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ABSTRACT 
In this paper, we propose a modular algebraic multilevel method 

on unstructured meshes which is intended to generalize known meth-
ods on rectangular meshes. To define the transfer operators, we uti-
lize the block structure of the matrix which is induced by the fine-
coarse partitioning of the matrix graph and approximate the block 
of fine-fine couplings by a modification of its lower, respectively up-
per triangular part. Numerical experiments show that this approach 
yields a working preconditioner. Its efficiency in the current imple-
mentation depends on the amount of structure information given on 
input. 

1 INTRODUCTION 
Let M be an Euclidean vector space, and let 

A:M-+M 

be a symmetric, positive definite matrix1 . 

For a given right hand side f EM, we want to solve the problem 

Au= f. (1.1) 

To define a multigrid method to solve (1.1), we need the following ingredients_: 

• coarse grid spaces - Euclidean vector spaces M0 , ..• Mi = M with scalar 
products 

• symmetric, positive definite with respect to h · )k coarse grid operators 

• interpolations 

• restrictions 

• smoothers 

The well known multigrid algorithm then looks a follows: 

procedure mgcycle (k E N, Uk, fk E Mk) 
begin 

if k = 0 then 

1 In practice, the symmetry assumption can often be weakened. For example, we may 
require that A is selfadjoint with respect to a weighted scalar product as described in [Fuh94]. 
Methods of this kind can converge even under still weaker assumptions - see [Reu95]. 
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else 

endif 
end 

U ·-A-1! k .- k k 

let i EN 
let Uk-1, f k-1 E Mk-1 
let dk E Mk 

for i := 1 until m do Uk :=Uk - Gk(Akuk - fk) 

dk := AkUk - fk 
Uk-1 := Q 
f k-1 := Rk-1 dk 
for i = 1 until 'Y do mgcycle (k- l,uk-1,fk-1) 

Uk := Uk - PkUk-1 
for i := 1 until m do Uk :=Uk - Gk(Akuk - fk) 

If A arises from a finite element discretization of a selfadjoint boundary value 
problem with constant coefficients or coefficient jumps aligned with coarse mesh 
element boundaries, in the case of a hierarchical structure of the finite element 
space, all components but the smoother are canonically defined. Under certain 
assumptions, a rigorous theory assures the convergence of the multigrid method 
with a rate independent or nearly independent on the number of grid points 
[Hac85, Xu92, Y se93, Osw94]. 
If some of these assumptions do not hold, e.g. when 

• coefficient jumps are not aligned to coarse grid lin~s 

• the approximation of complicated geometries with standalone mesh gen-
erators like [Sch93] does not result in a hierarchical structure 

• A is the linearization of a nonlinear operator 

• A is nonselfadjoint and comes e.g. from an upwind discretizations of a 
convection - diffusion equation, 

the multigrid components defined by the usual FEM based scheme do not work 
properly .(in the sense that the convergence speed slows down with increasing· 
problem size), or do not work at all. 
A promising way out of this dilemma is the usage of algebraic multigrid methods. 
One can trace two main approaches in the development of algebraic multilevel 
methods: 

• methods using grid structure information [ABDJP81, DJ87, Kuz89, AV89, 
dZ90, HK91, FG91, Fuh94, Reu95, WKW95] and others 

• methods using only the matrix on input [RS87, VMB94, Bra95] 

In this paper, a modular algebraic multigrid method is proposed. This method 
is intended to be able to use grid structure information if such information can 
be provided, and otherwise, to create it's own coarse grid sequences. It should 
consist of three main steps: 

I. Coarsening, symbolic calculation of coarse grid and transfer operators. 
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II. Calculation of coarse grid and transfer operators. 

