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Abstract

Symmetric collocation methods with radial basis functions allow approximation of the solution of a partial 
differential equation, even if the right-hand side is only known at scattered data points, without needing to 
generate a grid. However, the benefit of a  guaranteed symmetric positive definite block system comes at  a 
high computational cost. This cost can be alleviated somewhat by considering compactly supported radial 
basis functions and a multiscale technique. But the condition number and sparsity will still deteriorate with 
the number of data points. Therefore, we study certain block diagonal and triangular preconditioners. We 
investigate ideal preconditioners and determine the spectra of the preconditioned matrices before proposing 
more practical preconditioners based on a restricted additive Schwarz method with coarse grid correction 
(ARASM). Numerical results verify the effectiveness of the preconditioners. 

1. INTRODUCTION

Radial basis functions (RBFs) are a modern tool to flexibly approximate scattered data [1, 2, 3, 4, 5].
Although they were initially used for interpolation problems, they have recently become an attractive
alternative to solve PDEs – especially when the given data is arbitrarily scattered [6, 7, 8, 9, 10, 11,
12]. Their attractiveness stems from the fact that the RBF method dispenses with the expensive
generation of a grid. Unlike a method yielding a nonsymmetric system proposed by Kansa [13], we
would like to focus on symmetric RBF approximation, which has the advantage that it always yields
a symmetric positive definite system.

The main problem with RBFs is that for a large number of data sites the condition number
of the system one needs to solve becomes prohibitively large. Therefore, multiscale ideas in
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combination with compactly supported RBFs have been developed to reduce the computational
cost [14, 15, 16, 17]. Here, we focus on a symmetric multiscale RBF collocation method for second-
order elliptic PDEs on bounded domains [18, 14]. The method employs RBFs on a sequence of
levels, and uses different numbers of data sites and RBF support radii on each level. Consequently,
it is particularly suited to problems with multiple scales.

At each level of the multiscale collocation method a linear system of the form[
Ā B̄T

B̄ C̄

]
︸ ︷︷ ︸

Ā

[
αi

αb

]
︸ ︷︷ ︸
α

=

[
bi

bb

]
︸︷︷︸
b

, (1)

must be solved, where Ā is nonsingular and symmetric positive definite and B̄ ∈ Rm×n has
full rank. The positive definiteness of Ā ensures that the principal submatrices Ā ∈ Rn×n and
C̄ ∈ Rm×m are themselves positive definite. More detailed descriptions of these matrices will be
provided in Section 2.2. We make the reasonable assumption that n ≥ m, which means that more
data sites are located in the interior of the domain than on its boundary.

Even though the multiscale approach is already much more efficient than the one-shot method,
certain features of Ā make (1) difficult to solve at later levels. First, the number of data sites, and
thus the dimension of the matrix Ā, increases at each level so that finer scales may be resolved.
Second, the conditioning of the coefficient matrix deteriorates as the separation between data sites
decreases, a fact we state more in carefully in Theorem 2. In particular, if one wants to ensure
convergence, the density of nonzero elements increases [18, 14].

When the dimension of Ā is large, iterative methods are more feasible than direct methods for
solving (1). However, the ill-conditioning and density of nonzeros mean that fast convergence will
typically only be achieved with suitable preconditioners. For interpolation problems solved by an
analogous RBF multiscale method, convergence and constant condition numbers can be achieved
at the same time [17]. However, applying the same approach to PDE problems is insufficient for
level-independent convergence [18, 14] and a more sophisticated strategy is required.

Preconditioners for RBF matrices have previously been developed, with domain decomposition
approaches among the most popular. Beatson et al. [19] employed a multiplicative Schwarz method
to solve (rather than precondition) linear systems resulting from interpolation by polyharmonic
splines. Yokota et al. [20] investigated restricted additive Schwarz (RAS) methods for interpolation
by Gaussian RBFs, while Deng and Driscoll [21] used a two-level RAS method as a GMRES
preconditioner for interpolation by multiquadrics. Additionally, Le Gia et al. [22] applied a two-
level overlapping additive Schwarz method to the problem of solving PDEs by compactly-supported
basis functions on spheres. Alternative preconditioners include those based on approximate cardinal
functions [23, 24], which can be combined with domain decomposition [19, 25].

To construct preconditioners for the whole matrix Ā, however, it seems sensible to exploit the
block structure. Recently, Le Gia and Tran [26] examined effective block diagonal preconditioners
for the RBF multiscale method for PDEs on local spherical regions, with additive Schwarz
preconditioners for each block. In this complementary work we consider both block diagonal and
block triangular preconditioners for the multiscale method for PDEs on general bounded domains.
In contrast to Le Gia and Tran [26] we attempt to identify ideal preconditioners, from the point of
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view of fast convergence of the iterative solver of (1), and analytically determine the spectra of the
preconditioned matrices. These ideal preconditioners then guide the development of more practical
alternatives based on restricted additive Schwarz methods.

The rest of this paper is organised as follows. In Section 2 we describe in more detail the
multiscale RBF method and give a brief overview of Krylov subspace methods and preconditioners
for solving (1). We present our ideal block diagonal and block triangular preconditioners, and
describe the spectra of the preconditioned matrices, in Section 3. We investigate the effect of
replacing Ā by an additive Schwarz preconditioner in Section 4 and give numerical results in
Section 5. Note that throughout, the transpose of a matrix A is represented by AT and its nullspace
by null(A).

2. BACKGROUND

In this section we present background material on the multiscale RBF method and on preconditioned
Krylov subspace methods.

