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Abstract 

We consider a non-stochastic optimization problem which arises in various non-
parametric statistical settings with Holder function classes. We prove that the 
solution of this problem is finite. The application of the finiteness is illustrated via 
regression estimation with minimax Bah ad ur risk. 1 

1. INTRODUCTION 

The problem of optimal estimation of a function f from noisy data is widely discussed in 
nonparametric statistics. The optimality is considered for various minimax criteria while 
f belongs to some function class :E, see Ibragimov and Khasminskii (1981). A Holder 
function class :E (/3, L) provides a popular example 

where m = LBJ is an integer such that 0 < a :::; 1, a= /3- m ; /3, L are given positive 
constants. In a number of minimax set-ups with the class :E(/3, L) the estimators which 
are asymptotically optimal up to a constant turn out to be closely related to the solution 

·of a certain optimization problem. 
Korostelev (1993) found an asymptotically minimax exact constant Co= C0 (/3, L) for 

estimating of a fundion f, f E :E(/3, L), 0 < /3 :::; 1, with supremum norm loss from 
·observations 

Yin = f( i/n) + ein,. i = 1, 2, ... , n; n = 1, 2, ... 

where ein are i.i.d. Gaussian random variables, ein t"V N(O, o-2): it was proved that 

where 

R (") _ . f. E(n) ( llfn - flloo) 
n LI - lil SUp j W ,,/, , 

k JEE o/n 

_p_ 
1/Jn = (lnn/n) 2t3+ 1 , llflloo = sup lf(t)I, 

09~1 

(1) 

(2) 

w is a loss function satisfying standard regularity conditions, E}n) is the expectation w.r.t. 

lThe author is grateful to A.Afanasyev, A.Korostelev, O.Lepski, E.Levitin, G.Milstein, V.Spokoiny 
for the helpful remarks and discussion. 
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the true regression, fn is an arbit~ary estimator obtained from observations (1 ). The lower 
bound of the minimftx risk (2) was found to be attained by a kernel estimator, 

" 1 1 . 
fn(t) = - LYinI<h(t- i/n), I<h(·) = -hJ<(-h) 

n i 
(3) 

with some bandwidth h = h( n) and kernel I<. 
Donoho (1994) extended this result to the case (3 > 1 and to signal estimation in the 

white noise model, and showed the relations of stochastic problems to the optimal recovery 
theory (see Micchelli and Rivlin (1977) ): asymptotically efficient estimators for the model 
(1) were proved to be of the form (3) where the optimal kernel I<, as in Korostelev's result, 
is expressed via a solution 9*(t) = 9~(t) of the following optimization problem: 

9(0)--+ sup, g E Li((3, 1), 119112 ~ 1 , 

where 119112 = (!~00 92
( t)dt )112. 

(4) 

We list a number of nonparametric statistical problems, different from regression es-
timation with sup-norm loss, where optimal estimators exploit 9*. 

(a) Estimation of a probability density J(t), t E [O, 1], in the uniform norm from i.i.d. 
observations X 1 , X 2·, ••• , Xn rv J(t), with the minimax risk analogous to (2), 

g E Li((3, L; b) = {f: f E Lira 11(f3, L); f
1 

f(t)dt = 1; min f(t) ~ b > O} ' Jo 09~1 

see Korostelev, Nussbaum (1995). 

(b) Adaptive estimation in the 'white noise' model: 

dX(t) = J(t)dt + cdW(t), t E [O, 1] , 

where W(t) is a standard Wiener process, c is a small parameter (c; corresponds to 

1/ yin in (1) ), f belongs to 'ri[o,iJ(f3, L) with unknown (3, L - see Lepski (1992), Lepski 

and Spokoiny (1995). 

( c) Estimation of a regression function at a fixed point, say t = 0, from observations 
(1), i = 0, ±1, ±2, ... , with the minimax Bahadur risk (Bahadur(1960), Ibragimov and 
Khasminskii ( 1981)) 

rn(c) =inf sup ~log Pjn\lfn - J(O)I ~ c), c > 0 , 
in fE"E({3,L;B) n 
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where 
f;({3, L; B) == {!: f E f;({J, L); lf(t)I ~ B, B > O}. 

