
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

A comparative study of a direct discretization and an

operator-splitting solver for population balance systems

Felix Anker1, Sashikumaar Ganesan2 , Volker John1,3 , Ellen Schmeyer1

submitted: October 10, 2014

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
email: Felix.Anker@wias-berlin.de

Volker.John@wias-berlin.de
Ellen.Schmeyer@wias-berlin.de

2 Indian Institute of Science
Supercomputer Education and Research Centre
Bangalore - 560012
India
email: sashi@serc.iisc.in

3 Free University of Berlin
Department of Mathematics and Computer Science
Arnimallee 6
14195 Berlin
Germany

No. 2022

Berlin 2014

2010 Mathematics Subject Classification. 76T20.

Key words and phrases. population balance systems; direct discretization; operator-splitting; urea synthesis; uni-
variate population.

Felix Anker: Supported by grant Jo329/10-1 within the DFG priority programme 1679: Dynamic simulation of inter-
connected solids processes; Sashikumaar Ganesan: Partially supported by the Alexander von Humboldt Founda-
tion; Ellen Schmeyer: Partially supported by grant Jo329/8-3 within the DFG priority programme 1276 MetStröm:
Multiple Scales in Fluid Mechanics and Meteorology.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

A direct discretization approach and an operator-splitting scheme are applied for
the numerical simulation of a population balance system which models the synthesis
of urea with a uni-variate population. The problem is formulated in axisymmetric
form and the setup is chosen such that a steady state is reached. Both solvers are
assessed with respect to the accuracy of the results, where experimental data are
used for comparison, and the efficiency of the simulations. Depending on the goal of
simulations, to track the evolution of the process accurately or to reach the steady
state fast, recommendations for the choice of the solver are given.



1 Introduction

Population balance systems (PBSs) model particulate flows where not the be-
havior of the individual particles is of interest but the behavior of the particles
in the mean. To this end, the particle population is described with a particle
size distribution (PSD) and an equation for the PSD is derived whose terms
model, e.g., transport, nucleation, growth, and aggregation of particles. To-
gether with equations for the energy or mass balance and an equation which
describes the flow field, the behavior of the particulate flow is modeled with
a so-called PBS.

A major challenge for the numerical simulation of PBSs arises from the fact
that the PSD not only depends on time and space, like, e.g., the flow field and
the temperature, but also on properties of the particles, the so-called internal
coordinates. After having applied a temporal discretization to the PBS, the
equation for the PSD is given in a domain whose dimension is the sum of the
spatial dimension and the number of internal coordinates.

One can find in the literature different proposals for dealing with the high
dimensionality of the equation for the PSD. A direct discretization of the
high-dimensional equation was studied, e.g., in [4,17,19,20]. This approach is
motivated by a potentially good accuracy of the computed solution, since no
simplifications to the original problem were applied. However, the numerical
solution of an equation in a higher-dimensional domain is rather expensive.
Motivated by performing more efficient simulations, other approaches were
proposed. Moment-based methods, like the quadrature method of moments
(QMOM) or the direct QMOM (DQMOM) [23,24] replace the equation for
the PSD by a system of equations for the first moment, with respect to the
internal coordinates, of the PSD. These methods are quite popular in the
engineering community. But the original PBS is modified quite strongly and
the reconstruction of the PSD from the first moments is a severely ill-posed
problem [15]. Another approach motivated by efficiency, which does not change
the original PBS, is the operator-splitting scheme proposed in [6]. This scheme
splits the computation of the solution into subproblems with respect to the
spatial and to the internal coordinates [6,10]. To the best of our knowledge,
systematic numerical comparisons of these different schemes have not been
performed in the literature so far.

The goal of this paper consists in performing the first step in the systematic
assessment of different solvers for PBSs. In this step, a direct discretization
and an operator-splitting scheme are studied. This choice is motivated by our
rich experience with these methods.

For an assessment of numerical methods, one needs a problem where some ref-
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erence values of the solution are known. To this end, a model of urea synthesis
from [14], with a uni-variate population, will be used where some experimen-
tal data from [3] are available. This model will be considered in a comparable
simple situation: the flow domain is a cylindrical pipe, the flow fields are sta-
tionary, the velocity field is given by a Hagen–Poiseuille profile, and the setup
is such that the solution, in cylindrical coordinates, can be assumed to be
independent of the angle. Since the velocity field is known, there is no need
to solve the Navier–Stokes equations. Thus, the computing times of the dif-
ferent numerical methods for solving the equation for the PSD will constitute
a large part of the overall computing times of the simulations. From the inde-
pendence of the angle, it follows that the PBS can be written in axisymmetric
form which reduces the spatial dimension from three to two.

