Figure 2 for an illustration of this configuration. In order to reduce the total
network length, we therefore introduce a variantG′ of the original graphG, where such redundancies
are removed.

ξ1

ξ2

ξ3

Figure 2: The dashed edge connecting x1 and x3 is redundant

To be more precise, for any finite subset ϕ of Tn × [0,∞) define the thinned scale-free Gilbert
graph G′(ϕ) as the graph on ϕ, where an edge is drawn from (ξ, r) ∈ ϕ to (η, t) ∈ ϕ if (η, t) ∈
BTn
r (ξ)× [0, r) and there does not exist (ζ, w) ∈ ϕ ∩ (BTn

r (ξ)× (t, r)) such that η ∈ BTn
w (ζ).

By definition, G′(X(n)) is a subgraph of G(X(n)) and we will see in Proposition 17 that the thinning
does not affect the connected components of G(X(n)). From the point of view of telecommunication
networks, we can reach the same set of subscribers using a smaller cable length. Next, we investi-
gate the question whether the reduction of cable length is substantial. For concreteness, we assume
that s = d. We show that the leading order of the expected power-weighted sum of lengths of out-
going edges in G′({(o,R∗)} ∪X(n)) is strictly smaller when compared to the graph G(X(n)), see
Theorem 3. To be more precise, defining

D
′,(α)
out,n =

∑
(ξ,r)∈X(n)

|ξ|α1((o,R∗),(ξ,r)) is an edge in G′({(o,R∗)}∪X(n)),

where α ≥ 0 and n ≥ 1 we have the following result.

Theorem 7. Assume that s = d. Then, the expected out-degree ED′,(0)
out,n is asymptotically bounded

from above by a constant, i.e., ED′,(0)
out,n ∈ O(1). Moreover, if α > 0, then ED′,(α)

out,n ∈ O(nα−δ) for
some δ > 0.

In Section 5, we show that removing redundancies does not destroy the property of connectivity.
However, this thinning operation does influence the quality of connectivity, in the sense that chemical
distances will increase. Indeed, instead of moving from x ∈ X(n) to y ∈ X(n) directly along an edge
in the graph G(X(n)), introducing a multilayer topology via G′(X(n)) might force us to move through
a potentially large number of layers, before we can get from x to y. Still, chemical distances increase
at most by a logarithmic factor in the size of the sampling window.
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Theorem 8. There exists c1 > 0 such that whp any x, y ∈ X(n) that are adjacent in G(X(n)) can
be connected by a path in G′(X(n)) consisting of at most c1 log n hops.

3 Proofs of Theorems 1, 2 and 3

In the present section, we investigate the asymptotic distributions of the sum of all outgoing and of the
sum of all incoming power-weighted edge lengths at a typical vertex. First, in Theorem 1, we consider
the case of outgoing edges. The proof is essentially based on the observation that conditioned on R∗

the random variable D(α)
out concentrates around its conditional mean.

Proof of Theorem 1. Using the canonical coupling between the Poisson point process X(n) on the
torus Tn and the Poisson point process X on Rd we deduce that

P
(
D

(α)
out,n 6= D

(α)
out

)
≤ P(R∗ > n/2),

and the latter probability tends to 0 as n→∞. In order to determine the tail behavior of the random
variable D(α)

out , for any r > 0 we put

Dr =
∑

(ξ,t)∈X

|ξ|α1Br(o)(ξ),

noting that DR∗ = D
(α)
out . In particular,

ts/(α+d)p
(α)
out,t =

∫ ∞
0

ts/(α+d)P(Dr > t)PR(dr), (1)

where PR denotes the distribution of the random variable R. Let ε > 0 be arbitrary. In order to
analyze (1), we first consider the case where t ≥ (v(ε)−1r)α+d, i.e., where r ≤ v(ε)t1/(α+d),
writing v(ε) = (1+ε)−1(dκd/(α+d))−1/(α+d). LetNr be a Poissonian random variable with mean
κdr

d, where r > 0. Additionally, {Ui}i≥1 be an iid sequence of random vectors that are independent
of Nr and uniformly distributed in B1(o), so that Dr = rα

∑Nr
i=1 |Ui|α. First,

P(Dr > t) ≤ P(Nr ≥ nr,t) + P
( nr,t∑
i=1

rα|Ui|α ≥ t
)
,

where nr,t = btr−ακdv(ε)α+d(1+ε)(α+d)/2c. Note that for sufficiently large values of tr−α we have

nr,t/(κdr
d) ≥ t(v(ε)r−1)α+d(1 + ε)(α+d)/4 ≥ (1 + ε)(α+d)/4,

so that the Poisson concentration property [19, Lemma 1.2] implies that supr≤v(ε)t1/(α+d) P(Nr ≥
nr,t) decays at least exponentially fast in td/(α+d) as t→∞. Similarly, taking into account E|U1|α =
d/(α + d), we obtain that

tr−α/(nr,tE|U1|α) ≥ (1 + ε)(α+d)/2,

so that using the classical theory of large deviations shows that also the expression

sup
r≤v(ε)t1/(α+d)

P
( nr,t∑
i=1

rα|Ui|α ≥ t
)
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decays at least exponentially fast in td/(α+d) as t→∞. In particular,

lim
t→∞

ts/(α+d)p
(α)
out,t = lim

t→∞

∫ ∞
v(ε)t1/(α+d)

ts/(α+d)P(Dr > t)PR(dr), (2)

provided that the latter limit exists and is finite. In order to compute the right-hand side in (2), we split
the integral into three parts, which are analyzed separately. To be more precise, put

I1 =

∫ v(−ε)t1/(α+d)

v(ε)t1/(α+d)

ts/(α+d)P(Dr > t)PR(dr),

I2,1 = −
∫ ∞
v(−ε)t1/(α+d)

ts/(α+d)P(Dr ≤ t)PR(dr),

and

I2,2 =

∫ ∞
v(−ε)t1/(α+d)

ts/(α+d)PR(dr) = ts/(α+d)P(R > v(−ε)t1/(α+d)).

First, note that I2,2 tends to v(−ε)−sβ as t → ∞ and the latter expression tends to (dκd/(α +
d))s/(α+d) as ε → 0. Hence, it suffices to show that the integrals I1 and I2,1 tend to 0 as we let first
t→∞ and then ε→ 0. Indeed,

I1 ≤ ts/(α+d)
(
P(R > v(ε)t1/(α+d))− P(R > v(−ε)t1/(α+d))

)
,

and the right-hand side tends to β(v(ε)−s−v(−ε)−s) as t→∞, which vanishes as ε→ 0. Finally,
we observe that

−I2,1 ≤ ts/(α+d)P(Dv(−ε)t1/(α+d) ≤ t)P(R > v(−ε)t1/(α+d)).

We conclude the proof of the theorem by noting that the expression ts/(α+d)P(R > v(−ε)t1/(α+d))
remains bounded as t → ∞, whereas P(Dv(−ε)t1/(α+d) ≤ t) tends to 0. Indeed, Dv(−ε)t1/(α+d) has

expectation (1− ε)−(α+d)t and variance

v(−ε)2α+dt(2α+d)/(α+d)vα+d
2α ,

so that the latter claim follows from the Chebyshev inequality.

The proof of Theorem 2 relies on a rather delicate comparison of D(α)
in and the random variable

max(ξ,r)∈X |ξ|α1Br(o)(ξ).

