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On the regulators with random noises in 
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E.A.Lyashenko, L.B.Ryashko 
Ural State University, Pr. Lenina 51, 620083 Ekaterinburg, RUSSIA 

November, 1995 

Abstract 

The problem of controlling stochastic linear systems with quadratic criterion 
is considered. A class of optimal controllers which are equivalent to the separa-
tion theorem regulator is determined. For all of such controllers the quadratic 
functional has the same value. The effects of disregarded disturbances which are 
modeled by random noises in the dynamic block of the regulator are investigated. 
It is shown that the equivalent (in the classic propounding) controllers respond to 
these noises in different ways. Sometimes an "equivalent optimal" regulator may 
be less receptive towards additional disturbances than the standard one (which 
comes from the separation theorem). The optimal.regulator is found which takes 
into account the presence of such noises. 

Key words: Stochastic systems, optimal regplators, separation theorem 

1. Introduction 

Thi~ work deals with the problem of finding an optimal feedback control for stochastic 
continuous-time system under incomplete information. In the case of Linear-Quadratic-
Gaussian assumptions, the standard solution is given by the separation theorem [1] via 
two separate problems: estimation and control. Here we consider other regulators of 
the same structure (dynamic block+ feedback) which minimize the quadratic functional 
but don't satisfy the separation principle. 

The note is structured as follows. In Section 2, an equivalent controller conception 
is introduced and the constructive description of such controller class is given. The so-
lution of only one additional matrix Riccati equation is required to design an equivalent 
regulator. Since the quadratic criterion has the same value for all class determined, 
the separation theorem gives us only one of the possible presentations of the optimal 
control. 

In practice, functioning of an optimal regulator is inevitably accompanied by dif-
ferent distortions connected with analogous or digital simulation of the dynamic block. 
For the estimation problem, a simple method was suggested to take account of such 
misrepresentations [2], [3]. Errors of all sorts were modeled by random noises in dynamic 
block of the observer. The present note deals with similar regulator investigations and 
goes along with numerous works on robust control (4],(5]. In Section 3, we consider 
the influence of additional noises on the "optimal" controllers. The equivalent (in the 



classic propounding) regulators tu,rned out to respond to these disturbances in different 
ways. 

Section 4 is devoted to an optimal regulator which takes into account the presence of 
such disturbances. The equations for parameters of the optimal regulator are derived. 

Jection 5 contains the detailed examination of time-invariant system. It is shown 
that the design of an equivalent stationary controller comes to a solution of quadratic 
matrix equation. The conditions of the existence of only two solutions ( the separation 
theorem regulator and the alternative one ) are presented. An example demonstrates 
that the alternative controller may be much better than the standard regulator in case 
of additional noises. 

2. Equivalent Regulators 

Consider a linear stochastic system described by the state equation 

x(t) = A(t)x(t) + B(t)u(t) + e(t), t E [O, T] (2.1) 

and measurement equation 
iJ(t) = C(t)x(t) + 11(t) (2.2) 

where x is a n vector, u is a r vector, y is a m vector; A(t) , B(t) and C(t) are 
continuously time-varying matrices of appropriate dimensions. The noise· processes 
{ e(t)} and { 11( t)} are white Gaussian with properties 

E{e(t)} = 0, E{e(t)e(rl} = S(t)8(t - r), S(t) ~ 0 

E{77(t)} = 0, E{77(t)77(rl} = V(t)8(t- r), V(t) ~ 0 
We assume that x(O) = x0 is also Gaussian with mean and covariance given by 

Exo = mo, E(xo - mo)(xo - mol = ~o. 

Furthermore, xo, {e(t)}, {17(t)}are independent. 
A regulator of the following structure is commonly used to control the system (2.1) 
dynamic block 

z(t) = A(t)z(t) + B(t)u(t) + F(t)(y(t) - C(t)z(t)), (2.3) 

with initial point 
z(O) = zo 

and feedback 

u(t) = -F(t)z(t). (2.4) 

So, the state vector z(t) of system (2.3) and control signal u(t) from (2.4) depend only 
on the set of parameters U = (z0 , F(t), K(t)). 

