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Abstract

Palisades are characteristic tissue aberrations that arise in glioblastomas.
Observation of palisades is considered as a clinical indicator of the transi-
tion from a noninvasive to an invasive tumour. In this article we propose a
computational model to study the influence of genotypic and phenotypic het-
erogeneity in palisade formation. For this we produced three dimensional re-
alistic simulations, based on a multiscale hybrid model, coupling the evolution
of tumour cells and the oxygen diffusion in tissue, that depict the shape of
palisades during its formation. Our results can be summarized as the follow-
ing: (1) we show that cell heterogeneity is a crucial factor in palisade forma-
tion and tumour growth; (2) we present results that can explain the observed
fact that recursive tumours are more malignant than primary tumours; and (3)
the presented simulations can provide to clinicians and biologists for a bet-
ter understanding of palisades 3D structure as well as glioblastomas growth
dynamics.

1 Introduction

Glioblastoma multiforme is the most aggressive and malignant type among all brain
tumours, with a mean survival rate of 17 weeks without treatment and between
30 and 37 weeks for treated patients, depending on treatment. In addition, long
term survival probability to glioblastoma is considered to be less than 3% [11].
Glioblastomas can arise as a new tumour and quickly grow, invading the brain
tissue (novo glioblastoma); or they can develop from low grade astrocytomas (type
I and II) as a recursive tumour (secondary) [11]. The principal histologic features
of glioblastoma are the presence of necrotic regions; the vascularization of the
tumour and the highly invasiveness of the malignant cells. This last characteristic
is what ultimately makes glioblastoma lethal, as surgical removal of the tumour is
not enough to eliminate all the malignant cells.

For arising as a secondary tumour, genotypic and phenotypic transitions of the ma-
lignant cells are crucial events [28]. While in lower grade gliomas cells are replica-
tive and the tumour profile is confined into a determinate region; in glioblastomas
the malignant cells spread out and invade the nearby parenchyma [10, 1]. To ac-
quire the invasive abilities, malignant cells undergo a series of changes allowing
the switch from aerobic to anaerobic metabolism. Once the tumour has grown up
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to the state of creating hypoxic regions the cells enhance the Warburg effect when
undergoing anaerobic metabolism [1, 5]. As a consequence they secrete lactate
acid into the extracellular medium modifying the PH. The lack of oxygen and the
increase of acidity of the environment may work as a natural selective process.
Those cancer cells that do not have the capabilities to resist high lactate concen-
trations and longtime anaerobic metabolism may die. The result is a tumour where
the malignant cells have increased their invasive capabilities as well as anoxia re-
sistance [5, 13]. In addition the PH change plays counter healthy cells that are not
as well adapted to acid environments as malignant cells.

The next step in the invasive cascade is enhancing the migrating mechanisms. In-
tracellular pathways such as the adhesive and enzymatic machinery are activated
in order to degrade and migrate throughout the nearby tissue [30, 27, 25]. In ad-
dition, a set of endocrine factors such as VEGF are released into the environment
to stimulate the formation of vasculature to compensate the lack of oxygen and
nutrients produced as a consequence of high spatial competition [35].

The result is an aberrant hypervascularized environment where the malignant cells
have spread out breaking the initial non-invasive geometry of the tumour. In this
scenario, removal of the tumour and examination of 2D dimensional cuts under mi-
croscopy allows to differentiate areas of rows of malignant cells forming structures
that wide from a wall-like shape to ellipsoidal rings. This process, in reference to the
geometrical similarity that reminds ancient wood fortresses, is known as palisade
formation.

1.1 Palisade formation

How do palisades arise is still an open debate, however there are two principal
accepted hypotheses, which differ in their initial conditions but are characterized
by very similar underlying mechanisms [2, 3].

The first hypothesis is based on the formation of necrotic regions as a conse-
quence of high cell confluence. At certain spatial positions of the growing glioblas-
toma, high cellular confluence may occur due to intense replication. Competition
for oxygen and/or other nutrients may result in a local phenotypic change. Those
cells that do not have enough nutrients may develop an invasive phenotype that
allows them to migrate to better irrigated areas. As a consequence, a collective mi-
gration process towards nearby vessels is enhanced, leading to the characteristic
palisade shape.