2.1. Second-order elliptic boundary value problems

Let Ω ⊂ Rd be a bounded domain. We consider second-order elliptic boundary value problems of
the form

Lu = f in Ω,

u = F on ∂Ω,
(2)

where L is a second-order elliptic linear differential operator defined by

Lu(x) =

d∑
i,j=1

aij(x)∂iju(x) +

d∑
i=1

bi(x)∂iu(x) + c(x)u(x),

which is strictly elliptic on Ω. That is, there exists a constant cE > 0 such that

cE‖ξ‖22 ≤
d∑

i,j=1

aij(x)ξiξj

for all x ∈ Ω and ξ = (ξi) ∈ Rd.
If we assume that the right-hand sides f and F are chosen such that the solution u lies in the

Sobolev space Hσ(Ω) with σ > d/2 + 2, then the differential operator Lu is in fact well-defined
since we know by the Sobolev embedding theorem that Hσ(Ω) ⊆ C2(Ω).

To ensure that L is a bounded operator from Hσ(Ω) to Hσ−2(Ω), we impose some restrictions
on the coefficients. For k := bσc > 2 + d/2 we demand that aij , bi, c lie in W k−1

∞ (Ω). Due to our
previous assumption on σ, we see that (k − 1)− 1 > d/2, which implies by the Sobolev embedding
theorem that the coefficients are continuously differentiable, see [7] for details.
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2.2. Multiscale RBF collocation

In order to solve the boundary value problem (2), we will construct a numerical approximation
from a linear combination of translated radial basis functions. These basis functions are particularly
useful in the context of scattered data approximation. Therefore, we introduce two measures that
help us to describe scattered data points X = {x1, . . . , xN} in Ω ⊂ Rd. The mesh norm

hX,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2

is the radius of the largest data-free hole that is contained in the domain of interest Ω. On the other
hand, the separation distance

qX = min
j 6=k
‖xj − xk‖2

is the shortest distance between any two data points in X .

Definition 1 (Radial basis function). A continuous function Φ: Rd → R is called positive definite
on Rd if for any d-dimensional data set X = {x1, . . . , xN} of pairwise distinct points the matrix

AΦ,X := (Φ(xj − xk))1≤j,k≤N

is positive definite. We refer to Φ as a radial basis function if it is a radial positive definite function.

There are many different examples of radial basis functions. Among them Gaussians, (inverse)
multiquadrics and polyharmonic splines have been popular. Here, we are interested in compactly
supported radial basis functions since in this case the matrix AΦ,X is sparse. The Fourier transform
of the compactly supported radial basis function shall satisfy

c1(1 + ‖ω‖22)−σ ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖22)−σ (3)

for 0 < c1 ≤ c2. For σ > d+1
2 it is indeed possible to find such a function, see [27].

The most prominent examples of such compactly supported RBFs were given by Wendland [28].
For any given integer smoothness degree and dimension Wendland was able to construct radial basis
functions that are polynomials within the unit ball and vanish outside of it. They have the special
property that for given smoothness and dimension these polynomials are of the smallest degree such
that the compactly supported RBF is still positive definite.

The numerical solution we would like to consider is of the form

s(x) =

n∑
j=1

αijL(2)Φ(x− xj) +

m∑
j=1

αbjΦ(x− yj), (4)

where X = {x1, . . . , xn} ⊂ Ω and Y = {y1, . . . , ym} ⊂ ∂Ω denote scattered data points in the
interior and on the boundary, respectively, for which the right-hand sides are known. The superscript
next to the differential operator in the first sum means that the operator is first applied to the second
argument of the RBF and then evaluated at data site xj , that is, we apply L to the second term z in
Φ(x− z) and then evaluate the result at z = xj . Note that L(2)Φ(x− xj) is still a function of the
first variable x. The real interior and boundary coefficients αij and αbj are determined by applying
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the boundary value problem (2) to the numerical approximation s at these scattered data points. The
system one needs to solve is then given by (1), where the different parts are given by

Ā = (L(1)L(2)Φ(xi − xj))1≤i,j≤n,

B̄ = (L(2)Φ(yi − xj))1≤i≤m
1≤j≤n

, C̄ = (Φ(yi − yj))1≤i,j≤m,

αi = (αij)1≤j≤n, αb = (αbj)1≤j≤m,

bi = (f(xj))1≤j≤n, bb = (F (yj))1≤j≤m.

In the context of generalised interpolation [2], it can be shown that the matrices Ā and Ā are
symmetric and positive definite. The matrix C̄, on the other hand, is symmetric and positive definite
by Definition 1. This guarantee that the block matrix Ā is always symmetric and positive definite
is the main reason we choose our numerical approximation as in (4). However, the above approach
also differs fundamentally from other methods commonly used to approximate PDEs such as finite
difference, finite element and finite volume methods. Unlike for these methods, the matrix system
(1) is not a discrete approximation of the PDE. Hence, classical preconditioning theory for PDE
problems does not directly apply.

Though it would be feasible to use just this one-shot solution as a numerical approximation to
the solution of the PDE, it is not very efficient to do so since the system suffers from severe ill-
conditioning. One way around this is to employ the following multiscale strategy.

We will choose a sequence of denser data sets as well as smaller support radii. We denote a
sequence of point sets in the bounded domain Ω by X1, X2, X3, ... and a sequence of point sets on
the domain’s boundary ∂Ω by Y1, Y2, Y3, .... For support radii δj > 0 and a compactly supported
basis function Φ we define

Φj(x− y) = Φδj (x− y) = Φ

(
x− y
δj

)
.