The cost performance for controlling is quadratic 
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J[u] = E {[xT(t)M(t)x(t) + u(t)TN(t)u(t)]dt + xT(T)Gx(T) (2.5) 

where M(t) 2:: 0 and N(t) > 0 are continuously time-varying symmetrical matrices, 
G 2:: 0 is a constant matrix, QT = G. 

Prove the following result for regulators U = ( z0 , F( t), ]{ ( t)) and [J = ( z0 , F( t), f< ( t)). 
Theorem 1: Let <I>(t) be a non-singular matrix for all t E [O, T] that satisfies the 

differential equation 

~ = A(t)<I>(t) + <I>(t)(F(t)C(t) + B(t)K(t)- A(t)) - B(t)K(t)- (2.6) 

-<I>( t )F( t )C ( t)<I>( t) 
with initial condition 

<I>(O) = <I>o 
and the parameters of U be given by 

z0 = <I>ozo, F(t) = <I>(t)F(t), K(t) = K(t)<I>-1 (t). (2.7) 

Then the control signals u(t) and u(t) that are formed by U and [J are identical for 
all t E [ 0, T] : u ( t) = u ( t). 

Proof Show that the state vector z(t) and z.(t) of regulators U and U are con-
nected by z(t) = <I>(t)z(t). The following expressions ·directly come from the relations 
(2.3) ,(2.6) ,(2. 7) 

d . . 
dt(<I?(t)z(t)) .= <I>(t).z(t) + <I>(t)z(t) = 

= A(t)<I>(t)z(t) + <I>(t)(F(t)C(t) + B(t)K(t) -A(t))z(t) - B(t)K(t)z(t)-

-<I>(t)F(t)C(t)<I>(t)z(t) + <I>(t)A(t)z(t) - <I>(t)B(t)I<(t)z(t)+ 

+<I>(t)F(t)(y(t) - C(t)<I>(t)z(t)) = 

= (A(t) - B(t)K(t))<I>(t)z(t) + F(t)(y(t) - C(t)<I>(t)z(t)), 
<I>(O)z(O) = <I>ozo 

Since z( t) satisfies the differential equation 

z(t) = A(t)z(t) - B(t)K(t)z(t) + F(t)(iJ(t) - C(t)z(t)), 

with initial condition 
z(O) = <I>ozo 

and with respect to the uniqueness of the Cauchy problem solution, we get the necessary 
identity 

z ( t) = <I> ( t) z ( t) , t E [ 0, T] 
The following relation that comes from (2.7), 

u(t) = -k(t)z(t) = -I<(t)<I>-1 (t)<I>(t)z(t) = -I<(t)z(t) = u(t), 

completes the theorem proof. 
Note 1. If [J is given by (2.6),(2.7) then functional (2.5) has the same value for 

the regulators U and [J : J[u] = J[u]. Therefore , Theorem 1 gives us a method to 
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generate a class of equivalent regulators for any starting regulator U = (z0 , F(t), K(t)). 
Actually , we need to solve Riccati equation (2.6) with fixed initial matrix <I>o to define 
the parameters of an equivalent controller by formulas (2.7). So the variety of the 
equivalent regulators depends on the amount of such non-singular matrices <1>0 for 
which matrices ~(t) (the -::orresponding solution of (2.6)) are also non-singular for all 
t E [O, T]. 

Note 2. Let matrix w(t) = <I>(t) - In be also non-singular for all t E [O, T]. From 
(2.6) it is follows the next equalities 

~(t) = A(t)w(t) + A(t) + w(t)(F(t)C(t) + ~(t)K(t) - A(t))+ 

+F(t)C(t) + B(t)K(t) - A(t) - B(t)I<(t) - w(t)F(t)C(t)w(t)-
-w(t)F(t)C(t)- F(t)C(t)w(t)- F(t)C(t) = 