The paper is organized as follows. Section 2 presents the population balance
model for the urea synthesis. The solvers for the PBS are describe in Sec-
tion 3. Section 4 presents the numerical studies and an outlook will be given
in Section 5.

2 The Population Balance Model of the Urea Synthesis

This section presents the population balance system which models the urea
synthesis. It is in principal the same model as considered in [14]. Only, the
flow domain has a different form, hence also the flow field, such that a 3D-
axisymmetric form of this model can be used in the numerical simulations. It
will be explained in Section 4 that the different flow field will also change the
impact of growth and aggregation on the urea population compared with [14].

The model for the considered urea population consists of a system of equations
describing the energy balance, the mass balance of the dissolved urea, and the
behavior of the PSD.

For the flow field u [m/s] in the cylindrical domain Ω ⊂ R3 a Hagen–Poiseuille
profile is assumed. The boundary of Ω is composed of the inlet Γin, the outlet
Γout, and the wall Γwall.

Let mmol = 60.06 · 10−3 [kg/mol] be the molar mass of urea, then the saturation
concentration of the dissolved urea is given by

csat(T ) =
35.364 + 1.305(T − 273.15)

mmol

[mol/m3], (1)

where T is the temperature in the system. Further, the growth rate of the
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urea particles is modeled by

G(c, T ) =


kg

(
c− csat(T )

csat(T )

)g
, if c > csat(T ),

0, else,

[m/s], (2)

with the growth rate constant kg = 10−7 [m/s] and the growth rate power
g = 0.5 [·]. Here, c [mol/m3] is the mass of the solute, and its evolution is
described by

∂c

∂t
−D∆c+ u · ∇c+

H`

mmol

=
f`
mmol

in (0, te)× Ω, (3)

where

H` = 3ρdkVG(c, T )
∫ `max

`min

`2f d`, and f` = −ρdkV `3
minBnuc.

In this equation, D = 1.35 · 10−9 [m2/s] is the diffusion coefficient of urea in
ethanol, ρd = 1323 [kg/m3] is the density of urea (dispersed phase), kV = π/6 [·]
is the scaling factor from diameters to volume (where it is assumed that all
particles are of spherical shape) and te [s] is the final time for the simulations.
The nucleation rate Bnuc is defined by

Bnuc = αnuc exp

(
−βnuc

ln2(c/csat(T ))

)
,

where αnuc = 1 · 108 is the nucleation constant and βnuc = 1.66667 · 10−4 is
a model constant. The PSD is denoted by f [1/m4] and the diameter of the
particles is ` [m], where `min is the smallest diameter (nuclei size) and `max is
an upper bound for the largest diameter. The last term on the left-hand side
of (3) describes the decrease of dissolved urea due to the growth of particles
and the term on the right-hand side models the consumption of dissolved urea
due to the nucleation of particles. Equation (3) has to be equipped with initial
and boundary conditions. The boundary condition is given by

c(t,x) = csat(Tin), x ∈ Γin,

D
∂c

∂nΓ

= 0, x ∈ Γout ∪ Γwall,
(4)

where nΓ is the outward pointing unit normal on Γ and Tin is the temperature
at the inlet, see (6) below. In addition, an initial condition is needed for closing
equation (3). Since such a condition is not known from the experiments, the
inlet concentration value is used as the initial value, that is

c(0,x) = csat(Tin) x ∈ Ω.
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The model for the energy balance is of the same type as the model of the mass
balance

ρcp

(
∂T

∂t
+ u · ∇T

)
− λ∆T + δhcrystH` = δhcrystf` in (0, te)× Ω. (5)

In this energy equation, ρ = 789 [kg/m3] is the density of ethanol at 298 K,
cp = 2441.3 [J/(kg K)] is the specific heat capacity of ethanol, λ = 0.167 [J/(K m s)]
is its thermal conductivity, and δhcryst = 2.1645 ·105[J/kg] is the heat of solution
(enthalpy change of solution). The term on the right-hand side of (5) describes
the decrease of temperature resulting from the nucleation of particles and the
last term on the left-hand side the decrease of the temperature due to the
consumption of energy by the growth of the particles. The know boundary
conditions from the experiments are


T (t,x) = Tin, x ∈ Γin,

λ
∂T

∂nΓ

= 0, x ∈ Γout,

T (t,x) = Twall, x ∈ Γwall,

(6)

with Tin = 301.15 [K] and Twall = 291.15 [K]. Hence, the suspension is cooled
at the wall. The initial condition was used in the same way as for the solute
mass balance, that is,

T (0,x) = Tin x ∈ Ω.

