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Abstract

This paper discusses the features of transient radiation from periodic one-dimensional
resonant medium excited by ultrashort pulses. The case of circular geometry is considered
for a harmonic distribution of the density of the particles along the circle. It is shown that a
new frequency component arises in the spectrum of the scattered radiation in addition to
the resonance frequency of the medium. The new frequency appears both in the case of
linear and nonlinear interaction, its value depends on the velocity of excitation pulse prop-
agation and on the period of spatial modulation. In addition, the case when the excitation
moves at superluminal velocity and Cherenkov radiation arises is also studied.

1 Introduction

In a recent study of radiation of a linear string of harmonic oscillators with spatially modulated
density excited by a moving point source, we found several non-trivial features of the spectrum
associated with the transient processes [1,2]. Namely, in addition to the radiation typical for res-
onance systems at the eigenfrequency of the oscillator, a spectral component is excited that is
specific to the spatial distribution of the density of oscillators. In particular, new quasi monochro-
matic components appear in the radiation spectrum of the medium in the case of periodic mod-
ulation of the oscillators density. Moreover, the frequencies of these components depend on the
period of modulation and the direction of observation. Our main focus lies on the situation when
the velocity of propagation of the excitation exceeds the velocity of light in vacuum ¢, which is
accompanied by the emission of waves characteristic of the Cherenkov effect. The theory of
relativity does not allow the movement of a physical object at a speed larger than the speed of
light in vacuum when the transfer of the signal (information) occurs. However, in physics, and
in particular in optics, the possibility of superluminal motion of a localized perturbation with-
out signal transmission was well-known before the appearance of the theory of relativity [3-5].
Throughout the 20th century, several aspects of superluminal motion were studied. In particular,
in the 1960s-70s, the problem of existence of tachyons, i. e. the particles moving at velocities
greater than the velocity of light, was considered [6, 7]. In the 1930s, the Cherenkov radiation
arising when electric charge moves through a medium at a velocity exceeding the phase veloc-
ity of light in the medium was discovered [8—14]. This radiation is associated with the movement
of the local polarization of the medium [15], which has an instantaneous response to an exter-
nal excitation. Various sources of electromagnetic radiation moving at superluminal velocity are
considered in Refs. [16—18]. In [19] the radiation of a charge moving faster than light is studied.
Recently, a broad class of papers appeared [20] in which the occurrence of Cherenkov radiation
in the form of the second harmonic with respect to the frequency of the incident light wave in the
media with periodic distribution of the susceptibility (nonlinear photonic crystals) was demon-
strated. Radiation induced by the motion of charged particles along the periodic structure was



also considered in [21-23]. This radiation is known as the Purcell-Smith radiation and it was
demonstrated experimentally in [21] for the first time.

In optics, the examples of objects moving at superluminal velocity are well-known. In the 1960s-
70s, after the appearance of first lasers, the possibility of superluminal propagation of short pow-
erful light pulses in an amplifying medium due to nonlinear amplification of pulse was demon-
strated experimentally and theoretically by Basov et al. [24—28]. Superluminal motion can also
be observed in the situation when a light pulse is incident obliquely on a flat surface. In this case
the intersection of the pulse and the screen (light spot) moves along the screen with the velocity
V = ¢/sin 8 > ¢, where (3 is the angle of the incidence, see Fig. 1 [17,29]. In particular, in
Refs. [1, 2, 30] the scattering of ultrashort pulse propagating at superluminal velocity on a flat
surface with a spatially modulated density of scattering centers located along a straight line or
plane was studied. The case of instant relaxation of scattering centers was considered. The
resulting time dependence of the amplitude of the scattered light describes the variation of the
density of scattering centers, and the time scale of the corresponding signal depends on the
angle of observation.