The second hypothesis considers palisade formation as a result of vessel collapse.
Since palisades can be localized around occluded vascular vessels in glioblas-
tomas [2, 3], this aspects suggests the following formation process. Initially the
tumour grows around a vessel. This position facilitates the tumour supply of oxy-
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gen and nutrients. The cells that are closest positioned to the vessel obtain easier
nutrients and oxygen than those positioned at the outer part of the tumour [8]. At
certain moment the tumour grows up to the size of exerting a pressure that results
in vessel collapse. This moment represents a dramatical change for those cells
that were positioned nearby to the vessel, which lack oxygen and nutrient sup-
ply as they are now at the centre of the tumour. As a consequence they become
hypoxic and, if the tumour geometry or the irrigating vasculature do not change,
they die of anoxia. At the outer rim of the tumour, the effects of vessel collapse
are different. At this position the cells are not immersed in the tumour mass and
when lack of oxygen and nutrients occurs they can activate migration mechanisms
that allow them to invade the nearby tissue in the search for areas where oxygen
and nutrients are available. The collective migration of these cells results in the
formation of a palisade [1, 2, 3, 21].

1.2 Importance of cellular genotypes heterogeneity

Despite the fact that often literature characterizes palisades solely as zones of
high cellular confluence, there are two other important factors inseparable to pal-
isade formation. Firstly, conjoined to palisade formation the tumour front acquires
an invasive profile. And, secondly, the invaded healthy tissue at certain distance
from the palisade is colonized by malignant cells expressing normoxic and hypoxic
phenotypes [5, 9].

The colonizing process depends strongly on the particular characteristics of each
cell composing the invasive front. The sensitivity of each cell to oxygen conditions
determines the switch from normoxic to hypoxic phenotype. This sensitivity is reg-
ulated by the particular cellular genotype that governs the activation of genes that
switch to anaerobic metabolism and enhance invasion mechanisms. Thus it is es-
sential to understand how the particular phenotypic response of each cell depends
on the cellular genotype.

Many theoretical models consider that two cells with identical genotype express
the same phenotype under identical environmental conditions. However cellular
individual response is likely to differ among cells, despite they have identical geno-
type or not [32, 6, 34, 23, 33, 18, 29]. The cellular genotype does not determine
cell behavior in a deterministic fashion but it rather works as an inherited starting
profile stochastically sensitive to both external and endocrine influences [6, 19, 15].

In this article we investigate the importance of genotypic heterogeneity within the
tumour cells population using a realistic mathematical model. Recently, Perez-
Garcia and Martinez-Gonzalez [21, 24, 22] and Geerle and Neelander [14] ap-
proached this question via continuous (one–dimensional and two–dimensional)
models of palisade formation and tumour growth based on coupled reaction–diffusion
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equations. Inspired by these works, we create a three–dimensional multiscale hy-
brid model, which combines a particle individual forced-based model for the tu-
mour growth, taking into account the principal biophysical properties of the cells,
and a continuum approach for simulating the oxygen diffusion into the tissue,
which drives the phenotype switching within the cell population. In particular, the
reaction–diffusion equation for the oxygen is solved via a finite element method on
a tetrahedral mesh, handling the presence of blood vessel within the tissue using
an immersed boundary method [7]. This approach does not require the discretiza-
tion of vessel geometries within the finite element mesh, allowing to simulate an
arbitrary three–dimensional vascularization. Furthermore, we compare two differ-
ent simulation scenarios that represent a deterministic genotypes model and a
stochastic genotypes model. In the deterministic scenario two cells with the same
genotypic profile react identically under the same environmental conditions. In con-
trast, in the stochastic scenario, two cells with identical genotype may behave dif-
ferently under identical oxygen conditions.

The paper is organized as follows. The multiscale model is presented in Section
2, describing in details the individual model for cells (Section 2.1), the finite ele-
ment approach for the oxygen (Section 2.2) and the multiscale coupling conditions
(Section 2.3). The numerical results are presented in Section 3, analyzing in partic-
ular the cases of deterministic (Section 3.1) and stochastic (Section 3.2) genotype
models. Finally, the conclusions are drawn in Section 4.

2 The multiscale hybrid model

Glioblastoma growth and invasion are complex multiscale and multiphysics pro-
cesses. On the one hand, the growth of the tumour can be described by the dy-
namics of a cell population undergoing phenotypic changes, which strongly de-
pends on the availability of nutrients (e.g., oxygen) in the environment, provided
by the surrounding vasculature. On the other hand, oxygen diffusion in the healthy
and tumour tissue depends on the tumour configuration, and in particular on the
nutrient consumption rates of the tumour cells.

