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Abstract

In the present work we report the possibility of passive mode-locking based on the
coherent interaction of light with the amplifying and absorbing media in lasers with ring
and linear cavities. We consider the realistic and practically interesting case when the
absorbing and amplifying media are separated in the cavity space but not homogeneously
mixed in the volume of the cavity, as was considered earlier in the literature. We perform
qualitative consideration of coherent passive mode-locking based on the area theorem of
McCall and Hahn and its graphical representation for the first time. We show that other,
not soliton scenarios of passive mode-locking exist, and that coherent mode-locking is
self-starting (lasing without an injection seeding pulse is possible). We point to the fact
that the spectral width of the laser generation can be significantly larger than the spectral
bandwidth of the gain medium. Numerical simulations were performed using the system of
Maxwell-Bloch equations in the slowly varying envelope approximation.

1 Passive mode-locking in lasers, basic theoretical approaches

Investigations of mode-locking in lasers began as soon as the first lasers were developed in the
1960s [1–7]. As we mentioned in the introduction, discovering mode-locking led to a great suc-
cess in the realization of extremely short laser pulses with high peak power. Below we consider
the basic approaches that are used to describe theoretically passive mode-locking regimes in
lasers.

The primary element allowing periodic pulse generation is the nonlinear absorber. A nonlin-
ear absorber is a material where the absorption decreases with increase of the light intensity.
Such materials as dyes, crystals or semiconductors with strong resonant absorption can be
used for this purpose. The latter are most actively used nowadays, because of their significant
advantages in comparison to dye absorbers and other solid state materials used before (see
Refs. [8–12]). As an example of the recent progress in this area, the discovery of so-called
semiconductor saturable absorber mirror (SESAM) [8, 13] can be mentioned. In this device,
semiconductor absorber material is integrated into the laser mirror which results in dependence
of the mirror reflectivity on the light intensity. Such a technique allows for the creation of pas-
sively mode-locked solid state lasers generating light pulses with a duration from femtoseconds
to nanoseconds [8,13].

Passive mode-locked semiconductor lasers are actively studied today. In such lasers, quantum
dot and quantum well materials can be used for both gain and absorbing sections, resulting in
short optical pulses with a repetition rate in the range from few to hundreds GHz [9–12,14]. Due
to their compact size and high repetition rate they are considered as promising candidates for
optical communication systems.
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Before the detailed discussion of theoretical approaches to passive mode-locking mechanism,
an important remark is to be mentioned. Short pulse propagation occurring in a resonant
medium strongly depends on the ratio between the two parameters: pulse duration τp and
polarization relaxation time T2. There are two general situations that can be imagined in this
context, typically referred to as an incoherent interaction of a light pulse with medium, and the
coherent interaction [15–17]. In the former case the pulse duration is much larger than the po-
larization relaxation time, τp >> T2. Polarization of the medium "follows"the optical field in a
quasi-stationary manner and can be adiabatically eliminated from the model equations describ-
ing interaction of the light with medium [15, 17]. During the pulse propagation, it reduces the
population difference in the medium, thus making it saturated. Therefore, the term “saturable”
is used in the literature to denote such absorber. Due to the lack of instantaneous nontrivial
dynamics of the atomic polarization, such type of mode-locking will be called “incoherent” in the
following, in contrast to “coherent” mode-locking considered below. The majority of the papers
considering theoretically passive mode-locking are based on an incoherent approximation. We
briefly overview this class of theories.

P. G. Kryukov and V. S. Letokhov explained mode-locking using so-called fluctuation mecha-
nism [18–21]. According to this model the laser radiation at the low-intensity linear stage con-
tains a lot of chaotic ultrashort spikes. At the next, nonlinear, stage, when the intensity of ra-
diation increases, the absorbing medium bleaches. This leads to a faster amplification of the
spikes having the highest intensity, and, simultaneously, to their compression. Thus, a periodic
sequence of mode-locked ultrashort pulses appears. This model was successfully applied to an
explanation of mode-locking regimes in Ruby, Nd-glass and other lasers.

Analytical study of passive mode-locking was first performed by H. Haus, see Refs. [22, 23]
and review [24]. His theory was developed for so-called fast and slow saturable absorbers and
contains significant simplifications. In the case of fast saturable absorber (see Ref. [23]) its
population difference relaxation time must be much smaller than the pulse duration. Another
simplification is that the pulse shape does not change significantly per cavity round-trip and
that the absorber saturation is relatively weak. In Ref. [22] an analytical study of passive mode-
locking with so-called slow saturable absorber was performed. In this theory the pulse duration
is assumed to be much smaller than the absorber recovery time. Besides, the approximation
of a weak gain and absorption were assumed. In Ref. [25] New also developed an analytical
theory of mode-locking. He demonstrated that combined action of the absorption and saturation
in the amplifier can lead to a pulse compression. The results obtained by New were applied to
explain the picosecond pulse generation in mode-locked dye lasers. Further development and
analysis of the mode-locking models were performed in Refs. [26–28]. This analysis was based
mainly on the numerical simulations.

The disadvantages of the Haus and New approaches were elucidated in Refs. [29–31]. In partic-
ular, the ability of the models of Haus and New to adequately describe real laser systems were
questioned for many practical situations. For example, semiconductor mode-locked lasers have
rather high gain and losses per cavity round-trip. To overcome this limitation, in Refs. [29–31] a
delay differential equations (DDE) model was developed. This model is able to describe mode-
locking in the parameter range typical for semiconductor lasers. The only essential assumption
of this model was a ring-cavity geometry with unidirectional lasing. An analytical and numerical
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study of such a model is possible using bifurcation analysis and asymptotic techniques. Further-
more, the DDE model and some its generalizations were successfully applied to study different
dynamical regimes in passively mode-locked lasers [31–36].

Let us consider a qualitative physical picture of the pulse evolution in a mode-locked laser [15,
37]. After the pulse passes through the absorber, its leading edge is strongly attenuated. On
the other hand, the trailing edge propagates in the medium which is already saturated and thus
experiences weaker absorption rate. As a result, the laser pulse shape becomes asymmetric,
see Fig. 1a. Note that the pulse maximum is shifted backward during this process, meaning that
it moves at a velocity smaller than the velocity of light in vacuum c.