Proof of Theorem 2. First, observe that the in-degree of the origin D(0)
in,n is a Poissonian random

variable with mean ∫
Tn

P(R > |ξ|)dξ,

which is at least dκd
∫ n/2

0
rd−1P(R > r)dr. If s ≤ d, then this lower bound tends to∞ as n →

∞. Using D(α)
in,n ≤ D

(α)
in , this shows that P

(
D

(α)
in = ∞

)
= 1 and that (D

(α)
in,n)n≥1 converge in

distribution to D(α)
in . In the following, we may therefore assume that s > d. To show the assertion on

the convergence in distribution, we proceed as in the proof of Theorem 2. Indeed, using the canonical
coupling between the [0,∞)-marked Poisson point process X(n) on the torus Tn and the [0,∞)-
marked Poisson point process X on Rd, we deduce that

P(D
(α)
in,n 6= D

(α)
in ) ≤ P(X ∩ S \ (Bn/2(o)× [0,∞)) 6= ∅),
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where
S = {(ξ, r) ∈ Rd × [0,∞) : r > |ξ|}.

Note that #(X ∩ S \ (Bn/2(o)× [0,∞))) is Poissonian with mean∫
Rd\Bn/2(o)

P(R > |ξ|)dξ = dκd

∫ ∞
n/2

rd−1P(R > r)dr.

The assumption s > d implies that the latter integral tends to 0 as n→∞. We also observe that by
definition, D(0)

in is a Poissonian random variable with mean E#(X ∩S). Moreover, this mean can be
expressed as ∫

Rd
P(R > |ξ|)dξ = dκd

∫ ∞
0

rd−1P(R > r)dr = κdERd.

It remains to determine the tail behavior of D(α)
in , for α > 0. The derivation of the lower bound is

based on the elementary relation

P(X ∩ S \ (Bt1/α(o)× [0,∞)) 6= ∅) = P
(

max
(ξ,r)∈X∩S

|ξ|α ≥ t
)
≤ P

(
D

(α)
in ≥ t

)
. (3)

Let ε > 0 be arbitrary. Note that the random variable #(X ∩S \ (Bt1/α(o)× [0,∞))) is Poissonian
with mean ∫

Rd\B
t1/α

(o)

P(R ≥ |ξ|)dξ = dκd

∫ ∞
t1/α

rd−1P(R ≥ r)dr,

and observe that for all t > t0(ε) the latter expression is bounded from below by

(1− ε)dκdβ
∫ ∞
t1/α

rd−s−1dr = (1− ε)(s− d)−1dκdβt
(d−s)/α.

Therefore,

P
(
D

(α)
in ≥ t

)
≥ 1− exp(−(1− ε)(s− d)−1dκdβt

(d−s)/α)

≥ (1− 2ε)(s− d)−1dκdβt
(d−s)/α,

provided that t > 0 is sufficiently large. For the upper bound, we need more refined arguments, since
in principle D(α)

in could be larger than t, even if max(ξ,r)∈X∩S |ξ|α ≤ t. To achieve the desired upper

bound we show, loosely speaking, that the behavior of the sum D
(α)
in is already determined by its

largest summand. Let ε ∈ (0, 1) be arbitrary. Then our upper bound is based on the inequality

P(D
(α)
in > t) ≤ P

(
max

(ξ,r)∈X∩S
|ξ| ≥ (t(1− ε))1/α

)
+ P(#(X ∩ S) ≥ εt1/4)

+ P(#(X ∩ S \ (Bt3/(4α)(o)× [0,∞))) ≥ 2),

and in the rest of the proof the three summands on the right-hand side are considered separately.
Using similar bounds as in the derivation of the lower bounds, we obtain that

lim
t→∞

t(s−d)/αP
(

max
(ξ,r)∈X∩S

|ξ| ≥ (t(1− ε))1/α
)

= dκdβ(s− d)−1((1− ε))(d−s)/α.

Furthermore, P(#(X ∩ S) ≥ εt1/4) tends to 0 exponentially fast in t1/4 since #(X ∩ S) is a
Poissonian random variable with finite mean.
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Finally, #(X ∩ S \ (Bt3/(4α)(o)× [0,∞))) is a Poissonian random variable whose mean is at most
2dκdβ(s− d)−1t3(d−s)/(4α). Hence, the Poisson concentration property yields

P(#(X ∩ S \ (Bt3/(4α)(o)× [0,∞))) ≥ 2) ∈ O(t−3(s−d)/(2α)).

Since ε > 0 was arbitrary, this completes the proof of Theorem 2.

Theorems 1 and 2 show that on the distributional level, there is a substantial difference between
power-weighted sums of outgoing and incoming edge lengths. However, when moving to the level
of expectations, these differences disappear. In fact, the equality of expectations is an immediate
consequence of Slivnyak’s theorem, and is true for a much more general class of Poisson-based
random geometric graphs. Still, for the convenience of the reader, we present some details.

Proposition 9. Let α > 0 be arbitrary. Then ED(α)
out,n = ED(α)

in,n.

Proof. For (ξ, r), (η, t) ∈ X(n) we write ((ξ, r), (η, t)) ∈ G(X(n)) if there is a directed edge from
(ξ, r) to (η, t) in the graph G(X(n)). Then an application of Slivnyak’s theorem yields

ndED(α)
out,n = E

∑
(ξ,r)∈X(n)

∑
(η,t)∈X(n)

dTn(ξ, η)α1((ξ,r),(η,t))∈G(X(n))

= E
∑

(η,t)∈X(n)

∑
(ξ,r)∈X(n)

dTn(ξ, η)α1((ξ,r),(η,t))∈G(X(n))

= ndED(α)
in,n.

Now, we can proceed with the proof of Theorem 3.

Proof of Theorem 3. We begin with part (i). Noting that for every n ≥ 1 the random variable D(α)
in,n

is stochastically dominated by the random variable D(α)
in and that the random variables {D(α)

in,n} con-

verge to D(α)
in in distribution, it suffices to show that ED(α)

in = dκd(α+ d)−1ERα+d. Indeed, Camp-
bell’s formula implies that

ED(α)
in =

∫
Rd
|ξ|αP(R > |ξ|)dξ = dκd

∫ ∞
0

rα+d−1P(R > r)dr = dκd(α + d)−1ERα+d.

For parts (ii) and (iii) we can also proceed by applying Campbell’s formula. Indeed, let ε > 0 be
arbitrary and choose t0 = t0(ε) as in Section 2.1. For part (ii), we first obtain that the expressions

(log n)−1

∫
BTn
t0

(o)

|ξ|αP(R > |ξ|)dξ

and

(log n)−1

∫
Tn\BTn

n/2
(o)

|ξ|αP(R > |ξ|)dξ ≤ 2β(log n)−1

∫
T1\B

T1
1/2

(o)

|η|α−sdη

tend to 0 as n→∞. Furthermore,

(log n)−1

∫
BTn
n/2

(o)\BTn
t0

(o)

|ξ|αP(R > |ξ|)dξ ≤ (1 + ε)(log n)−1dκdβ

∫ n/2

t0

r−1dr

= (1 + ε)(log n)−1dκdβ(log n− log 2− log t0).
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Since an analogous argument gives the corresponding lower bound, this completes the proof of part
(ii). It remains to deal with part (iii). Proceeding similarly to part (ii), we first note that

ns−α−d
∫
BTn
t0

(o)

|ξ|αP(R > |ξ|)dξ

tends to 0 as n→∞. Furthermore,

ns−α−d
∫

Tn\BTn
t0

(o)

|ξ|αP(R > |ξ|)dξ ≤ (1 + ε)β

∫
T1\B

T1
t0/n

(o)

|η|α−sdη,

and the right-hand side tends to (1 + ε)β
∫

[−1/2,1/2]d
|η|α−sdη as n → ∞. Again, since the lower

bound can be obtained using similar arguments, this completes the proof of part (iii).

4 Chemical distances

In the present section we investigate the behavior of chemical distances (i.e., shortest-path lengths)
on scale-free Gilbert graphs. We have already mentioned in the introduction that the regime, where
s < d might be of limited interest, as the diameter is at most 2 whp.

4.1 Regime s > d

In the present subsection, we consider the regime s > d whose connectivity properties turn out to be
rather similar to those of the Boolean model with light-tailed radii. For instance, we note that isolated
vertices may occur with positive probability.