These two processes (cell dynamics and oxygen diffusion) evolve on very differ-
ent temporal and spatial scales. The characteristic temporal mesoscale of the cells
colony biology is of the order of minutes (considering a cell cycle of about 16h),
while the transient dynamics of the oxygen, i.e. the time needed for the oxygen
concentration to reach an equilibrium stage according to environmental changes,
happens on a faster time scale (order of seconds). At the same time, the cellular
spatial scale (assuming cell diameters of O(µm)) is much smaller than the charac-
teristic spatial scale of the distribution of oxygen concentration, which is assumed
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to vary smoothly within the tissue. These considerations allow to represent the cou-
pled multiscale system in the scale-separation map (see, e.g., [4]) drawn in Figure
1.

Figure 1: The scale separation map for the multiscale cells–oxygen model. The
cells evolve on a spatial scale O(µm), smaller than the one of the oxygen diffusion
in the tissue (O(mm)), but on a much slower time scale ((O(h) versus O(s)). The
two subproblems are coupled across these scales through a coarsening of the
cell distribution in space and by using the stationary approximation for the oxygen
diffusion.

Our computational approach to model glioblastoma is based on the idea of Com-
plex Automata (CxA) (see, e.g., [4, 17, 31]), in which a multiscale process is de-
scribed in terms of single scale models interacting across the scales through ap-
propriate multiscale coupling conditions. In particular, we consider two single scale
models (see Figure 1), an individual based model for the cells (described in de-
tail in Section 2.1), considered as viscoelastic spheres interacting with each other
through mechanical forces and cell-cell signaling, and with the surrounding tissue,
and a finite element model for the oxygen diffusion into the healthy and tumour tis-
sues (Section 2.2). These single scale models are coupled as follows. The oxygen
depends on the cells through the spatial cell distribution, which is obtained upscal-
ing of the cell population up to the spatial resolution of the finite element mesh.
On the other hand, the concentration of nutrients available to each cell is obtained
evaluating at the center of the cell the steady-state oxygen concentration. More
details on the coupling interfaces are given in Section 2.3.

2.1 Modelling the cells

The cells are modeled using an individual based approach, described by the fol-
lowing variables:

� cell center position x;
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� cell radius r;

� oxygen status σ ;

� position in the cell cycle.

Each cell is considered as a visco-elastic sphere that grows, divides, acquires phe-
notypic profiles and interacts with other cells.

2.1.1 Cell-cell interactions

Astrocytes shape can vary depending on the environment and on the degree of
differentiation, but they are generally characterized by a central quasi-spherical
part and a set of extended processes. To model the tumour cells we neglect the
processes and consider the central part as a viscoelastic sphere undergoing small
deformations. The adhesive-repulsive forces between cells are modelled by a mod-
ified Hertz model [27] described below.

Denoting by xi the position of the i-th cell and neglecting inertia terms as in [27]
the cell movement is governed by the following ordinary differential equation:

Γẋi(t)︸ ︷︷ ︸
friction

+ fi(t)︸︷︷︸
noise

=
Ncells(t)

∑
j=1

Fi, j(t)︸ ︷︷ ︸
cell-cell forces

, (1)

where ẋi is the cells velocity; Γ is a 3-dimensional tensor that models the physical
structure of the environment, for simplicity assumed to be diagonal, i.e., Γl,k = γδl,k;
fi is a normal noise function that accounts for the fluctuation of the cells within the
tissue; Ncells(t) is the total number of cells at time t. Finally, Fi, j(t) is the attractive-
repulsive forces exerted by the neighbour cell j, given by

Fi, j =
2
3

(
E

1−ν2

)
r

3
2
i j

√
rir j

ri + r j︸ ︷︷ ︸
repulsion

−α ri j

(
ri−

ri j

4

)
︸ ︷︷ ︸

adhesion

, (2)

where ri and r j denote the radii of cell i and j, respectively, ri j stands for the mutual
distance between them, E and ν denote the Young moduli and Poisson number,
respectively, and α is the adhesion coefficient depending on surface bonds.

Denoting with ∆tcells, equation (1) is solved explicitly at each time iteration for each
cell, yielding

xi
(
tn+1)= xi (tn)+

∆tcells

γ

(
− fi

(
tn+1)+Ncells(tn)

∑
j=1

Fi, j (tn)

)
(3)
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2.1.2 Cell cycle

The cells expressing normoxic phenotype can multiply by cellular mitosis with a
probability inverse to a cell cycle length of about 16 hours (1/TCC). After division,
the daughter cells grow rapidly up to acquiring the cells mother size. However, cell
division is not allowed if the compression of the cell by neighbors is too high. This
is taken into account in the model by allowing mitosis only if the repulsive force of
the modified Hertz model (2) is below a given threshold.