In the amplifying medium the situation changes significantly. The pulse front propagates in a still
unsaturated medium and thus is strongly amplified. The gain becomes saturated, and the trailing
edge grows slower, as illustrated in Fig. 1b. As a result of nonlinear amplification, the pulse
maximum is shifted forward. Therefore, the velocity of the pulse maximum is larger than the light
velocity in vacuum c. This, of course, does not contradict the causality principle. The possibility
of superluminal propagation of the pulse maxima in an amplifying medium was demonstrated
experimentally and theoretically in Refs. [15, 38–41]. As a result of this process the resulting
pulse is narrowed and achieves its stationary shape after many round-trips. This process is
illustrated in Fig. 2.

Figure 1: Illustration of the pulse shape evolution in a saturable absorber (a) or saturable ampli-
fier (b) [15,37].

In contrast to previous considerations, if the pulse duration is short enough, the dipole moment
(medium polarization) induced in the nonlinear medium does not have time to decay during
the interaction time. This happens if the pulse duration τp is much less than the polarization
relaxation time, τp << T2, i.e. “coherent” interaction of light with a medium takes place. In
this case the polarization of the medium is determined by the field values in the previous time
moments and does not “follow” the field, as in the case of incoherent interaction. In other words,
the medium possesses a “phase memory” during the relaxation time T2, which strongly changes
the picture of the pulse propagation.
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Figure 2: Pulse-shortening process by simultaneous action of the absorber and amplifier [37].

Coherent pulse propagation in amplifying and absorbing media is well-studied currently, see
Refs. [15, 16, 42–52]. In the case of such coherent interaction, an interesting phenomenon of
self-induced transparency (SIT) may arise. SIT was discovered by S. L. McCall, E. L. Hahn in
Refs. [42,43] and observed experimentally in different media. The influence of SIT on the pulse
propagation is the following: the leading edge of the pulse transfers the particles from the ground
energy state to a coherent superposition of the ground and excited states. Thus, some part of
the field energy is stored in the medium. The trailing edge of the pulse causes the atoms to emit
electric field and thus the energy stored in the medium returns back to the field. In this way, the
atoms are excited at the leading edge of the pulse and move back to the ground state at the
trailing edge. In this way, the pulse may restore its initial shape during the propagation and thus
travel in the nonlinear medium without loss of energy. This leads, however, to the decrease of
the pulse velocity. The important quantity describing the pulse dynamics in the coherent regime
is the pulse area, defined as [43]:

Φ(t, z) =
d12
~

∫ t

−∞
E(t′, z)dt′, (1)

where d12 is the transition dipole moment of the two-level atom, and E(t, z) is the pulse en-
velope. The area Φ of a stable SIT-induced soliton is 2π. An important result of the SIT theory
is the so-called pulse area theorem. This theorem governs the evolution of the pulse area Φ
during its propagation in a two-level absorbing (or amplifying) medium with an inhomogeneity
broadened line [15,16,43,44]:

dΦ

dz
= −α0

2
sinΦ, (2)

where

α0 =
8π2N0d

2
12ω12T

∗
2

~c
, (3)
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is the absorption coefficient per unit length, N0 is the concentration of two-level atoms, ω12 is
the medium transition frequency and 1/T ∗

2 is the width of inhomogeneously broadened line.
The solution of (2) is

tan(Φ/2) = tan(Φ0/2)e
−α0z/2, (4)

where Φ0 is the initial pulse area. The solution of (2) is presented in Fig. 3a. According to Fig. 3
the area of pulses with Φ0 smaller than π tends toward 0 during propagation in the medium
(see also Fig. 3b). If the pulse area is slightly larger than π (for example Φ0 = 1.1π as in
Fig. 3a), the pulse area tends to a stationary value 2π and a stable soliton is formed. Besides,
the pulse duration increases simultaneously, see Fig. 3c. In contrast, if the initial pulse area
2π < Φ0 < 3π as in Fig. 3d, pulse narrowing takes place. And finally, if the Φ0 close to 4π
initial pulse may split into 2 separate 2π pulses, see Fig. 3e, where the evolution of pulse shape
for Φ0 = 3.6π is illustrated.

Figure 3: (a) Branches of solution of Eq. (2). For an absorbing (amplifying) medium with α0 > 0
(α0 < 0), the pulse area evolves in the direction of increasing (decreasing) distance z toward
the nearest even (odd) multiple of π. (b)-(d): Evolution of pulses with the initial areas Φ0 = 0.9π,
Φ0 = 1.1π, 2.9π, 3.6π respectively, with distance and time [43].

Coherent pulse propagation in an amplifying medium can be also described by (2) taking into
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account the fact that α0 changes its sign. From Eq. (2) it follows that the same diagram Fig. 3a
can be used, only the opposite z-direction must be taken. Accordingly (see Fig. 3), a pulse with
the initial area Φ0 < π (or 2π) approaches a steady-state with the area π. During this process,
the pulse duration decreases. Note that such π-pulse leaves the initially excited two-level atoms
in the ground level after its passage.

Thus, a stable 2π soliton in an absorbing medium, and a stable π soliton in a gain medium
can be formed. This fact was first noted in Ref. [15] where a coherent pulse propagation in a
two-component medium containing a gain and absorbing material was studied theoretically.

This observation led to the proposal of so called coherent passive mode-locking, a theory de-
veloped in Refs. [53,54] and later expanded upon in recent papers [55–59]. In order to achieve
2π and π pulse areas in the absorbing and gain medium respectively, it is necessary to take
the dipole moment of the absorbing medium two times larger than the dipole moment of the
gain medium. In contrast to the case of usual passive mode-locking, coherent mode-locking
allows for the generation of optical pulses with spectral bandwidth larger than the bandwidth of
the gain medium. On the other hand, in Refs. [53–59] it was assumed that both the absorbing
and amplifying media are homogeneously “mixed” in the same sample. This is difficult to realize
for most of passively mode-locked laser systems [9–12, 14], with the exception of a quantum
cascade laser structure developed in [55,56]. Because of this, below in this work we will extend
the theoretical analysis of the coherent mode-locking to the case when both absorber and gain
medium are placed separately in the cavity.

Before proceeding further with numerical analysis, let us consider the pulse evolution qualita-
tively, using a drawing showing the evolution of the pulse area in different parts of the cavity,
which we refer to as McCall-Hahn diagrams in the following. It allows us for better understand-
ing of basic mechanisms responsible for the pulse generation in a situation when the gain and
absorber sections are separated, as well as to estimate the range of parameters where the co-
herent mode-locking is possible. We note that such an analysis, to the best of our knowledge,
have never been considered in the literature before.