Proposition 10. Assume that s > d. Then

lim
n→∞

P(o is isolated in G(X(n) ∪ {(o,R∗)})) > 0.

Proof. First, we note that similar arguments as in Theorems 1 and 2 can be used to show that the
probabilities P(o is isolated in G(X(n) ∪ {(o,R∗)})) converge as n → ∞. Moreover, the events{
D

(0)
in,n = 0

}
and

{
D

(0)
out,n = 0

}
are both decreasing events, so that the FKG inequality (see,

e.g. [14, Theorem 1.4]) implies that they are positively correlated. Hence,

P(o is isolated in G(X(n) ∪ {(o,R∗)})) ≥ P
(
D

(0)
in,n = 0

)
P
(
D

(0)
out,n = 0

)
,

so that using Theorems 1 and 2 completes the proof.

Next, we prove Theorem 4, which shows that allowing random radii with tail index s > d does not re-
duce substantially chemical distances in comparison to the case of constant radii. To be more precise,
the reduction amounts at most to a sublogarithmic factor. The key idea for the proof of Theorem 4 is to
analyze the connections in the graph G(X(n)) at different length scales. Although at every scale the
presence of long edges can be used to reduce chemical distances, still such shortcuts are sufficiently
rare to yield only a sublogarithmic reduction factor in comparison to the linear growth rate n. Before
going into the (technical) details, we provide a rough sketch of the proof. Put p = (s+ d)/(2s), and
subdivide the torus Tn into k1 = n(1−p)d subcubes Q1, . . . , Qk1 of side length np. The probability
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that there exists (ξ, r) ∈ X(n) with r ≥ np is of order at most ndn−sp = n−(s−d)/2. On the other
hand, if such a point does not exist, then the endpoints of any edge in G(X(n)) are contained in
adjacent subcubes. Hence, the number of subcubes that we need to visit if we move from q(−ne1/4)
to q(ne1/4) is at least of order n1−p.

Now, we continue by subdividing each of the subcubes Q1, . . . , Qk1 into subsubcubes of side length
np

2
. For each of the subcubes Qi the probability that there exists (ξ, r) ∈ X(n) ∩Qi with r ≥ np

2
is

of order at most npdn−sp
2

= n−(s−d)p/2. The part of the path connecting q(−ne1/4) and q(ne1/4)
in any such subcube is a nearest-neighbor path on the level of subsubcubes, so that typically np−p

2

steps are needed to cross that subcube. If this was true for all i ∈ {1, . . . , k1}, then we would obtain
a lower bound for the chemical distance between q(−ne1/4) and q(ne1/4) that is of order n1−p2

and continuing in this fashion, we would obtain in fact a lower bound that is linear in n. However, at
each level we have to deal with a small loss, which leads to the sublogarithmic correction term in the
final lower bound.

In order to make this argument precise, it is convenient to introduce some notation similar to that used
in fractal percolation, see [12]. In order to define precisely the iteration mentioned in the previous
paragraph, we need to ensure that at each layer the number of subcubes is an integer. Therefore, we
define a0 = n, and then, inductively, ak = ak−1/bak−1/n

pkc. We also put bk = ak−1/ak. Next, in
order to determine the position of subcubes in the kth layer, we use the index set

Jk = {(i1, . . . , ik) ∈ (Zd)k : ij ∈ {0, . . . , bj − 1}d for all j ∈ {1, . . . , k}}.

For k ≥ 1 and I = (i1, . . . , ik) ∈ Jk, we define the site zI = a1i1 + · · ·+ akik and the cube

QI = (−n/2, . . . ,−n/2) + zI + [0, 1]dak,

which is also called a k-cube. Note that we think of the QI as being embedded in the torus Tn

so that it is possible that QI ∩ QI′ 6= ∅, even if the d∞-distance between zI and zI′ is strictly
larger than ak. We say that I, I ′ ∈ Jk are ∗-connected if there exist I1 = I, . . . , Im = I ′ such
that QIj ∩ QIj+1

6= ∅ for all j ∈ {1, . . . ,m − 1}. In the following, we frequently consider certain
neighborhoods of cubes of the form QI for some I ∈ Jk. To be more precise, for r > 0 we denote
by Qr

I = {ξ ∈ Tn : dTn
∞ (ξ,QI) ≤ r} the subset of all ξ ∈ Tn such that the toroidal d∞-distance

from ξ to the cube QI is at most r.

Next, we need to capture the property that a path γ in G(X(n)) that starts in a cube QI needs a
large number of hops to move far away from this cube. To be more precise, for ε > 0 and k ≥ 1
we introduce the notion of (ε, k)-good indices. If I ∈ Jk, then I is always (ε, k)-good. Furthermore,
inductively, if I ∈ Jk′ is such that 0 ≤ k′ < k, then we say that I is (ε, k)-good if a) X(n) ∩ (QI ×
[ak′+1, ak′ ]) = ∅ and b) for every ∗-connected subset γ ⊂ Jk′+1 that is contained in Q

ak′
I and

consists of at least bk′+1/4 elements, it holds that γ contains at most ε#γ elements that are (ε, k)-
bad. If I = ∅, then we additionally assume that X(n)∩ (QI × [n,∞)) = ∅. Sometimes, we also say
that the cube QI is (ε, k)-good if the index I has this property. Note that it would be more intuitive if
condition a) required that X(n) ∩ (QI × [ak′+1,∞)) = ∅. However, the present definition has the
advantage that the (ε, k)-goodness of an index I ∈ Jk′ only depends on X(n) ∩ (Tn × [0, ak′ ]).
This property will be helpful in Lemma 16 below, where we establish a stochastic domination between
the configuration of (ε, k)-good cubes and Bernoulli site percolation.

In the following, it will also be convenient to strengthen the notion of (ε, k)-good cubes in order to
have some control over cubes in a suitable environment of a given one. To be more precise, for u ≥ 0
and k′ ≤ k, we say that I ∈ Jk′ is (u, ε, k)-good if I ′ is (ε, k)-good for all I ′ ∈ Jk′ such that
QI′ ⊂ Q

uak′
I .
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Next, in order to analyze a given self-avoiding path γ = (x1, . . . , xm) in G(X(n)) at different scales,
it is useful to introduce certain discretizations of γ. First, for any k ≥ 1 we define a function µk :
Tn × [0,∞) → Jk, where µk(ξ, r) denotes the uniquely determined element I ∈ Jk satisfying
ξ ∈ QI . Note that in general applying µk to each element of γ results in a path that is no longer
self-avoiding. A popular technique for transforming arbitrary paths into self-avoiding ones is Lawler’s
method of loop erasure [15]. Unfortunately, when performing loop erasure naively for discretizations
at different scales, the resulting self-avoiding paths may be quite incomparable with respect to moving
from one scale to another. Therefore, we consider a refinement of the standard loop-erasure method,
which is adapted to dealing with different scales. For k ≥ 1 define an ordered subset γ(k,k,LE)

of γ, the (k, k)-loop erasure of γ, which can be identified with the standard loop erasure of the
discretization of γ via µk. To be more precise, let j ∈ {1, . . . ,m} be the largest integer such that

µk(xj−1) = µk(x1). Then define recursively γ(k,k,LE) =
(
x1, γ

(k,k,LE)
t

)
, where γt = (xj, . . . , xm) is

the subpath of γ starting from xj . Next, suppose that k′ < k and let γ(k′+1,k,LE) = (xm1 , . . . , xmN )
be the (k′ + 1, k)-loop erasure of γ. In particular, m1 = 1. Choose j ∈ {1, . . . , N} as the largest

integer such that µk′(xmj−1
) = µk′(x1). Then define recursively γ(k′,k,LE) =

(
x1, γ

(k′,k,LE)
t

)
, where

γt = (xmj , . . . , xm) is the subpath of γ starting from xmj . The construction of γ(k′,k,LE) is illustrated
in Figure 3.