2.1.3 Cell phenotypes

Each cell is characterized by different phenotypic states, depending on the amount
of oxygen available. As in [21, 24, 22], we distinguish between normoxic, hypoxic,
or death. The transition from one state to another is controlled by the amount of
oxygen available in the nearby environment. If the oxygen concentration at the
cellular spatial location stays above a determinate threshold (τhypo) then the cell
remains normoxic performing aerobic metabolism. If the oxygen concentration falls
below τhypo, the cell becomes hypoxic and stops consuming oxygen. The activa-
tion of anaerobic metabolism of hypoxic cells [30, 21, 26] is modelled by increas-
ing by one order of magnitude the random movement term of equation 2 [21].
Hypoxic cells that address to gain spatial locations with oxygen levels over the
hypoxia threshold (τhypo) may revert into a normoxic phenotype with a probability
p = 1/24 hours. Ultimately, if oxygen concentration decreases below a dramatic
threshold (τdead), the cells undergo apoptosis by anoxia [21]. At this point, cells
move only as a consequence of mechanical forces.

2.1.4 Genotype models

Furthermore, we consider two different models to study the cell genotypic behav-
ior. In the deterministic genotype model, each cell that undergoes mitosis produces
two daughters that behave identically under the same exact oxygen conditions, i.e.
for which the phenotype transition is regulated by the same treshold. The diagram
in Figure 2 (left) shows how oxygen concentration determines within the cell pop-
ulation the switch between normoxic and hypoxic phenotypes in the deterministic
genotypes model.

In the stochastic genotypes model, after mitosis, the daughter cell acquires a differ-
ent sensitivity to oxygen conditions than the progenitor. This is modelled by assign-
ing to the daughter cell a hypoxia threshold different from the one of the progenitor,
and taken from an uniform distribution oni =U(µi,σ) with mean µi = 12 and stan-
dard deviation σ = D2/12, where the parameter D regulates the stochasticity of
the system. The diagram in Figure 2 (right) shows how oxygen concentration de-
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termines the switch to hypoxic phenotype within the stochastics genotypes model.
The principal difference between this approach and a traditional model of geno-
type mutations is that we are considering the variation of behavior in each cell of
the population. In contrast, if one considers genotypic mutations across lineage,
the behavior of each genotypic family is similar or identical, and variations may
appear only when mutations occur [26]. Thus our problem is substantially different
and allows for a much faster variability in the evolutionary dynamics.

Figure 2: Diagram showing the two genotype scenarios. In the deterministic model
(left), every time a cell replicates produces two daughters expressing the same be-
haviour as the progenitor. This profile determines uniquely via an oxygen threshold
the switch between the normoxic and hypoxic phenotypes. In the stochastic model
(right), after mitosis, the daughter cells can acquire a different respond than the
progenitor despite of having the same genotype. This is modeled by providing each
cell a different oxygen threshold under which the cell becomes hypoxic.

2.2 Diffusion-Reaction equation

The oxygen concentration in the tissue is modeled via a reaction-diffusion equa-
tion, containing source terms describing the oxygen flux from the blood vessels
and sink terms representing the oxygen consumption of the cells.

Let us denote with Ω the tissue domain and with cO2 the oxygen concentration.
We assume that oxygen diffuses within the cellular tissue homogeneously with a
known diffusion constant DO2 , and that each cell consumes oxygen at a given rate,
equal to µN or µH for normoxic and hypoxic cells, respectively (dead cells do not
consume any nutrient). Furthermore, we consider that the oxygen is constantly
diffused into the domain at a rate φv from a neighbor blood vessels (see Figure 3).
Denoting the vessel domain by Ωv, the oxygen flux φv through the boundary ∂Ωv
is proportional to the concentration difference between the vessel and the tissue,
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according to a filtration law:

φv =
1
Jv
(cv− cO2) . (4)

In (4), cv denotes the oxygen concentration inside the vessel and Jv is the filtration
coefficient.

Figure 3: Sketch of the domain for the coupled model: Ω denotes the oxygen con-
cetration domain for the finite element model, Ωv denotes the blood vessel, and C
denotes the space occupied by the cell population.