Finally, the model for the behavior of the PSD is presented. It is assumed that
the particles are of spherical shape such that they can be modeled with their
diameter. Then, the equation for the PSD is given by

∂f

∂t
+G(c, T )

∂f

∂`
+ u · ∇f = A+ + A−, (7)

where A+ is the source of the aggregation model and A− is its sink. The
presentation of the model for the aggregation, and also its implementation, is
simpler if the volume of the particles is used instead of the diameter. With
respect to the volume V = kV `

3 the PSD is given by

fV (V ) = fV (kV `
3) =

f(`)

kV

1

3L2
[1/m6]. (8)

The source term describes the amount of particles of volume V which are
created by the aggregation of two particles with volume V ′ and V − V ′, V ′ ∈
(0, V )

A+,V =
1

2

∫ V

0
κagg(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′. (9)

5



The sink term describes the amount of particles of volume V that vanish
because they are consumed by aggregations with other particles of volume
V ′ ∈ (0, Vmax)

A−,V = −
∫ Vmax

0
κagg(V, V ′)fV (V )fV (V ′) dV ′

= −fV (V )
∫ Vmax

0
κagg(V, V ′)fV (V ′) dV ′. (10)

Thus, the change of particles of volume V due to the aggregation is given by
A+,V + A−,V . The change with respect to the diameter is then obtained by

A+ + A− = 3kV (A+,V + A−,V ) `2,

compare (8). The aggregation kernel is the product of two factors

κagg(V, V ′) = pcol(V, V
′)peff(V, V ′) [m3/s].

Here, pcol gives the probability of the collision of particles with volume V and
V ′. The efficiency of the collisions, i.e., the amount of collisions which actually
lead to aggregations, is described by peff . Due to the lack of models, this factor
is chosen to be constant. This constant can be included into scaling factors
for the individual terms of the following kernel

κagg(V, V ′) =Cbr
2kBT

3µ

(
3
√
V +

3
√
V ′
)( 1

3
√
V

+
1

3
√
V ′

)

+
Csh

kV

√
2∇u : ∇u

(
3
√
V +

3
√
V ′
)3

[m3/s], (11)

where kB = 1, 3806504 10−23 [J/K] is the Boltzmann constant, µ = 1.074 [kg/(m s)]
is the dynamic viscosity of ethanol at 298 K, and Cbr, Csh are constants that
have to be calibrated on the basis of the experimental data. The first term in
(11) is Brownian-motion-generated. It is important for small particles since in
this case the last factor becomes large. The second term is shear-induced [26]
and it becomes important if both particles are large.

The initial condition for the PSD is given by

f(0,x, `) = 0 in Ω× (`min, `max),

i.e., there are no particles in the flow domain. Boundary conditions are neces-
sary at the closure of the inflow boundaries

f(t,x, `) =


fin(t,x, `), x ∈ Γin

Bnuc

G(c, T )
, at ` = `min, if G(c, T ) > 0.
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The PSD at Γin is given by experimental data, see [14].

For performing numerical simulations, the model has to be transferred into
a dimensionless form. Let X∞ = 0.01 m and `∞ = `max = 5 · 10−3 m, be
the reference lengths of the spatial domain and the diameter of the particles,
respectively. Further, let U∞ = 0.01 m/s, c∞ = 103 mol/m3, T∞ = 1 K and f∞ =
1013 1/m4 be the reference values of the velocity, concentration, temperature
and PSD, respectively. Then, dimensionless quantities are defined by

x̄ =
x

X∞
, ¯̀=

`

`∞
, t̄ =

tU∞
X∞

, ¯̀
min =

`min

`∞
, ¯̀

max =
`max

`∞
,

T̄ =
T

T∞
, c̄ =

c

c∞
, f̄ =

f

f∞
, P ec =

X∞U∞
Dc

, P eT =
X∞U∞cpρ

λ
,

with `min = 2.5·10−6 m. Using these dimensionless variables and numbers, and
omitting the bar afterwards, the dimensionless form of the multi-dimensional
population balance system becomes

∂c

∂t
− 1

Pec
∆c+ u · ∇c+Hc

gr = f c` in (0, te)× Ω,

∂T

∂t
− 1

PeT
∆T + u · ∇T +HT

gr = fT` in (0, te)× Ω,

∂f

∂t
+ u · ∇f +

X∞
U∞`∞

G
∂f

∂`
=

X∞
U∞f∞

(A+ + A−) in (0, te)× Ω× Ω`.

(12)
Here, Ω` denotes the scaled domain of the internal domain (`min, `max) and the
dimensionless terms are

Hc
gr =

H`

mmol

=
X∞`

3
∞f∞

U∞c∞
· 3ρdkV
mmol

G(c, T )
∫

Ω`

`2f d`,

f c` = −X∞`
3
∞

U∞c∞
· ρ

dkV `
3
minBnuc

mmol

,

HT
gr = δhcrystH` =

X∞`
3
∞f∞

U∞T∞
· 3ρdkV δhcryst

cpρ
G(c, T )

∫
Ω`

`2f d`,

fT` = −X∞`
3
∞

U∞T∞
· δhcrystρ

dkV `
3
minBnuc

cpρ
.
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The dimensionless initial and boundary conditions become

f(t,x, `min) =


Bnuc

Gf∞
, if G > 0.