γ

Figure 3: Construction of γ(k,k,LE) (dark gray) and γ(k−1,k,LE) (union of light and dark gray)

Next, we note that if k′ ≤ k and γ are such that γ(k′,k,LE) hits only (ε, k)-good (k′ − 1)-cubes, then
a large proportion of k′-cubes in γ(k′,k,LE) are (ε, k)-good.

Lemma 11. Let k′ ≤ k and γ be a path in G(X(n) ∩ (Tn × [0, ak′ ])) hitting only (ε, k)-good
(k′ − 1)-cubes. Furthermore, assume that #γ(k′,k,LE) ≥ bk′/4. Then, the number of (3, ε, k)-bad
k′-cubes hit by γ(k′,k,LE) is at most 147dε#γ(k′,k,LE).

Proof. Let γ(k′,k,LE) = (xm1 , . . . , xmN ). We denote by γ+ the family of all I ∈ Jk′ such that
QI ⊂ Q

3ak′
µk′ (xmj )

for some j ∈ {1, . . . , N}. In other words, γ+ is obtained by a suitable dilation from

the discretization of γ(k′,k,LE). Then the number of (3, ε, k)-bad k′-cubes hit by γ(k′,k,LE) is at most 7d

times the number of (ε, k)-bad k′-cubes in γ+. Furthermore, for each j ∈ {1, . . . , N} denote by γj
the ∗-connected component of γ+ ∩Qak′−1

µk′−1(xmj )
containing µk′(xmj). Since γ hits only (ε, k)-good

(k′ − 1)-cubes, we conclude that for every j ∈ {1, . . . , N}, the number of (ε, k)-bad k′-cubes in
γj is at most ε#γj . Moreover, note that for every j1, j2 ∈ {1, . . . , N} the components γj1 and γj2
either coincide or are disjoint. In the following, we fix a subset S ⊂ {1, . . . , N} with the property that
a) for every j ∈ {1, . . . , N} there exists s ∈ S such that γj = γs and b) if s, s′ ∈ S are such that
γs = γs′ , then s = s′. Since the union ∪s∈Sγs covers γ+, the number of (ε, k)-bad k′-cubes in γ+
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is at most
∑

s∈S ε#γs. Finally, noting that for each I ∈ γ+ there exist at most 3d elements s ∈ S
with I ∈ γs, we obtain that ∑

s∈S

ε#γs ≤ 3dε#γ+ ≤ 21dε#γ(k′,k,LE).

This concludes the proof.

In the following, we use the discretizations {γ(k′,k,LE)}k′∈{1,...,k} to derive suitable accurate lower
bounds on the number of hops in γ. The most immediate approach to do this would start from counting
the number elements in γ(k′,k,LE) and multiplying this number by a suitable factor reflecting the scaling
in the kth layer. However, if a k′-cube is hit by γ(k′,k,LE), then this provides only very little information
as to how many (k′ + 1)-cubes are hit by γ(k′+1,k,LE). Another approach could be to measure the
Euclidean distance between the endpoints and multiply it by a suitable factor taking into account the
scale of discretization. However, also this idea is problematic, since it is not clear how to determine
an upper bound for the number of (ε, k)-bad cubes occurring in a path in terms of the distance of
the endpoints. Therefore, in order to measure the length of a discretized path, we propose a slightly
more refined approach. It is adapted to changing scales, and, moreover, the length still grows at least
linearly in the number of elements of a path.

Let k ≥ 1 and γ = (x1, . . . , xm) be a self-avoiding path in Jk. Let D = (d1, d2, . . . , dm′) be an
ordered subset of {2, . . . ,m}. We say thatD forms an independent subset of γ ifQIdi−1

∩QIdi+1
=

∅ for all i ∈ {1, . . . ,m′ − 1}. By λ(γ) we denote the length of γ, which is defined as m′max − 1,
where m′max is the maximal size of an independent subset of γ. At first sight, it might seem unnatural
to require QIdi−1

∩ QIdi+1
= ∅ instead of QIdi

∩ QIdi+1
= ∅. However, when considering a linear

arrangement of m ≥ 2 adjacent elements of Jk, then the second possibility would lead to a length of
at most dm/2e, whereas the first yields the more accurate value m− 2.

In the following, we often consider the case, where k′ ≤ k and γ = (x1, . . . , xm) is a self-avoiding
path in G(X(n) ∩ (Tn × [0, ak′ ])). Then, an independent subset of µk′(γ(k′,k,LE)) is also called
a (k′, k)-independent subset of γ and we write λk′,k(γ) for λ(µk′(γ

(k′,k,LE))), which is called the
(k′, k)-length of γ. Next, we provide an affine lower bound for (k′, k)-lengths in terms of number of
sites.

Lemma 12. Let k′ ≤ k and γ be a self-avoiding path in G(X(n) ∩ (Tn × [0, ak′ ])). Then,

λk′,k(γ) + 1 ≥ 10−d#γ(k′,k,LE).

Proof. The proof proceeds by induction on #γ. If λk′,k(γ) = 0, then there exists I ∈ Jk′ such that
γ remains inside Q

ak′
I . In particular, #γ(k′,k,LE) ≤ 3d. Otherwise, write γ(k′,k,LE) = (xm1 , . . . , xmN )

and let D = (d1, . . . , dm′) be an ordered subset of {1, . . . , N} such that the ordered set
(µk′(xmd1 ), . . . , µk′(xmdm′

)) corresponds to a (k′, k)-independent subset of γ of size

m′ = λk′,k(γ) + 1 ≥ 2. Furthermore, we also assume that among all (k′, k)-independent subsets
of maximal size, D is chosen as the lexicographic maximum. Next, we claim that d2 − d1 ≤ 9d + 1.
Otherwise, we could choose d′ ∈ {d1 +1, . . . , d2−1} such thatQµk′ (xmd′ )

∩Qµk′ (xmd1−1
) = ∅ and

Qµk′ (xmd′−1
) ∩Qµk′ (xmd2

) = ∅, contradicting the maximality property used to define D. Similarly, we

see that d1 ≤ 3d + 1. Therefore, #γ
(k,k′,LE)
t ≥ #γ(k,k′,LE) − 10d, where γt = (xmd2−1

, . . . , xm)
denotes the subpath of γ starting at xmd2−1

. Furthermore, since D was chosen as the lexicographic
maximum of all independent subsets of maximal size, we also see that λk′,k(γ) > λk′,k(γt). Hence,

λk′,k(γ) + 1 ≥ λk′,k(γt) + 2 ≥ 1 + 10−d#γ
(k′,k,LE)
t ≥ 10−d#γ(k′,k,LE).
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Next, we show that (k′, k)-lengths exhibit a good behavior with respect to changes in scale.

Lemma 13. Let 2 ≤ k′ ≤ k and γ be a path in G(X(n) ∩ (Tn × [0, ak′ ])). Then,

λk′,k(γ) ≥ λk′−1,k(γ)bk′ .

Proof. Let γ = (x1, . . . , xm). We proceed by induction on #γ, noting that the case λk′−1,k(γ) = 0
is trivial. Next, let γ(k′,k,LE) = (xm1 , . . . , xmN ) and choose u, v ∈ {1, . . . , N} such that µk′−1(xmu)
and µk′−1(xmv) are the first two elements in a maximal (k′− 1, k)-independent subset of γ. Putting
I1 = µk′−1(xmu−1) and I2 = µk′−1(xmv), we note thatQI1∩QI2 = ∅. In particular,Qµk′ (xmu−1 ) 6⊂
Q
ak′−1

µk′ (xmv ). Hence, denoting by γt = (xmv−1 , . . . , xm) the subpath of γ starting from xmv−1 , we
obtain that

λk′,k(γ) ≥ bk′ + λk′,k(γt) ≥ (1 + λk′−1,k(γt))bk′ ≥ λk′−1,k(γ)bk′ ,

as claimed.