III. Multilevel preconditioning. 

Step I (which might be not an O(n) operation) needs to be performed only once, 
when a grid is created. At the same time, the method should be able to use 
various kinds of information which may be known a priori - refinement history, 
strong couplings, anisotropies etc. 
Step II (which should be O(n)) needs to be performed when a new matrix from 
a series of problems is created on a given grid. , 
Step III (hopefully O(n), too ) is the actual preconditioner which can be effi-
ciently implemented using the information created during steps I and II. 
This idea of an algorithm is inspired by the AMG method of Ruge and Stiiben 
[RS87]. Their algorithm combines steps I and II into one. As this coarsening 
algorithm is very complex, one could imagine that a splitting into the two parts 
mentioned could improve the overall performance when one has to solve _series 
of problems on the same grid, but with different matrices. 
In this paper, we will focus mainly on the following question: 

Given the matrix A and the subset of variables corresponding 
to the coarse grid, is it possible to define transfer and coarse grid 
operators for a multigrid method using only this information ? 
Does the method defined in this way show the desired multigrid 
efficiency ? 

The transfer operators in the case of constant coefficients and rectangular or 
hierarchical finite element meshes s.hould q:>incide with those yielded by the 
usual theory. In the case of rectangular meshes and jumping coefficients, one 
would like to obtain transfer operators similar to those defined in [ABDJP81, 
Fuh94] which are known to work well. 
In the sequel, C will denote the subset of variables corresponding to the coarse 
grid points (C-points), and F will denote the subset of variables corresponding 
to the fine grid points not belonging to the coarse grid (F-points). We assume. 
that C is given. 
In this case, we can sort the unknowns in such a way that the matrix A has the 
block structure 

A= ( App Ape ) . 
Acp Ace 

In the following sections, we describe a framework which we would like to use 
for the description of our multigrid algorithm. 

2 AN EXACT MULTIGRID METHOD 
The starting point of our considerations will be the observation that in certain 
cases we are able to define an exact multigrid method, where "exact" means 
that it yields the exact solution within one iteration step. 
First, we observe that A can be transformed into a block diagonal form. Define 

T-" ( I - 0 
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Then 

where 

is the Schur complement. 
Let 

p = 
R = 
a = 

(2.1) 

We can see P as an interpolation, R as a restriction and G as a smoother. 

Lemma 2.1 The Schur complement 8 is the Galerkin coarse grid operator cor-
responding to P and R. 
Proof. Indeed, 

RAP 
= ( -AcpA-1 I), ( App Ape ) p 

FF AcF Ace 

= ( 0 Ace - AcpAp~Apc ) ( -AptApc ) 

= 3, 

D 

Lemma 2.2 The two grid method consisting of the coarse grid correction de-
fined by f>, R, 8 and one post-smoothing step using G is exact. 

Proof. First, it is easy to verify, that 

a = t-1 (Ag~ ~) f-T 
1'8-lR = f-1 ( ~ .o ) T-T s-1 

A-1 = t-1 (A~~ Q )t-T 3-1 . 

It is sufficient to show that the error propagation operator describing the method 
is zero. One has 

(1 - aA)(1 -1'8-1 RA)= 

= (1-t-1
( Ag~ nf-TA)(1-t-1 (~ O ) t-T A) 3-1 

,...o )) t-T A+ s-1 
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+t-1 ( A~1 ~) j-T At-1 ( ~ §~1 ) j-T A 

= I - f-1 ( A:p1 A 0 ) f-T A+ o s-1 

+t-1 ( A~1 ~ )( A~1 §~1 ) ( ~ §~l ) j-T A 

= 0. 

Figure 1: Structure of an one-dimensional grid 

D 

In the one-dimensional. case, we can choose the set of C-points as in fig. 2. 
Here, Ap F is diagonal, so that this method can be efficiently implemented. In 
fact, this method is well known as the lD case of the method of cyclic reduction 
[BGN70]. 
In the general case, it is not possible to invert Ap F in an efficient way. In the 
literature, various approaches to this problem can be found. So, in [Vas92], a 
Cebysev polynomial in Ap F is used to obtain an approximation to its inverse. 
In this case it is hard to define the Galer kin coarse grid operator, so the dis-
cretization on the coarser level is used. In our case, this discretization is not 
available, so we try to use a scheme with a different structure. 