0, else.

c = 1.1972, T = 301.15, f =
fin

f∞
on Γin,

∂c

∂nΓ

= 0, T =
Twall

T∞
, on Γwall,

∂c

∂nΓ

= 0,
∂T

∂nΓ

= 0, on Γout.

3 The Studied Solvers of the Population Balance System

In this section, the two solvers that will be compared in the simulations are
presented. Then the transform of the dimensionless system (12) into an ax-
isymmetric form is described. Finally, the algorithm for computing the aggre-
gation term is briefly discussed.

Let 0 = t0 < t1 < · · · < tN = te be a decomposition of the considered time
interval [0, te] and let τ = tn − tn−1, 1 ≤ n ≤ N , denote the uniform time
steps. For brevity, the superscript n is used to denote a variable at time tn,
e.g., cn(x) := c(tn,x).

3.1 The Direct Discretization

A detailed description of the general approach can be found in [14]. Consider
the time tn. In the first step of the direct discretization, the concentration and
the energy equation of (12) are solved as a coupled system. In this system,
the particle size distribution is used explicitly, i.e., fn−1 is used in Hc

gr and
HT

gr. The system is still coupled, since the growth rate depends on both the
concentration and the temperature. It is solved iteratively, using a fixed point
iteration. Since in the considered processes of urea synthesis there are usually
only small changes from one time step to the next one, it turned out that
generally one iteration per time step was sufficient to satisfy the stopping
criterion with respect to the smallness of the residual.

In the second step, the equation for the particle size distribution in (12) is
discretized on Ω × Ω`. Thus, a discretization in a high-dimensional (spatial
dimension + number of internal coordinates) domain is applied. For computing
G,A+, and A−, the concentration and the temperature obtained in the first
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step are used.

In both steps, one can apply different discretizations. Extensive numerical
studies were performed in [4,17,19,20] to assess a number of possible discretiza-
tions. For the simulations presented in this paper, those discretizations were
used which performed best in these studies. Thus, for discretizing the first
two equations in (12), a Crank–Nicolson time integrator in combination with
a linear FEM-FCT scheme [22] was applied. The equation for the particle size
distribution was discretized with an explicit third order total variation dimin-
ishing (TVD) Runge–Kutta scheme in time and an essentially non-oscillatory
(ENO) finite difference method in space. For the sake of brevity, it is referred
to [4,18] for detailed descriptions of these schemes.

3.2 The Operator-Splitting Scheme

The splitting scheme for the PBS has first been proposed in [6], and two
practical finite element algorithms have been presented in [9,10]. Later, this
splitting scheme has been studies for different discretization and applications,
see for example [1,2,7,11,21]. One of the main advantages, besides the splitting
of a high-dimensional equation into a system of low-dimensional equations,
is that the operator-splitting scheme allows to use different discretizations
for each equation in the low-dimensional system. Here, the operator-splitting
scheme is presented briefly, it is referred to [6,11] for more details.

Consider the time interval (tn−1, tn], and the solution of (12) at tn has to
be computed from the given or computed solution at tn−1. In the splitting
scheme, the numerical solution of the coupled multi-dimensional system (12)
is obtained in two steps. A splitting is applied to the concentration and the
energy equation in (12) to decouple each other, whereas the PSD equation
in (12) is split into two equations, one in the spatial space (X-direction) and
another in the internal space (L-direction), respectively. After applying the
splitting scheme to (12), it reads:

X-direction (Step 1):
For given ĉn−1 = cn−1(x), T̂ n−1 = T n−1(x), and f̂n−1 = fn−1(x, `), find ĉ, T̂
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and f̂ in such that for all ` ∈ Ω`

∂ĉ

∂t
+ u · ∇ĉ =

1

Pec
∆ĉ in (tn−1, tn)× Ω,

∂T̂

∂t
+ u · ∇T̂ =

1

PeT
∆T̂ in (tn−1, tn)× Ω,

∂f̂

∂t
+ u · ∇f̂ = 0 in (tn−1, tn)× Ω,

(13)

by considering the internal space variable ` as a parameter.

L-direction (Step 2)
For given c̃n−1 = ĉ, T̃ n−1 = ρ̂c, and f̃n−1 = f̂ , find c̃, T̃ and f̃ such that for all
x ∈ Ω \ Γin

dc̃

dt
+Hc

gr = f c` in (tn−1, tn),

dT̃

dt
+HT

gr = fT` in (tn−1, tn),

∂f̃

∂t
+

X

UL
G
∂f̃

∂`
=

X∞
U∞f∞

(A+ + A−) in (tn−1, tn)× Ω`.

