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Abstract

We are concerned with statistical inference for 2×2×K contingency tables in the con-
text of genetic case-control association studies. Multivariate methods based on asymptotic
Gaussianity of vectors of test statistics require information about the asymptotic correla-
tion structure among these test statistics under the global null hypothesis. We show that
for a wide variety of test statistics this asymptotic correlation structure is given by the link-
age disequilibrium matrix of the K loci under investigation. Three popular choices of test
statistics are discussed for illustration.

1 Introduction

Multivariate statistical methods based on asymptotic Gaussianity of test statistics are receiving
more and more attention in the context of multiple test problems in genetics; see, e. g., Conneely
and Boehnke (2007), Moskvina and Schmidt (2008), Dickhaus and Stange (2013), and Part II of
Dickhaus (2014). The reason is that incorporating the (asymptotic) correlation structure of test
statistics in the statistical analysis leads to an improvement of statistical power in comparison
with a locus-by-locus analysis in combination with a (for instance, Bonferroni) correction for mul-
tiplicity. In genetics, correlations between the (expected) allele frequencies at genomic positions
(loci) in the same chromosome are technically described by linkage disequilibrium (LD); see, for
example, Chapter 10 of Ziegler and König (2006).

LD matrices for several target populations are publicly available from databases like those of The
International HapMap Consortium (2005) or The 1000 Genomes Consortium (2010). Hence,
they may be regarded as external structural information in the context of frequentist inference
or as prior information in the context of Bayesian inference. In this work, we show that LD has
a much broader interpretation when testing for association in 2 × 2 × K contingency tables
occurring in genetic case-control studies, where the total number of loci under consideration
is equal to K . Namely, under the null hypothesis of no associations, the LD coefficient of two
loci i and j coincides with the asymptotic Pearson correlation coefficient of Ti and Tj (denoted
by ρ(Ti, Tj)) for a wide variety of different test statistics Ti, Tj which are commonly used for
testing association in the marginal contingency tables i and j, respectively.

The rest of the paper is structured as follows. In Section 2, we introduce basic notation and
general assumptions. Section 3 contains our methodological results as well as three examples.
We conclude with a discussion in Section 4. Some auxiliary results needed for Example 3.2 are
deferred to the appendix.
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Allele A a
∑

B b
∑

Phenotype 1 x
(i)
11 x

(i)
12 n1. x

(j)
11 x

(j)
12 n1.

Phenotype 0 x
(i)
21 x

(i)
22 n2. x

(j)
21 x

(j)
22 n2.

Absolute count n.1
(i) n.2

(i) N n.1
(j) n.2

(j) N

Table 1: Schematic representation of data for an allelic association test problem at two genetic
loci i and j.

2 Notation and preliminaries

Throughout the work, we let i and j denote two genomic positions in the same chromosome. We
assume that the data collected for testing association between the allelic status of the respective
locus and a given binary phenotype can be summarized in two contingency tables which are as
in Table 1, whereA (B) denotes the major allele at locus i (j) and a (b) the corresponding minor
allele. The numbers n1. of cases (phenotype 1) and n2. of controls (phenotype 0) do not depend
on the genomic position and are fixed by experimental design. Furthermore, we assume that
all observational units have been sampled independently of each other from the same target
population.

Notice that, conditional to all four marginal counts n1., n2., n.1(γ), and n.2(γ), the contingency
table for locus γ can be reconstructed from x

(γ)
11 alone, γ ∈ {i, j}. Hence, conditionally to

these marginal counts X(γ)
11 is a (marginally) sufficient statistic for contingency table γ, where

the capitalized notation indicates that the cell entry is regarded as a random variable. This is
why essentially all (marginal) association tests which are commonly used in practice employ
some transformation of X(γ)

11 as a test statistic in contingency table γ. Letting fγ denote such a
(smooth) transformation, we will show in Section 3 that asymptotically (N →∞) the correlation
coefficient of the test statistics Ti = fi(X

(i)
11 ) and Tj = fj(X

(j)
11 ) equals the LD coefficient

LD(i, j) of loci i and j. This result has important consequences, because it enables one to
carry out the multiple association test for all K loci simultaneously as a multivariate procedure
which takes the asymptotic correlation structure among the locus-specific test statistics into
account.