So if Φ has unit support, the Φj indeed have support radii δj . Instead of using just the previously
introduced one-shot approximation, we will construct several ones, coming from the spaces

LVXj
+ VYj

= span{LΦj(· − x) | x ∈ Xj}+ span{Φj(· − y) | y ∈ Yj},

where the notation Φj(· − x) again indicates that after fixing x, we still have a function of one
variable. At each level a system of the form (1) must be solved, with the entries of Ā depending on
the scaled basis function Φj = Φδj which implies that the collocation matrix also depends on the
support radius (Ā = Ā(δ)). Each approximation from these spaces shall resolve the current residual
so that the sum of all those approximations yields a numerical solution to the original PDE. This is
achieved quite naturally by the following multiscale RBF collocation algorithm.

Algorithm 1 (Multiscale RBF collocation algorithm). Given right-hand sides f and F do:

1. Set u0 = 0, f0 = f, F0 = F

2. For j = 1, 2, 3 . . . do
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(a) Determine the correction sj ∈ LVXj + VYj to residuals fj−1 and Fj−1 from the
equations

Lsj(x) = fj−1(x), x ∈ Xj ,

sj(y) = Fj−1(y), y ∈ Yj .

(b) Update the final approximation and the residuals

uj = uj−1 + sj ,

fj = fj−1 − L(sj |Ω),

Fj = Fj−1 − sj |∂Ω.

A variant of this algorithm for pure interpolation problems was shown to converge [17] if the
support radii are chosen proportionally to the mesh norms. This in turn implied that for quasi-
uniform data sets (i.e. when the separation distance is comparable to the mesh norm) the condition
numbers of the interpolation matrices could be bounded independently of the current level. Thus,
the conjugate gradient method would converge in a fixed number of steps, regardless of the size of
the problem.

Unfortunately, the same does not hold for the multiscale collocation algorithm. We state the two
main results from [18] concerning convergence and stability, omitting some technical details in
favour of readability. The main point here is that in order to guarantee convergence, one has to cope
with ill-conditioning issues.

Theorem 1 (Convergence). Let Φ satisfy (3) for σ > 2 + d/2, and h denote the maximum of the
boundary and interior mesh norms. Then, the multiscale collocation algorithm for elliptic boundary
value problems converges as h tends to zero if the support radius δ is chosen proportional to h1−2/σ.

Theorem 2 (Stability). Under the same assumptions of Theorem 1, the condition number of the
block matrices Ā = Ā(δ) arising in Algorithm 1 can be bounded by

cond(Ā) ≤ Cq−8+8/σ
X∪Y .

Employing the diagonal preconditionerM with entries

mij =


0, i 6= j,

δ2, 1 ≤ i ≤ n,

1, n ≤ i ≤ n+m,

the condition number can be bounded by

cond(M−1ĀM−1) ≤ Cq−4
X∪Y .

When implementing the algorithm we need to solve a block system for the coefficients and the
function updates will become vector updates.
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It might not be intuitively clear why the condition number of the scaled matrix is always bounded
essentially by q−4. One might expect that the condition numbers vary with the smoothness of the
underlying RBF. Looking more closely at the proof of Theorem 5.3 in [18], we note that the bound
actually depends on the smoothness – but in a beneficial way. Let c > 0 be independent of the
smoothness parameter σ. We have

cond(M−1ĀM−1) ≤ c(q2/σ + 1)q−4
X∪Y = cCσ,qq

−4
X∪Y .

with Cσ,q = q
2/σ
X∪Y + 1. However since σ > 0, we can always find a smoothness independent bound

on this constant as qX∪Y tends to zero.
The preconditionerM aims to mitigate the different scaling of the blocks of Ā in (1), since due to

the chain rule the block Ā scales like O(δ−4), B̄ like O(δ−2) and C̄ like O(1). The preconditioned
system is

M−1ĀM−1︸ ︷︷ ︸
A

y =M−1b, M−1y = x, A =

[
A BT

B C

]
, (5)

Lastly, we point out that employing the Jacobi preconditioner
√

diag(Ā), first suggested by
Fasshauer [14], yields even better condition numbers than M but the result in Theorem 2 still
applies as the diagonals only differ by constants. Hence, the asymptotic growth of the condition
number is the same for both variants.

Due to the obvious improvement in the condition number, we assume that the Jacobi
preconditioner M =

√
diag(Ā) has been applied to (1). We then solve (5) with this particular

preconditioner in the following sections.

2.3. Preconditioned Krylov subspace methods

When the system (5) is large and sparse, iterative methods are often used to obtain its solution,
with Krylov subspace methods among the most popular. If the coefficient matrix is symmetric
positive definite, as in (5), we can apply the conjugate gradient method (CG) [29]. For nonsymmetric
systems, iterative methods such as GMRES [30], QMR [31] or Bi-CGSTAB [32] are required.

Whichever Krylov method is employed, the rate of convergence can be sensitive to the
conditioning of the matrix A. In particular, the convergence rate of Krylov methods for symmetric
positive definite matrices often decreases when the condition number of A increases, and this
certainly occurs for the linear systems arising from the RBF collocation method. Moreover,
for any of the mentioned Krylov methods small eigenvalues can cause slow convergence. The
condition numbers of the RBF multiscale matrices A increase at each level and thus to achieve
fast convergence of the Krylov subspace method it is necessary to precondition (5). In right
preconditioningAP−1y = b, α = P−1y, is solved in place of (5). Symmetry can be preserved when
the preconditioner is symmetric positive definite, (see, for example, Greenbaum [33, Chapter 8]) and
CG can be applied to the preconditioned system.
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Figure 1. Blue interior Halton points and red uniform boundary points, 961 and 128 points respectively.