(14)

by considering the spatial variable x as a parameter. Note that the system of
equations in (13) are decoupled. The concentration and the energy equations
have to be solved once, whereas the PSD equation in (13) has to be solved
for all ` ∈ Ω` by considering ` as a parameter. In the second step (14), two
ordinary differential equations and a PSD equation in internal space (one-
dimensional) have to be solved. Since the equations in (14) are coupled, an
iteration of fixed point type is used to solve this system for all x ∈ Ω \Γin. To
be consistent with the direct approach, only the first step of the fixed point
iteration is applied. Nevertheless, the iterative procedure is not expensive as
the iteration has to be applied between the one-dimensional PSD equation
and two ordinary differential equations.

In the splitting scheme, the backward Euler method is used for the temporal
discretization of the (12). Since the splitting scheme allows to use different
spatial discretizations in Step 1 and Step 2, respectively, the standard Galerkin
discretization is used for all scalar equations in (13), whereas the Ilin-Allen-
Southwell finite difference scheme is used for the PSD equation in (14). Even
though the Ilin-Allen-Southwell scheme is uniformly stable and second order
consistent for an equation with fixed diffusion, the scheme shifts automatically
to a simple first order upwind scheme for equations with zero diffusivity as
in (14), see [25] for more details.
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3.3 Axisymmetric formulation

The transformation to an axisymmetric form will be presented exemplary
for the equation for the concentration. It proceeds in the same way for the
other equations. Before applying the axisymmetric transformation, the varia-
tional forms of the equations in (12) are derived and the boundary conditions
are incorporated. Next, to obtain an axisymmetric form, volume and surface
integrals in the variational forms have to be transformed into area and line
integrals, respectively. Apart from the advantage of reducing one space dimen-
sion of the model equations, the derivation of the axisymmetric form from the
variational formulation leads naturally to the boundary condition along the
‘artificial rotational axis’. For details, it is referred to [8].

Let u(x, y, z) = (u1, u2, u3) and uc(r, z, φ) = (ur, uφ, uz) be the representation
of the velocity in the Cartesian and cylindrical coordinates, respectively. It will
be assumed that the velocity is independent of φ and uφ = 0. The scalar quan-
tities, pressure, mass of the solute, temperature, and PSD are also assumed
to be independent of φ and they are denoted by p = p(r, z), c = c(t, r, z),
T = T (t, r, z), and f = f(t, r, z, `), with

r(x, y) =
√
x2 + y2 and φ(x, y) = arctan(y/x), 0 ≤ φ(x, y) < 2π.

Since finite element methods are used for discretizing the equation for the
concentration one needs a variational formulation of this equation. To this
end, considering the first equation of (12), multiplying it with a test function
ψ, applying integration by parts, and incorporating the boundary condition
yields∫

Ω

∂c

∂t
ψ dx+

1

Pec

∫
Ω
∇c·∇ψ dx+

∫
Ω

(u · ∇) c ψ dx+
∫

Ω
Hc

gr ψ dx =
∫

Ω
f c` ψ dx.

This equation can be rewritten in the following form, using the L2(Ω) inner
product (·, ·)Ω, (

∂c

∂t
, ψ

)
Ω

+ ac (c, ψ) = fc (ψ) ,

where ac (c, ψ) is a bilinear form and fc (ψ) is the source integral given by

ac (c, ψ) :=
1

Pec

∫
Ω
∇c · ∇ψ dx + ((u · ∇) c, ψ)Ω +

(
Hc

gr, ψ
)

Ω

fc (ψ) := (f c` , ψ)Ω .

Now, the integrals have to be transformed to the two-dimensional domain Φ

11



spanned by (r, z). For the solute mass c and their test function ψ, one has

c(x, y, z) = c(r(x, y), z),
∂c

∂x
=
∂c

∂r
cosφ,

∂c

∂y
=
∂c

∂r
sinφ,

∂c

∂z
=
∂c

∂z
,

ψ(x, y, z) = ψ(r(x, y), z),
∂ψ

∂x
=
∂ψ

∂r
cosφ,

∂ψ

∂y
=
∂ψ

∂r
sinφ,

∂ψ

∂z
=
∂ψ

∂z
.

Applying these relations, one obtains∫ ∫ ∫
Ω
c ψ dx = 2π

∫ ∫
Φ
c ψ r dr dz.

Next, the bilinear form ac(c, ψ) and the source integral become

ac(c, ψ) = 2π
∫ ∫

Φ

[
1

Pec

(
∂c

∂r

∂ψ

∂r
+
∂c

∂z

∂ψ

∂z

)
+

(
ur
∂c

∂r
+ uz

∂c

∂r
+Hc

gr

)
ψ

]
r dr dz,

fc(ψ) = 2π
∫ ∫

Φ
f c` ψ r dr dz.