= (A(t) - F(t)C(t))w(t}+ w(t)(B(t)K(t) - A(t)) - w(t)F(t)C(t)\ll(t) 
From the other side 

i(w-1(t)) = i(w-1(t)w(t)w-1(t)) = i(w-1 (t))+w-1 (t)~(w(t))w-1 (t)+i(w-1 (t)) dt dt dt dt dt 
That is 

i(w-1(t)) = -w-1 (t)~(w(t))w-1 (t) dt . dt 
Thus, matrix p(t) = w-1 (t) = (<I>(t) - In)-1 satisfies the following linear differential 
equation 

D(t) = D(t)(A(t) - F(t)C(t))- (A(t) - B(t)K(t))D(t) - F(t)C(t) (2.8) 

with initial condition 

In this case, t4e parameters of an equivalent regulator are 

zo = (lo.+ n-1 (0) )zo , 

F(t) =(In+ n-1 (t))F(t), K(t) = K(t)(In + D(t)t1 D(t). (2.9) 

Further on, we shall consider only optimal regulators ( minimizing the quadratic 
functional (2.5) ). 

Regulator (2.3),(2.4) with parameters given by the separation theorem [1] is com-
monly used to control a system under _incomplete information 

zo = mo, 

where matrix ~(t) = E(x(t) - z(t))(x(t) - z(t))T is a solution of differential equation 

A(t) = A(t)~(t) + ~(t)AT(t) - ~(t)cr(t)v-1 (t)C(t)~(t) + S(t), (2.11) 
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with initial condition 
L.i(O) = Lio 

and matrix L(t) is a solution of equation 

L(t) = -AT(t)L(t) - L(t)A(t) + L(t)B(t)N-1(t)BT(t)L(t) - M(t), (2.12) 

with initial condition 
L(T) = G 

It follows from the consideration above that the separation theorem determines 
only one of possible optimal control realizations. Actually, a whole class of equivalent 
regulators may be described by theorem 1 for the regulator (2.10),(2.12). Obviously, 
all of such controllers are optimal. 

3. Regulator with Random Noises in Dynamic Block 

In this section, we consider in detail a class of optimal regulators fj = (z0 , F(t), k(t)) 
that are equivalent to the separation theorem regulator (2.10)-(2.12) U = (z0 , F(t), I<(t)). 
Matrices F(t) and f<(t) are given by (2.7) where ~(t) is a solution of Cauchy problem 
(~.6). 

In practice, functioning of an optimal controller is accompanied by different distor-
tions which are connected with analogous or digital simulation of the dynamic block. 
In present note , errors of all sorts are modeled by random noises in the dynamic block 
of the controller. Similar approach to the estimation problem was suggested in [2],[3]. 

Consider the following dynamic block · 

z(t) = A(t)z(t) + B(t)u(t) + F(t)(iJ(t) - C(t)z(t)) + v(t) (3.1) 
where {v(t)} is white Gaussian, independent of other system noises random process 
with properties E{v(t)} = 0, E{v(t)vT(T)} = Q(t)8(t - 7), Q(t) 2:: 0. 

We assume 
z(O) = ~o( mo + 0) (3.2) 

where m0 = Ex0 , and vector 0 that models errors in determination of the dynamic 
block initial state, is given by EO = 0, EOOT = 8, 8 2:: 0. 

Let feed back be formed by 

u(t) = -I<(t)z(t) 

The state vector r(t) = ( x(t)z(t)Z(t) )of closed-loop dynamic system satisfies the 

next equation 

.(t) = [ A(t)~- F(t)C(t) o ] [I -F(t) -I ] 
r F(t)C(t) A(t) - B(t)K(t) r(t) + on F(t) Inn ((t), (3.3) 

with united noises vector 

[ 
e(t) ] 

((t) = 17(t) 
v(t) 
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and initial condition 

r(O) = ( xo ~ Zo ) . 

Then, we have for matrix R(t) = E(r(t) - Er(t))lr(t) - Er(t))T 

R(t) = A(t)R(t) + R(t)AT(t) + r(t) + Q(t) 

and initial condition 

R(O) = [ ~o + <I>o8<I>6 -<I>o8<I>6 ] 
-<I>o8<I>6 <I>o8<I>6 

Here A(t), f(t) and Q(t) are partitioned according to 

- [ A(t) - F(t)C(t) 0 ] - [ Q(t) -Q(t) ] 
A(t) - F(t)C(t) A(t) - B(t)K(t) ' Q(t) - -Q(t) Q(t) . 

r(t) = [ F(t)~(t)F(t) j- S(t) -J(t)V(t.)J(t) ] 
-F(t)V(t)F(t) F(t)V(t)F(t) . 