Let γ = (x1, . . . , xm) = ((ξ1, r1), . . . , (ξm, rm)) be a self-avoiding path in G(X(n) ∩ (Tn ×
[0, ak′ ])) for some k′ < k. In order to derive helpful lower bounds on m, we make use of the obser-
vation that inside any (ε, k)-good cube QI with I ∈ Jk′ the path γ consists of segments of length at
most ak′+1, and, moreover, most of the (k′+ 1)-cubes that hit this path are also (ε, k)-good. Hence,
it is convenient to identify subpaths of γ that do not intersect (ε, k)-bad cubes. Also the subpaths
should not be too short and, finally, some care should be taken to ensure compatibility with taking
(k′, k)-loop erasures.

To be more precise, let k′ ≤ k and γ = (x1, . . . , xm) be a path in G(X(n) ∩ (Tn × [0, ak′ ])).
Furthermore, let A ⊂ µk′(γ

(k′,k,LE)) and write γ(k′,k,LE) = (xm1 , . . . , xmN ). Then, we define a
family of disjoint subpaths ΦA(γ) = {γi}i∈{1,...,`} inductively as follows.

� If µk′(x1) 6∈ A, then ΦA(γ) = ΦA\{µk′ (x1)}(xm2 , . . . , xm). In other words, for the construc-
tion of ΦA(γ) we discard the initial segment of γ(k′,k,LE) not belonging to A.

� Otherwise, let L ∈ {2, . . . , N} be the smallest integer such that µk′(xmL) ∈ A.

� If for every j ∈ {1, . . . ,mL} there exists I ∈ A such that ξj ∈ Q
3ak′
I , then put

` = `′, γ1 = concat((x1, . . . , xmL), γ′1) and γi = γ′i for i ∈ {2, . . . , `′}, where
ΦA\{µk′ (x1)}((xmL , . . . , xm)) = {γ′i}i∈{1,...,`′}, and where concat denotes concatena-
tion of paths. In other words, if until reaching xmL the path γ stays close to A, then
to construct γ1, then we proceed recursively as follows. We take the first subpath from
ΦA\{µk′ (x1)}((xmL , . . . , xm)) = {γ′i}i∈{1,...,`′} and paste it to the subpath from x1 to
xmL .

� Otherwise, let j ∈ {1, . . . ,mL} be the smallest integer such that there does not exist
I ∈ A with ξj ∈ Q3ak

I and put

ΦA(γ) = {(x1, . . . , xj−1)} ∪ ΦA\{µk′ (x1)}((xmL , . . . , xm)).

In other words, γ1 is the longest initial segment of γ that stays close to A; the other sub-
paths are constructed inductively.
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γ

(a) Path γ (solid line) and set A (shaded region)

γ1
γ2

γ3

(b) Subpaths γ1, γ2 and γ3

Figure 4: Construction of ΦA(γ)

The construction of ΦA(γ) is illustrated in Figure 4.

Now, we can use the construction ΦA to obtain (ε, k)-good cubes at smaller scales.

Lemma 14. Let γ be a path inG(X(n)∩(Tn×[0, ak′ ])). Denote by {γi}`i=1 the collection of subpaths
of γ obtained by applying the construction ΦA with the family A as the set of those (3, ε, k)-good
indices I ∈ Jk′ such that γ(k′,k,LE) hits QI and Q

3ak′
I does not contain the endpoint of γ. Then,

A ⊂ ∪`i=1µk′
(
γ

(k′,k,LE)
i

)
, and for every i ∈ {1, . . . , `},

1. the path γi hits only (ε, k)-good k′-cubes; in particular, γi is a path in G(X(n) ∩ (Tn ×
[0, ak′+1])),

2. the path γi starts in QI for some I ∈ A and ends in QI′ for some I ′ with QI′ ∩ QI′′ = ∅ for
all I ′′ ∈ A; in particular, #γ

(k′+1,k,LE)
i ≥ bk′+1/4, and

3.
∑`

i=1 λk′,k(γi) ≥ λk′,k(γ)−
(
#γ(k′,k,LE) −#A

)
.

Proof. The relation A ⊂ ∪`i=1µk′
(
γ

(k′,k,LE)
i

)
and claim 1 follow immediately from the definition of

ΦA. Claim 2 is shown by induction on #γ, noting the assertion is trivial if ` = 0. Next, we deal with
claim 2 if ` > 0. Write γ(k′,k,LE) = (xm1 , . . . , xmN ). Clearly, our attention can be restricted to the
case, where µk′(x1) ∈ A. Let L ∈ {2, . . . , N} be the smallest integer such that µk′(xmL) ∈ A.
If for every j ∈ {1, . . . ,mL} there exists I ∈ A such that ξj ∈ Q

3ak′
I , then the claim follows

immediately from the induction hypothesis. Otherwise, let j ∈ {1, . . . ,mL} be the smallest integer
such that there does not exist I ∈ A with ξj ∈ Q

3ak′
I . Since γ is a path inG(X(n)∩ (Tn× [0, ak′ ])),

we conclude that Qµk′ (x1) ∩ Qµk′ (xj−1) = ∅. This completes the proof of claim 2 for γ1, whereas for
γi with i ≥ 2, we may conclude by induction.

It remains to prove claim 3. Choose an ordered subset (d1, . . . , dm′) of {1, . . . , N} corresponding
to a maximal (k′, k)-independent subset of γ. Furthermore, for i ∈ {1, . . . , `} let Di be the subset
consisting of all d′ ∈ D such that µk′(xmd′ ) ∈ A and xmd′ ∈ γi. Note that if we remove from Di

the element corresponding to the starting point of γi, then we obtain a (k′, k)-independent subset
of γi. Moreover, we assert that this independent subset can be enlarged by two further elements.
Once this assertion is shown, we see that λk′,k(γi) ≥ #Di and summing over all i ∈ {1, . . . , `}
completes the proof. In order to prove the assertion, we choose di,1 as the largest index from Di

such that ξmdi,1 ∈ Q
ak′
I for some I ∈ A. Similarly, we choose di,2 as the largest index such that
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ξmdi,2 ∈ Q
2ak′
I for some I ∈ A. Then, we can enlarge the independent subset Di by adding di,1 + 1

and di,2 + 1. Indeed, for any d′ ∈ Di we have µk′(xmd′ ) ∈ A, whereas there is no I ∈ A such that
Qµk′ (xmdi,1+1

) ⊂ Q
ak′
I . Similarly, Qµk′ (xmdi,1

) ⊂ Q
ak′
I for some I ∈ A, whereas there is no I ∈ A

such that Qµk′ (xmdi,2+1
) ⊂ Q

2ak′
I . Therefore, Qµk′ (xmdi,1

) ∩ Qµk′ (xmdi,2+1
) = ∅, and this completes

the proof.

Combining the previous auxiliary results, we now provide a lower bound for #γ.

Lemma 15. Let k′ ≤ k and γ be a path in G(X(n) ∩ (Tn × [0, ak′ ])) hitting only (ε, k)-good
(k′ − 1)-cubes. Furthermore, assume that #γ(k′,k,LE) ≥ bk′/4. Then there exists a constant c > 0
such that if bk ≥ c, then #γ ≥ (1− 1500dε)k−k

′
λk′,k(γ)

∏k
j=k′+1 bj .

Proof. The proof proceeds via backward induction on k′, the case k′ = k being trivial. First, let
A ⊂ Jk′ be as in Lemma 14 and write ΦA(γ) = {γi}`i=1. By induction hypothesis and Lemma 13,
we conclude that for every i ∈ {1, . . . , `},

#γi ≥ (1− 1500dε)k−k
′−1λk′+1,k(γi)

k∏
j=k′+2

bj ≥ (1− 1500dε)k−k
′−1λk′,k(γi)

k∏
j=k′+1

bj.