The symmetry condition at the (artificial) axial boundary, i.e., at r = 0, is
given by

∂c

∂n

∣∣∣∣∣
r=0

= 0,

which is a natural boundary condition. Note that, in comparison with the
two-dimensional integrals in Cartesian coordinates, only an additional factor
‘r’ has to be used in the implementation of the axisymmetric form, whereas
the factor 2π gets canceled on both sides of the equation.

In the direct discretization, the equation for the PSD is discretized with a
finite difference method. The application of the axisymmetric approach could
have only an impact on the last term on the left-hand side of (7). But since
u2 = u3 = uφ = uz = 0, it turns out that in the considered setup nothing
changes in comparison with the formulation in Cartesian coordinates.

3.4 Computing the Aggregation

The difficulty in the computation of the aggregation term comes from the
double integral in (9). To compute this integral accurately, special numerical
methods have to be applied. The method used in the simulations presented be-
low is described in [12,13]. This state-of-the-art method exploits the separable
structure of the aggregation kernel and uses the FFT to solve the convolu-
tion integrals. The application of this method requires the use of special grids,
which are piecewise equi-distant with respect to the volume of the particles.
In the simulations, the grid is refined towards the smallest particles because
there are much more small particles in the system than larger ones. To avoid
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r

z
Φ

(0, 0)

(210, 0.5)

Fig. 1. Two-dimensional axisymmetric computational domain.

the decrease of mass, a correction to the aggregation term is computed as
follows:

A(V ) := A(V )−mass(A(V ))
2

V 2
max − V 2

min

, (15)

where Vmax, Vmin are the smallest and largest volumes of the particles.

4 Numerical Studies

4.1 Setup of the Simulations

The non-dimensional flow domain is a cylindrical pipe of length 210 and radius
0.5. This domain is somewhat longer than the pipe in the experiments (200).
The reason for extending the pipe was that boundary conditions at the outlet
Γout are not known from the experiments. Possible differences between the ac-
tual boundary conditions and the boundary conditions presented in Section 2
should not influence the numerical results at z = 200, where the behavior of
the PBS was monitored. This goal is achieved by choosing the computational
domain a little bit longer than the actual domain. In the axisymmetric for-
mulation, the computational domain is Φ = (0, 210) × (0, 0.5), see Figure 1.

From the experiments, data at z = 2 m are known for two flow rates, namely
Vr = 30 ml/min and Vr = 90 ml/min. These flow rates correspond to Hagen-
Poiseuille profiles of the form

u = Uin,·

(
1

4
− r2, 0

)

with Uin,30 = 5.09296 for 30 ml/min and Uin,90 = 15.27887 for 90 ml/min. Exper-
imental data fseed(`) for the PSD at the inlet Γin are available. Their form
and their conversion for utilizing them in numerical simulations is described
in detail in [14, Section 4]. Following [14], the non-dimensional inlet condition
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Table 1
Number of degrees of freedom (including Dirichlet nodes).

coarse grid fine grid

temperature 1521 5729

concentration 1521 5729

PSD 142974 538526

at z = 0 has the form

fin(t, r, 0, `) =
1

f∞

6 · 107

300 Vr
fseed(`), t ∈ [0, 1000],

where te = 1000 is the final computation time. In contrast to the setup in [14],
there is a continuous entering of particles into the domain and for both con-
sidered flow regimes one obtains finally a steady-state solution. This situation
facilitates the assessment of the studied solvers.

The experimental reference data to compare with is the normalized time-
space-averaged volume fraction q3. The normalized volume fraction is defined
by

q3(t, r, z, `) =
`3f(t, r, z, `)∫ `max

`min
`3f(t, r, z, `) d`

.

At the final time te = 1000, where the steady state was reached, a spatial
averaging of the PSD for z = 200 was performed, for each discrete particle
diameter `i, i = 1, . . . 94, and then the volume fraction was computed as a
function of the diameter. Finally, the normalization was applied.

Equidistant time steps of length τ = 0.01 were used in the computations. The
domain Φ was triangulated with uniform grids (equidistant in each direction)
consisting of rectangles. On the coarser grid 168 × 8 rectangles were used
and on the finer grid 336 × 16 rectangles. On both grids, Q1 finite elements
were applied. For the grid with respect to the internal coordinate, the same
grid as in [14] was applied. It satisfies the requirements for applying the FFT
for computing the aggregation terms and it has 94 nodes. The corresponding
numbers of degrees of freedom for the two grids are presented in Table 1.

All simulations were performed with the research code MooNMD [16].