In such circumstances criterion (2.5) may by rewritten in such a way 

J = t tr(M(t)R(t))dt + tr(9R(T)) 

where 

M(t) = [ ~m f(T(t)N(~l{t) + M(t) ] ' g = [ g g ] ' 
R(t) is_ a solution of system (3.4). 

(3.4) 

(3.5) 

Since all system noises are independent, it is easy to prove the following presentation 
of functional (3.5) 

(3.6) 
where 

Jo= { tr(M(t)Ro(t))dt + tr(9Ro(T)) 

is the optimal value of criterion (2.5) in the case of v(t) = 0, fJ = 0 and matrix R0 (t) 
satisfies 

Ro(t) = A(t)Ro(t) + Ar(t) + r(t) (3.7) 
with condition 

Ro ( O) = [ ~o ~ ] 

The integral 

Jo = { tr(M(t)Ro(t))dt 

is a term caused by the influence of indeterminacy of initial value z0 (z/( t) = 0, fJ =f:. 0) 
· and matrix Ro ( t) is given by 
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Re(t) = A(t)Re(t) + Re(t)AT(t) (3.8) 
with condition 

The integral 

Jv = { tr(M(t)Rv(t))dt 

is a term caused by additional noise in the dynamic block (3.1) (v(t) # 0, B = 0) and 
matrix Rv(t) satisfies 

(3.9) 

with condition 

With respect to the Note 1 of Theorem 1, Jo has the same values for all regulators 
that are equivalent to the separation theorem regulator (2.10)-(2.12). Meanwhile, terms 
Je and Jv have different values for different "equivalent" regulators. So, they depend 
on matrix <I>o. 

Let consider the following example 

where 

x ( t) = u ( t) + e ( t), t E [ o·, 1] 
iJ = x(t) + 11(t), 

Ee(t)eT(r) = s8(t - r), E17(t)r?(r) = v8(t - r) 

s = 0.01, v = M = N = 1, G = 0, ~o = 0, e = 0.005, q = 0.01 

(3.10) 

Under such conditions we have J0 = 0.005, J = 0.0075 for the separation theorem 
regulator (cp0 = 1) and J = 0.0066 for one of the "equivalent" regulators (cpo = 150). 

Evidently, if there are additional noises ( e # 0, Q # 0) then the separation theorem 
regulator is not the best one in the equivalent class. Thus, the problem arises to choose 
a parameter <I> 0 that minimizes the quadratic criterion. 

To simplify the following discussion, we consider the scalar case 

x(t) = a(t)x(t) + b(t)u(t) + e(t), t E [O, T] 

y(t) = c(t)x(t) + 17(t), 
i(t) = a(t)z(t) + b(t)u(t) + f(t)(y(t) - c(t)z(t)) + v(t) 

u(t) = -k(t)z(t) 
Ee(t)eT(r) = s(t)8(t - r), E17(t)17T(r) = v(t)8(t- r), Ev(t)vT(r) = q(t)8(t- r) 

and , since J0 does not depend on cp0 , we confine to optimization of J = Je + Jv. 
It may be easily shown that 

J(r.p0 ) = { tr(M(t)R(t))dt 
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where 
R(t) = A(t)R(t) + R(t)AT(t) + Q(t) (3.11) 

R(O) = [ <p68 -<p68 ] 
. -<p58 <p58 

Let <p(t) and f 11 (t), f 12(t), f 22 (t) (the corresponding elements of matrix R(t) ) be 
designated as 

0'.1 = <p(t), 0'.2 = f11(t), 0'.3 = f12(t), 0'.4 = f22(t). 
Then the relations (2.6),(3.11) may by rewritten as a system of differential equations 

with conditions 

where 
1/;1(t, a 1 ) = a1(f(t)c(t) + b(t)k(t)) - aif(t)c(t) - b(t)k(t) 