By Lemma 14, we have A ⊂ ∪m′i=1µk′
(
γ

(k′,k,LE)
i

)
and by Lemma 11 the number of (3, ε, k)-bad

cubes hit by γ(k′,k,LE) is at most 147dε#γ(k′,k,LE). Hence, if bk is sufficiently large, then part 3 of
Lemma 14, Lemma 11 and Lemma 12 imply that

∑̀
i=1

λk′,k(γi) ≥ λk′,k(γ)− 147dε#γ(k′,k,LE) − 7d ≥ (1− 1500dε)λk′,k(γ),

so that

∑̀
i=1

#γi ≥ (1− 1500dε)k−k
′−1
∑̀
i=1

λk′,k(γi)
k∏

j=k′+1

bj ≥ (1− 1500dε)k−k
′
λk′,k(γ)

k∏
j=k′+1

bj.

This completes the proof.

Next, we show that the process of (3, ε, k)-good indices dominates a Bernoulli site percolation pro-
cess with arbitrarily high marginal probability. This uses similar arguments as in [18, Lemma 2.2].

Lemma 16. Let ε > 0 and ρ ∈ (0, 1) be arbitrary. Furthermore, let k = k(n) be such that n−p
k(n) ∈

o(1). Then there exists n0 ≥ 1 such that if n ≥ n0 and k′ ∈ {0, . . . , k}, then the family of (ε, k)-
good cubes in Jk′ stochastically dominates a Bernoulli site process on Jk′ with marginal probability
ρ.

Proof. In order to prove the claim, it is convenient to separate clearly the two conditions used in the
definition of (ε, k)-goodness. First, an index I ∈ Jk′ is said to be short-ranged if X(n) ∩ (Tn ×
[ak′+1, ak′ ]) = ∅. Second, I ∈ Jk′ is said to be iterable if for every ∗-connected subset γ ⊂ Jk′+1

that is contained in Q
ak′
I and is of size at least bk′+1/4, it holds that γ contains at most ε#γ indices

that are (ε, k)-bad. By construction, the configuration of short-ranged indices in Jk′ is independent
of the configuration of iterable indices in Jk′ . Hence, to obtain the desired stochastic domination of a
Bernoulli site process, it suffices to consider the two types of configurations separately.
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To be more precise, let ε > 0 and ρ ∈ (0, 1) be arbitrary. Furthermore, put q = 2−2·3d/ε. We prove
that there exist n0 ≥ 1 (depending only on d, ε and ρ) with the following properties, where without
loss of generality we may assume that ρ ≥ 1− q.

1. Let n ≥ n0 and k′ ∈ {1, . . . , k}. Then the process of short-ranged indices in Jk′ stochasti-
cally dominates a Bernoulli site process on Jk′ with marginal probability given by

√
ρ.

2. Let n ≥ n0 and k′ ∈ {1, . . . , k}. If the process of (ε, k)-good indices in Jk′+1 dominates a
Bernoulli site process on Jk′+1 with marginal probability given by 1 − q, then the process of
iterable indices in Jk′ dominates a Bernoulli site process on Jk′ with marginal probability given
by
√
ρ.

Once these two claims are shown, we conclude by induction.

For the first claim, we note that the configuration of short-ranged elements in Jk′ is already a Bernoulli
site process. Furthermore, provided that n ≥ 1 is sufficiently large, the marginal probability of failing
to be short-ranged is at most

2βadk′a
−s
k′+1 ≤ 2βnp

k′d−pk′ps = 2βn−p
k′ε1 ,

where ε1 = ps − d > 0. In particular, the latter expression tends to 0 uniformly over all k′ ∈
{1, . . . , k(n)} as n→∞.

It remains to prove the second claim. By assumption, the process of (ε, k)-good indices in Jk′+1

dominates a Bernoulli site process on Jk′+1 with marginal probability 1− q. An element I ∈ Jk′+1 is
called dom-bad if it is a closed site in this Bernoulli site process. Furthermore, we say that I ∈ Jk′ is
dom-iterable if for every ∗-connected subset γ ⊂ Jk′+1 that is contained in Q

ak′
I and consists of at

least bk′+1/4 elements, it holds that γ contains at most ε#γ elements that are dom-bad.

For any fixed u ∈ {1, . . . , 3dbdk′+1}, the cube Q
ak′
I contains at most 3dbdk′+12

(3d−1)u ∗-connected
subsets consisting of precisely u elements, see [19, Lemma 9.3]. For any such ∗-connected set there
exist at most 2u possibilities to choose the location of dom-bad sites. Hence, the probability that I is
not dom-iterable is at most

3dbdk′+1

∑
u≥bk′+1/4

2(3d−1)u2uqεu ≤ 3dbdk′+12
1−3ddbk′+1/4e. (4)

If k′ ∈ {1, . . . , k(n)} and n is sufficiently large, then bk′ ≥ np
k′ (1−p)/2. Therefore, we see that (4)

tends to 0 uniformly over all k′ ∈ {1, . . . , k(n)} as n → ∞. The proof of the second claim is
concluded by invoking [16, Corollary 1.4]. Alternatively, it is also possible to apply [18, Theorem 2.1],
which also yields an explicit bound for the value of n that is needed to achieve the desired domination.

Now, we have collected all preliminary results required to complete the proof of Theorem 4.

Proof of Theorem 4. Define k = k(n) = b(log(4) n− log(2) n)/ log pc, where form ≥ 1 we denote
by log(m) n the m-fold iterated logarithm. In particular,

np
k ∈

(
log(2) n, (log(2) n)p

−1)
.
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Moreover, we conclude from Lemmas 15 and 16 that whp the number of hops between q(−ne1/4)
and q(ne1/4) is at least

(1− 1500dε)k−1λ1,k(γ)
k∏
j=2

bj ≥ 1
4
(1− 1500dε)k−1n1−pk

≥ 1
4
(1− 1500dε)k−1n(log(2) n)−p

−1

.

It thus remains to provide a suitable lower bound for (1− 1500dε)k. Indeed,

k log(1− 1500dε) ≥ (−2 log(1− 1500dε)/ log p) log(2) n,

so that choosing ε > 0 sufficiently close to 0 to ensure that − log(1 − 1500dε)/ log p ≥ −α/4
shows that (1− 1500dε)k ≥ (log n)−α/2.

4.2 Regime s = d

In the present subsection, we consider the critical regime, where s = d and provide a proof of
Theorem 6. We first explain the main ideas before presenting all the details. If there exists x =
(ξ, r) ∈ X(n) with r ≥

√
dn, then all points of X(n) are connected to x directly by an edge. On

the other hand, if Tn is not covered by a single ball, then the torus can be subdivided into smaller
subcubes, and we try to cover these subcubes by smaller balls. While some are now covered, others
will stay uncovered. At this points one proceeds iteratively, subdividing the remaining subcubes into
subsubcubes and aiming at covering these smaller cubes by smaller balls. We claim that this algorithm
terminates with high probability, yielding a connected random geometric graph whose diameter is
bounded from above by the total number of subcubes introduced in this construction.

Similar to Section 4.1, in order to make these arguments rigorous, it is useful to highlight a link to
fractal percolation. However, now the fractal percolation process is considerably simpler, since each
occurring subcube is subdivided into precisely 2d subsubcubes, irrespective of the level, in which
the original subcube is located. In the present setting, the total index set J is therefore given by
J = ∪m≥0{0, 1}md, where the symbol ∪ is interpreted as disjoint union. Furthermore, for each
I = (i1, . . . , im) ∈ J we put

QI = (−n/2,−n/2, . . . ,−n/2) + n
m∑
j=1

2−jij + [0, n2−m]d.