3 A FRAMEWORK FOR THE DEFINITION OF AMG 
COMPONENTS 

The basic idea is to replace Ap F by its upper-, respectively lower triangular part 
with a modified main diagonal. Thus, we replace the solution of the system 

by the result of a Gauss-Seidel like step with an appropriate ordering. 
Assume that 

App=l+b+u, 
where l, u are strictly lower, respectively upper triangular matrices, and b is 
a block diagonal matrix. Further, let d be some "modification" of the main 
diagonal of Ap F in the sense of a partial lumping. 
The order of the F-points (which actually defines how to understand "triangu-
lar") and the choice of the matrix d are the main parameters in the proposed 
scheme. 
Let 

L = l+d 
U = u+d 
B = b-2d. 
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Then 
App=L+B+U, 

where L and B are invertible lower, respectively upper triangular matrices. 
Define 

P = ( -u-~ Apa ) , 

R = ( -Ac pL - 1 I ) 

by formally replacing in (2.1) App by U and L, respectively. 
Then defining 

u8 = 1 -Appu-1 , 

Ls = I -L-1App, 

the Galerkin coarse grid operator 

S = R ( L + B + U Ape ) p 
AcF Ace 

= Ace + AcpL-1 Bu-1 Ape 
,.. 1 = S + AcpLsA"P,pU8APc 

can .be seen as a perturbation of the Schur complement [HLM91a, HLM91b]. 
IT this operator appears to be too complex, one might replace it by a simpler 
operator S ~ S which should be spectrally equivalent to S. 
The smoother G can be replaced by some "classical" s_moothe~. 
In [Fuh94] it has been shown that the convergence of a method using these 
components depends on llUsllAFF, the spectral equivalence between D and App 
and the strengthened Cauchy inequality between the F-point space and the C-
pqint space. This hardly reflects the real nature of the diagonal modification 
explained below, as shown in numerical experiments in (Fuh94)2 • 

In (Fuh94, FG94] it has been shown how to set up converging, effectively im-
plementable methods fitting to this scheme in the case of one- two- and three-
dimensional logically orthogonal meshes. These methods are in some sense semi-
algebraic, because they use grid structure information given from outside. The 
do not use any information on the kind of the discretization, on mesh spacing 
or point locations. This is true also for the available code mg2537. 
We describe the two-dimensional case of this method in the next section. Then, 
a generalization to the case of unstructured meshes is proposed. 

2 A method using D = d could be defined correctly, however it converges very slowly 
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4 AN ALGEBRAIC MULTIGRID METHOD ON 
Two-DIMENSIONAL, LOGICALLY RECTANGULAR 

MESHES 
On a two-dimensional, logically rectangular mesh, the set of F-points of an op-
erator with a five point discretization stencil can be subdivided further into the 
sets of coarse grid cell edge midpoints (E-points) and coarse grid cell midpoints 
(M-points) - see fig. 2. The term "midpoint" should be understood topologi-
cally, not geometrically. After reordering nodes, we have the following matrix 

Figure 2: Coarse grid cell structure for a two-dimensional flrid 

partition: 

If A is a weakly diagonally dominant M-matrix, the diagonal blocks 

AMM = DME+MMM 
AEE = DEM+DEc+MEE 
Ace = DcE + MNN 

are positive diagonal matrices which consist of the sum of the sign reversed off 
diagonal row entries and a nonnegative "mass" term. The off diagonal blocks 
have only nonpositive entries. Let 

b-(DME+MMM 0 )-(AMM 0) 
- O DEM+DEc+MEE - 0 AEE 

and 

Then 

L = 

u = 

B = 
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and 

( ( d:ilMAMEdiiikAEc ) ) p = -dEj1AEc 
I 

R = ( ( AcEd:EkAEMdif M -AcEdik ) I ) 

The interpolation P can be implemented in three stages: First perform a straight 
injection of the coarse grid node values, then by means of -d:EkAEc interpolate 
the edge midpoint values (by a formula which is similar to the one-dimensional 
case), and at last, use -dif MAME to calculate the cell midpoint values from 
the edge midpoint values. 
Similar transfer operators have been defined in (ABDJP81, Hac85, DJ87] The 
Galerkin coarse grid operator is 

S = Ace -2AcEd:E1AEc + AcEd:Ek(AEE -AEMdilMAME)d:EkAEc 
= Ace - AcEd:EkAEc + AcEd:Ek(DEM - AEMdif MAME)d:EkAEc· 