Korostelev (1995) proved for the Gaussian errors ein rv N(O, a 2 ) that for any c > O 

(5) 

where 

A((J, L) = 2Lll/ll [g*(o)J-<2+i/il) . (6) 

Korostelev and Leonov (1995 a,b) considered the case of i.i.d. errors having a probability 
density p( x) with finite Fisher information I 0 , 

Io== E[(l'(x)) 2
] < oo , l(x) == logp(x) , 

and showed that under general regularity assumptions on p( x) 

limc-(2+I/,6) lim rn(c) == -Io A(f3 L). 
c-tO n-too ' 

(7) 

Moreover, the lower bound of the minimax Bahadur risk in ( 5), as well as in ( 7), is 
attained by the estimators of the form (3) where the optimal kernel K explicitly depends 
on g*. 

Thus, the solution g* of ( 4) is of primary importance for various nonparametric prob-

lems. It is easier to study a solution x*(t) == x~(t) of the dual optimization problem 

llxll 2 --+ inf, x E f;({J, 1) , x(O) == 1 . (8) 

Indeed, using the same arguments as in Lemma 2.1 from Donoho (1994), one has: 

x*(t) == ag*(bt), a== [g*(O)t1
, b == [g*(0)] 1f,6, (9) 

(10) 

More precisely, if a solution of (4) exists, then there exists a solution of (8), these solutions 
being conne"cted by (9), and vice versa. 

For f3 ~ 1 the solution of (8) may be obtained easily - see Korostelev (1993), Donoho 

(1994): 

x*(t) == { 1 - ltl,e), if jtj ~ 1, 
0, otherwise. 
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The case /3 > 1 is much more complicated. As far as we know, neither an explicit 
form of the solution, nor its qualitative properties have been mentioned in the papers on 
nonparametric statistics. In particular, for many reasons the asymptotic behaviour of the 
function x*(t), as t-+ oo, turns out to be crucial. 

A conjecture was made in (Donoho (1994)) that for /3 = 2 t'he function x*(t) does not 
have a compact support. However, this hypothesis is not true. Moreover, the explicit 
solution of this problem was obtained by Fuller (1960). The main goal of the present 
paper is to prove the compactness of the support of x* for any (3 > 1. 

The paper is organized as follows. In section 2 we refer to the case of integer (3 and 
show its relations to the optimal control problems, special attention being given to Fuller's 
results. The main theorems are proved in Section 3. Section 4 contains some applications 
to regression estimation with the minimax Bahadur risk. 

2. REMARKS ON FULLER'S SOLUTION AND OPTIMAL CONTROL 
PROBLEMS 

To start with, we reduce the problem (8) to the optimization problem ·on the half-line. 
LEMMA 1. If the solution of the problem {8) exists, then one is unique and symmetric. 
Proof. Let's assume that there exist two different solutions xi, x 2 such that 

(p) 

Introduce a function x, x(t) = (x1(t) + x2(t))/2 . Since llx1112 = llx2ll2 , we get 

due to (11) which contradicts the optimality of x1. 

Assuming now that x*(t) # x*(-t) for some t > 0, introducing a function x(t) = 
(x*(t) + x*(-t))/2, and using the same arguments, we establish that llxll~ < llx*ll~ .D . 

Introduce the following notation: n = m + 1 , 

m = { m, for odd m, 
m - 1, for even m 

Let II · II (without any subscript) be a norm in the Hilbert space L2 [O, oo]: 
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and let.llYllE, llAllE be Euclidean norms of a (n x 1)-vector Yanda (n x n)~matrix 
A respectively. 

Lemma 1 implies that 
( i) ( 0) - 0 . - 1 3 -x* - , i - , , ... , m. 

Thus, the problem (8) may be reduced to the following one: 

where 

I(x, Y) ~ inf inf 
YEY xE.1".s(Y) 

I(x, Y) = llxjj 2
, x E F/3(Y) , 

F/3(Y) = {x: x E ~[0,001(,B, 1), X(O) = Y}, 

X(t) = (x(t), x(t), ... , x(n-i)(t))', 

Y = {Y = (yo,Y1, ... ,Yn-1)': Yo= 1; Yk = 0, k = 1,3, ... ,m}. 

So, first we need to study the properties of the solution of the optimization problem 

I(x, Y) ~ inf 
xE.?=".s(Y) 

for an arbitrary initial condition Y E Rn. 

(12) 

(13) 

If ,B is integer, ,B = n, then (13) is equivalent to a problem which is typical in the 
optimal control theory and which we refer to as problem F(n), 

F ( n) : J ( x) = 11x11 2 ~ inf, x ( n) ( t) = u ( t), I u ( t) I :s; 1, X ( 0) = Y, 

where u is a measurable function. 
For ,B = 2 the set Y consists of a single point, Y = {(1,0)'}, and the general problem 

(12) may be reformulated as 

F(2): J(x) = llxll 2 ~inf , jx(2)(t)j :s; 1 a.e., x(O) = 1, x(O) = 0, 

x(t) is an absolutely continuous function. As already mentioned, the solution of F(2) was 
obtained by Fuller (1960), the idea of his solution is as follows. 