Proof of Theorem 6. In order to make the sketch presented at the beginning of the subsection rig-
orous, we introduce a fractal percolation process {Z(I)}I∈J . For k ≥ 0 and I ∈ {0, 1}kd put
Z(I) = 0 if and only if there exists (ξ, r) ∈ X such that ξ ∈ QI and r ∈ (

√
d2−k+1n,

√
d2−k+2n).

The number of points (ξ, r) ∈ X such that ξ ∈ QI and r ∈ (
√
d2−k+1n,

√
d2−k+2n) is Poisson

distributed with parameter

nd2−kd(P(R >
√
d2−k+1n)− P(R >

√
d2−k+2n)).

Provided that
√
d2−k+1n ≥ t0(1/2) this expression can be bounded from below by

nd2−kdd−d/2β(2kd−d−1n−d − 3 · 2kd−2d−1n−d) ≥ βd−d/22−2d−1.
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Hence, if additionally β ≥ dd/222d+1(d+ 1) log 2, then

P(Z(I) = 1) ≤ exp(−βd−d/22−2d−1) ≤ 2−d−1. (5)

Since each cube QI gives rise to 2d subcubes, this already provides a first strong indication for the
relationship to subcritical Galton-Watson processes.

To make this precise, it is convenient to introduce some auxiliary structures. By Ck, k ≥ 0 we denote
the union of retained cubes at the kth level. That is, C0 = [−n/2, n/2]d and if k ≥ 0, then

Ck+1 = Ck ∩
⋃

I∈{0,1}(k+1)d:Z(I)=1

QI .

Furthermore, we also consider the index sets A(0)
k , A

(1)
k ⊂ {0, 1}kd whose associated cubes are

discarded/retained at the kth step. That is A(σ)
k = {I ∈ {0, 1}kd : QI ⊂ Ck−1 and Z(I) = σ}.

Finally, we construct a backbone B ⊂ X(n) such that if Cm = ∅ for some m ≥ 1, then a) any
point of X(n) is connected by an edge in G(X(n)) to some point in B and b) B is a connected set

in G(X(n)). To construct B, we choose for each I ∈ A
(0)
k a point xI ∈ X(n) such that ξ ∈ QI

and r ∈ (
√
d2−k+1n,

√
d2−k+2n). Then, we denote by B the collection consisting of the points xI ,

where I ∈ A(0)
k for some k ≥ 0. See Figure 5 for an illustration of the construction of B.

Figure 5: Backbone of a scale-free Gilbert graph

In particular,
#B =

∑
k≥0

#A
(0)
k+1 ≤ 2d

∑
k≥0

#A
(1)
k .

Now, we show that the set B has the desired properties. Since Cm = ∅, we conclude that the union
of the cubes QI , with I ∈ A

(0)
k for some k ≥ 0 covers Tn. If x = (ξ, r) ∈ X(n) is arbitrary,

then by choosing I ∈ A
(0)
k such that ξ ∈ QI and noting that QI ⊂ BTn

rI
(ξI), we see that x is

connected to xI by an edge inG(X(n)). Moreover, if I1 ∈ A(0)
k1

and I2 ∈ A(0)
k2

are such that k1 ≤ k2
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and QI1 ∩ QI2 6= ∅, then QI1 ∪ QI2 ⊂ BTn
rI1

(ξI1). Hence, xI1 and xI2 are connected by an edge

in G(X(n)). Since for any I ∈ A
(0)
k and I ′ ∈ A

(0)
k′ we can find I1 = I, . . . , Im = I ′ such that

Ij ∈ A(0)
kj

and QIj ∩QIj+1
6= ∅, this proves the second claim on B.

Hence, if there exists m ≥ 1 such that Cm = ∅, then the diameter of G(X(n)) is at most 2 + #B.
It remains to compare #B to the total progeny of a subcritical Galton-Watson process; this analysis
will also show that the probability that Cm = ∅ for some m ≥ 1 tends to 1 as n → ∞. Indeed,
consider the subcritical Galton-Watson process whose offspring distribution is Binomial with 2d trials
and success probability 2−d−1. Put k = k0(n) = blog(2

√
dn/t0(1/2))/ log 2c. It follows from (5)

and the independence property of the Poisson point process that there exists a coupling between
X(n) and the Galton-Watson process such that for every k ≤ k0 we have Tk ≥

∑k
i=0 #A

(1)
i . Here

Tk denotes the total progeny of the Galton-Watson process up to the kth step. In particular,

max{P(Ck0 6= ∅),P(#B > 2dTk0)} ≤ P(Tk0−1 6= Tk0) ≤ 2−k0 ≤ t0(1/2)/(
√
dn),

where the second inequality uses a well-known result for Galton-Watson processes, see e.g. [13,
Theorem 5.1].

5 Using a multi-level topology for redundancy elimination

In the present section, we provide a comparison between the scale-free Gilbert graph G(X(n)) and
the thinned scale-free Gilbert graph G′(X(n)), where some redundant edges are removed. First, we
prove Theorem 7.

Proof of Theorem 7. In the following we fix t0 = t0(1/2). We first show that we can neglect contri-

butions b1(n) to ED′,(α)
out,n coming from points (η, t) ∈ X(n) such that t >

√
|η|. Indeed,

b1(n) ≤
∫ ∞

0

∫
BTn
r (o)

|η|αP(R >
√
|η|)dηPR(dr)

=

∫
Tn
|η|αP(R > |η|)P(R >

√
|η|)dη

=

∫
Tn\BTn

t20

(o)

|η|αP(R > |η|)P(R >
√
|η|)dη +

∫
BTn
t20

(o)

|η|αP(R > |η|)P(R >
√
|η|)dη.

Since the second expression remains bounded as n→∞, it suffices to consider the first. Then,∫
Tn\BTn

t20

(o)

|η|αP(R > |η|)P(R >
√
|η|)dη ≤ 2β2

∫
Tn\BTn

t20

(o)

|η|α−3d/2dη

= 2β2

∫
Tn\BTn

n/2
(o)

|η|α−3d/2dη + 2β2

∫
BTn
n/2

(o)\BTn
t20

(o)

|η|α−3d/2dη,

and we consider the two summands separately. Clearly, the first is in O(nα−d/2). For the second we
obtain that ∫

BTn
n/2

(o)\BTn
t20

(o)

|η|α−3d/2dη = dκd

∫ n/2

t20

uα−d/2−1du,
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which is in O(1) if α = 0 and in O(nmax{0,α−d/4}) if α > 0. Furthermore, we can clearly neglect the

contributions b2(n) to ED′,(α)
out,n coming from points (η, t) ∈ X(n) with |η| ≤ min{e12, t20}.

It remains to obtain bounds for the contributions that are covered by neither b1(n) nor b2(n). For any
γ > 0 and ξ ∈ [−n/2, n/2]d we put

Sγ,η = {ζ ∈ Rd :
√
|η| ≤ |ζ − η| ≤ |η| and ∠(ζ − η,−η) ∈ [−γ, γ]};

see Figure 6 for an illustration of Sγ,η. If γ is sufficiently small, then for every n ≥ 1 and η ∈
[−n/2, n/2]d the sector Sγ,η is contained in [−n/2, n/2]d. In the following, we fix any such value
γ0 and put Sη = Sγ0,η. It will also be convenient to denote by S ′η = ∂B1(o) ∩ (|η|−1(Sη − η))
the intersection of the unit sphere with a shifted and scaled copy of Sη. Finally, we denote by σ0 =
νd−1(S

′
η) the surface area of S ′η, a quantity which is independent of η.

η

γ

Figure 6: Construction of the set Sγ,η (shaded)

If (η, t) is an out-neighbor of (o,R∗) inG′({o,R∗}∪X(n)) such that t ≤
√
|η|, thenX(n)∩Aη,t =

∅, where
Aη,t = {(ζ, w) ∈ Sη × [0, R∗) : w > |ζ − η|}.