Let us denote with Ci(t) and µi(t) the space occupied by the i-th cell and its con-
sumption rate at time t, respectively. The oxygen concentration is governed by the
following reaction-diffusion equation

∂tc−DO2∆c+
Ncells(t)

∑
i=1

χCi(t)µi(t)c = 0, in Ω

∂c
∂n

= φv =
1
Jv
(cv− c), on ∂Ωv

∂c
∂n

= 0, on ∂Ω/∂Ωv

(5)

where χCi stands for the characteristic function of the subdomain Ci, and the last
equation imposes a free-flux boundary condition at the tissue external boundaries
(i.e. the boundaries not belonging to any vessel wall).

Moreover, due to the time scale separation between the oxygen diffusion model
and the cellular tissue growth, for the purposes of the coupled model we are only
interested in the steady state oxygen concentration. Hence, given the cell distri-
bution at a time tcells, we only seek the stationary solution of equation (5), which
describes the concentration field depending on the current cell configuration. Ne-
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glecting the inertia term, problem (5) can be then rewritten as

−DO2∆c+
(

µNRcells
N (tcells)+µHRcells

H (tcells)
)

c = 0, in Ω

∂c
∂n

= φv =
1
Jv
(cv− c), on ∂Ωv

∂c
∂n

= 0, on ∂Ω/∂Ωv

(6)

where we have introduced the functions Rcells
N (t;x) and Rcells

H (t;x) denoting the
space dependent densities of normoxic and hypoxic cells, respectively.

2.2.1 Finite element formulation

The time independent equation (6) is solved numerically using a finite element
method. In order to describe the approach, let us introduce the standard Sobolev
space V = H1(Ω) and denote with (·, ·)Ω the standard L2 scalar product.

Testing (6)1 by a function q ∈ V and integrating by parts, we obtain the following
weak formulation of problem (6): Find c ∈V such that

(D∇c,∇q)Ω + ∑
α=N,H

(µαRcells
α (tcells)c,q)Ω +

(
1
Jv
(c− cv),q

)
∂Ωv︸ ︷︷ ︸

Φv

= 0
(7)

for all q ∈ V . In practice, we consider a triangulation Th of the domain Ω and we
seek the solution in the finite element space P2(Th) of piecewise quadratic func-
tions on Th.

2.2.2 Multiscale treatment of the vessel sources

The vessel, representing the source of oxygen, is assumed to be a thin tube, with
radius much smaller than the characteristic length of the three-dimensional do-
main. Hence, in order to avoid an excessive mesh refinement close to the ves-
sel, the boundary condition on ∂Ωv is treated in a multiscale fashion, adopting
the immersed boundary formulation proposed in [7]. In this approach, the vessel
is described only by a one-dimensional manifold Γv, representing the vessel axis
(centerline), which does not need to be fully resolved by the finite element mesh,
and it is immersed in the three-dimensional domain. Hence, it enters the diffusion
equation (7) only as a singular flux term. In practice, the term Φv in equation (7) is
approximated by

Φ̃v =

(
1
Jv
(c− cv),q

)
Γv

(8)
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The main advantages of this approach is that it allows a coarser triangulation, as it
does not need to fully resolve the vessel geometry, and at the same time, it can be
easily adapted to arbitrary vessel configurations.

Using equation (8), the finite element formulation of equation (7) reads: Find ch ∈Vh
such that

(DO2∇ch,∇qh)Ω + ∑
α=N,H,D

µα(Rcells
α (tcells)ch,qh)Ω +

(
1
Jv
(ch− cv),qh

)
Γv

= 0 (9)

for all qh ∈ Vh,0. Equation (9) is solved using a piecewise quadratic finite element
method, implemented within the library FreeFem++ [16].

2.3 The coupled multiscale model

The multiscale model for glioblastoma is based on the coupled evolution of equa-
tion (3), the cell cycle and the oxygen diffusion (9).

In particular, the cellular tissue acts as a sink in the diffusion model (through the
reaction terms Rcells

N and Rcells
H ), as cells might consume oxygen depending on their

state. In turn, the concentration of oxygen influences the cell dynamics, as it is
responsible of the variation of cell state (from normoxic to hypoxic and from hypoxic
to dead).

The following sections describe in detail the coupling conditions, while Table 1 sum-
marizes all the parameter used to define the coupled cell–oxygen model. Wherever
possible the parameters were taken from the literature.