2.4. Test problem

The next sections are devoted to overcoming the ill-conditioning described by Theorem 2. To
illustrate the improvements made, as well as certain features of A, we test our preconditioners
using the following example problem.

We have implemented a Poisson problem on the unit square Ω = (0, 1)2 with boundary ∂Ω, which
comes from [4], namely

∆u = −5

4
sin(πx) cos(πy/2) in Ω,

u =

 sin(πx) on 0 ≤ x ≤ 1, y = 0,

0 elsewhere on ∂Ω.

We use Wendland’s compactly supported radial basis function, φ2,3(r) = (1− r)8
+(32r3 + 25r2 +

8r + 1) ∈ C6(R2), which satisfies (3) with σ = 4.5 as well as support radii of the form

δ = ν (h/µ)
1−2/4.5

with µ = 0.5 and ν = 2.4. Again, h denotes the maximum of the boundary and interior mesh norms.
By Theorem 1, we have ensured convergence of the multiscale collocation algorithm. Theorem 2
states that the condition number of the collocation matrix in (1) should behave like q−6.2

X∪Y and the
condition number of the preconditioned collocation matrix in (5) should behave like q−4

X∪Y . These
theoretical results were verified in [18].

In the following we discuss uniform nested data sets as well as nested data sets created from
Halton points. Halton points appear to be randomly distributed but are actually deterministically
determined via van der Corput sequences. For details we refer to the literature [34, 4]. See Figure 1
for a distribution of Halton points in two space dimensions.

3. IDEAL BLOCK PRECONDITIONERS

To achieve better conditioning as the levels increase we need effective preconditioners. In this
section we introduce ideal block diagonal and block triangular preconditioners for the linear
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system (5) that depend on the blocks ofA and on the Schur complement S = C −BA−1BT . (Recall
from the end of Section 2.2 that we solve the diagonally preconditioned system (5) because A is
better conditioned than Ā in (1).) We additionally examine the effect of the preconditioning blocks
on the spectrum and conditioning of the preconditioned matrix. Although the preconditioners we
obtain may be too expensive to apply in practice, since they all involve linear solves with A, in
subsequent sections we show that this solve with A can be replaced by a restricted additive Schwarz
method to obtain an efficient alternative.

Our block diagonal preconditioners are positive definite and the preconditioned system can be
solved by the conjugate gradient method. On the other hand, block triangular preconditioners
are nonsymmetric and can only be used in conjunction with a Krylov method for nonsymmetric
matrices. However, if the speed of convergence is significantly faster with the block triangular
preconditioner this may outweigh any extra cost associated with using a nonsymmetric solver; this
is the case here (see Table XI).

Note that since P−1A, P− 1
2AP− 1

2 and AP−1 are similar they all have the same eigenvalues,
although their eigenvectors may differ. Thus, in the following we determine only the eigenvalues of
P−1A.

3.1. Block diagonal preconditioners

For saddle point matrices, for which C = 0 in (5), it is well known [35, 36, 37] that if the
preconditioner

P0 =

[
A 0

0 BA−1BT

]
,

is applied then P−1
0 A has the three eigenvalues 1, (1±

√
5)/2. Krylov methods applied to this

preconditioned system usually converge rapidly; for example, CG converges in at most three
iterations. When C is small in norm, we might expect the preconditioner P0 to continue to perform
well but when the norm of C increases a different choice for the (2,2) block might be preferable.
Accordingly, we consider the block diagonal preconditioner

PD =

[
A 0

0 Ŝ

]
, (6)

where Ŝ ∈ Rm×m is symmetric positive definite, and investigate the spectrum of P−1
D A for different

choices of Ŝ. The following lemma describes the spectrum of P−1
D A.

Lemma 3. The matrixP−1
D A, withPD andA defined by (6) and (5), respectively, has the eigenvalue

1 with multiplicity n−m. Each of the remaining 2m eigenvalues λ, with corresponding eigenvector
[uT vT ]T , satisfies

λ =
1

2

(
1 +

vTCv

vT Ŝv

)
±

√
1

4

(
1− vTCv

vT Ŝv

)2

+
vTBA−1BT v

vT Ŝv
. (7)
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Proof
The eigenvalues λ of P−1

D A satisfy

Au+BT v = λAu,

Bu+ Cv = λŜv, (8)

where u ∈ Rn and v ∈ Rm are not simultaneously 0. Both A and PD are nonsingular and so λ 6= 0.
If λ = 1, then BT v = 0 which, since B has full rank and m ≤ n, implies that v = 0. Then (8) shows
that u ∈ null(B). We can find n−m linearly independent vectors u ∈ null(B) and so λ = 1 is an
eigenvalue of P−1

D A with multiplicity n−m.
If λ 6= 1, then u = 1/(λ− 1)A−1BT v, from which we see that v 6= 0. Substituting for u in (8),

pre-multiplying by vT , dividing by vT Ŝv and simplifying gives (7).

The 2m non-unit eigenvalues (7) lie in two intervals on the real line that should be small if the rate
of convergence of the Krylov subspace method is to be fast. Note that these 2m eigenvalues result
from the imposition of a boundary condition (c.f. the analogous matrix for PDEs on the sphere [16].)

Since (7) contains the terms vTCv and vTBA−1BT v, we consider the choices C, S, and
BA−1BT for Ŝ and examine their effect on the non-unit eigenvalues. To investigate all three choices
simultaneously, we let

Ŝ = βC + γBA−1BT , (9)

where β and γ are either 0 or 1. Note that since A−1 may be dense even when A is sparse, the
choices S and BA−1BT are not necessarily practical. However, they provide insight into the best
theoretical choice and how different choices affect the quality of PD.