First, it is obvious that 
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with some t1 > 0. Next, if u*( t) = + 1 for t1 ::;; t ::;; t3 , and if t2 provides the first local 
minimum of the function x*(t), then 

and we have the same set-up as in the beginning but with different initial conditions. If 
ai, i ~ 0 , denote values of the local optima of the function x*(t), it turns out that 

By direct calculations one obtains 

la
t2 la 1s/2 ;-:;-;--:_ 

x;(t)dt = 0 (23q2 
- 14q + 23)y 1 + q , ao = 1 , 

0 30 

therefore, (14) and (15) yield the value of the functi0nal J(x*): 

The minimize:i; to Jq(x*) equals to 

Q ~ qopt = l~ (3 + y'33 - )26 + 6v'33) 2 ~ 0.058 . 

Now we present the explicit formulas for x*(t): 
let L 1 = t 0 = 0, . t 1 = y'l + Q , let for j ~ 1 

Then 

where 

.T** = ~im t2j = 2.Jl+Q/(1- jQ) ~ 2.71 . 
J-tOO 

The optimal control u* is defined by 

6 

(14) 

(15) 



It is worthy to note that a time-optimal trajectory (see Pontryagin et al (1962)), i.e. the 
solution x to the problem 

T-+ min, lx(2)(t)I :::; 1, X(O) = (1, O)', X(T) = (0, O)' , x(t) is abs. continuous, 

is related in above formulas to q = 0: 

{ 

1 - t2 /2 ' 
x(t) = (t - 2) 2 ;2, 

0, 

if 0 :::; t :::; 1, 
if 1 :::; t :::; 2, 
if t 2: 2. 

The value of the functional Jon this trajectory equals to J(x) = 23/30 , thus 

J(x*)/ J(x) ~ 0.9965. 

The problem F(2) played an important role in the optimal control theory since it pro-
vided an exam~le of a linear system with the optimal control having an infinite number 
of switchjngs on a finite time interval. This phenomenon is often called a 'Fuller's phe-
nomenon' while corresponding optimal control is called 'chattering', see Marchal (1973). 
A large bibliography on this topic as well as a number of new results are presented. in 
Zelikin, Borisov (1991 ). In particular, a problem that we call C(n) is studied in the cited 
above paper: 

C(n): f 0 

r(X(t))dt -+ inf 

. X(t) = AX(t) + bu(t), X(O) =YE Rn , 

where r is a continuously differentiable function, 

r : Rn -+ R1
, r ( 0) = 0, r ( X) 2: 0 ; 

X(t) = (x 1(t), x2(t), ... , xn(t))' is an absolutely continuous vector function, 
u(t) is a measurable function, lu(t)I :::; 1 ; 
A, b are constant ( n x n )-matrix and ( n x 1 )-vector respectively. 

Introduce the following assumptions. 
Al. Vectors b, Ab, ... , An-lb are linearly independent. 

(16) 

A2. The function r(X) is strictly convex on variables xi, ... , xk; r(X) does not depend 
on Xk+i, .•• , Xn , k :::; n. 
A3. Let G = {x E Rn: x1 = ... = Xk = 0 ; Xj # 0 for some j > k }, then 

mm max l(Ax+bu)1I > 0 if x E G, 
lul.:::;I l~j~k 
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The following result is proved in Zelikin, Borisov (1991). 
Theorem ZB. Under Assumptions A1-A3 for an arbitrary fixed integer n and for an 

arbitrary fixed Y E Rn there exists a unique solution X ( t) == Xn,Y ( t) of the problem 

C(n)) this solution hav£ng a compact support: for some T, T == T(n, Y) < oo, 

It is obvious that the proble~ F(n) is the special case of the problem C(n) with 

X1 == x, X2 == x, ... 'Xn == Xn-l ; r(X) == xi ' 

0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 

A== b == (17) 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 

It may be easily verified that Assumptions Al, A2 are valid for F(n), and smce 
k == 1, (Ax+ bu)i == x2 , Assumption A3 may be rewritten in the form 

A3'. lx2I > O fo~ x E G. 

But X == (0, 0, 1, 0, ... , O)' E G , theref~re, Assumption A3 is violated and Theorem ZB 
cannot be applied directly to F(n), n 2: 3. 