2.3.1 Coarsening of the cell distribution

The diffusion model is characterized by a coarser resolution than the cell model, as
the variations of concentrations occur on a spatial scale larger than the cell typical
size. As a result, the tetrahedral elements defining the computational mesh have
a characteristic size much larger than the size of a cell. Hence, in order to obtain
an efficient coupling scheme, the cell distributions Rcells

N,H have been upscaled, e.g.
approximated by a piecewise constant functions defined according to the amount
of cells in each tetrahedron at a given time.

2.3.2 Mapping of concentration field to cells

After computing the new stationary state for the oxygen concentration in the tis-
sue (equation (9)), the value of oxygen for each cell is computed by evaluating

11



Table 1: Model parameters.

Parameter Definition Value [reference]
Cellular parameters

R0 Cell radius 5−10µm
TCC Cell cycle 16 h

∆tcells Time step (cells) 1 min
α Adhesion coefficient 3.1 ·10−5 N/m2[26, 12]
E Young modulus 1 kPa [26, 12]
ν Poisson ratio 0.5 [26]
γ Cell-medium friction constant 24 µNmin/µm

Dc Random movement constant 10−12cm2/s
τm

hypo Threshold (mean) normoxic→ hypoxic 12 mmHg [21]
τv

hypo Threshold (variance) normoxic→ hypoxic 5 mmHg
τdead Threshold hypoxic→ dead 0.7 mmHg [21]

Oxygen parameters
DO2 Diffusion constant 100 µm2/s [21]
Jv Filtration coefficient 100 µm2

cv Vessel concentration 60 mmHg [21]
µN Oxygen consumption rate per cell (normoxic) 10−2 [21]
µH Oxygen consumption rate per cell (hypoxic) µN

5 [21]

the pointwise concentration field and its gradient at the cell center. Since the con-
centration is approximated as a piecewise quadratic finite element function, this is
equivalent to a linear interpolation at the cell center, given the concentration field
at the neighboring nodes of the finite element mesh.

3 Simulations results

We performed 3D simulations in a box-shaped domain of dimensions 1800×900×
900 microns. An initial malignant cell is positioned at the centre of the domain as
initial conditions. Moreover, two blood vessels are located at the left and right sides
of the domain, from which oxygen is released into the environment (see Figure
4). Since the vessels are only represented by their centerline, and do not need to
be explicitly resolved by the finite element mesh. Hence, the model can handle a
wide range of vessel geometries. In particular, in order to avoid possible geometric
artifacts, we chose an asymmetric configuration with the first vessel represented
by a straight line in the vertical direction, and the second being a bifurcation.
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Figure 4: The domain used for the computational multi-scale simulations. Left: dis-
crete representation of the blood vessels as immersed boundaries in the diffusion
equation. In this approach, the vessels are are not resolved within the mesh, but
present in the equation as a singular term depending on the distance from the ves-
sel centerline. Right: transversal cut of the finite element mesh used to solve the
system.

3.1 Deterministic genotypes model

We first performed multi-scale simualtions of a growing tumour using the determin-
istic genotypes model (DGM), where all the cells have equal genotype and respond
identically under identical oxygen conditions. Figure 5 presents a view of the 3D
simulation including oxygen dynamics. It can be observed how the oxygen con-
centration decreases concomitantly with the tumour grows. After about 14 days,
an invasion process towards the vessels (colored in red in Figure 4, left) begins.
A different view of the simulation results is displayed in Figure 6 (top, D = 0). The
cells are initially replicative (normoxic, blue cells) creating a multi-cellular spheroid.
At certain moment the lack of oxygen determines a phenotypic change in those
cells that do not have enough oxygen available. As a consequence, part of the
tumour cells switch to anaerobic metabolism (hypoxic, white cells), activating mi-
gration mechanisms and starting an invasion process.

To determine the spatial zones of high cellular confluence Figure 7, top (D = 0)
shows a side view of the evolution of the cells experiencing a total repulsive force
by the neighbours in contact over a determinate threshold τ = 0.007µN.

It can be observed how, after 14 days, a palisade shape arises nearby the prolif-
erative rim. The wave of invading cells is principally composed by normoxic (blue)
and hypoxic (white) cells. This simulation satisfies the principal characteristics of a
process of palisade formation: a set of cells migrate away from the tumour center
forming a wall-like structure. However, the profile of the growing front may not be
considered as an aggressive invasive tumour. Only a few cells succeed to escape
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Figure 5: Temporal evolution of the tumour in the deterministic genotype model.
Blue, white and red colours denote normoxic, hypoxic and death cells, while oxygen
concentration is represented according the color bar on the right.

from the primary tumour and the outer rim of the tumour prevails homogenous and
compact instead of disseminating within the nearby tissue.