In all asymptotic considerations, we assume for convenience that

lim
N→∞

n1./N = τ ∈ (0, 1).

3 Main results

Lemma 3.1. Assume that the null hypothesis of no association between phenotype and allelic
status is fulfilled at both loci i and j. Let γ ∈ {i, j} and denote by pγ the probability that a
randomly chosen individual from the target population exhibits the major allele at locus γ, i. e.,
pγ is the (expected) major allele frequency in the target population at locus γ. Finally, denote by
pij the probability that a randomly chosen individual exhibits the major alleles at both loci i and
j. Then, the following assertions hold true.
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(a) X(γ)
11 ∼ Bin(n1., pγ).

(b) Cov(X
(i)
11 , X

(j)
11 ) = n1.DAB , where DAB = pij − pipj .

(c) ρ(X
(i)
11 , X

(j)
11 ) = LD(i, j) = DAB√

pi(1−pi)pj(1−pj)
.

(d) Let

X̃
(γ)
11 =

√
n1.

(
X

(γ)
11

n1.

− pγ

)
.

Then, the bivariate random vector (X̃
(i)
11 , X̃

(j)
11 )> is asymptotically jointly normally dis-

tributed with zero expectation and covariance matrix

Σ∗ =

(
pi(1− pi) DAB
DAB pj(1− pj)

)
. (1)

Proof. Assertion (a) is obvious. For assertion (b), we employ the representation

X
(γ)
11 =

n1.∑
k=1

1{Case k exhibits the major allele at locus γ}.

This entails that E[X
(i)
11X

(j)
11 ] = n1.pij + (n2

1. − n1.)pipj . Combining this with assertion (a)
implies (b). Assertion (c) follows immediately from (a) and (b). Assertion (d) is an application
of the binomial central limit theorem of de Moivre and Laplace in combination with the Cramér-
Wold device. �

Remark 3.1. The statistic X(γ)
11 is the test statistic employed by Fisher’s exact test in contin-

gency table γ.

Theorem 3.1. Let f = (fi, fj) : R2 → R2 be a smooth transformation such that its Jacobian

(matrix of partial derivaties)∇f , evaluated at the point (E[n−11. X
(i)
11 ] = pi,E[n−11. X

(j)
11 ] = pj),

is a positive definite diagonal matrix. Then, the correlation coefficient among the two compo-
nents of f(X

(i)
11 /n1., X

(j)
11 /n1.) is asymptotically (N →∞) equal to LD(i, j).

Proof. We apply the bivariate Delta method in analogy to Section 3 of Wei and Higgins (2013).
To this end, we let ∇f(u, v) denote the entry at position (u, v) of ∇f , evaluated at (pi, pj),
where 1 ≤ u, v ≤ 2, and let Σ stand for the asymptotic covariance matrix of the two com-
ponents of

√
n1.f(X

(i)
11 /n1., X

(j)
11 /n1.), which asymptotically follow a bivariate normal distribu-

tion. Making use of the assumption regarding∇f and of Σ∗ from (1), the bivariate Delta method
yields that

Σ =

(
∇f(1, 1) 0

0 ∇f(2, 2)

)
Σ∗
(
∇f(1, 1) 0

0 ∇f(2, 2)

)
=

(
∇f(1, 1)Σ∗11∇f(1, 1) ∇f(1, 1)Σ∗12∇f(2, 2)
∇f(1, 1)Σ∗21∇f(2, 2) ∇f(2, 2)Σ∗22∇f(2, 2)

)
.
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Hence, the correlation coefficient among the two components of f(X
(i)
11 /n1., X

(j)
11 /n1.) is asymp-

totically (N →∞) equal to

∇f(1, 1)DAB∇f(2, 2)

∇f(1, 1)
√

Σ∗11∇f(2, 2)
√

Σ∗22
=

DAB√
pi(1− pi)pj(1− pj)

= LD(i, j).