Since the fractions vTCv/vT Ŝv and vTBA−1BT v/vT Ŝv appear in (7), for our choice of Ŝ we
shall find the generalised Rayleigh quotient

µ(v) =
vTBA−1BT v

vTCv

useful for assessing the quality of our preconditioners. This ratio is bounded, for any v ∈ Rm, v 6= 0,
by [38, Theorems 4.2.11 and 7.7.6]

0 < λmin(C−1BA−1BT ) ≤ µ(v) ≤ λmax(C−1BA−1BT ) < 1. (10)

Substituting (9) for Ŝ in (7) and simplifying gives

λ1,2 =
1

2

(
1 +

1

β + µ(v)γ

)
±

√
1

4

(
1− 1

β + µ(v)γ

)2

+
µ(v)

β + µ(v)γ
.

Table I shows the non-unit eigenvalues we expect for each choice of Ŝ. If µ(v)� 1, both
Ŝ = C and Ŝ = S are good choices, since the eigenvalues of P−1

D A are clustered near 1. However,
Ŝ = BA−1BT is not a good choice, since the eigenvalues of P−1

D Amay be spread out. The limiting
case µ(v) = 1 shows that if µ(v) is close to 1 then P−1

D A will have very small eigenvalues and will,
therefore, be ill-conditioned for all three choices. This suggests scaling Ŝ, i.e., choosing ωŜ for
some positive scalar ω, to ensure that µ(v) is not too close to 1. Note that when Ŝ = C, the largest
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eigenvalue is always bounded by 2. However, the choice Ŝ = S leads to large eigenvalues when
µ(v) is close to 1.

Table I. Approximate values of non-unit eigenvalues of P−1
D A for different choices of µ(v). Note that S is

singular when µ(v) = 1.

Ŝ λ1,2 µ(v)� 1 µ(v) = 1

C 1±
√
µ(v) 1±

√
µ(v) 0, 2

BA−1BT 1
2 (1 + 1

µ(v) )±
√

1
4 (1− 1

µ(v) )2 + 1 1, 1
µ(v) 0, 2

S 1
2 (1 + 1

1−µ(v) )±
√

1
4 (1− 1

1−µ(v) )2 + µ(v)
1−µ(v) 1, 1

1−µ(v) —

Because the optimal choice of Ŝ depends on µ(v), we compute the extreme values of µ(v), i.e,
the extreme eigenvalues of C−1BA−1BT , for the test problem from Section 2.4 with both uniform
and Halton points, with the results given in Tables II and III. We see that for both point sets the
smallest value of µ(v) for this problem is on the order of 10−2 or 10−3 and that the largest is near
1. The spread of eigenvalues means that the best choice appears to be Ŝ = C, since then non-unit
eigenvalues of P−1

D A are near 1 when µ(v) is small and for any value of µ(v) the largest eigenvalue
is bounded by 2. Our numerical results in Section 5.1 confirm this. Note that this gives an analogous
preconditioner to that proposed by Le Gia and Tran [26]. However, we caution that if eigenvalues
of P−1

D A become too small, the convergence rate of the conjugate gradient method may decrease.

Table II. Extreme eigenvalues of C−1BA−1BT for different problem sizes and the uniform point set.

n+m 289 1 089 4 225 16 641

λmin(C−1BA−1BT ) 0.0011 0.0030 0.0065 0.012
λmax(C−1BA−1BT ) 0.77 0.88 0.94 0.97

Table III. Extreme eigenvalues of C−1BA−1BT for different problem sizes and the Halton point set.

n+m 358 1 369 5 227 19 345

λmin(C−1BA−1BT ) 0.072 0.013 0.015 0.021
λmax(C−1BA−1BT ) 0.87 0.93 0.96 0.98

3.2. Block triangular preconditioners

We now consider block triangular preconditioners for (5). Since A has the block decomposition[
A BT

B C

]
=

[
A 0

B S

][
I A−1BT

0 I

]
,

we choose the preconditioner

PT =

[
A 0

B Ŝ

]
. (11)
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It is easy to see that

P−1
T A =

[
I A−1BT

0 Ŝ−1S

]

and so the ideal choice is Ŝ = S, since then all eigenvalues of P−1
T A are 1 and GMRES converges

in at most two steps [35]. However, the Schur complement is prohibitively expensive to apply and
we are unaware of a spectrally equivalent approximation. If Ŝ 6= S then P−1

T A has n eigenvalues
at 1 and the remainder are the eigenvalues of Ŝ−1S. We again consider the choices Ŝ = C and
Ŝ = BA−1BT , which correspond to each term in the ideal choice S.

When Ŝ = C the eigenvalues of Ŝ−1S are 1− η, where η is an eigenvalue of C−1BA−1BT ,
and (10) shows the eigenvalues of Ŝ−1S lie in (0,1). Thus, the eigenvalues of P−1

T A are contained
in an interval but η ≈ 1 will result in small eigenvalues, which may cause slow convergence rates.
When Ŝ = BA−1BT the eigenvalues of Ŝ−1S are given by 1/η − 1. If η is small the eigenvalues
of P−1

T A may be spread out while if η ≈ 1 some eigenvalues of P−1
T A may be very small; both

situations can negatively affect the speed of convergence. Our numerical experiments in Section 5.1
verify that C is a better choice for Ŝ than BA−1BT for our problem.