3.2 Stochastic genotypes model

As next, to study the influence of a heterogeneous respond to oxygen concentra-
tions of the malignant cells, we consider the stochastic genotype model (SGM),
investigating the effect of increasing the value of the stochasticity (D). Figure 6
shows the spatio-temporal evolution of 3 multi-scale simulations. The plot on the
top corresponds to the DGM, i.e. D = 0, where every cell presents the same hy-
poxia threshold. It can be clearly observed that for the lower plots (for D = 10 and
D = 20, respectively) the invasive profile of the tumours is more aggressive. The
outer rim is composed by a cloud of scattered cells that have colonized the neigh-
borhood of the tumour. For intermediate stochasticity values (D = 10) it can be
observed how a similar phenotypic structure of layers as in the DGM arises. In
contrast, further increasing the stochasticity (D = 20), such stratified structure is
not visible anymore.

Figure 7 shows the a comparison of the spatio-temporal evolution of the palisades
(only the cells experiencing higher compressive values than τ). The simulation
corresponding to the DGM (top figure, D = 0) presents a well defined traveling
front of malignant cells. This front is composed by a leading edge of replicative cells
followed by a tail of hypoxic cells. This structure is closer to the traditional 3-layers
multi-cellular spheroid than to a palisade. For intermediate levels of heterogeneity
(D = 10) the palisade presents a more invasive profile closer to the glioblastoma
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clinical observations. The invasive front is composed by a cloud of scattered cells
where the dominant phenotype is hypoxic. In addition, a relevant number of cells
have succeeded to escape from the primary tumour.

Figure 6: Temporal evolution of the tumour. Blue, white and red colours denote
normoxic, hypoxic and death cells. The higher the stochasticity of the system is,
the more invasive the tumours are.

The increase of stochasticity in the system allows the tumour to spread out through
the nearby tissue loosing the compact profile of a non invasive tumour. The cells
positioned at the proliferating rim are less affected by two important processes.
Firstly, at the outer part, the competition for oxygen is less severe than in compact
tumours due to lower cell confluence. This allows for the coexisting of a scattered
population of normoxic and hypoxic cells at the invasive front. At the same time,
lower cellular confluence hinders contact inhibition processes that have the poten-
tial of arresting cell cycle. And secondly, there exist a sub-population of cells that
tolerate aerobic metabolism at lower oxygen levels. Thus the central part of the
tumour presents also replicative cells.

3.2.1 Natural selection processes in the SGM

The plots in Figure 8 shows the spatio-temporal evolution of the cellular oxy-
gen sensibility of the normoxic and hypoxic phenotypes for intermediate and high
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Figure 7: Temporal evolution of the areas of the tumour experiencing high cellular
confluence (frontal view). As the tumour grows a palisade arises that invades the
nearby tissue for the DGM and the intermediate stochasticity values of the SGM
(D=10). For high stochasticity values (D = 20) palisade formation cannot be ob-
served.

stochasticity values (D= 10 and D= 20). The cells expressing lower oxygen thresh-
old (dark blue) tend to be positioned at inner part of the tumour. In the model these
cells are the ones that take longer to switch to anaerobic metabolism and enhance
migration mechanism. In contrast, the cells expressing low oxygen thresholds (light
blue to red) have succeeded to outcompete outer positions and some of them have
scaped from the primary tumour. This result suggest that cells that are specially re-
sistant to low oxygen conditions and activate migration mechanisms at low oxygen
values are encapsulated at the central part of the tumour. At this position they risk
dying of severe anoxia: the tumour mass may not allow cells to scape from the
center for certain tumour sizes. Thus there exist a natural selection process: those
cells that can perform aerobic metabolism at lower oxygen values have less prob-
ability to survive than those cells more sensitive to hypoxia that activate migration
mechanisms earlier.

The left plot of Figure 9 shows the distribution of the transition thresholds (nor-
moxic→ hypoxic) in three different tumours of about 105 cells of low (D = 1), inter-
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Figure 8: Tumour sections of two multi-scale simulations (only normoxic and hy-
poxic cells plotted) presenting different degrees of heterogeneity (variance σ = 5
and variance σ = 10). The colour of the cells denote the oxygen threshold at which
cells change from normoxic to hypoxic phenotype and become invasive. Those
cells that present a lower threshold (red) reach postions at the outer part of the
tumours.

mediate (D = 5) an high (D = 10) stochasticity levels. It can be observed how there
exists a selective process that yields a defined tendency for low oxygen threshold
values. These are the cells that enhance sooner the migration mechanisms. The
plot on the Figure 9 (right) shows the temporal evolution of the oxygen threshold
values over a tumour of intermediate stochasticity (D = 5). Moreover, it can be ob-
served how the distribution changes over time abandoning the uniform initial shape
to accumulate at low oxygen threshold values.