This coarse grid operator has a nine-diagonal structure, and we replace it by 
the five-diagonal operator 

which is twice the Schur complement of the matrix 

Ao = ( dEE AEc ) . 
. AcE Ace 

A 0 as well as its Schur complement S inherit from A symmetry, positive defi-
niteness, nonpositivity of the off diagonal entries and weak diagonal dominance, 
if at least one entry of MEE or Mee is positive (Axe94]. Thus, if the last con-
dition is fulfilled, S inherits the M-property from A. The inheritance of the 
M-property cannot be shown for S. 
Another advantage of S is the possibility of a numerically stable generation of 
the transfer and coarse grid operators, provided, we use a matrix storage scheme 
where we store 

( 
M~M M~E ~ ) 

O O Mee 

in the locations for the main diagonal entries of A. A more detailed discussion 
of this issue together with numerical experiments one finds in [Fuh94, FG94]. 
The numerical experiments [Fuh94], s~e also section 6, show a good convergence 
behaviour of this algorithm for problems with strongly varying coefficients. 
In a very similar fashion, one is able to describe the algorithm for three-dimensional 
problems with a seven diagonal operator. · 
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5 AN ALGEBRAIC MULTIGRID METHOD ON 
UNSTRUCTURED MESHES 

Here, we propose an answer to the question from section 1.1: Given the matrix 
A and the subset of variables corresponding to the coarse grid, is it possible to 
define transfer and coarse grid operators for a multigrid method using only this 
information ? 
The basic idea is taken from the tensor product case. In the two-dimensional 
as well as in the three-dimensional case, we utilized a natural hierarchical block 
structure of the set of F-points. We could try to create such a block structure 
for the unstructured mesh case, too. 
So, assuming, the coarse grid nodes are known, we sort the remaining F-points 
in a hierarchical fashion. This means that we partition the set of grid vertices 
V(A) into 

v = v (A) = c u F1 u ... u FL. 

Let for x E V, Vx := {y E V(A)l(x, y) E E(A)} denote the neighbourhood 
of x in the matrix graph r(A) = (V(A), E(A)) ?f A. Consider the following 
algorithm: 

l := 1 
Vi:= c 
while Vi~ V do 

Fz := {x E V\ Vi I card(Vx nVi) ~ 2} 

done 

if Fz = 0 then · 
Fz := {x E V \Vi .j card (Vx n Vi) ~ 1} 

endif 
Vi+i := Vi u Fz 
l := l + 1 

For each node on a new level, in the generic case we get a set of two or more 
nodes to interpolate from. For tensor product meshes, this produces the same 
partition as used in the method described in section 4. So, we get a matrix 
partition 

A= 

Note that here, the diagonal blocks Ap1p 1 are not necessarily diagonal matrices. 
Now, we try to formalize the structure of the diagonals Dp1p1 of these blocks. 
Assume that 

is_ the sum of 

• a "mass" term MF1F1 , 

• the sign-reversed column entries connecting to higher level nodes Dt, ,Fr 
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• the sign-reversed column entries connecting to lower level nodes DF- F z, I 

• and the sign-reversed column entries connecting level l nodes DF° F. z, l 

This partitioning is inspired from the splitting of the diagonals introduced in 
section 4 for the M-matrix case, where we can assume Mp1p1 ~ 0. As, in 
general, the M-property is not inherited by the Galerkin projection, on the 
coarse meshes it has only a formal sense. 
Let 

Define 

Let as in (3.1) 

Then for 

u = 

= 

b = 

d = 

L = l+d 
U = u+d. 

B= . 
( 

ApLpL ~ 2dpLpL 

0 

we have 
App =L+B+U, 

and we can define the transfer operators 

P = ( -u-;AFc ) 
R = ( -ApcL-1 I). 

In the logically orthogonal case, we get the same transfer operators as introduced 
there, provided, we had defined the same set of C-points. The Galerkin coarse 
grid operator 
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inherits symmetry and positive definiteness from A, but not the nonpositivity 
of the off diagonal entries. 