4. DOMAIN DECOMPOSITION PRECONDITIONER

We see that preconditioners built from blocks A, B and C, and the Schur complement S, are
effective at reducing the number of Krylov subspace iterations required to solve (5). However, these
preconditioners are costly to apply. For larger problems, A is typically much bigger than C, since
there are usually many more interior than boundary points. Consequently, we examine a two-level
restricted additive Schwarz (RAS) domain decomposition preconditioner [39] for A, although we
note that the same procedure could easily be applied to C as well. Although the RAS preconditioner
is nonsymmetric it requires less communication than the additive Schwarz (AS) method, making it
better suited to parallel implementations. (Note that the block triangular discussed in the previous
section is already nonsymmetric.) Moreover, the rate of convergence of RAS methods is typically
similar to, or better than, that of AS methods [39, 40].

In the traditional overlapping AS method, we divide the domain V = Ω into a set of disjoint
subdomains, so that V = V1,0 + V2,0 + ...+ Vk,0. These subdomains are then extended by width
θ to give V = V1,θ + V2,θ + ...+ Vk,θ (see Figure 2a). The restriction of V to the ith domain Vi,θ
is associated with the operator Ri,θ while the corresponding prolongation operator is RTi,θ. The
restriction of A to the ith domain is Ai,θ = Ri,θAR

T
i,θ so that Ai,θ contains the rows and columns of

A associated with the data sites in subdomain Vi,θ. Then, the additive Schwarz (AS) preconditioner
M of A is

M−1
AS =

k∑
i=1

RTi,θA
−1
i,θRi,θ.

The restricted additive Schwarz preconditioner is a slight modification of the AS preconditioner
that uses the overlap for computations but only projects information from the non-overlapping
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Figure 2. (a) Additive Schwarz subdomains on the boundary (j) and in the interior (k). The overlapping
domain is shown with diagonal lines and the non-overlapping domain is shaded. The overlap is θ because
the overlapping domain is obtained from the non-overlapping domain by extending by θ in each direction.

(b) Coarse and fine grid points for uniform points with coarse grid points denoted by larger red circles.

j

θ

k

(a) (b)

domain. In this case the prolongation operator becomes Ri,0, and the RAS preconditioner is

M−1
RAS =

k∑
i=1

RTi,0A
−1
i,θRi,θ.

Note that the subdomain solves in the AS and RAS methods could be replaced by inexact solves,
and all subdomain solves can be computed in parallel, but we do not consider this here.

As the number of subdomains increases, the speed of convergence of the RAS scheme can
be slow because information takes longer to propagate through all subdomains. However, this
slow convergence can be remedied by incorporating a coarse-grid correction to give a two-level,
or augmented, RAS method (ARASM). We consider only additive corrections and let V0 ⊂ V
be the set of coarse grid RBF centres and R0 and RT0 be the corresponding restriction and
prolongation operators. The coarse grid representation of A is then A0 = R0AR

T
0 and the two-level

preconditioner is

M−1
ARASM = RT0 A

−1
0 R0 +

k∑
i=1

RTi,0A
−1
i,θRi,θ.

Selection of coarse grid points in the case of uniform points is fairly straightforward and in our
numerical experiments our coarse grid contains every second node of the fine grid (see Figure 2b).
In the case of scattered data, one option is to select a fixed number of points per subdomain [19, 26]
as coarse grid points. Another is to start with the finest grid and thin this out, which can be achieved
by a Delaunay triangulation [15]. However, in the context of meshless methods the introduction
of a mesh may not be desirable. Alternatively, the points can be thinned out by using the furthest
point algorithm [41]. Since we deal with a sequence of levels, it is also possible to use the points
from a previous level to form the coarse grid. This is particularly appealing in the case of nested
sequences of points and in our numerical experiments we use the RBF centres from level k − 1 to
form a coarse grid at level k.

To demonstrate the effectiveness of the ARASM preconditioner, and its sensitivity to the size
of the problem, number of domains and overlap, we apply right-preconditioned GMRES with the
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Table IV. GMRES iteration counts for the diagonally preconditioned A in (5) (third column) and RAS
preconditioner applied to A for uniform points. The number of subdomains is k and the overlap is θ.

n η A
k = 4 k = 8 k = 16

θ = η θ = 2η θ = 4η θ = η θ = 2η θ = 4η θ = η θ = 2η θ = 4η

225 1/16 25 14 11 7 17 13 8 18 12 8
961 1/32 51 19 15 11 22 19 15 27 18 18

3 969 1/64 106 24 21 18 26 23 22 29 22 26
16 129 1/128 223 28 26 24 29 26 26 33 26 29
65 025 1/256 470 30 29 27 31 28 28 33 28 28

Table V. GMRES iteration counts for the diagonally preconditioned A in (5) (third column) and RAS
preconditioner applied to A for the Halton points. The number of subdomains is k and the overlap is θ.

n η A
k = 4 k = 8 k = 16

θ = η θ = 2η θ = 4η θ = η θ = 2η θ = 4η θ = η θ = 2η θ = 4η

296 1/16 91 19 13 11 43 15 11 88 18 12
1247 1/32 202 24 16 14 37 19 15 187 23 16

4 979 1/64 427 27 22 18 41 24 19 242 30 21
18 848 1/128 903 32 26 23 41 27 24 93 31 23
65 025 1/256 2950 37 28 26 43 30 28 220 36 28

ARASM preconditioner to the matrix A in the saddle point system (5) for the test problem defined
in Section 2.4 with both point sets. The initial vector for GMRES is the zero vector and we stop
when the relative residual ‖rk‖2/‖r0‖2 falls below 10−8, where rk = bi −Aαik is the residual at the
kth iteration.