2 Area theorem and coherent mode-locking

In this section we present analysis of coherent mode-locking using the graphical representation
technique which we call “McCall and Hahn diagrams”.

Consider the situation when the absorbing and amplifying media are separated in space and
the dipole moment of the absorber is twice that of the amplifier. Let us plot the solutions of
Eq. (2) for the absorber and amplifier on the same plane for the case when the coefficient α0

determined by Eq. (3) is the same for both media (in this case N0 in the amplifier is four time
that of the absorber). The branches of solutions of Eq. (2) placed in this way are shown in Fig. 4.
Importantly, we can chose the direction of motion along the branch of the absorber (blue curves
noted as 1a, 2a, 3a, 4a) from left to right, whereas for the amplifier it is opposite, from right to
left (red curves noted as 1g, 2g), which is explained by the opposite signs of α0 in both sections.

Using such diagram technique we are able to see immediately the most important peculiarities
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Figure 4: Branches of solution of Eq.(2) for the absorber 1a, 2a, 3a, 4a (blue lines) and the
amplifier 1g, 2g (red line) for |α0| = 10 cm−1.

Figure 5: Schematic representation of mode-locked laser with a ring cavity where unidirectional
counter clockwise lasing is assumed.
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Figure 6: Using the McCall and Hahn diagrams from Fig. 4 for illustration of the pulse area
evolution. The pulse evolution follows the path G1 → G2 → A1 → A2 → G3 → G4 → A3
in the gain (along red line) and in the absorber (along the blue line) sections in z-direction,
backward and forward, correspondingly, which reflects different signs of α in both sections. The
vertical sections of the path correspond to the reflection from the mirror, when the pulse area
decreases.
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of the pulse area evolution. Let us assume that we have a laser with a ring cavity operating
in a unidirectional lasing regime, see Fig. 5. In this laser a short pulse satisfying the condition
of coherent interaction passes through the amplifier, is reflected from the mirror 1 with the re-
flection coefficient for the field R, and then enters the absorber. Assume that the other mirrors
do not produce any energy loss. We also assume that the pulse travels long enough in every
cavity section such that both the gain and absorber are able to recover to their equilibrium val-
ues between the pulse passages. Let us now suppose that a short pulse with the initial area
Φ0 = 0.25π enters the amplifier (cf. Fig. 6). This area corresponds to the point G1 on the red
(amplifier) curve. Propagation in the amplifier corresponds to a shift of this point from right to left
along the amplifier branch (red curve in Fig. 6) to G2, which is accompanied by an increase of
the pulse area. After the pulse passes the amplifier, it is reflected by a non-ideal mirror and its
area is thus reduced. Hence, the working point moves down vertically from G2 by the distance
corresponding to the pulse area decrease caused by the reflection. Then, moving along the
straight line parallel to the horizontal axis one arrives to the point A1, which now describes the
pulse entering the absorber. Evolution of the pulse in the absorber is described by moving from
left to right along the blue branch until the point A2. Now one returns back to the gain branch
in G3. The point G3 is located above the initial point G1, meaning the overall increase of the
pulse area after the whole cycle.

Now we repeat the cycle by moving from G3 again along the gain curve, arriving to G4, then
descend down to A3 on the absorber curve, and so on. Note that the pulse area increases
because the slope of the gain curve (and its length) is larger than that of the absorption curve.
Finally, after long run the pulse area at the output of the amplifier and absorber will approach
π and 2π, respectively, leading to a stationary pulsating regime. Note that if we decrease the
mirror reflection coefficient strongly enough, or, alternatively, increase the absorber length, the
working point might now move down every cycle thus tending toward zero, meaning the pulse
decay.

Using such an approach one can predict whether a stable limit cycle exists and can be achieved
from an initial pulse with the small area. The appearance of such limit cycles can be confirmed
by numerical simulations. An example of such cycle and its development is presented in Fig. 7.
For the exemplary parameters a regime develops from the initial pulse with the small area Φ0 =
0.001π in 50 round-trips times as shown in Fig. 7a, which approaches the limit cycle depictured
separately in Fig. 7b.

The difference between the slopes of the amplifier and absorber curves allows us to start the
iteration process from very small pulse areas and approach finally the nonzero limit cycle. That
in particularly means, that an injection of a seed pulse is not always necessary to achieve the
stationary short-pulse regime. This is in contrast to the scheme with “mixed” absorber and gain
used in previous considerations of coherent mode-locking, where the initial pulse is absolutely
necessarily to achieve the pulsed regime.

Nevertheless, if we increase the absorber length, the low-signal limit becomes purely absorbing,
thus requiring injection of a seed pulse to start generation. Fig. 7 illustrates this point. In particu-
lar, Fig. 8a illustrates the evolution of the pulse area with the absorber length increased 2 times
in comparison to that in Fig. 7 and initial pulse area Φ0 = 0.15π. In this case the system tends
to zero pulse area. On the other hand, if one starts from Φ0 = 0.2π, the system approaches a
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Figure 7: Evolution of the pulse area Φ in the absorber and gain medium (a) from the initial value
Φ0 = 0.001π to a limit cycle (b) in a ring cavity geometry. The blue and red curves corresponds
to the pulse propagation in the absorber and gain sections, correspondingly.

nonzero limit cycle after 7 round-trips, as shown in Fig. 8b.

Using the area theorem Eq. (4) one can easily obtain the condition of lasing self-starting for
coherent mode-locking. Suppose that the gain and absorber sections have the lengths Lg, La

and the gain (absorption) coefficients α0g and α0a respectively, and the process starts from a
weak pulse with the initial area Φ0 ≪ 1, meaning that the working point is on the lower part of
the red branch in Fig. 6. Since in the lower part of the branches Φ ≪ 1, tan(Φ) ≈ Φ, the area
theorem Eq. (4) can be rewritten in the form:

Φ ≈ Φ0e
−α0z/2. (5)

Assume that a seed pulse with the initial area for gain medium Φ0B ≪ 1 starts propagating in
the amplifier at the point B, see Fig. 5. At the output of the gain section (point C) the pulse area
according to Eq. (5) will be

ΦC = Φ0Be
α0gLg/2.