However, the motion of a light spot on a remote screen from rotating searchlight at a constant
angular velocity (or even a pulsar) is most often mentioned in the literature as an example of su-
perluminal excitation agent [16—18]. Modern methods of circular scan of light or electron beams
management allow one to obtain the values of frequency of rotation of the order of 10'° Hz and
above. Accordingly, the linear velocity of the circular movement of the excitation zone formed at
the intersection of a "pencil-form” rotating beam from the emitter and a plane orthogonal to the
axis of the cone can be varied in a very wide range from subluminal to superluminal by simple
displacement of the plane along the axis of the cone. The dynamic polarization of the medium
created by the incident beam of photons or electrons is the source of radiation in all cases de-
scribed above. In Refs. [1,2], an interesting feature of the emission of a periodic linear string
consisting of identical harmonic oscillators was reported. Namely, the generation of coherent
Cherenkov-type radiation at a frequency that can be different from the resonance frequency of
the medium was observed. The appearance of a new frequency in the medium emission spec-
trum is related to the fact that the scattered waves arriving at the observation point contain the
transient process. The properties of this transient process are related to the time delay for radia-
tion to come to the point of observation from different parts of the medium. Such a delay occurs
both at superluminal and at subluminal velocity of the excitation propagation. The new frequency
occurring in the scattered field spectrum does not depend on the resonance frequency of the
oscillators, but depends on the angle of observation « (see Fig. 1), on the spatial period of
the oscillator distribution along the z axis A, and on the velocity of the exciting ultrashort pulse
V1,2
V/A.
(e
cosa — 1|
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We emphasize that the relation (1) corresponds to the case when oscillators are arranged along
a straight line and nonlinear effects are not taken into account. In the present paper, we con-
sider the cases when the medium formed of identical oscillators is arranged along a circle. Of
special methodological and possibly practical interest is, in our opinion, the study of interaction
of ultrashort pulses of light with a resonant medium under conditions when the area of its impact



on the medium moves faster than the velocity of light in vacuum. The optical response of the
medium can be used to detect such superluminal motions. This response may have interesting
properties that differ from the properties of the "classical” Cherenkov radiation [1, 2] arising due
to the motion of physical objects with the velocity exceeding the phase velocity of light in the
medium, but is not greater than the velocity of light in vacuum.

Figure 1: Excitation of a string by a pulse train propagating at superluminal velocity. The intersec-
tion point of the beam and the medium moves along the string at the velocity V' = ¢/ sin 8 > c.
The observer is placed far away from the string or in the focus of a lens L which collects the
radiation of the string propagating at the angle o with respect to the z-axis.

In the presented work, we examine the situation when the medium oscillators are arranged along
the circle and their density is modulated harmonically along the circle. We focus on two cases
when the emitted radiation is measured in the center of the circle or at the circle. We consider
both cases of linear and nonlinear interaction of the excitation field with the medium patrticles.
We demonstrate that the medium radiation that occurs in the system under the excitation by a
short pulse contains both a resonance frequency of the oscillators and the new frequency. This
new frequency arises in the transient regime; this is why we used the term "transient” in the
title of paper. The generated emission is shown to be different from the resonance frequency
of the medium in wide range of the excitation conditions. The possibility of the experimental
demonstration and practical application of the considered phenomena is briefly discussed.

2 Radiation in the center of the circle

In this paper we consider the scattering medium with a one-dimensional ring geometry (see
Fig. 2). We suppose that oscillators are arranged along a circle of radius R, and the distribution
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Figure 2: Circular geometry of the string. The source of an ultrashort pulse with a broad spec-
trum is located in the center of the circle and rotates quickly. The cross-section of the pulse and
medium (red dot) moves at the velocity V' along the resonant string of dipoles (blue circle).

of number density of oscillators depends harmonically on the polar angle as

Nylp) = 5 [1+cos ()], @

where Kk = /2\—7; is the dimensionless frequency of the angular distribution of the medium oscilla-
tors, Aw is the angular period of this distribution. The medium is excited by some physical object
(for example, a beam of light, or an electron beam, or ultrashort laser pulses, etc.) running along
the circle only once at constant linear velocity V. Among the possible examples of oscillators,
nanoantennas [31-33], two-level atoms, quantum dots [34—-37] or dye molecules deposited onto
the concave diffraction grating can be considered. In this section we consider the case where
the observer detects the radiation in the center of the circle, see Fig. 2.