6 NUMERICAL EXAMPLES 
6.1 THE PROBLEMS SOLVED 

On the series of meshes described below, we solve the constant coefficient prob-
lem 

-.6.u = 0 

with the boundary conditions introduced below. 
Further, we solve jumping coefficient problems of the type 

-\7 · (a(x)\lu) = 0 

with coefficient jumps of the magnitude 105 according to the material distribu-
tions shown in fig. 3, 4 and 5. The boundary conditions remain the same. 

6.2 THE MESHES 

Figure 3: Material distribution and triangulation for mesh R {1024 nodes) 

The mesh scale R. We consider the domain n = [O, 1] x [O, l]. We assume 
that it is subdivided into four subdomains with different materials according to 
fig. 3. We apply the Dirichlet boundary conditions 

ro on [O, 1] x 1 c an 
ri on [O, 1] x 0 C an 

It is subdivided into triangles in the standard manner. The meshes have a clear 
regular structure. 
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Figure 4: Material distribution and triangulation of mesh H { 1294 nodes} 

The mesh scale H. The meshes of this scale are examples for adaptively 
refined meshes, where the adaptivity criterion is defined not by the coefficient 
jump, but e.g. by a front to be followed. Further, the coefficient jumps. are not 
aligned to coarse grid cells. Within this mesh scale, the meshes are generated by 
KASKADE 3.0 [BER94] with. different levels of local refinement alo11=g a given 
line. We apply Dirichlet boundary conditions with value 0 respectively 1 at two 
disjoint lines of the domain boundary. These meshes are not unstructured but 
possess a clear hierarchical structure which will be used and honored by the 
proposed modular AMG method. 

Figure 5: Material distribution and triangulation of mesh U {696 nodes} 
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The mesh scale U. The meshes of this scale correspond to applications in 
groundwater flow simulation. They describe a layered soil structure which is 
perturbed in the middle part as it can be seen in fig. 5. We apply Dirichlet 
boundary conditions with value 0 at the left ~nd 1 at the right boundary lines of 
the domain. Within this mesh scale, the meshes are generated by the package 
IBG [Sch93] with the same geometry, but with different node numbers on the 
coarsest grid frame. 

6.3 A SIMPLE COARSENING ALGORITHM • 
On mesh scale R in the nonstandard case, and on mesh scale U, we need a 
coarsening algorithm to be able to use the proposed modular algebraic multi-
grid method. We proceed as follows: We pick some mesh point which is still 
unmarked and mark it as a C-point. Then we mark all its unmarked neighbours 
as F-points and repeat this process until all points have been marked: 

F:=0 
C:=0 
U := V(A) 

. while U f 0 do 
pick x EU 
C :=Cu {x} 
F := Fu (V:c n U) 
U := U \ ( (V:c n U) U { x}) 

done 

This choice of the coarsening algorithm ensures the desired modularity of the 
algorithm, but as we will see, it seems necessary to put more information into the 
coarsening process when one wants to obtain condition numbers independent 
on the mesh size for general unstruct11red meshes. 

6.4 THE METHODS COMPARED 
ilu: This is a conjugate gradient method preconditioned by standard IL U with 
zero fill-in pattern. 

m-amg: We use the muitigrid components described in subsection 5 together 
with an IL U smoother and a Cebysev polynomial on the coarsest grid to build 
a V-cycle preconditioner for conjugated gradients. 
On mesh scale R we use the coarsening algorithm from subsection 6.3. On the 
finest grid, we ignore the "weak" connections corresponding to the diagonal 
edges in the Courant mesh. On "standard" meshes with (2n + 1) x (2n + 1) 
nodes, this produces the same coarsening sequence as standard multigrid, on 
more general rectangular meshes, we get a method which is slightly less efficient 
but still shows multigrid efficiency (see the saw-teeth in fig. 6). 
On mesh scale H, we use the refinement history to generate the coarse grid 
information. So we get the same coarse grid points as for standard multigrid on 
these meshes. 
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On mesh scale U, coarsening is performed using the algorithm from subsection 
6.3, again ignoring zero connections on the finest grid. 

rs-amg: This is the AMG method of Ruge and Stiiben in their original FOR-
TRAN code 3 used as preconditioner. All numerical parameters of the method 
are defined by the defaults given in the code. 

rect-amg: On the rectangular mesh, for appropriate point numbers, we apply 
he rectangular mesh preconditioner described in section 4, the code used is the 
mg2597 package written by the author. 