1/J2(t, a1, a2) = 2a2(a(t) - a1f(t)c(t)) + q(t) 

(3.12) 

'l/JJ(t, ai, a2, a3) = a1a2f(t)c(t) + a3(2a(t) - a1f(t)c(t) - b(t)k(t)/a1) - q(t) 
1f;4(t, a1, a3, a4) = 2a1a3f(t)c(t) + 2a4(a(t) - b(t)k(t)/a1) + q(t) 

In this case functional J (<po) has the following form 

(3.13) 

where 

Th~ necessary condition of extremum J~0 = 0 'is presented by the integral equation 

where 
/3i(t) = 881/Ji' i = 1,2,3,4 

.<po 
satisfy the system in variations 

(3.14) 

With respect to the equations (3.12), derive the following differential system for /3i(t) 

~1 (t) = (f(t)c(t) + b(t)k(t) - 2a1(t)f(t)c(t))/31(t) 

~2(t) = -2a2(t)f(t)c(t)f31(t) + 2(a(t) - a1(t)f(t)c(t))f32(t) 
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+2(a(t) - b(t)k(t)/o:1(t))/34(t) 
with conditions 

Finally, the necessary condition of extremum is (see (3.13),(3.14)) 

f [ca4(t)a1(t)- 2a4(t),81(t)/2~i~)(t) + M(t)(.82(t) + 2,83(t) + ,84(t))] dt = o 

(3.16) 
Here o:i(t), /3i(t) satisfy accordingly the systems (3.12),(3.15) and J(t), k(t) are the pa-
rameters of the separation theorem regulator (2.10),(2.12). Thus, to solve the problem 
we must find the parameter <po (see (3.12),(3.15)) for which the equation (3.16) is 
carried out. 

We have designed the regulator that is the least sensitive to additional noises. It 
is optimal only in the class of regulators that are equivalent to the separation theorem 
regulator. The design of an optimal controller with taking ·into account the presence 
of additional noises is examined in the section 4. 

4. Optimal regulator 

In this section we consider a linear stochastic system (2.1 ),(2.2) with regulator which 
consists of dynamic block · 

z(t) = A(t)z(t) + B(t)u(t) + F(t)(y(t) - C(t)z(t)) + v(t) (4.1) 

with initial state 
z(o) = mo 

and feedback 
u = -J<(t)z(t) (4.2) 

We assume that initial state of dynamic block ( 4.1) is fixed. Therefore, cost perfor-
mance J[u] from (2.5) depends on the set parameters U = (F(t), J<(t)) only. Consider 
the following optimal control problem 

J[u] --+ inf u 
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Theorem 2: The optimal parameters F(t), J<(t) of control problem ( 4.3) satisfy the 
next equalities 

R11 (t) = (A(t) - F(t)C(t))Rn(t) + Rn(t)(A(t) - F(t)C(t)f + 
+F(t)V(t)FT(t) + S(t) + Q(t) 

R12(t) = (A(t)- F(t)C(t))R12(t) + Ri2(t)(A(t)- B(t)I<(t)f + (4.4) 
+Rn(t)CT(t)FT(t) - F(t)V(t)FT(t) - Q(t) 

R22(t) = (A(t) - B(t)J<(t))R22(t) + R22(t)(A(t) - B(t)J<(t))T + 

+Rf2(t)CT(t)FT(t) + F(t)C(t)R12(t) + F(t)V(t)FT(t) + Q(t) 

Ri1 (0) = ~o, R12(0) = 0, R22(0) = 0 

W11 (t) + (A(t) - F(t)C(t)fW11 (t) + W11 (t)(A(t) - F(t)C(t))+ 
+W12(t)F(t)C(t) + CT(t)FT(t)W1~(t) + M(t) = 0 

. W12 ( t) + (A ( t) - F ( t) c ( t)) T W12 ( t) + W12 ( t) (A( t) - B ( t) ]{ ( t)) + ( 4. 5) 

+C'.t(t)FT(t)W22(t) + M(t) = 0 

W22(t) + (A(t) - B(t)J<(t)fW~2(t) + W22(t)(A(t) - B(t)J<(t))+ 
+J<T(t)N(t)I<(t) + M(t) = 0 