Nevertheless, the approach used in Zelikin, Borisov (1991) may be applied for the 
analysis of the pro bl em F ( n). Moreover, in the next section we prove the result analogous 
to Theorem ZB for the solution of (13) with arbitrary (3. The final step is to establish 
the finiteness of the solution of the general problem (12). It should be emphasized that 
Lemma 6 from the next section which· plays a key role in the proof of the compactness 
follows the idea:s of Lemma 16 from Zelikin, Borisov (1991). 

3. MAIN RESULTS 

First, we sketch the basic steps of our proof. Let f3 be an arbitrary fixed number, (3 > 1. 
· (A) We show that for any Y E Rn there exists an 'admissible' function from the set 
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F,e(Y) , i.e. a function with finite L2 [0, oo]-norm (Lemma 2). 

(B) Since the functional I(x, Y) is non-negative, it follows from step (A) that there exists 
a value I*(Y), 

I*(Y) = IE(Y) = inf I(x, Y) , 0 ~ I*(Y) < oo , 
xEF,a(Y) 

(18) 

and we prove that the infimum is attained by some z(Y) = z,e(Y) E F,e(Y), 

I*(Y) = I(z(Y), Y) 

(Theorem 1). 
( C) We establish the finiteness of the function z(Y) for any Y (Lemmas 3-6, Theorem 2). 
(D) We prove the finiteness of the solution of the general problem (12) (Theorem 3). 

LE'.t Fb(Y) = {x :· x E 1',e(Y), llxll < oo}. 

Lemma 2. The set F~ (Y) is non-empty J or an arbitrary fixed Y E Rn. 
Proof. As above, use the notation 

f3 = m +a·, 0 <a~ 1 , n :::;:.m + 1 . 

Let T be a fixed positive number, let X(t) be a solution of the system (16) where A., b 
are defined by (17), X = (x,x, ... ,x(m))', and 

(19) 

here A', b' denote transposed matrices, 

It is well known, see Krasovsky (1968), that the matrix D is non-singular for any T > 
0, X(T) = 0 , and for T ~ 1 the following estimate is valid: 

max lle-A't D- 1 llE < d/T , 
09~T -

(20) 

d = d(n) is a constant depending on n and not depending on T. (19) and (20) entail for 
arbitrary t, t 1 E [O, T] : 
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(21) 

Therefore, if we define x 1(t) by 

xi(t) = { x(t) , 0 ~ t ~ T, 
0, t > T; 

then (21) implies that x1 E F~(Y) .D 

THEOREM I. For an arbitrary fixed Y E Rn there exists a unique solution of the 

problem {13). 
Proof. Let 

F = F,l3(Y). n {x: llxll 2 ~ 2/*(Y)}' 

where I*(Y) is defined by (18). Lemma 2 entails that the set Fis non-empty. Note that F 
is a convex set while llxll 2 is a continuous strongly convex functional in the Hilbert space 

L2 [0, oo]. Thus, if we prove that F is closed with respect to the strong convergence in 
L 2 [0, oo], then the statement of the theorem is a mere consequen_ce of fundamental results 
in the optimization theory (see, for example, Vasiljev (19~1), T~eorem 1.3.8). 

So, let Xn E F and for some x 

llxn - xii --+ 0 as n--+ oo . (22) 

Since the _space L2 [0, oo] is complete, llxll < oo . Next, strong convergence implies weak 
convergence as well, thus, from the identity 

applying ( 22), we immediately get: 

lim llxnll = llxll, llxll ~ 2I*(Y) · n-+oo 
(23) 

To prov~ that x E F/3(Y) , first remark that the definition of the set F/3(Y) entails 

k = 0, 1, ... , m - 1 ; ({3 - k) ! = ({3 - k) (/3 - k - 1) ... ({3 - m + 1). 
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Now let T be an arbitrary fixed positive constant and let 

F~o,T](Y) = {x: x E ~[o,TJ(f', 1), X(O) = Y }. 