For completing the model of the PBS, the parameters in the aggregation kernel
have to be found. They were determined by calibrating the numerical results
for the normalized space-averaged volume fraction with the experimental data.
For Uin,30, a good calibration of the curve could be obtained with Csh = 8.5 ·
10−5 and Cbr = 7 · 103, see Figure 2. In the other case Uin,90, the values which
were found to be appropriate are Csh = 7 · 10−5 and Cbr = 7 · 103. This value
for Csh is slightly smaller than in the case Uin,30. A decrease of this value for
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faster flows was also observed in [14], but the difference is smaller in the setup
considered here.
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Fig. 2. Normalized space-averaged volume fraction at the outlet with optimal ag-
gregation parameters for both solvers, left for Uin,30, right for Uin,90.

Comparing the values of Csh and Cbr with those of [14], one can observe
that in the present setup both values are smaller by almost two orders of
magnitude. This means that the aggregation has less influence on the behavior
of the PSD and consequently that the growth of particles has a much stronger
impact to fit the reference curves, compared with the setup considered in
[14]. This difference in the behavior can be explained with the different ways
the concentration and the particles are injected into the flow domain in both
setups. In [14], the injection is performed only in the center of the inlet plane.
Following mainly the flow direction, there is little influence of the walls in
this setup. In the model considered here, both concentration and particles
are injected uniformly at the complete inlet plane. The cool wall lead to a
relatively small saturation concentration, see (1), such that the growth rate
(2) becomes large. Since also a lot of particles are near the wall, the growth of
particles is stimulated. In addition, particles near the wall have a much longer
residence time (in which they can continue to grow) than particles in the center
of the channel. Altogether, growth is a much more important mechanism in
the considered setup than in [14].

4.2 Computational Results

The curves for the normalized space-averaged volume fraction at the outlet in
the steady state are shown in Figure 2. It can be observed that both solvers
give almost indistinguishable results for Uin,90. In case of the lower velocity
Uin,30, the curve of the operator-splitting scheme is shifted somewhat to the
right. That means, this scheme predicts a higher amount of larger particles
than the direct discretization. In our opinion, the explanation for this behavior
comes from the different orders of the numerical schemes for computing the
growth of the particles. The direct discretization uses a third order scheme,
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whereas a first order method, which is considerably more diffusive, is used in
the operator-splitting scheme. This numerical diffusion leads to a smearing of
the results and hence to the prediction of a higher amount of larger particles.
A similar observation was made in [20]. It shall be emphasized that in the case
of the fast flow, and with that of a short residence time of the particles, no
impact of the numerical diffusion on the normalized space-averaged volume
fraction is visible.

Having a detailed look on individual points at the outlet, Figure 3, one can
see that the results between the two solvers for Uin,30 differ considerably in
the center of the channel and that they are similar away from the center.
From the curve at the center it can be clearly seen that the operator-splitting
scheme predicts larger particles. For the case Uin,90, the presentation of curves
for the individual points is omitted for the sake of brevity. Like for the space-
averaged curves in Figure 2, there are almost no differences in the curves for
the individual points.
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Fig. 3. Normalized space-averaged volume fraction at different points at the outlet
for Uin,30, fine grid.

Considering the PSD at the center of the outlet, Figure 4, one can see clearly
the smearing effect of the first order scheme used in the operator-splitting
scheme. The peak of the corresponding curve is somewhat smaller than for
the direct discretization and there are more larger particles with ` ≥ 500 µm,
which have a notable impact on the volume fraction. It can be also observed
that the direct discretization predicts more particles from nucleation.

In Figure 5, the PSD in different points at the outlet for the direct discretiza-
tion is presented. It can be seen that there is a notable amount of larger
particles also away from the center, which is in contrast to the results from
[14, Figure 8] and which supports the explanation concerning the greater im-
portance of the growth in the present setup.

The convergence to the steady state is illustrated with the evolution of the
mean temperature, the mean concentration, and the mean PSD, see Figures 6
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Fig. 4. PSD in the center of the outlet for Uin,30, fine grid.
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Fig. 5. PSD in different points at the outlet for Uin,30 and the direct discretization,
fine grid.

– 8. The mean values are given by

∫
Φ Tr drdz∫
Φ r drdz

,

∫
Φ cr drdz∫
Φ r drdz

,

∫ `max
`min

∫
Φ fr drdzd`∫ `max

`min

∫
Φ r drdzd`

.
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Fig. 6. Temporal evolution of the mean temperature for both solvers, left Uin,30,
right Uin,90.