3.2.2 Tumor growth

Another direct consequence of the stochasticity concerns the the speed of growth.
Figure 10 shows three different plots with the growing curves of normoxic, hy-
poxic and necrotic cell populations, for different stochasticity values. It can be ob-
served that as the heterogeneity of the system increases, the tumours grows faster.
This effect occurs in the three phenotypic sub-populations: normoxic, hypoxic and
death, thus suggesting that heterogeneity in cell oxygen level sensibility is directly
correlated to tumour growth [14].

In addition, the process of palisade formation seems to be delayed by oxygen sen-
sibility heterogeneity. In the homogeneous (D = 0) and in the low, and intermediate
heterogeneity simulations (D = 2,10), the growth curves of the normoxic and hy-
poxic phenotypes show the transition to the stratified tumour structure (decrease
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Figure 9: Evolutionary time dynamics of the heterogeneity of the genotypes. A clear
tendency of natural selection towards cells that have low oxygen thresholds can be
observed. Left: Distribution of oxygen thresholds for three different tumours of 105

cells. Right: Temporal evolution of the distribution of oxygen thresholds in a tumour
of intermediate stochasticity values (D = 10).

of normoxic and hypoxic growth curves speed) between days 7 and 10. This co-
incides with the arising of the palisade shape in Figure 7. For high heterogeneity
values (D = 20) this transition is not visible. However, the arise of a palisade can
be predicted by the existing oscillations at the end of the growth plots of Figure 10
(normoxic and hypoxic, green line).

4 Conclusions and discussion

We presented a multiscale hybrid model (coupling an individual force-based for the
cell population and and finite element method for the oxygen diffusion) for inves-
tigating the palisade formation and the relevance of genotypic heterogeneity. Our
research allows to draw the following main conclusions:

(1) The isolated structure of palisade formation can be explained by the traditional
tumour stratified structure of necrotic-hypoxic-replicative layers. However, these
conditions are not sufficient to explain the invasion of the local environment by
malignant cells. Local invasion can arise by the heterogeneity produced in a cellu-
lar population caused by variations in the hypoxia switch, or by similar mechanisms
[20] that may produce a highly heterogeneous population. Cancer cell heterogene-
ity is known to be a constant in malignant tumour of different types of cancers and
can be exploited as a research field to improve treatments.

(2) The degree of heterogeneity within the tumour cellular population is directly
correlated with tumour growth speed. Both biological experiments and theoretical
models have shown for different protein pathways that heterogeneity enhances tu-
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Figure 10: Growth curves for different variance values of the normoxic, hypoxic and
necrotic phenotypes. The increase of variance enhances tumour growth speed.

mour invasiveness. According to the aerobic-anaerobic metabolism we have shown
that heterogeneity does not only promotes invasion but also enhances cellular pro-
liferation (this finding is in agreement with [14]). In our simulations, this result is
probably due to a combination of cell migration and cellular contact inhibition pro-
cesses. When cells of similar characteristics compete against each other, the tu-
mour grows as an unified compact mass of cells. In contrast, when the phenotypic
response is heterogenous, those cells that succeed to gain distant positions re-
lief the tumour cell density and, as a result, the contact inhibition process is de-
activated.

(3) Hypoxia conditions generate a Darwinian competition scenario where the most
hypoxia-resistant cells remain at the central part of the tumour, while those cells
that switch earlier to anaerobic metabolism outcompete to gain distant locations.
Experimental results have shown in multi-cellular spheroids that the cells at the in-
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ner part behave differently than those cells at the outer rim. Our model suggest that
competition processes determine a selective gradient where those cells that acti-
vate later the migrating mechanisms remain at the centre of the tumour. Activation
of the cellular migration machinery is directly correlated with the switch to anaer-
obic metabolism via HIF-1α [21, 24, 22]. Therefore, according to our results, we
hypothesize that those cells that activate HIF-1 α at lower levels of oxygen remain
at the central part of the tumour. This suggests that the non-necrotic inner part of
the tumour may function as a pool of highly resistant cells to anaerobic conditions,
having the potential for creating stronger recursive tumours after chemotherapy
treatment.
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