(24) yields that for an arbitrary x E F~o,T](Y) 

sup sup lx(k)(t)I ~ C1 , 
05k5m 095T 

where 0 1 = C1(T, Y, !') is a constant not depending on x. Therefore, the functional 

class F~o,T](Y) is uniformly boi:inded and equicontinuous which entails that the sequence 

{ xn} converges to x uniformly in the interval [O, T] and that x E F~o,T](Y) ( see, for 

example, Flett (1966), Theorem 8.3.3, or Ilyin and Poznyak (1980), Theorem 1.9). Since 
T is arbitrary, we get that x E F,e(Y) , which together with (23) proves the theorem. D 

Let z(t, Y) = z,e(t, Y) be a solution of (13) and 

( ) ( ( ) 8z(t, Y) amz(t, Y) )' 
z t' y = z t' y ' at ' ... ' atm ' 

G (.Y) ( 1-1/ ,e 1-m/ ,e )' O µ = . µyo, µ Yi,···, µ Ym , µ _> · 

. Next lemma is an analog of Lemma 14 from Zelikin, Borisov (1991), see also Bershanskii 
(1979), transformation P3; Donoho (1994), Lemma 2.1. 

LEMMA 3. Z(t, Gµ(Y)) = Gµ(Z(~, Y)), I*(Gµ(Y)) = µ2+if,e I*(Y) . . µ 

Proof. Note that if z1(t) = µz(µ/113 , Y), then z1 E F,e(Gµ(Y)), thus, 

On the other hand, if z2(t) = µ-1z(µ1 fl't, Gµ(Y)), then z2 E F,e(Y), and 

The statement of the lemma now follows from (25),(26). D 

LEMMA 4. I*(Y) is a continuous strictly convex function in Rn. 
Proof. Let z1(t) = z(t, Yi), z2(t) = z(t, 12) , 

z(t) = az1(t) + (1 - a)z2(t) , 0 ~a~ 1 . 
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.. 
Note that the functional llzll 2 is strongly convex and, hence, strictly convex. Since z(O) = 
aYi + (1 - a)Y; , then 

Next, since I*(Y) ~ 0 , this function is proper convex and, hence, continuous - see 
Rockafellar (1972), Theorem 10.4 (compare also with Zelikin, Borisov (1991), Lemma 
13). 0 

Next lemma verifies the continuity of the function z(t, Y) in the second argument, see 
also Zelikin, Borisov (1991), Corollary 2. 
LEMMA 5. Let 

Zn(t) = z(t, Yn) , zo(t) = z(t, Y), lim Yn = Y , 
n-+oo 

and let T > 0 be an· arbitrary fixed constant. Then the sequence { zn} converges to z0 

uniformly in [O, T]. 
Proof. Using the same arguments as in the proof of Theorem 1, we obtain that there 
exists a subsequence {znk} converging to some function z uniformly in [O, T].. Applying 
Fatou lemma and lemma 4 leads to : 

f
00 

.Z2(t)dt :::; liminf f
00 

z~k(t)dt lo k-+oo lo (27) 

Since the solution of (13) is unique, (27) implies that z(t) = z0(t) and that the subsequence 
{ nk} coincides with the original sequence. 0 

Let We be a level surface of the Bellman function I* (Y)' 

Introduce functions 

We = {Y : J*(Y) = C} , C > 0. 

te(Y) = {t: I*(z(i, Y)) = c/2, YE We}, 

r( c) = sup te(Y). 
YEwc 

LEMMA 6. r( c/2) = v11f3r( c) with v = 2-[l/(2+i/f3)l. 

Proof. Let Y E Rn , I*(Y) = c . First, remark that 

lim Z ( t, Y) = 0 , 
t-+oo 

12 

(28) 



otherwise it easily follows that I*(Y) = oo (see also Zelikin, Borisov (1991), problem 7). 
Next, we prove that 

r(c) < oo. (29) 

On the contrary, let us assume that there exists a sequence {Yn, Yn E we} such that 

Assume w.l.g. that { tn} is non-decreasing and limn-roo Yn = Yo. (28) entails that for an 
arbitrary positive R there exists T = T(R) > 0 such that 

lz(t,Yo)l::s;R/4, t2::T. (30) 

It follows from lemma 4 that there exists R = R( c) such that 

llYllE 2:: R if w(Y) 2:: c/2 . (31) 

Put T = T(R) and let tn 2:: T. From Lemma 5 we get for all m 2:: M, M = M(tn, R), 

(32) 

Now remark that due to the monotonicity of {tn} (31) implies: · 

Therefore, it follows from (32) that lz(tn, Yo)I > R/2 , which contradicts (30) and proves 
(29). 

Let Yi E We, t1 = ie(Yi) and 
ii 2:: r(c)-c, (33) 

c is an arbitrary small positive. Lemma 3 entails that 

thus, 
(34) 

i2 2:: r( c/2) - c (35) 
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If Y3 = Gv-1 (12) , then }3 E We , and, similar to (34), we obtain from (35) and Lemma 3 

thus, 

r( c/2) - c ::::; v1f f3r( c) 

The statement of the lemma follows from (33), (34), (36). D 

Let T*(Y) = T5(Y) = inf{T: z(t, Y) = 0 , t ~ T }. 