Since only the part of the radiation is reflected from the mirror 1, the initial pulse area for ab-
sorber (point A in Fig. 5) is given by ΦA = RmdΦC , where md = d12a/d12g the ratio of
absorber/gain dipole moments. After passing through the absorber (point B) the pulse area will
be:

ΦB = ΦAe
−α0aLa/2 = RmdΦ0Be

α0gLg/2e−α0aLa/2. (6)

In order to self-start the lasing one must have ΦB ≥ mdΦ0B . This condition can be rewritten in
the form:

Reα0gLg/2e−α0aLa/2 ≥ 1. (7)
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Figure 8: Evolution of the pulse area Φ in the ring cavity geometry for large length of the gain
section. The evolution starts from the point 1, which corresponds to Φ0 = 0.15π in (a) and
Φ0 = 0.2π in (b). In the former case, the system approaches zero, whereas in the later one it
moves toward a nonzero limit cycle.

With the help of the diagrams introduced above (and Fig. 3 where the MCall and Hahn solution
is illustrated) we will now analyze the situation, when the ratio of the dipole moments is not equal
to two. First, we consider the case when md < 1. The corresponding diagram for md = 0.5 is
shown in Fig. 9a. In this case the limit cycle is realized with the branch 1g of the amplifier and 1a
of the absorber. On the amplifier branch, the pulse with the area tending to π is formed, whereas
the absorber will decrease the pulse area. Because of the energy conservation, decrease of the
pulse area means that the pulse envelope must change its sign. Thus, the generated pulse must
have at least one point of zero intensity. Experimental observation and theoretical study of such
zero-area (0π) formation in the absorber medium was presented in [60,61].

In the example presented in Fig. 9b we set md = 1.5. In this case, the branch 1g of amplifier
and one of the branches 1a or 2a of the absorber can take part in the generation. A limit cycle
formed with 1g and 2a has the following feature: when moving along 2a, the pulse area tends
to 2π and its duration increases in contrast to the cycle with 1g and 1a.

The situation when 2 < md < 3, namely, md = 2.5 is shown in Fig. 9c. One branch of
the amplifier 1g and one of the three branches of the absorber 1a, 2a or 3a will be involved
in this case. The cycle formed on the branch 3a yields a reduction of the pulse duration. This
happens because the pulse moving from amplifier to absorber has the area Φ > 2π. During
its propagation in the absorber Φ will tend to 2π and the pulse duration will decrease. Thus,
the ratio of the dipole moments influences the duration of the laser pulse in a coherent mode-
locking.

In the situation when md > 3 (not shown) the branch 4a can participate in generation. On this
branch, the formation of radiation with area 4π takes place, which must split into two 2π pulses
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Figure 9: Branches of solution of Eq. (2) for an absorber (blue lines) and amplifying medium for
different ratios md. (a): md = 0.5, (b): md = 1.5, (c): md = 2.5.
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which might have different amplitudes and durations. Thus, in this situation two pulses will arise
over a single cavity round-trip.

It is to be remarked that the McHall and Hahn diagrams demonstrated above were first intro-
duced in the present work and provide a unifying framework allowing better understanding of
the passive mode-locking process in the coherent regime. It demonstrates the stability of the
pulsating regimes over the wide range of parameters. Sometimes such stable pulsations are
obtained even without an external seed.

3 Fundamental equations for laser model

To study the mechanism of mode-locking in a two-section laser we carry out numerical exper-
iments based on a set of Maxwell-Bloch equations describing propagation of light in a two-
level medium in a slow-varying envelope approximation for the field and for the atomic polariza-
tion [15–17,44,46,62–65].

The set of equations governing its evolution has the form:

d

dt
P±
c (z, t) = −P±

c (z, t)

T2

−∆ωP±
s (z, t)− d12

2~
∆ρ(z, t)B±(z, t), (8)

d

dt
P±
s (z, t) = −P±

s (z, t)

T2

+∆ωP±
c (z, t) +

d12
2~

∆ρ(z, t)A±(z, t), (9)

d

dt
∆ρ(z, t) = −∆ρ(z, t)−∆ρ0

T1

− 2d12
~

(A+(z, t)P+
s (z, t) + A−(z, t)P−

s (z, t)+ (10)

+B+(z, t)P+
c (z, t) + B−(z, t)P−

c (z, t)),

∂A±(z, t)

∂t
±c

∂A±(z, t)

∂z
= −4πωd12N0P

±
s (z, t), (11)

∂B±(z, t)

∂t
±c

∂B±(z, t)

∂z
= 4πωd12N0P

±
c (z, t). (12)

Equations (8)-(10) describe the evolution of slowly varying envelopes of two counter-propagating
waves (in-phase P±

c (z, t) and quadrature P±
s (z, t) components) of real and imaginary parts of

non-diagonal element of the quantum mechanical density matrix, as well as the population dif-
ference ∆ρ between the lower and upper energy levels of the medium. Equations (11) and (12)
govern the evolution of amplitudes (in-phase A±(z, t) and quadrature B±(z, t) components)
of the two counter-propagating optical waves. The propagation direction is denoted by (+) and
(−) respectively. The derivation of the model equations is given in Appendix A. The equations
include parameters of the two-level system, such as transition dipole moment d12, concentra-
tion of two-level atoms N0, population difference relaxation time T1, polarization relaxation time
T2, carrier frequency of the optical field ω, frequency detuning ∆ω of the radiation field from
transition frequency of the two-level medium ω12, and population difference at the equilibrium
∆ρ0. For the amplifying medium, ∆ρ0 = −1, for the absorbing medium, ∆ρ0 = 1. We make
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all these parameters depending on the space coordinate z, so that these equations can be ap-
plied to the description of the gain and the absorbing medium located in different sections of
the cavity. The set of equations (8)-(12) affords sufficiently complete modeling of evolution of
extended two-level media in a cavity, taking into account multi-mode character of radiation and
the nonlinear coherent effects accompanying interaction of the light with the two-level medium.
It was also used in our recent study of lasing without population inversion in a two-level opti-
cally dense medium [66], and spectral condensation phenomenon arising when narrow-band
absorbing medium is placed in the resonator with broad-band amplifying medium [67].