�

Plainly phrased, the assertion of Theorem 3.1 means that the asymptotic correlation structure
among the K marginal association test statistics is exactly given by the LD matrix among the
K loci under consideration, provided that each test statistic Tγ is a smooth transformation of

X
(γ)
11 only, without utilizing data from other loci.

Example 3.1 (Logarithmic odds ratios). One widely applied marginal test statistic is the (em-
pirical) logarithmic odds ratio, say λ̂γ for marginal contingency table γ. To avoid pathologies,

assume that x(γ)rc > 0 for 1 ≤ r, c ≤ 2 and γ ∈ {i, j}. In terms of x(γ)11 , one can then write

λ̂γ = log(x
(γ)
11 ) + log(n

(γ)
.2 − n1. + x

(γ)
11 )− log(n1. − x(γ)11 )− log(n

(γ)
.1 − x

(γ)
11 ) = fγ(x

(γ)
11 ).

Considering the so-defined function f = (fi, fj), where we artificially include x(j)11 (x(i)11 ) as a
second argument to fi (fj), it is straightforward to check that the assumptions of Theorem 3.1

are fulfilled. Hence, we have that ρ(λ̂i, λ̂j) is asymptotically equal to LD(i, j). The application

of the univariate Delta method to prove asymptotic Gaussianity of λ̂γ is mentioned in Section
3.1.7 of Agresti (2002).

We may remark here that the exact finite-sample correlation coefficient of λ̂i and λ̂j has been
derived by Bagos (2012). As a sanity check for our asymptotic result, we derived Figure 1. The
data for this figure have been taken from a genetic association study regarding a (dichotomized)
behavioral measure of impulsiveness (yet unpublished data), consisting of n1. = 299 cases
(highly impulsive individuals) and n2. = 2430 controls. The data points in Figure 1 correspond
to K = 10 correlated genomic loci, leading to

(
10
2

)
= 45 pairwise LD coefficients. Although it

is not guaranteed that the global null hypothesis of no genetic association with impulsiveness
holds for theK = 10 loci displayed in Figure 1, the 10 estimated odds ratios were very close to
1, such that this assumption seemed justified. Qualitatively, the obvious agreement of abscissas
and ordinates in Figure 1 has been confirmed by many other analogous graphs which we omit
here.

Example 3.2 (Chi-squared statistics). Let e(γ)rc = nr.n
(γ)
.c /N , 1 ≤ r, c ≤ 2, and denote by

Q(γ) =
2∑
r=1

2∑
c=1

(X
(γ)
rc − E(γ)

rc )2

E
(γ)
rc

the chi-squared statistic for testing association in contingency table γ. It is well-known that Q(γ)

is asymptotically chi-square distributed under the null with one degree of freedom.

Theorem 3.1 is not directly applicable in this case, because the representation (2) given in
Lemma A.1 below shows that the assumption of a positive definite Jacobian is violated here
(diagonal elements of∇f are equal to zero). However, Lemma 3.1 in combination with Lemma
A.2 below yields that the correlation coefficient between Q(i) and Q(j) is asymptotically given
by LD2(i, j). We verify this result in Figure 2, in analogy to Figure 1.
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Figure 1: Empirical comparison of LD(i, j) and ρ(λ̂i, λ̂j) on the basis of K = 10 correlated
genomic loci, leading to 45 pairwise data points. The abcissas are given by pairwise LD coeffi-
cients, while the ordinates have been calculated by the exact finite-sample formulas by Bagos
(2012). The sample consisted of n1. = 299 cases and n2. = 2430 controls.
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Figure 2: Empirical comparison of LD2(i, j) and ρ(Q(i), Q(j)) on the basis of K = 10 cor-
related genomic loci, leading to 45 pairwise data points. The abcissas are given by pairwise
squared LD coefficients, while the ordinates have been calculated by nonparametric bootstrap.
The sample consisted of n1. = 299 cases and n2. = 2430 controls.
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4 Discussion

We have drawn a connection between the correlation structure among (marginal) test statistics
for association in 2× 2×K contingency tables and the (K ×K) LD matrix in genetic case-
control studies. Asymptotically, these two quantities coincide under the global null hypothesis.
This result can be exploited for multivariate statistical inference, because external LD information
can be used to approximate the correlation matrix of the locus-specific test statistics, provided
that the sample size N is large.