THEOREM 2. T*(Y) < oo for any YE Rn. 
Proof. Let I*(Y) = c. Then due to Lemma 6 

T*(Y) ::::; r(c) + r(c/2) + ... + r(c/2k) + ... = r(c)[l + v1f/3 + v2 f/3 + ... ] _ 

= r( c)/(1 - v1ff3) < oo .D 

(36) 

THEOREM 3. For an arbitrary /3 > 1 there exists a unique solution x* = x~ of the 
optimization problem·{12); x~(t) = 0 for all t ~ T**, T** = TJ* < oo . 
Proof. Lemma 4 implies that 

I*(Y) -t oo as llYllE -t oo , 

therefore, since I* is strictly convex, there exists a unique Y* = Y,8 , llY*llE .< oo , such 

that 
inf l*(Y) = I*(Y*) 
YEY 

and 
x*(t) = z(t, Y*) , T** = T*(Y*) . o 

Remark 1. For the integer case, /3 = n , general results of the optimal control theory. 
(see Pontryagin et al (1962), Afanasyev et al (1990)) imply that if t < T*(Y), then 

lz(n)(t, Y)I = 1 ' 0::::; t < T*(Y) . 

Thus, the solution of (13) is a spline: introduce the notation 
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Then 

(t Y) _ { gi(t), if t E [ti, ti+i], to= 0 1. t· _ T*(Y) 
z ' - 0, t > T*(Y) ' i~~ i - • 

Remark 2. Communications with A.Afanasyev show that the results of Afanasyev et 
al (1990) may be generalized to the non-integer case as well, which leads to the following: 
let 

and 

z(t, Y) = {gi(t), if t E [t(i,t)i+iJ, to= 0 , ,lim ti= T*(Y). 
0, t > T* y HOO 
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(note that gi = 9i for /3 = n ). 

Thus, the function z(t, Y) is on the bouPdary of the set Li(/3, 1): if i = tk, tk < t < 
tk+I , then 

hence, the equality is attained in Holder inequality. 
Though it might be hardly expected to obtain the explicit solution for f3 # 2, we hope 

to find estimates for the sequence of switching moments { tk} and for the value of its limit, 
T*(Y). 

4. APPLICATIONS TO REGRESSION ESTIMATION WITH BAHADUR 
RISK 

In this section we mention possible applications of. the finiteness of the function x* to 
regression estimation with the minimax Bahadur risk. 

Regression estimation at a fixec point. In Korostelev and Leonov (1995a) the 
double limiting equality (7) was pr<?ved without any assumption on ~he finiteness of x* 

for f3 > 1. Therefore, it took considerably more technical efforts to obtain lower and upper 
bounds of the minimax risk rn( c) for /3 > 1, if compared to the case /3 < 1. These cases 
were studied separately - see Theorem 2 from the cited paper, remarks on pp.15,18,19. 
Now, since for f3 > 1.the function x* does have a compact support due to Theorem 3 of 
the previous section, there is absolutely no difference between the cases mentioned above. 
Therefore, the co.mplicated proof for f3 > 1 may be omitted. 

Regression estimation with supremum norm loss. Consider a model 

Yin = f (din) + ~in, i = 1, 2, ... , n; n = 1, 2, ... (37) 

Dn = {din E [O, 1 ], i ~ 1, ... , n} is an arbitra~y deterministic design and 

fn(c;Dn)= inf sup .!_logPJn)(llfn(Dn)-flloo~c), c>O, 
fn(Dn) fE'L.({3,L;B) n 

where llflloo = sup09~ 1 IJ(t)I , fn(Dn) is an arbitrary estimator obtained from obser-

vations (37) with the design Dn· 
Correspondence with A.Korostelev show that applying Theorem 3 for the model (37) 

with the Gaussian errors ~in rv N(O, a 2 ) is expected to lead to the following analog of (5): 

lim inf fn(c; Dn) = -a-2c2+I/(3 A(/3, L) [1 +-0(1)] , 
n-+oo Dn 

(38) 
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where o(l)--+ 0 as c--+ O; A(/3, L) is defined by (6). Hence, the exact constants appearing 
on the right-hand side of equalitiee (5) and (38) coincide. We also expect to verify the 
analog of (7) for the risk fn( c; Dn)· 
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