2.1 Linear response of oscillators

In the case when the exciting pulse is weak and the dipole response is linear, its response to
the excitation pulse E.,.(t) is described by the polarization P(t):

P+ 9P +wiP = gBec(t), (3)
where g is the coupling strength to the field.

We also assume, as in [2], that the interaction time of the exciting beam with the excitation zone
of the circle has a duration smaller than the period of oscillations of the medium Ty = 27r/w0 (or
comparable with it), and the pulse spectrum of interaction is flat and broad enough to include the
resonance frequency of the oscillator. Optical pulses with these characteristics can be obtained,
for example, in the terahertz range upon excitation of the gaseous medium, see reviews [38—40].
In this case the response of the oscillators can be described to a high degree of precision by
the following expression for the polarization [2,41]:

P(t) = e " cos(wot)O(t), (4)



where ©(t) is the Heaviside step-function, wy is the resonance frequency of the medium oscil-
lators and v is the decay constant of the electric field. Thus, the radiation field of an oscillator
located on the circle at a point which corresponds to the polar angle ¢ is proportional the ex-
pression (except for a constant factor):

E(p,t) ~ exp {—% (t—%)} cos [wo (t—%)} o {t—%}. (5)

Relation (5) takes into account the fact that the oscillator located at the point ¢ starts to radiate
at the moment of arrival of the excitation to the point with coordinate gcp. The total field in
the center of the circle is obtained by the integration of the Eq. (5) over the circle taking into
account the spatial density distribution of the oscillators Eq. (2) and the time of propagation of
the radiation from the circle to its center R/c. This field is given by the expression [2]:

E(twoj’mexp 2 (1 I o o (o= B2 - ) - B2 - B

It can be easily shown that for v — 0 the new frequency component €2, appears in the spectrum
of the registered emission, see Ref. [2]:

V/A, V
=k— 7
Ia R’ (7)

92:271'

which depends on the angular frequency of the oscillators density distribution 1/AW , on the
radius of the circle 12, and on the velocity of excitation propagation V. Eq. (7) can be rewritten
as

QQ = erzca (8)

where (2., is the angular velocity of the excitation pulse propagation.

Under the condition of resonance:
Vv B A¢R )

Eq. (7) gives €25 = wy, i.e. the proper medium frequency coincides with the new frequency and
the observer located at the center will register the radiation at the resonance frequency wy. Note
that the case considered above qualitatively coincides with the case considered in our recent
works [1,2] in the case of linear topology of the medium when the radiation is detected at the
direction perpendicular to the string.

Next, we consider numerical examples. We assume that the excitation point propagates over the
circle only one time and take the following parameters of the problem: ¢ = 1, R = 1, AALOR = 2,
wo = 20,7 = 0.95, V/c = 4.1, Qy = 41. The result of the numerical solution of the integral

Eg. (6) and the spectrum of the registered field are illustrated in Fig. 3a and Fig. 3b, respectively.



Analysis of the obtained solution shows that the radiation at the point O begins at the time
moment that coincides with the time moment of the arrival at the observation point O of the field
emitted by the first oscillator at the circle. Afterwards, the radiation from the other oscillators
of the string arrives at this point. As a result, a complicated transient process is formed which
leads to the appearance of the new frequency in the radiation spectrum, see Fig. 3b. After the
transient process ends, the observer at the point O registers decaying oscillations of the emitted
field at the resonance frequency, see Fig. 3a.
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Figure 3: (a) Time dependence of the electric field F(¢) excited by the string and (b) the corre-
sponding intensity spectrum I(w) in the center of the circle for the circular scheme depictured
in Fig. 2 and the parameters ¢ = 1, R = 1, A/(’OR =2, wy = 20,7 = 095, V/e = 4.1,
Oy = 41.