6.5 RESULTS 
We do no comparison of CPU times, because the implementation of the proposed 
method is at a test stage. 
In the figures, on the y-axis we show the average residual contraction per itera-
tion step, after an overall residual contraction of 10-10 has been reached. The 
x-axis (logarithmically) shows the number of grid points. 

Performance on mesh scale R. (fig. 6.) The best performance shows the 

1 
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m·amg-

0.7 rs-amg-
rect-amg -

0.6 
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0.4 

0.3 
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10 100 1 OOO 10000 100000 1 e+06 

0.9 
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0.4 

0.3 
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0.1 

ilu-
m·amg -
rs-amg-

rect·amg -

10 100 1 OOO 10000 100000 1 e+06 

Figure 6: Performance on mesh scale R for constant {left) and jumping {right} 
coefficients 

rectangular mesh multigrid method which in the case of constant coefficients is 
equivalent to the standard multigrid method. 
The proposed AMG method on the rectangular meshes shows slightly decreasing 
performance with increasing m~sh size. The saw-teeth in the curve show a 
better convergence behaviour in the case when the mesh is redangular of the 
size (2n + 1) X (2n + 1). 
The AMG method of Ruge and Stiiben shows convergence rates nearly inde-
pendent of the mesh scale. 

Performance on mesh scale H. (fig. 7.) On the hierarchically structured 
3 AMG1R5, Oct. 1990 release 

14 



0.9 

0.8 ilu-
m·amg ....-

0.7 rs·amg-

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

10 

~ 
100 1000 10000 100000 1&+-06 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

ilu-
m·amg ....-
rs·amg -

10 100 1 OOO 10000 100000 1 e+-06 

Figure 7: Performance on mesh scale H for constant {left) and jumping {right) 
coefficients 

meshes of the scale H, the proposed method shows a convergence behaviour 
nearly independent of the mesh size. In the constant coefficient case, its perfor-
mance is very good,· in the jumping coefficient case, its performance is satisfac-
tory and not worse than that of the Ruge-Stiiben code4 • 

Performance on mesh scale U. (See fig. 8.) The convergence rate of the 

0.9 / 0.9 / 0.8 ilu- 0.8 ilu-
m·amg ....- m·amg -

0.7 rs·amg- 0.7 rs·amg-

0.6 0.6 

0.5 

~ 
0.5 / 0.4 0.4 

0.3 0.3 

0.2 0.2 

0.1 0.1 ------10 100 1000 10000 100000 1&+-06 10 100 1000 10000 100000 1&+-06 

Figure 8: Performance on mesh scale U for constant {left) and jumping {rigf?,t) 
coefficients 

proposed AMG method is significantly less than that of the ILU method, but 
increases with the mesh size. It is in question if the overhead introduced in 
comparison to the IL U method can be compensated by the faster convergence. 
The main reason seems to be the "trivial" coarsening algorithm of subsection 
6.3 which in this case does not use enough information about the problem. 

4The performance of rs-amg in the constant coefficient case might be due to the fact that 
it has been treated as a black box, i.e. that the default numerical parameters of the code 
haven't been changed. 
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The AMG method of Ruge and Stiiben converges with very good contraction 
rates nearly independently of the mesh size. 

7 CONCLUSIONS 
The numerical experiments indicate that the proposed modular AMG method 
works. It shows the desired multigrid behaviour 

• for problems with jumping coefficients on rectangular meshes with 
(2n + 1) x (2n + 1) nodes in it's rectangular mesh implementation 

• for problems with jumping coefficients on rectangular meshes with general 
node numbers 

• for problems on hierarchically structured meshes with jumping coefficients 
not resolved by the coarsest mesh 

On general unstructured meshes, it does not show the multigrid efficiency one 
would like to obtain. To reach the desired efficiency, or, at least, near mesh 
independence, it is necessary to put more information-about the problem and/ or 
grid structure into the coarsening process than just the matrix graph. If such 
information exists and is provided to the algorithm, this is honored by the 
method as shown by the rectangular and hierarchical mesh cases. 
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