We apply the system of equations (8)-(12) to analyze the situation when both laser gain and
absorber media are placed in the ring optical cavity in the case of unidirectional propagation,
as well as the case of a linear cavity. In our analysis below we will assume that resonance
frequencies in the gain and absorber are equal to each other and to the carrier frequency of
the electric field, i.e. ∆ω = 0. The simplified system of Maxwell-Bloch equations under these
conditions can be written in the form:

∂A±(z, t)

∂t
± ∂A±(z, t)

∂z
= 4πω12d12N0P

±
s (z, t), (13)

d

dt
P±
s (z, t) = −P±

s (z, t)

T2

+
d12
2~

∆ρ(z, t)A±(z, t), (14)

d

dt
∆ρ(z, t) = −∆ρ(z, t)−∆ρ0

T1

− 2d12
~

(
A+(z, t)P+

s (z, t) + A−(z, t)P−
s (z, t)

)
. (15)

4 Coherent mode-locking in lasers with a ring cavity

In the case of a ring cavity we put in Eqs. (8)-(12) A−(z, t) = 0, assuming thus unidirectional
propagation and using the notation A+(z, t) ≡ A(z, t). First, we consider the case when the
ratio of the transition dipole moments absorber/gain md = 2. We perform numerical simulations
of the model equations (8)-(12) for the parameter values given in Table 1 and Table 2.

Table 1: Parameter values used in the numerical simulations
Parameter Gain Absorber
central wave length of the medium λ12g = 0.7 µm λ12a = 0.7 µm
length of the medium Lg = 0.15 cm La = 0.45 cm
concentration of two-level atoms N0g = 12.5 · 1014 cm−3 N0a = 12.5 · 1014 cm−3

transition dipole moment d12g = 5 Debye d12a = 10 Debye
population difference at equilibrium ∆ρ0a = 1 ∆ρ0g = −1
population difference relaxation time T1g = 0.16 ns T1a = 0.16 ns
polarization relaxation time T2g = 40 ps T2g = 40 ps

Assuming also the initial conditions with the constant amplitude close to non-lasing solution, we
perform numerical simulations showing that after a transition process taking a few tens of cavity
round-trip times, regular sequence of short optical pulses appears. The pulse-to-pulse period
of this pulse train is larger than the cold cavity round-trip time T = L/c = 20 ps. Since we
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Table 2: To Table 1
cavity length L = 0.6 cm
reflectivity of the mirror R = 0.8
initial pulse area Φ0 = 10−10π

assumed T2g = T2a = 40 ps, which is larger than T and also an order of magnitude more
than the pulse duration (1 ps), the interaction of light and matter is in coherent regime and
accompanied by the formation of pulses with the area close to 2π in the absorber and π in the
amplifier.

Fig. 10a,b illustrates the spatial distribution of A(z), ∆ρ(z) and Ps(z). In Fig. 10a the laser
pulse passes through the absorber whereas in Fig. 10b it is located in the amplifier (the pulse
moves from left to right during the propagation). Fig. 10 shows the pulse at the time moment
close to the 100th round-trip after the beginning of the numerical simulations, when the stable
pulsing regime is already established. At the leading edge of the pulse the population difference
∆ρ decreases until the value close to −0.8. Ps > 0 in this interval, hence, absorption of the
radiation takes place. At the trailing edge Ps < 0, and the population difference increases and
is recovered to its initial value. The absorber starts to radiate, returning energy to the trailing
edge of the pulse. Thus the pulse shown in Fig. 10 has all the features of the SIT one.

After passing through the absorber the pulse propagates in the amplifier, see Fig. 10b. It can
be seen that at the trailing edge of the pulse the population inversion ∆ρ becomes positive. Ps

is, on the other hand, negative, therefore, the medium gives the energy to the field. The gain
medium becomes absorbing after the pulse passage. This behavior is typical for the π pulse
propagating in the amplifying medium.

Fig. 10c illustrates the dependence of the pulse area inside the cavity during a single pass. It
is clearly seen that, as it was predicted in the previous section, the pulse area is close to 2π in
the absorber and to π in the gain. A pulse with the area noticeably smaller than 2π arrives to
the entrance of the absorber and then its area rapidly grows. Interestingly, the pulse area in the
amplifier increases somewhat but then start to decrease. The initial increase above the value
of π is because of the finite relaxation time of the media. The subsequent decrease is due to
self-stabilization mechanism of the π-pulse area.

Fig. 10d shows the distribution of the electric field amplitude A(z) in the cavity over four round-
trips. It demonstrates one more feature of the pulse propagation inside the cavity, namely that
the pulse velocity in the absorber is smaller than in the amplifier, which manifests itself in a bend
of the pulse propagation trajectory on the boundary between the absorber and amplifier.

Another important feature should be mentioned in this case. The spectrum of the laser genera-
tion is much broader than the width of the gain (absorption) profile since pulse duration τp ∼ 1
ps is smaller than medium coherence time T2g = T2a = 40 ps in this case. This can be seen
from Fig. 11a,b, where the time dependence of the output field intensity |A|2 and its spectrum
together with the Lorentzian gain and absorption line shapes are plotted. In the usual passive
mode-locking theory the situation is different — the pulse duration is determined by the band-
width of the gain medium. Also, it is seen from Fig. 11b that the pulse repetition frequency is
smaller than cold-cavity one (50 GHz) because of the fact that pulse in the absorber propagates
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Figure 10: (a), (b) Distribution of the electric field amplitude A(z) in the cavity (red line), Ps(z)
(blue line) and population difference ∆ρ(z) (black line) when pulse is located in the absorber
(a) and in the gain (b) sections. (c) Evolution of the pulse area in the cavity during one round-
trip. (d) Distribution of the electric field amplitude A(z) field in the cavity. The parameter values
given in Table 1 and in Table 2.
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with the velocity smaller than c. In the amplifier π-pulse propagates with the velocity of light c.
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Figure 11: (a) Time dependence of the output field intensity. (b) Its spectrum (red) and normal-
ized Lorentzian gain and absorption line shapes (blue) for the example illustrated in Fig. 10.

Fig. 10b shows that the value of polarization in the absorber after the pulse passage is not equal
to zero due to the fact that some of the pulse energy is left in the absorber [43]. It changes its sign
along the medium and has relatively large value resulting in an additional light emission by the
absorber. This is so-called "coherent optical ringingöf the field and polarization [68]. Coherent
ringing creates radiation that propagates in the direction of the amplifier. However, immediately
after the passage of the pulse the amplifier is still absorbing, resulting in attenuation of this
radiation. Besides, the radiation remaining in the absorber will affect the propagation of the
pulse when it appears in the absorber again. This fact can be seen from our simulations on the
behavior of the pulse area in the absorber (see Fig. 10c), which is non-monotonic. One can see
an increase of such “jitter” with the increase of the absorber length. On the other hand, the effect
of coherent ringing decreases with decrease of T2. Note that such “noise of polarization” created
by a laser pulse in the absorber is characteristic for the coherent mode-locking. And its influence
on the coherent mode-locking regime we report for the first time. Numerical simulations for
the case of mixed gain and absorber in the soliton laser shows a large value of such ringing.
A detailed quantitative analysis of the impact of coherent ringing on the pulse dynamics is a
subject of a separate study and is not considered in this paper.