Furthermore, we note that conditioned on R∗ = r the number of points of X(n) contained in Aη,t is
a Poissonian random variable with mean∫

Sη

P(R ∈ (|ζ − η|, r))dζ = σ0

∫ |η|
√
|η|
ud−1P(R ∈ (u, r))du.

If n ≥ 1 is sufficiently large and |η| ≥ t20, then the right-hand side is at least

βσ0

∫ |η|
√
|η|

1
2
u−1 − 3

2
ud−1r−ddu ≥ βσ0(

1
4

log |η| − 3
2
) ≥ 1

8
βσ0 log |η|.

Putting b3(n) = ED′,(α)
out,n − b1(n)− b2(n), we therefore obtain that

b3(n) ≤
∫ ∞

0

∫
BTn
r (o)\BTn

t20

(o)

|η|αexp(−1
8
βσ0 log |η|)dηPR(dr)

=

∫
Tn\BTn

t20

(o)

|η|α−βσ0/8P(R > |η|)dη

≤ 2β

∫
Tn\BTn

n/2
(o)

|η|α−d−βσ0/8dη + 2β

∫
BTn
n/2

(o)\BTn
t20

(o)

|η|α−d−βσ0/8dη

≤ 2β

∫
Tn\BTn

n/2
(o)

|η|α−d−βσ0/8dη + 2βdκd

∫ n/2

t20

uα−βσ0/8−1du.
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Observing that the last line is in O(1) if α = 0 and in O(nmax{0,α−βσ0/16}) if α > 0 completes the
proof.

When passing from G(X(n)) to G′(X(n)) only redundant edges are removed, in the sense that
connected components remain unchanged.

Proposition 17. With probability 1 the graphs G(X(n)) and G′(X(n)) have the same connected
components.

Proof. It suffices to show that if x = (ξ, r), y = (η, t) ∈ X(n) are connected by an edge in
G(X(n)), then x and y are contained in the same connected component of G′(X(n)). Suppose that
this was false. Then, choose a counter-example with the property that |r− t| is minimal. Without loss
of generality we may assume r ≥ t. Since x = (ξ, r) and y = (η, t) are not connected by an edge
in G′(X(n)), there exists a point z = (ζ, w) ∈ X(n) ∩ (BTn

r (ξ) × (t, r)) such that η ∈ BTn
w (ζ).

By the minimality of the counter-example we see that both y and z as well as z and x are contained
in the same connected component of G′(X(n)). Therefore also x and y are contained in the same
connected component of G′(X(n)), yielding a contradiction to the initial assumption.

Next, we show that when moving from G(X(n)) to G′(X(n)) chemical distances increase at most
by a logarithmic factor in the size of the torus. To achieve this goal, we make use of a variant of
the descending chains concept introduced in [8]. To be more precise, let x1 = (ξ1, r1), . . . , xm =
(ξm, rm) be such that r1 > r2 > · · · > rm. Then x1, . . . , xm are said to form a toroidal descending
chain if ξi+1 ∈ BTn

ri
(ξi) for every i ∈ {1, . . . ,m − 1}. In the following result, we show that there is

a close relationship between the existence of short connections in G′(X(n)) and the absence of long
toroidal descending chains.

Lemma 18. Let x = (ξ, r) ∈ X(n) and y = (η, t) ∈ X(n) ∩ (BTn
r (ξ) × (0, r)). If m ≥ 1 is such

that the chemical distance between x and y in G′(X(n)) is larger than m, then there exists a toroidal
descending chain starting from x and consisting of more than m points.

Proof. We proceed similarly to [1, Lemma 10].Inductively, we construct points
{
x

(i)
j

}
0≤j≤i ={

(ξ
(i)
j , r

(i)
j )
}

0≤j≤i such that for every i ∈ {1, . . . ,m} we have

(i) r(i)
0 > · · · > r

(i)
i ,

(ii) ξ(i)
j+1 ∈ B

Tn
r
(i)
j

(ξ
(i)
j ) for all j ∈ {1, . . . , i− 1}, and

(iii) there exists j ∈ {1, . . . , i − 1} such that x(i)
j and x(i)

j+1 are not connected by an edge in

G′(X(n)).

Indeed, for the induction start we just choose x(1)
0 = x and x(1)

1 = y. Next, suppose that i ≤ m

and that we have constructed points
{
x

(i−1)
j

}
0≤j≤i in X(n) satisfying properties (1)-(3). Choose

j0 ∈ {0, . . . , i − 2} such that x(i−1)
j0

and x(i−1)
j0+1 are not connected by an edge in G′(X(n)). By

definition of G′(X(n)) there exists x′ =
(
ξ′, r′

)
∈ X(n) ∩

(
BTn
r
(i−1)
j0

(ξ
(i−1)
j0

)×
(
r
(i−1)
j0+1 , r

(i−1)
j0

))
such
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that ξ(i−1)
j0+1 ∈ B

Tn
r′ (ξ′). We put

x
(i)
j =


x

(i−1)
j if j ≤ j0,

x′ if j = j0 + 1,

x
(i−1)
j−1 if j > j0 + 1.

Clearly, properties (i) and (ii) are satisfied. Since a violation of property (iii) would imply that the
chemical distance between x and y in G′(X(n)) is at most m, this completes the proof.

For the applicability of Lemma 18, it is important to show that long toroidal descending chains can
occur only with small probability.

Lemma 19. There exists a constant c1 > 0 such that whp X(n) does not contain a toroidal descend-
ing chain consisting of more than c1 log n elements.

Proof. We distinguish several cases depending on the radii occurring in the chain. First, note that
the probability that there exist distinct (ξ, r), (η, t) ∈ X(n) such that min{r, t} > n3/4 is at most
n2dP(R > n3/4)2, which tends to 0 as n → ∞. Hence, it suffices to consider toroidal descending
chains with radii bounded above by n3/4. Next, we note that the expected number of toroidal descend-
ing chains consisting ofm+1 steps and where all radii are bounded above by t0 = t0(1/2) is at most
nd(κdt

d
0)m/m!. Using Stirling’s formula, we see that when putting m = log n, this expression tends

to 0 as n → ∞. Finally, the expected number of toroidal descending chains consisting of m ≥ 1
steps, and where all radii are contained in (t0, n

3/4) is at most∫
Tn

∫ n3/4

t0

∫
BTn
r1

(ξ1)

· · ·
∫ rm−1

t0

∫
BTn
rm (ξm)

1dξm+1PR(drm) · · · dξ2PR(dr1)dξ1

= ndκmd

∫ n3/4

t0

· · ·
∫ n3/4

t0

1r1>···>rmr
d
1 · · · rdmPR(drm) · · ·PR(dr1)

=
ndκmd
m!

(∫ n3/4

t0

rdPR(dr)
)m
.

In order to derive an upper bound for the latter expression, we need to investigate ERd1(t0,n3/4)(R).
We compute

ERd1(t0,n3/4)(R) =

∫ td0

0

P(R > t0)dt+

∫ n3d/4

td0

P(Rd > t)dt

≤ td0 + 2β

∫ n3d/4

1

t−1dt

≤ 4dβ log n,

provided that n ≥ 1 is sufficiently large. In particular, the expected number of toroidal chains consist-
ing of m steps, and where all radii are contained in (t0, n

3/4) is at most

nd(4dκdβ log n)m/m!,

and Stirling’s formula implies that when putting m = c log n this expression is at most

exp(d log n+ c(log n)(log(4deκdβ log n)− log(c log n))).

Finally, the latter expression tends to 0 as n→∞, if c > 0 is sufficiently large.
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Combining Lemmas 18 and 19 the proof of Theorem 8 is now immediate.

Proof of Theorem 8. Lemma 18 shows that if x, y ∈ X(n) are connected by an edge inG(X(n)) and
the chemical distance between x and y inG′(X(n)) is at least c1 log n, thenX(n) contains a toroidal
descending chain consisting of at least c1 log n elements. Lemma 19 shows that the complements of
the latter events occur whp.
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