The consideration given above is valid for arbitrary values of the velocity of excitation V. If the
velocity of excitation is subluminal or equal to the velocity of light ¢ the observer at the point O
registers the radiation at the frequency given by Eq. (7).

2.2 Nonlinear response

A two-level atomic particle can be taken as an example of an oscillator, and the consideration
presented above is valid if the pumping pulse is of significantly small power so that nonlinear ef-
fects arising when short pulse interacts with resonant medium can be neglected. However, if the
pumping pulse is strong enough the medium response becomes nonlinear. For the calculation
of the dynamics of the medium polarization P(t, ) = d12 Ny [u(t, p) coswt + v(t, ) sin wi]
and the population difference N (¢, ) = Now(t, ) under the excitation with strong pulse, we
use the system of optical Bloch equations as in Ref. [2] for the two-level atoms in the dimen-



sionless coordinates [26, 42]:

du(t, o) _ b

— = Awv(t, @) Tgu(t’ ©), (10)
dt P

dw(t, 1

% _ _ﬁ(w(t’ ©) + 1) — Qg(t, )u(t, ©). (12)

Here N, is the concentration of two-level atoms in the string, u(t, ), v(t, ) are the compo-
nents of the polarization that are in phase and quadrature components of the medium polar-
ization per unit atom, respectively, w(t, ¢) is the population difference of the single atom, Aw
is the frequency detuning between pumping field and resonance frequency of the medium, d;2
is the transition dipole moment, 17 is the population difference relaxation time, T5 is the polar-
ization relaxation time, {2y is the Rabi frequency of the pumping field. In our consideration we

assume that the pumping pulse has a Gaussian shape £(t) = Fjexp (;—f) In the particular
P

case of vanishing detuning Aw = 0 and sufficiently large relaxation times, 77} = T5 = oo, one
can obtain the following analytical solution for the material equations (10)-(12) [26,42]:

N(tv 90) = NOw(tv Z) = NO COS(I)(ta 90)7 (13)
P(t, (,0) = dlgNo’U(t, Z) = dlgNg sin @(t, (,0) sin W0t7 (14)

where & is so-called pulse area:

d t
(t, ) = %/ e(t', p)dt’, (15)

—0o0

The system of optical Bloch equations (10)-(12) has a simple physical interpretation [26, 42].
The dependence of N and P on time can be represented as the rotation of a unit Bloch vector
p = (v, w)t in the (v, w) plane. In this case the function ® given by (15) is the angle of rotation
of this vector. For example, ® = 7 corresponds to a rotation of the Bloch vector at angle ,
which is followed by the complete transition of the atom to the upper excited level (7 pulse), and
® = 27 corresponds to an excitation of the atom to the excited level, which is followed by the
return to the ground level (27 pulse). Taking into account Eq. (6) and Eq. (14) we obtain that the
electric field at the point O in the nonlinear case is proportional to:

27
R R R R
E(t) ~ /Z\@,(gp)P {t - 7('0 — V] sin {wo <t — 7(’0 — V)} dep. (16)
0

An example of the nonlinear dynamics of the electric field and its spectrum is presented in

Fig. 4ab. (c = 1, R = 1, 3% = 2, wy/y = 222, V/e = 23, Qy/wy = 115, 7, =

2Ty, where T is the period of proper atomic oscillations 7, = 27 /wy, total pulse area is
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Figure 4: (a) Time dependence of the electric field F(t) excited by the string and (b) the corre-
sponding intensity spectrum I (w) in the center of the circle for the circular scheme depictured in
Fig. 2 and the parametersc = 1, R = 1, A/\LOR =2, wo/v=222,V/c=2.3,Qs/wy = 1.15,
7, = 2Tp.