Wu(T) = G, W12(T) = G, W22(T) = G 

= C(t)(R11(t)(W11(t) - W12(t)) + R12(t)(W1~(t) - W22(t))) 

(4.6) 

Proof: Let 

( ) _ ( ) ( ) ( ) _ [ e(t) ] ( ) _ [ Ru(t) Ri2(t) ] et - x t - z t ' rt - z(t) ' Rt - R21(t) R22(t) 

where 

R11 (t) = E(e(t)- Ee(t))(e(t)- Ee(t))r,R12(t) = E(e(t) - Ee(t))(z(t) - Ez(t))T, 
R21(t) = Rf2(t), Rz2(t) = E(z(t) - Ez(t))(z(t) - Ez(t))T 

The matrix R(t) = E(r(t) - Er(t))(r(t) - Er(t))Y satisfies the differential equation 

R(t) = A(t)R(t) + R(t)Ar(t) +.r(t) + Q(t) (4.8) 
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and initial condition 

R(O) = ~ = [ ~o ~ ] 

where 
_ [ A(t) - F(t)C(t) 0 ] 

A(t) - F(t)C(t) A(t) - B(t)J<(t) 

f(t) _ [ F(t)V(t)FT(t) + S(t) -F(t)V(t)FT(t) ] Q(t) _ [ Q(t) 
- -F(t)V(t)FT(t) F(t)V(t)FT(t) ' - -Q(t) 

Criterion (2.5) has a form 

J = { tr(M(t)R(t))dt + tr(gR(T)) 

where 

M(t) = [ ~~g K(t)T N(~I?t) + M(t) ] ' g = [ g g ] 

(4.9) 

-Q(t) ] 
Q(t) 

( 4.10) 

Thus, stochastic problem (4.1)-(4.3) may be rewritten as a deterministic problem to 
choose matrices F(t) and J<(t) which minimize the functional (4.10) with restrictions 
( 4.8) ,( 4.9). The similar approach was used in [6],[7]. 

Lagrange function for this variational problem is 

'H = 'H(R, W, F, I<)= tr((A(t)R(t) + R(t)AT(t) + f(t) + Q(t))W(t)) + tr(M(t)R(t)) 

where W = [ ~~~ ~~~ ] is a matrix of Lagrange multipliers. 

The necessary conditions of extremum are p·resented by the system 

Using the relations 

R = B'H, R(O) =Ro aw 
. 8'H 

W =-BR' W(T) = g 

8'H 8'H 
8F = O, 8I< = O 

tr(X + Y) = tr(X) + tr(Y) 

tr(XY) = tr(Y X) = tr(X11Yi1 + X121'21 + X21Yi2 + X221'22) 

we have the next representations 

tr((AR + RAT)W) = tr((ATW + W A)R) 
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B?-l = ATW + w A+ M 
8R 

~; = -2C(R11(W11 - W12) + R12(W{i - W22))+ 

( 4.15) 

( 4.16) 

( 4.17) 

It follows from ( 4.14)-( 4.17) that necessary conditions ( 4.11)-(4.13) can be written 
as system 

R = AR+ RAT + r + Q, R(O) = Ro 

W = ATW +WA+ M, W(T) = g 

-C(R11(W11 - W12) + Rl2(W{z .- W22))+ 
+v FT(Wn - W12 - W{; + W22) = o 

-(Rf2W12 + R22W22)B + R22KT N = 0 
Using the block representation of matrices R, A,r, Q,W, M, g we have equations 

(4.4)-(4.7). . 