One concrete application of our Example 3.1, which we want to work out in a detailed manner in
future research, consists in Bayesian inference for 2× 2×K contingency tables based on the
K-dimensional vector of logarithmic odds ratios as considered by Demirhan and Hamurkaroglu
(2008). Here, the LD matrix can be used as an informative prior for the correlation structure
among the logarithmic odds ratios (which are regarded as random objects in the Bayesian
setup).

As a possible extension of our work, the Delta method can also be employed to work out the
asymptotic correlation structure of test statistics in 2 × C ×K tables for C > 2. The special
case of C = 3 is relevant in association studies if the locus-specific diploid allele pairs are
considered instead of the mere alleles. Dickhaus and Stange (2013) referred to this setup as
a multiple genotypic association test problem and derived the asymptotic correlation structure
of the K marginal chi-squared statistics in that case; cf. the discussion around their Definition
4.2 and Lemma 4.2. In the case of a (2 × 3)-contingency table at each locus γ, the bivariate

vector (X
(γ)
11 , X

(γ)
12 )> is sufficient conditional to all marginals, and a multinomial central limit

theorem holds for (X
(γ)
11 , X

(γ)
12 )>. Hence, considering two such loci i and j, the four-variate

Delta method can be applied.

A Auxiliary results

Lemma A.1. Let x =

(
x11 . . . x1C
x21 . . . x2C

)
denote a (2 × C)-contingency table with row

marginals n1., n2., column marginals n.1, . . . , n.C , and total sample size N = n1. + n2..
Define erc = nr.n.c/N for 1 ≤ r ≤ 2 and 1 ≤ c ≤ C , and let

Q(x) =
2∑
r=1

C∑
c=1

(xrc − erc)2

erc

denote the value of the chi-squared statistic for testing association based on x. Then the follow-
ing two assertions hold true.

(a)

Q(x) =
N

n2.

C∑
c=1

(x1c − e1c)2

e1c
.
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(b) In the special case of C = 2, it holds that

Q(x) =

[√
N

n2.

(x11 − e11)√
n1.p̂(1− p̂)

]2
, (2)

where p̂ = n.1/N denotes the empirical major allele frequency.

Proof. For proving part (a), it suffices to show that for any given column 1 ≤ c ≤ C , we have

(x1c − e1c)2

e1c
+

(x2c − e2c)2

e2c
=

N

n2.

(x1c − e1c)2

e1c
,

which can be verified by elementary calculations. Part (b) follows from part (a) and by noticing
that (x12 − e12)2 = (x11 − e11)2. �

Lemma A.2. Let Z1, Z2 be two jointly normally distributed random variables with E[Z1] =
E[Z2] = 0, Var(Z1) = Var(Z2) = 1, and correlation coefficient ρ(Z1, Z2) = ρ. Then it holds
that Cov(Z2

1 , Z
2
2) = 2ρ2 and, consequently, ρ(Z2

1 , Z
2
2) = ρ2.

Proof. Let (X0, X1, X2)
> ∼ N3(0, I3) and notice that

(Z1, Z2)
> d

= (
√

1− ρX1 +
√
ρX0,

√
1− ρX2 +

√
ρX0)

>.

Elementary probabilistic calculus now yields that Cov(Z2
1 , Z

2
2) = ρ2Var(X2

0 ), which implies the
assertion in view of Var(X2

0 ) = 2. �
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