The example presented above demonstrates the existence of coherent mode-locking in a ring
optical laser geometry with unidirectional lasing and the gain spatially separated from absorber,
in contrast to previous works. One of the most important parameters influencing the dynamics
is the time relaxation of polarization in the gain and absorber. In the example shown in Fig. 10
T2a = T2g = 40 ps. Our numerical simulations show that the regime of short optical pulses
is preserved if these times are independently varied from 2 ps until 50 ps. Influence of the
relaxation time T2 = T2g = T2a on the pulse parameters in the coherent mode-locking regime
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is shown in Fig. 12, where the half-width pulse maximum duration τp, its peak intensity Ip, and
energy density W is shown in the steady state regime after 100 round-trips times.

2 7 12 17 22 27 32 37 40
0.6
0.9
1.2
1.5
1.8

2

τ p, p
s

2 7 12 17 22 27 32 37 40
0

0.25
0.5

0.75
1

I p, a
rb

. u
ni

ts

2 7 12 17 22 27 32 37 40
0.5

0.75

1

T
2
, ps

W
, a

rb
. u

ni
ts

(b)

(c)

(a)

Figure 12: Dependence of the pulse duration τp (a), the peak intensity Ip (b) and energy density
of the pulse W (c) on the polarization relaxation time T2 = T2g = T2a. Other parameter values
are as in Table 1 and Table 2.

It is seen from Fig. 12 that the pulse duration increases with the decrease of T2, whereas the
peak intensity and the energy density decreases. This behavior can be explained by the fact that
with decrease of the ”phase memory time” T2 the part of the energy transferred to the absorber
at the leading edge and coming back at the trailing edge decreases, which in turn influences the
gain. The behavior of the pulse area in the cavity under different values of T2 is further illustrated
in Fig. 13. One can see that this dynamics is quite similar for very different values of T2.

Fig. 14 presents the dependence of the pulse duration τp (a), peak intensity Ip (b) and pulse
energy density W (c) on the ratio of the dipole moments of the absorber and amplifier md. We
see that with increasing of d12a the pulse duration decreases from 1.35 ps to 200 fs. This leads
to the increase of the peak intensity approximately 4 times, thus keeping the pulse energy ap-
proximately constant, see Fig. 14c. Numerical simulations were performed using the parameter
values T2g = 20 ps, N0g = N0a = 18 · 1014 cm−3. Other parameter values are as in Table 1
and in Table 2.

Let us consider the case when the ratio of the dipole moments of the absorber/gain md < 1. In
this case, according to the area theorem, the pulse area in the absorber must tend to zero. The
example of the numerical simulations of the model equations (8)-(12) when d12a = 2.5 Debye
(md = 0.5 < 1) with other parameters are as in Table 1 is given in Fig. 15. Fig. 15a illustrates
the distribution of the pulse amplitude in the different parts of the cavity. In particular, in the
absorber, according to the area theorem, the pulse area tends to zero and increases to π in
the gain section, see Fig. 15b. Our numerical simulations indicate that there are two pulses with
different values of the peak intensity for one round-trip time at the output from the gain medium,
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Figure 13: Dependence of the pulse area in the cavity Φ under different values of T2 = T2g =
T2a. (a): T2 = 4 ps, (b): T2 = 8 ps, (c): T2 = 12 ps, (d): T2 = 16 ps. Other parameter values
are as in Table 1 and Table 2.
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Figure 14: Dependence of the pulse duration τp (a), the peak intensity of the pulse Ip (b) and
energy density of the pulse W (c) on the ratio of the dipole moment of the absorber and gain
medium md. T2g = 20 ps, N0g = N0a = 18 · 1014 cm−3. Other parameter values are as in
Table 1 and Table 2.

see Fig. 15c.

Finally, let us consider the case when the ratio of dipole moments md > 3, namely md = 4.
In this situation McCall and Hahn diagrams predict appearance of two pulses. Fig. 16 illustrates
the results of numerical simulations when d12a = 20 Debye with other parameters are as in
Table 1. Generation has the form of a periodic train of pulse pairs, one for each cavity round-trip
time, see Fig. 16c. The pulse area in the absorber is close to 4π and tends to π in the gain
section as shown in Fig. 16c.

In conclusion, numerical experiments using the system of Maxwell-Bloch equations in the slowly
varying envelope approximation shows the presence of a stable coherent mode-locking in a
two-section ring-cavity laser with absorbing and amplifying media separated in space. Mixing
of these media, as it was done in the pioneer works in Refs. [53, 54] is not necessary for the
coherent mode-locking to arise. Moreover, in such two-section laser injection of a seed pulse
is also not a necessary condition for the appearance of pulsed regime. In contrast, self-starting
from noise is possible. Remarkably, the width of the lasing spectrum can be significantly broader
than the width of the gain line. Coherent mode-locking regime is preserved even if the relaxation
time of the polarization in the amplifier and absorber either larger or smaller than the round-trip
time of the cavity. In examples presented above T2 of the media varied from 40 ps to 2 ps at a
cavity round-trip time 20 ps.

We also have demonstrated the influence of the dipole moments absorber/gain ratio md on
the coherent mode-locking regime. In the range 1.5 < md < 3 an increase of md leads to
a decrease of the laser pulse duration. Our numerical simulations indicate that the coherent
mode-locking regime is also possible if md < 1.5 and md > 3. However, in this case several
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Figure 15: Evolution of the electric field amplitude in the cavity A(z, t) (a), Dependence of the
pulse area Φ(z) inside the cavity (b) and the temporal dependence of the output intensity |A|2
(c) for d12a = 2.5 Debye and other parameter values given in Table 1 and Table 2.
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Figure 16: Evolution of the electric field amplitude in the cavity A(z, t) (a), Dependence of the
pulse area Φ(z) inside the cavity (b) and the temporal dependence of the output intensity |A|2
(c) for d12a = 20 Debye and other parameters given in Table 1 and Table 2.
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pulses per cavity round-trip time occur.

5 Modeling coherent mode-locking in a laser with a linear
cavity

In the previous sections we considered a two-section laser with a circular geometry. Here we
consider an another scheme namely a linear laser geometry. To perform numerical simulations,
we use the system (13)-(15) with both propagation directions retained.