P, = %). Under these parameters the spectrum of the registered oscillations is presented in
Fig. 4b using the blue solid line and the spectrum of pumping pulse is given by the red line.
The new frequency can be easily seen in the medium radiation spectrum. Fig. 5 shows the
dependence of the secondary emission spectrum on the total pulse area ®. The pulse area
was changed via variation of the Rabi frequency (pulse amplitude), keeping the pulse duration
constant. In Fig. 5, one can observe two branches corresponding to the resonance frequency
wp and to the shifted frequency {25. The analysis of Fig. 5 shows that, as in the case of straight
string, in strongly nonlinear regime when the pulse area is large, the radiation at the resonance
frequency wy has smaller intensity than that at the frequency {2,. A slight shift of the maximum
of the radiation at the resonance frequency wy is caused by oscillator damping and does not
depend on the magnitude of the external field. The frequency shift of the resonant oscillations
is not observed at all values of the excitation pulse area ®. Note the absence of radiation at
the resonance frequency at the pulse areas multiple to 2. These points correspond to both
observed amplitude maxima of the shifted frequency.

The value of the new frequency excited by the external field coincides with the result of the
calculation in the weak-field approximation when the pulse area is small. Increasing the field
amplitude leads to approximately linear increase of the frequency shift, and this process has a
periodic sawtooth character. From Fig. 4 one can see that in the strongly nonlinear regime when
the pulse area is large, the intensity of radiation at the new frequency (25 exceeds the intensity of
the radiation at the fundamental frequency wg . The spectrum of the two-level system response
to an external field, contains the spectral component at the frequency w, = wy + {1g. In the
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Figure 5: Dependence of the radiation spectrum on the pulse area ® when V'/c = 2.3, "

2, (.Uo/’}/ = 222, Qg/wo = 115, Tp = 2T0

example illustrated in Fig. 5 the greater the amplitude of pump field the more accurate is fulfilled
the equality w, ~ {25. With the increase of the amplitude of the pump pulse the linear increase
of the intensity of radiation at frequency w,. occurs, see Fig. 5. The periodic structure observed
in Fig. 5 can be explained by the periodic dependence of the polarization of the medium on
the pulse area (the term sin ¢ in the expression (14) for the polarization P). We note that a
similar dependence was observed in our recent paper [2] in the case of the linear geometry of
the medium.

3 Radiation at the circle

In this section we assume that the radiation propagates along the circle and it is measured at
some point with polar coordinate v (Fig.1) at the circle. We assume that the medium radiation
can propagate only along a circle as in whispering gallery mode lasers [43—45], and not along
the chord. In this case, it is easy to obtain an expression for the electric field at the point v:

2

E(t,9) = [ Ny(p)cos[wofy (t,9)] O [fy (t,9)] de. (17)

0
— R R(p—¢)
Here fy (t,v) =t — 3F — =

Since we assume that the light can propagate only along the circle, the term w in (17)
corresponds to the time of the radiation propagation from the oscillator located at a point with
polar angle ¢ to the observation point ©). The calculation of this integral shows that the spectrum
of the transient process also contains a new frequency in addition to the fundamental frequency



of the medium (see Appendix):
V/A
Q3 = 2mr—--F5—. 18

Unlike the previous case, the new frequency depends on the ratio %

We now discuss the physical sense of (18). The numerator of this formula is the frequency of
the incident pulse excitation of the system of oscillators periodically arranged along the circle.
For the observer located at the point 1), the process would seem to have a frequency €23. Under
the condition of resonance (9) formula (18) becomes

Wo

Qgp = —2 19
3D ’1_%‘7 ( )

and coincides with the formula for the frequency shifted due to the Doppler effect when the
source is moving towards a stationary receiver.

In order to illustrate the dependence of {23 on the parameters of system, we present the radiation
spectrum in dependence on V' (Fig. 6a) and R (Fig. 6b). As can be easily seen from (18), the
new frequency increases with V' when V/c < 1 and decreases with an increase of 1V when
V/c > 1. Also V decreases with the increase of R.