5. Time-Invariant Systems 

Consider a· time..:invariant system 

where 

x(t) = Ax(t) + Bu(t) + ~(t), 
y(t) = Cx(t) + 17(t) 

Eff(t)} = 0, E{e(t)e(rf} = S8(t- r), S ~ 0 

E{17(t)} = 0, E{17(t)17(rf} = V8(t - r), V > 0 

To control the system ( 5.1) let design a regulator that consists of dynamic block 

z(t) = Az(t) + Bu(t) + F(y(t) - Cz(t)) 

and feedback 

u(t) = -Fz(t). 
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In this case the quadratic criterion is 

J[u] = lim E[xT(t)Mx(t) + uT(t)Nu(t)], M ~ 0, N > 0 (5.5) 
t-+oo 

vVe assume that (A, B) is stabilized and (A, C) is detectable. Then, sets :F = {FI 
A- PC-stable} and K, ={KIA-BK-stable} are not empty. Regulator (5.3),(5.4) 
with parameters U = (F, K)(F E F,K EK,) will be called stabilizing. For any of such 
regulators a closed-loop system 

(5.6) 
where 

A(t) = ( ~m ) , µ(t) = ( j~~~) ) , Ai= [ /c A-~~~ FC ] ' 
and control signal (5.4) have stationary distributed states A = ( ~ ) , u = -K z that 

are independent of x 0 , z0 • The second moment matrix A = EA.>7 of stationary dis-
tributed state A satisfies the equation 

(5.7) 

where 

r1 = [ ~ FSFT] · 
In this circumstances functional (5.5) is 

(5.8) 

Here A11 , A22 are the corresponding parts of matrix A 

Consider a stabilizing regulator U = ( F, K) and some regulator [J = ( F, k), and 
prove the following result. 

Theorem 3: Let the parameters of regulator [J be given by 

(5.9) 

where non-singular matrix ~ satisfies the equation 

A~+ ~(FC +BK - A) - ~FC~ - BK= 0. (5.10) 

Then 
1) regulator [J is also stabilizing 

FE F, f< EK,; (5.11) 

2) the following correlation is carried out 

ExxT = ExxT, EuuT. = Eu:u? (5.12) 
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for stationary distributed states A = ( : ) , X = ( ~ ) and stationary distributed 

controls u = -I< z, u = -f< z that correspond to regulators U, U. 
Proof: Consider matrices 

With respect to (5.9),(5.10), we have A= v-1 A1V, i.e. matrices A and A1 are similar. 
Formula (5.11) follows directly from the coincidence of the similar matrices spectra. 
Matrix A = E ~~ T satisfies the equation 

where 

A2 = [ /c A- ~f ~Fe], s = [ g PSPT] · 
Using (5.9),(5.10), it is easily shown that A from (5.7) and A are connected by 

Equalities (5.12) come directly from the following relations 

E T A E--T A-xx = 11, xx = 11, 

Theorem is proved. 
Note, the quadratic criterion (5.8) has the same values for all the controls u that 

are formed by the regulators U of the class described, J[u] = J[u]. Here parameters F 
and f< are given by (5.9) when <I> is a solution of the equation (5.10). 

Evidently, the variety of regulators U that are equivalent to a starting regulator 
U, depends on the number of solutions (5.10). The maximum number equals to C2n· 
The case with only two solutions is of special interest. Assume that matrix <I> - In 
is non-singular and designate D = (<I> - In)-1 • Then D satisfies the following linear 
equation 

D(A-FC)- (A-BI<)D -FC = 0 (5.13) 

If spectra of matrices A- FC and A- BI< don't intersect then this equation has one 
solution. Under such circumstances, there are only two equivalent regulators: a starting 
controller U = (F, I<) and the alternative one U = ((D-1 + In)F, I<(D + In)-1 D). 

Now, we take the regulator 

z(t) = Az(t) + Bu(t) + F(y(t) - Cz(t)) + v(t) 

u(t) = -Fz(t). 
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with additional noise v( t) in the dynamic block : 

E{v(t)} == 0, E{v(t)vT(r)} == Q8(t- r), Q > 0 

We consider a class of regulators U == (F, K) which are equivalent to the separation 
theorem regulator U0 == (Fo, Ko) 

Fa == 6.oCTv-1 , Ko == N-1 BT L. 

Here ~o and Lare given by 

ATL +LA- LBN-1BTL + Af == 0 

The quadratic functional (5.5) may be presented (see (3.6)-(3.9)) 

where: 

Jo== tr(MRo) 
and matrix Ro satisfies 

ARo + RoAT + r ~ O; 

and matrix Rv satisfies 
ARv + RvA~ +Q == 0. 