There is an important difference between a laser with a linear cavity and a ring one. In case
of a ring cavity (Fig. 17a) a pulse coming out of the gain medium passes first the absorber
section and only then reenters the gain. In such a way, some time is gained for the relaxation
processes in the gain section. During this time the gain in the medium recovers under the action
of pumping, and the medium becomes an amplifier again.

Another situation arises in the linear cavity, see Fig. 17b. Consider what happens in the am-
plifying medium when it almost completely fills the cavity. Assume that a pulse propagates in
the amplifying medium from the point A to B. This pulse, leaving the point B, is reflected from
the mirror and goes back to the point B again. At this time the gain medium near B has not
recovered yet, and thus no amplification arises. As a result, intensity of the pulse does not in-
crease near the point B. In contrast, near A the gain has already recovered, so that finally net
amplification may still take place in the amplifier. Amplification around point B will also takes
place for the pulse, when it comes from the opposite direction. As a consequence, the existence
of two counter-propagating pulses is possible in this situation, which is shown in this section by
the means of numerical simulations.

Figure 17: Schematic representation of pulse motion in a ring (a) and linear lasers (b). by m the
cavity mirrors are marked.

In the numerical simulations we consider a situation when the amplifier section is placed in the
center of the cavity (as Fig. 18a but without absorber), and the cavity mirrors have the same
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reflection coefficients. Numerical experiment visualized in Fig. 18a demonstrates a stable self-
mode-locking regime with the pulse-to-pulse distance equal to the half of the cavity round-trip
time. The pulse repetition rate is explained by the appearance of pulses in both of the counter-
propagating waves.
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Figure 18: Results of the numerical simulations of the laser generation with a linear cavity. On
the y-axis is the value of the Rabi frequency ΩR = d12gA/~ normalized to T2g. Parameters
of the model: cavity length L = 0.6 cm, length of the gain medium Lg = 0.15 cm, optical
wavelength λ = 0.7µm, reflectivity of the laser mirrors: R = 0.6, T1g = 0.5 ns, T2g = 1 ps,
d12g = 5 Debye, N0g = 15 · 1015 cm−3. (a) The stable pulsation regime in the case when only
the gain section is present in the cavity. The period of the pulse train is 20 ps and equal to the
half of the round-trip time. (b) Active mode-locking due to modulation of the reflectivity of one of
the cavity mirrors with 20 percent depth and the period equal to the cavity round-trip time (40
ps). The repetition rate of the pulse train is now equal to the one of external modulations. (c)
Passive mode-locking in a two-section laser shown in Fig. 18a. The length of the absorber is
La=0.15 cm, and T1a = 0.6 ns, T2a = 0.5 ps, d12a = 5 Debye, N0a = 5 · 1015 cm−3.

In order to suppress one of the pulses we may, for instance, introduce an external modulation
of the reflectivity of one of the mirrors with the period close to the cold-cavity repetition period
2L/c. In this way we introduce elements of active mode-locking. In this case due to competition
between the pulses in the cavity there remains only one pulse, for which the mirror reflectivity
is maximal at the moment of the pulse incidence, see Fig. 18b. The counter-propagating wave
can also be suppressed if an absorbing section is placed between one of the mirrors and the
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amplifier, as shown in Fig. 18c.

The solutions presented in Fig. 18 shows that the absorber creates a regime in which only one
pulse propagates in the cavity. The peak amplitude value of this single pulse is larger and pulse
duration is smaller than in the case of two pulses.

One should note that in the situation considered above the laser operates in incoherent regime,
since the laser pulse duration is larger than the medium coherence time T2. In particular, the
population difference does not change its sign (because ΩR · T2g ≃ 1 in Fig. 18). The electric
field amplitude A, slow envelope of the imaginary part of the non-diagonal element of density
matrix Ps as well as population difference ∆ρ for the case given in Fig. 18c are shown in Fig. 19
for various positions and directions of the pulse propagation inside the cavity.

Figure 19: Distribution A(z) = A+(z) + A−(z), Ps(z) = P+
s (z) + P−

s (z) and ∆ρ(z) in
the laser with the linear cavity in the regime of steady-state generation during a single pass. All
the parameters are the same as in Fig. 18. (a) The scheme of the laser. The pulse is shown
as it propagates from right to left and is located in the gain medium (b) and, at the later time
moment, when it is located in the absorbing medium (c). Red arrow indicates the direction of
pulse propagation.
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One can expect the appearance of coherent mode-locking if we increase significantly the am-
plitude of the pulse. For this, we may increase the concentration of the particles in the amplifier
and absorber (and set them equal to each other) and make the dipole moment of the absorber
twice larger than that of the amplifier. The later is very important for the realization of coherent
mode-locking as shown in the previous section. The results of numerical simulations in such
modified system are shown in Fig. 20. By changing the model parameters in this way mode-
locking is in the regime of coherent interaction of light and matter, both in the amplifier and in
the absorber.

Another example of the coherent mode-locking regime is given in Fig. 21. In contrast to the pre-
vious case the polarization relaxation time in the absorber T2a and the concentration of absorb-
ing particles N0a were increased. Such parameter modifications do not lead to disappearance
of passive mode-locking, but modify the scenario of the pulse propagation in the cavity in the
mode-locking regime and the pulse shape at the output of the laser. During the evolution the
pulse exits the amplifier and enters the absorber with the area close to 2π (for the absorber),
see Fig. 21a. Due to the losses at the left mirror (R = 0.6) during the back trip the pulse propa-
gates in the absorber as a π-pulse. The leading edge of the pulse loses energy and inverts the
medium. Behind the pulse, coherent polarization begins to emit electromagnetic radiation which
is in anti-phase to the pulse, see Fig. 21b. As a result, at the input of the amplifier the pulse has
the area close to zero, see Fig. 21c. Propagation of this pulse in the amplifying medium has
the following features: the part of the pulse envelope with a negative sign is amplified not so
efficiently as the leading edge, Fig. 21d. In the amplifier the pulse area increases and tends to
π. As a result, at the laser output a train of intense short pulses with a small burst at the trailing
edge is observed. After the reflection from the mirror the pulse area decreases, but during the
pulse propagation in the amplifier it tends to a π pulse again, see Fig. 21e-Fig. 21f.