Tables IV and V show the GMRES iteration counts. When just the diagonal preconditioning
proposed by Fasshauer is applied, the iteration number grows rapidly with the problem size,
particularly for the Halton point problem. In contrast, with the ARASM preconditioner the iteration
number has a much more modest dependence on n. Moreover, this dependence is weaker when the
overlap is larger. It seems for the matrices generated by Halton points that a larger overlap is needed
than for uniform points; because the data is scattered, this is perhaps not surprising. We are not
certain for the drop in iterations for 16 subdomains and an overlap of η for the Halton point problem
with 18 848 unknowns, although perhaps it is caused by a favourable arrangement of points for our
ARASM method.

When using the uniform grid, the resulting matrix A is highly structured. Consequently, for this
grid we additionally tested the preconditioner

M̂−1
ARASM = RT0 A

−1
0 R0 +

k∑
i=1

RTi,0A
−1
∗,θRi,θ.

that replaces the Ai,θ in MARASM with a fixed matrix A∗,θ and is, therefore, cheaper to apply. The
matrix A∗,θ is simply the restriction of A to an interior domain and its presence allows us to apply
A∗,θ for all interior domains by computing a single LU decomposition. Domains on the boundary
do not have overlap on all the edges and so certain rows and columns of A∗,θ have to be removed
to make the matrix suitable for these domains. However, this results in only eight additional LU
decompositions, one for each of the edges and for each of the corners. Applying this strategy gives
identical results to those in Table IV but is significantly cheaper to apply.



15

Table VI. Dimensions n andm and number of millions of nonzeros inA, PCG iterations to reach a tolerance
of 10−8 for (5) and condition number ofA. Note that the condition number for both level 4 matrices and the
level 5 uniform point matrix are estimated using the Matlab function condest but it was not possible to

estimate the level 5 Halton matrix the condition number using condest in a reasonable time.

Level 1 2 3 4 5

Uniform
n 225 961 3 969 16 129 65 025
m 64 128 256 512 1 024
nnz 0.05 0.43 3.5 28 217
CG Iterations 289 1 089 4 225 16 641 64 049
Condition number 3.3× 104 5.5× 105 9.0× 106 3.4× 108 5.4× 109

Halton
n 296 1 247 4 979 18 848 65 025
m 62 122 248 497 1 024
nnz 0.079 0.68 5.4 38 215
CG Iterations 358 1 369 5 227 19 345 66 049
Condition number 3.9× 104 7.7× 105 1.5× 107 4.4× 108

In summary, it seems that the ARASM preconditioner is a good approximation of A in the block
diagonal and block triangular preconditioners. We verify this in the following section.

5. NUMERICAL RESULTS

In this section we apply our preconditioners to the test problem described in Section 2.4. Table VI
shows the problem sizes we consider, from which we see that, with the exception of the last level, the
matrices generated with Halton points are larger and have more nonzeros than the matrices generated
with uniform points. Note that when the Jacobi diagonal preconditioner is used, conjugate gradients
terminates in n+m steps (see Table VI). The condition numbers for the diagonally preconditioned
coefficient matrix in (5) are also given in Table VI, from which we see that, at a given level,
the matrices generated using Halton points have larger condition number than the corresponding
uniform point matrices. This difference could be related to the larger dimension as well as ill-
conditioning introduced by points not being as well-separated as in the uniform case. Throughout,
we terminate computations when the relative residual ‖rk‖2/‖r0‖2 falls below 10−8.

5.1. Ideal preconditioner

The ideal preconditioners PD and PT described in Section 3 are examined first. We apply conjugate
gradients when the block diagonal preconditioner PD is used and right-preconditioned GMRES
when the block triangular preconditioner PT is used.

From Table VII we see that, as predicted in Section 3.1, Ŝ = C gives the fastest convergence
rate for the block diagonal preconditioner PD. Although the convergence speed is mesh-dependent,
the iteration growth is fairly modest, particularly for uniform points. The larger iteration counts
for the Halton points are not unexpected, as the matrices A are of larger dimension, have more
nonzeros, and become more ill-conditioned as the dimension grows than the matrices for uniform
points (see Table VI). On the other hand, CG requires more iterations when BA−1BT and S are
used and the iteration growth is more rapid. Note that, as discussed in Section 3.1, when µ(v) is
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Table VII. Iteration counts for PCG to reach a tolerance of 10−8 with the diagonally preconditioned matrix
A in (5) and the ideal block diagonal preconditioner for levels 1, . . . , 5. We denote by DNF problems for

which the tolerance was not reached within 10 hours.

Ŝ 1 2 3 4 5

Uniform
C 27 38 46 56 66

BA−1BT 80 114 129 149 168
S 32 51 74 108 149

Halton
C 46 65 86 111 142

BA−1BT 116 186 299 415 DNF
S 62 112 180 281 DNF

Table VIII. Condition numbers of P−1
D A for levels 1–4. Note that the condition numbers for the level 4

uniform point matrix are estimated using the Matlab function condest. It was not possible to estimate the
condition numbers for the level 4 Halton matrix and both level 5 matrices using condest in a reasonable

time.

Ŝ 1 2 3 4

Uniform
C 2.9× 102 2.6× 103 2.9× 104 3.4× 105

BA−1BT 4.1× 105 1.7× 106 9.2× 106 3.6× 107

S 1.3× 103 2.5× 104 5.4× 105 7.3× 106

Halton
C 1.1× 103 1.4× 104 1.0× 105

BA−1BT 2.3× 105 1.6× 106 1.8× 107

S 6.5× 103 2.0× 105 2.8× 106

close to 1 the non-unit eigenvalues of P−1
D Amay be large when Ŝ = S, while the largest eigenvalue

is bounded by 2 when Ŝ = C. This explains the lower iteration counts for the less expensive choice
C. Additionally, for the largest problem and the Halton points, the cost of solving with the exact
matrix A in the preconditioner, combined with the high iteration counts, meant that we were unable
to reach the tolerance within 10 hours when Ŝ = BA−1BT or Ŝ = S. Additional computations,
which for brevity are not reported, show that GMRES achieves similar iteration counts to CG when
Ŝ = C.