Matrices ~' r, M and Q have the following structure 

[ 
A - FC 0 ] [ FV pT + S - FV pT ] 

A== FC A-BK 'r= -FVFT FVFT ' 

M=[Z KTN~+M],Q=[-~ -QQ] 
Here as in(3.6), J0 is the optimal value of criterion when v(t) = 0 which is the same 
for all "equivalent" regulators; Jv is a term caused by the influence of disregarded 
additional disturbances and its values are different for different matrices <P. The term 
Je is absent because stationary criterion doesn't depend on the initial information. 

The examples show that the equivalent regulator U may be less receptive towards 
additional noises then the separation theorem regulator U0. 

Now, we derive the optimal regulator which takes into account the influence of 
additional noises. 

Let R == ErrT be the second moment matrix of stationary distributed state 
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[ x-z] r = z of a closed-loop system 

r(t) = Ar(t) + f1(t) 

where 

(t) = [ x(t) - z(t)] j1(t) = [ ~(t) - F77(t)- v(t) ] F F f{ K, 
r z(t) ' F77(t) + v(t) ' E ' E 

b k . [ Rn R12 ] The loc s of matrix R = Rzi Rzz are 

Rn= E(x - z)(x - zf, R12 = E(x - z)zT, Rz1 = R'[2, R22 = EzzT 

They satisfy the equations 

(A- FC)Rn + R11(A- FC)T + FVFT + S + Q = 0 

(A - FC)R12 + R12(A - BKf + R11CT pT - FV pT - Q = 0 (5.14) 

·criterion (5~5) can be rewritten as 

J == tr(M(R11 + R12 + R'f2 + R22) +KT NI< R22) (5.15) . . 

Thus, stochastic optimal problem may be rewritten as deterministic problem to 
choose matrices FE F and]{ EK, which minimize the criterion (5.15) with restrictions 

(5.14). Blocks of the matrix W = [ ~:: ~:: ] of Lagrange multipliers and the 
optimal parameters F and ]{ satisfy the equations 

(A- BJ<)TW22 + W22(A- BI<)+ J<T NI<+ kl= 0 

Rz2I<T N = (Rf2 W12 + Rz2 W22)B (5.18) 

So, the necessary conditions of extremum are presented by the system(5.14),(5.16)-
(5.18). 

Example. Let demonstrate the received results by the following example 
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x(t) = u(t) + ~(t), E~(t)~T(T) = s8(t - T), 

y(t) = x(t) + 17(t), E77(t)17T(T) = v8(t- T) 
Consider 3. regulator 

i(t) = u(t) + f(y(t)- z(t)) + v(t),Ev(t)vT(T) = q8(t-T), 

u(t) = -kz(t) 
In this case :F = {f I f > O}, K = {k I k > O} and a class of optimal (when q = 0) 
controllers consist of 

the separation theorem regulator 

fo = {f, ko = f¥t 
and the alternative one 

- !M- fS J=yN' k=y; 
Here 

Jo = J = M VSv + sv'MN 
and additions caused by disturbances v(t) are given by 

(5.19) 

The question of what regulator is better when q 'f. 0 , is solved by the relation of M v 
and N s . If M v > N s as, for example, in the case of minimizing E x2 ( M is large, N is 
small) or in the case of vanishing process noise ( s --7 0) then the regulator U = (}, k) 
must be preferred. If M v < N s ( for example, v is small) then it is better to use 
the separation theorem regulator U0 =(Jo, ko). At last, in the case of Mv = Ns both 
regulators yield the same result Jv = lv· 

6. Conclusions 

In this work, the problem of controlling linear stochastic systems under incomplete 
information is considered. A conception of the equivalent regulator is introduced and 
the constructive description of such regulator class is suggested. All equivalent regu-
lator form control signals of the same value. The influence of additional noises in the 
dynamic block on the "optimal" regulators ( equivalent to the separation theorem one) 
is investigated. It turns out that sometimes it may be much better to use a regulator 
that doesn't satisfy the separation principle. 
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