The burst at the trailing edge of the pulse disappears if the reflectivity on the left facet of the
laser is 1. The scenario of the pulse propagation changes in the following way: from the amplifier
to the absorber comes a pulse, which behaves in the absorber like 2π pulse, see Fig. 22a. After
the reflection from the left-side mirror the pulse does not change its area and propagates as
a 2π-like pulse in the absorber, Fig. 22b. Due to the finite relaxation time of the absorber the
pulse area changes only slightly during the propagation in the absorber, and the sign change of
the field envelope does not occur, see Fig. 22b. Then the pulse propagates in the gain section
as a π pulse, see Fig. 22c-Fig. 22d. After the reflection from the mirror and propagation through
the amplifying medium (Fig. 22e) a π pulse is formed (Fig. 22f). This pulse propagates as a 2π
pulse in the absorber and the propagation cycle is repeated again.

In these examples the relaxation time of polarization was very close to the pulse duration (∼ 1
ps). In this situation the coherent mechanism of the light-matter interaction plays a major role.
However, the scenario of pulse formation differs from the case of a ring laser, considered in the
previous section. The particular difference is that the existence of π (2π) pulses along the whole
length of the amplifier ( absorber) is not required for a passive mode-locking to arise.

Importantly, the examples of the coherent mode-locking presented in this section were repro-
duced by us in the large parameter range, in particular for the parameter values typical for
semiconductor, solid states and gas lasers.

Besides, our numerical experiments show that the regime of coherent mode-locking is preserved
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Figure 20: Distribution of the electric field amplitudeA(z) = A+(z)+A−(z) (red line),Ps(z) =
P+
s (z)+P−

s (z) (blue line) and ∆ρ(z) in the laser with the linear cavity in the regime of steady-
state generation during one pass (λ = 0.7µm, R = 0.6, T1g = 0.5 ns, T2g = 1 ps, d12g = 5
Debye, Lg = 0.36 cm, T1a = 1 ns, T2a = 0.4 ps, d12a = 10 Debye, La = 0.22 cm,
N0g = N0a = 15 · 1015 cm−3). In (a) - (f) the consequent stages of the pulse propagation are
shown, with different propagation direction (which is alternated by reflections) and pulse position
in the absorber and amplifier. Red arrow indicates the direction of pulse propagation.
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Figure 21: (a)-(f) Distribution of the electric field amplitudeA(z) (red line), polarization amplitude
Ps(z) (blue line) and population difference ∆ρ(z) in the laser with a linear cavity in the coherent
mode-locking regime during a single round-trip for different pulse positions and propagation
directions for λ = 0.7µm, R = 0.6, T1g = 0.5 ns, T2g = 1 ps, d12g = 5 Debye, Lg = 0.36
cm, N0g = 15 · 1015 cm−3, T1a = 1 ns, T2a = 1.2 ps, d12a = 10 Debye, N0a = 18 · 1015
cm−3, La = 0.22 cm. Red arrow indicates the direction of pulse propagation.
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Figure 22: (a)-(f) Distribution of the electric field amplitude A(z) (red line), polarization ampli-
tude Ps(z) (blue line) and population difference ∆ρ(z) (black line) in the linear cavity laser in
the coherent passive mode-locking regime during a single round-trip for different positions and
directions of propagation of pulse in the gain and absorbing sections. The reflectivity of the left
mirror R = 1. Other parameters are as in Fig. 21. Red arrow indicates the direction of pulse
propagation.
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if the T2 is larger or comparable with the pulse duration and cavity round-trip time. In the linear
cavity laser, analogously to the ring cavity one, the pulse duration depends on the dipole moment
ratio md. This ratio may influence also the existence of single or multiple pulses per round-trip
time. Thus, the predictions provided by the McCall and Hahn diagrams are well reproduced by
numerical experiments.

In summary, in this section we demonstrated a possibility of coherent mode-locking in a two-
section linear cavity laser. The particular pulse regimes are quite different from the ones ap-
pearing in the ring cavity laser.

6 Conclusions

In this section we summarize the results of the present paper. We have presented a theoretical
justification of the possibility of coherent passive mode-locking in a two-section laser, appearing
due to the coherent character of light-matter interaction. An important feature of coherent mode-
locking is the possibility to generate short optical pulses with spectral bandwidth wider than the
gain bandwidth of the active medium.

Qualitative consideration of the coherent passive mode-locking based on the area theorem of
McCall and Hahn and its graphical representation has been performed here. We developed a
diagram technique, allowing to elucidate the resulting regime qualitatively, in particular to find
stable limit cycles in the system. Examples of such stable pulsed limit cycles have been pre-
sented. It has been shown that the regime of the coherent mode-locking can occur, depending
on the parameters, via self-starting, or via an injection of an external seed pulse. The parame-
ters of the pulses depend heavily on the ratio of the transition dipole moments of the absorber
and the gain media. The duration of the pulse decreases if this ratio increases. When it is smaller
than 1 or more than 3, multiple pulses on a single cavity round-trip arise.

To perform numerical experiments, a model of a two-section laser has been developed, which
is based on Maxwell-Bloch equations in the slowly varying envelope approximation. The results
of numerical experiments have demonstrated the existence of coherent mode-locking regimes
in a two-section laser with a ring or linear cavity in a wide range of parameters. The regime
of coherent mode-locking can be realized in semiconductor lasers, solid-state or gas lasers.
The results of the numerical simulations show also that certain amount of energy is saved in
the absorber in between the pulse passages, allowing for complicated pulse-to-pulse dynamics.
The scenarios of coherent mode-locking which have been considered in this paper differ from
those previously proposed in the literature. In particular, to realize stable coherent mode-locking
regime in a two-section laser the injection of an external seeding pulse has been shown to be
unnecessary. Our numerical simulations show also that the coherent mode-locking exists in the
lasers with cavities having low Q factors, unlike the earlier proposal of a soliton laser in [53].

Finally, it is to be mentioned that the effect of SIT was discovered and explained by McCall
and Hahn more than 40 years ago. However, the SIT has not found up to now significant ap-
plications in photonics because of high powers and high instrumental precision needed for this
technique. From the practical point of view, the incoherent mode-locking schemes have been
up to now superior over coherent ones. Nevertheless we believe that implementation of the co-
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herent mode-locking in two-section lasers proposed here allows to overcome the fundamental
limits of the “classical” mode-locking techniques and to use such lasers as sources of ultrashort
pulses with high repetition rate.

Authors are grateful to Dr. I. A. Chekhonin and Dr. A. Pimenov for helpful discussions.
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