The CG iteration counts are reflected in the condition numbers of P−1
D A (see Table VIII) which

are smallest when Ŝ = C. In addition, Ŝ = C has smaller condition number growth than that for the
exact Schur complement S. (Note that, because of their size and the cost of forming P−1

D A, we were
unable to use condest to estimate the condition numbers for the level 4 Halton point matrices.)

We consider now the ideal block triangular preconditionerPT in (11). As predicted in Section 3.2,
GMRES converges in 2 steps when Ŝ = S (see Table IX). However, forming the Schur complement
is prohibitively expensive for large problems. The choice Ŝ = C is a reasonable alternative and
performs better than BA−1BT , as we might expect from the analysis in Section 3.2. An added
bonus for uniform points is that when Ŝ = C the growth in the iteration count appears to slow as the
problem size increases. The condition number of P−1

T A is not as relevant to the convergence rate
as that of P−1

D A, because P−1
T A is nonsymmetric, and we do not report this information. However,

for all problem sizes the condition numbers of P−1
T A are of similar magnitudes to those of P−1

D A
for Ŝ = C and Ŝ = BA−1BT and are less than 100 for the Schur complement S.
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Table IX. Iteration counts for GMRES to reach a tolerance of 10−8 with the ideal block triangular
preconditioner for levels 1, . . . , 5. We denote by DNF problems for which the tolerance was not reached

within 10 hours.

Ŝ 1 2 3 4 5

Uniform
C 14 20 23 28 29

BA−1BT 33 48 62 76 79
S 2 2 2 2 2

Halton
C 24 34 43 56 71

BA−1BT 45 68 105 170 DNF
S 2 2 2 2 2

Table X. Iteration counts for GMRES to reach a tolerance of 10−8 with the block preconditioners, using the
additive Schwarz preconditioner for the (1,1) block A, for levels 2, . . . , 5.

2 3 4 5

Uniform Block diagonal 41 53 57 66
Block triangular 28 34 46 51

Halton Block diagonal 77 94 123 151
Block triangular 53 61 78 99

5.2. Additive Schwarz preconditioners

Although Tables VII and IX show that we can develop preconditioners that significantly reduce
the number of GMRES iterations, our ideal preconditioners require a linear solve with A at each
iteration. As the level increases, both the dimension of A and the density of nonzeros grow, making
this solve costly. Consequently, we see how the preconditioners are affected by replacing A by the
ARASM preconditioner described in Section 4. The ARASM preconditioner is nonsymmetric and
so for both the block diagonal preconditioner and block triangular preconditioner we apply right-
preconditioned GMRES and set Ŝ = C. If n < 2000 we use 4 subdomains and an overlap of θ = 2η,
where η is as in Tables IV and V. Otherwise, we use 8 subdomains and an overlap of θ = 4η.

The ARASM block diagonal preconditioner gives higher iteration counts than the corresponding
ideal preconditioner (see Table VII) for small problems but both perform similarly for larger
problems. We caution that conjugate gradients is used with the ideal preconditioner and so the
results are not directly comparable with those in Table VII but, as noted in Section 5.1, GMRES
behaves similarly to CG when the ideal block diagonal preconditioner (6) is applied with Ŝ = C.
The number of iterations of the ARASM block triangular preconditioner is larger than for the ideal
preconditioner, but the growth with dimension is still modest and iteration counts are lower than for
the ARASM block diagonal preconditioner. Moreover, the time required to solve the system by the
block preconditioned GMRES method is more than 20 times faster than applying CG to the Jacobi
preconditioned system (5) for the largest matrix generated by Halton points (see Table XI).
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Table XI. Time in seconds for GMRES to reach a tolerance of 10−8 for the Jacobi preconditioner and both
block preconditioners applied to the Halton point matrices for levels 2,...,5. In the block preconditioners we

use the additive Schwarz preconditioner for the (1,1) block A.

2 3 4 5

Diagonal 1.4 44 1 388 39 876
Block diagonal 1.1 12 128 1 771
Block triangular 0.71 7.8 77 1 244

6. CONCLUSIONS

We have developed block diagonal and block triangular preconditioners for the symmetric positive
definite systems that arise in the RBF multiscale collocation method for PDEs and have described
the spectra of the preconditioned matrices for different choices of (2,2) block Ŝ. We find, analytically
and experimentally, that the block diagonal preconditioner with Ŝ = C has the most favourable
spectrum for fast CG convergence. On the other hand, choosing Ŝ = S = C −BA−1BT in the
block triangular preconditioner guarantees convergence of GMRES in two iterations. However, the
block triangular preconditioner is costly to form when Ŝ = S and so a reasonable alternative is
to choose Ŝ = C in the block triangular preconditioner. Practical preconditioners that replace A
by a restricted additive Schwarz method augmented with a coarse-grid correction (ARASM) were
introduced and numerical experiments show that they are effective. Further speed-ups could be
achieved by using inexact solves within the ARASM preconditioner and by exploiting parallelism.
Additionally, a spectrally equivalent approximation to Ŝ should improve the rate of convergence of
the block triangular preconditioned system.
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