It can be observed that the simulations with the operator-splitting scheme
attain the steady state much faster than the simulations with the direct dis-
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Fig. 7. Temporal evolution of the mean concentration for both solvers, left Uin,30,
right Uin,90.
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Fig. 8. Temporal evolution of the mean PSD for both solvers, left Uin,30, right Uin,90.

cretization. At the final time, the results are similar. The largest difference can
be observed for the mean PSD. Probably, the main reason is again the different
order of the schemes used for computing the growth. The fineness of the grid
has only a slight impact for both solvers. is used. The differences of the mean
PSD between both schemes are smaller on the finer grid, i.e., a grid conver-
gence can be already observed. Since the direct discretization applies a higher
order scheme, it can be expected that the evolution of the mean values is pre-
dicted by this scheme more accurately than with the operator-splitting scheme.
A better accuracy of higher order schemes for solving PBSs has been observed
also in [20]. The numerical diffusion contained in the operator-splitting scheme
leads right from the beginning of the simulation to relatively large particles,
which consume immediately a lot of energy and concentration for continuing
to grow. Thus, the mean values for temperature and concentration decrease
faster than for the direct discretization and the mean value for the PSD in-
creases faster.
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Table 2
Average computing time per time step.

direct discretization operator-splitting

Step 1 aggr. Step 2 total Step 1 aggr. Step 2 total

coarse grid 0.05 1.43 0.20 1.68 0.036 1.43 0.17 1.64

fine grid 0.20 5.88 0.84 6.92 0.156 5.92 0.67 6.73

4.3 Efficiency

In the direct discretization scheme, the solution of the PBS is computed in
two steps, see Section 3.1. The linear system of equations obtained form the
discretization of solute and energy equations are solved with the sparse direct
solver UMFPACK [5]. After having computed the aggregation term, the so-
lution of the PSD equation is obtained with an explicit scheme. Hence, the
solution of a large system of algebraic equations is not necessary in the direct
discretization.

The solution of the PBS with the operator-splitting scheme also consists two
steps, see Section 3.2. Since the coupled terms including the growth rate are
handled in the second step of the operator-splitting scheme, the system ma-
trices of the scalar equations in the first step (13) do not change in time.
Therefore, the system matrices are assembled and factorized (LU) once at the
first time step, and the same LU factorization is used in the sparse direct solver
UMFPACK in the subsequent time steps. In the second splitting step (14),
the system of algebraic equations are solved also with UMFPACK.

All simulations are performed using a HP SL390s computer with 3467 MHz
Xeon processors and 96 GB RAM. The average computing times taken by the
direct discretization and by the operator-splitting scheme for one time step
are presented in the Table 2. For both schemes and on both grids, the com-
putation of the aggregation is very expensive, around 85 % to 90 % of the
total computing time. Further, it has to be noted that the average computing
time per time step increases four times when the grid is uniformly refined.
Excluding the computing time of the aggregation, the time taken by the two
solvers are comparable, with the operator splitting scheme being a little bit
faster. On the one hand, this scheme gains efficiency by avoiding the solu-
tion of a problem in a higher-dimensional domain. But on the other hand,
the application of an explicit scheme for the PSD equation in the direct dis-
cretization turned out to be also quite efficient. Overall, the computing times
are dominated by the times needed for computing the aggregation. Hence, the
improvement of the efficiency of the aggregation step is the key for improving
the overall performance of both solvers.
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4.4 Summary of the Numerical Studies

The main results and conclusions from the numerical studies are summarized
below.

• Both solvers led to qualitatively the same results in the steady state, with
small quantitative differences. The differences were larger for the situation
that the particles have a long residence time in the flow domain.
• Considerable differences could be observed between the schemes in the pre-

diction of the transition from the initial to the steady state.
• The operator-splitting scheme attained the steady state with much less time

steps. Thus, if one is interested only in the steady state, this approach should
be preferred.
• Because of the use of a higher order method in the direct discretization,

it is expected that the direct discretization predicts the evolution from the
initial to the steady state more accurately. Thus, if one is interested in the
evolution of the process, the application of this scheme is recommended.
• The overall computing times for both solvers and on both grids were dom-

inated by the time for computing the aggregation.
• Excluding the time needed for computing the aggregation, both solvers were

similarly efficient, with the operator-splitting scheme being a little bit faster
in our implementation.

5 Outlook

We will pursue two main directions of research in the near future. First,
moment-based methods will be incorporated into the systematic numerical
studies. And second, more complex models will be considered. In these mod-
els, the simulation of the flow field might be necessary, the solution of the PBS
will not converge to a steady state, and, certainly most important, the PSD
will be multi-variate.

From the results presented in this paper one can conclude that the low order
discretization of (14) in the operator-splitting scheme should be replaced by
a higher order method if the evolution of the PSD is studied. For increasing
the efficiency, above all the computation of the aggregation term needs to be
performed faster. Since this computation in each spatial node is independent
of the computation in the other nodes, some sort of parallelization can be done
in a straightforward way and will be certainly very helpful.
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