Intensi
(logarithmic scale)

25 30 35
oJOR/c

Figure 6: (a) Dependence of the radiation spectrum on the normalized propagation speed V' of
the excitation and the radius of the circle R (b) for ¢ = 2.

If the excitation propagates at the velocity ¢, the denominator in (18) for the new frequency is
equal to zero. In this case the radiation from all points on the circle converges to point ¢ simulta-
neously, and the transient process is absent. Accordingly, there will not be any new frequencies

10



in the spectrum. We performed an elementary consideration of this type of propagation which
does not take into account spatial nonlinear effects that may occur when a short pulse prop-
agates in the resonant medium. In general case, it is necessary to perform calculations using
a more rigorous semiclassical theory of the interaction of light with the resonant medium [42].
This topic is the subject of a separate study and will not be considered in this paper. How-
ever, one can qualitatively understand what happens if the ultrashort pulse propagates along
the circle considering the results of the study of straight resonant medium. We suppose that
the short pulse with the duration smaller than the relaxation times of the medium 7} and 15
moves at some velocity (for example, superluminal, as in [1,2]). We assume that the medium is
optically dense. As is known [46], a short pulse propagating in such a medium leaves the "tail”
of induced resonance polarization behind it. This polarization emits an electromagnetic field -
"coherent optical ringing” after the excitation pulse comes out. Since the medium is optically
dense, one can expect the appearance of cooperative effects, i.e., complex periodic exchange
of the energy between field and polarization can occur. This process takes place during time
intervals shorter than the relaxation time of the polarization of the medium 75 [47-51]. This will
lead to the appearance of new frequencies in the spectrum of medium response.

The consideration we presented in Ref. [2] for the case of linear topology of the string shows
that in the nonlinear case the occurrence of the frequency determined by the expression (1) is
also possible.

4 Conclusion

Finally, we have demonstrated the possibility of generation of new frequencies in the resonant
medium by considering different medium topologies and space-distribution parameters. These
new frequencies can be observed in the absence of nonlinear effects and in the presence of
them, as well. In the case of linear string topology, the new frequency depends on the velocity
of excitation, on the period of the spatial density distribution of the oscillators, and on the angle
of observation [2]. In the case of the circular string topology the expressions for the frequencies
strongly depend on the position of the observation point.

Our calculations show that in the linear case when the power of the pump pulse is small, the
radiation intensity at the resonance frequency is always greater than the radiation intensity at the
new frequency. However, in the nonlinear case, when the power of the pump pulse is high, the
situation is vice versa. The intensity of radiation at the new frequency can exceed the emission
intensity at the resonance frequency. We have observed the similar situation in the case of linear
geometry of the medium in [2].

The studied phenomena can be used for detection of superluminal motions in a resonant
medium, frequency conversion, and determination of the spatial structure of the scattering sys-
tem using the spectrum of the scattered signal. The occurrence of the transient process can
also be used for the generation of radiation pulse profiled in time. The technique of the analysis
presented here can be applied for the study of nonstationary diffraction on photonic crystals.

Authors are grateful to Dr. I. A. Chekhonin for helpful discussions, and to Dr. U. Bandelow and
to Dr. A. Pimenov for careful reading of the manuscript.
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Appendix: Analytical solution of Eq. (17).

In the case when radiation is measured at the point ¢ at the circle one can obtain for the
transient regime (R—‘}/’ <t < va + RTw andif V > c):

2
W 2R
Et—/ cos[w(”’— )]d ——sm<w t’”——)—l—
( ) Wot”’/R 0 ¢ RWO ( WO )

Wevs sin(27v) cos [wo(t”’ — Q’TR)] RuwoWy cos(2mry) sin [wo(t’” _ M)}

Wo
+ —
vW§ — R*wg vW§ — R*wg
(20)
Wiy sin(Qst”)
V;WOQ — R%w?
Here t"" = t — % and WLO = % — % This expression contains terms oscillating with the

frequencies wy and (2.
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