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Abstract

We consider computational methods for evaluating and approximating multivariate chi-
square probabilities in cases where the pertaining correlation matrix or blocks thereof have
a low-factorial representation. To this end, techniques from matrix factorization and prob-
ability theory are applied. We outline a variety of statistical applications of multivariate
chi-square distributions and provide a system of MATLAB programs implementing the
proposed algorithms. Computer simulations demonstrate the accuracy and the computa-
tional efficiency of our methods in comparison with Monte Carlo approximations, and a real
data example from statistical genetics illustrates their usage in practice.

1 Introduction

Multivariate chi-square distributions play a pivotal role in many applications of modern statistics.
For example, they arise as (limiting) null distributions of vectors of test statistics in the context of
simultaneous inference for Gaussian variances, in multi-sample problems regarding multinomial
distributions, in multiple comparisons of vectors of regression coefficients, or in simultaneous
categorical data analysis; see [3] for a recent overview.

Despite this importance, computational methods for M -variate chi-square probabilities with ν
degrees of freedom are up to now only available for a limited number of special cases, for
instance in some cases where M = 2 (see, e. g., [7–10, 12, 19, 22]) or if ν = 1, where
such probabilities can be calculated by means of multivariate normal probabilities; see [6] for
a comprehensive overview of computational methods for multivariate Student’s t and normal
distributions.

In this work, we present computational methods for evaluating and approximatingM -variate chi-
square probabilities for (in principle) arbitrary dimension M and arbitrary degrees of freedom
ν ≥ 2, provided that the correlation structure in the k-variate marginal distributions is given (or
can be approximated well) by low-rank correlation matrices, where k ∈ {2, 3, 4}.
The paper is structured as follows. In Section 2, we outline two approximation methods which
are based on results from probability theory. Section 3 is concerned with matrix factorization
techniques and resulting computational methods for multivariate chi-square probabilities. The
numerical study in Section 4 assesses the accuracy and the computational efficiency of the
proposed methods and their MATLAB implementations in comparison with Monte Carlo meth-
ods. A real data example from the field of statistical genetics is presented in Section 5, and we
conclude with a discussion in Section 6.
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2 Multivariate χ2-distributions

2.1 Notation and preliminaries

On a suitable but not further specified probability space (Ω,F ,P), let Gaussian vectors Z1, . . . ,

Zν
i.i.d.∼ NM(0, R) with correlation matrix R ∈ RM×M be defined for ν ∈ N. Throughout the

work and without loss of generality (w.l.o.g.) we assume that the variance of each component
Z1j of Z1 is equal to 1, where 1 ≤ j ≤M , such that R is the covariance matrix of Z1.

Then the random vector X = (X1, . . . , XM)T with components

Xj :=
ν∑
i=1

Z2
ij, j = 1, . . . ,M, (1)

follows the M -variate χ2-distribution in the sense of Definition 3.5.7 in [20] with ν degrees of
freedom and pertaining correlation matrix R, denoted by χ2

M(ν,R). The distribution of X is
equal to the joint distribution of the diagonal elements of an M -dimensional Wishart matrix with
ν degrees of freedom and pertaining correlation matrix R,WM(ν,R) for short. The stochastic
representation in (1) is convenient for Monte Carlo approximations of the distribution of X.

We are concerned with computing and approximating the cumulative distribution function (cdf)
of max1≤j≤M Xj , given by

FM(x) ≡ FM(x, ν, R) := P

(
M⋂
j=1

{Xj ≤ x}

)
, (2)

or equivalently

F̄M(x) ≡ F̄M(x, ν, R) := 1− FM(x) = P

(
M⋃
j=1

{Xj > x}

)
, x > 0. (3)

We define for κ ≥ 1 and δ > 0

Gκ(x; δ) := exp(−δ)
∞∑
k=0

δk

k!
γ(κ+ k;x), x ≥ 0, (4)

with the (regularized) incomplete Gamma function, given by

γ(κ; z) =

∫ z

0

ψκ(t) dt, ψκ(x) := xκ−1 exp(−x)/Γ(κ).

2.2 Approximations

The exact computation of FM(x), or F̄M(x), respectively, is infeasible for larger dimensions
M . We may remark here that this even holds true for ν = 1. For example, the R package
mvtnorm which is based on [6] gives an error message whenever M exceeds 1000. There-
fore, we present two basic ideas for approximating FM(x), in which only the computation of
lower-dimensional marginal distributions, i. e., Fk(x) for some k < M , is required.
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Lemma 1

a) (Bonferroni inequalities)

Let A1, . . . , AM be arbitrary events. Then

∀p ≥ 1 :

2p∑
k=1

(−1)k−1Sk ≤ P

(
M⋃
j=1

Aj

)
≤ b2p−1 :=

2p−1∑
k=1

(−1)k−1Sk, (5)

where

Sk =
∑

1≤j1<j2<...<jk≤M

P(Aj1 ∩ Aj2 ∩ . . . ∩ Ajk), 1 ≤ k ≤M, Sk = 0, k > M.

A bivariate variant of the aforementioned upper Bonferroni bounds is due to [21] and is
given by

P

(
M⋃
j=1

Aj

)
≤ b2 :=

M∑
j=1

P(Aj)−
M−1∑
j=1

P(Aj ∩ Aj+1). (6)

For our purposes we have to consider the eventsAj = {Xj > x} so that the probability
expression in (5) and on the left-hand side of (6) equals F̄M(x).

b) (Product-type probability bounds)

Define the events Oj := {Xj ≤ x} = Acj for 1 ≤ j ≤M .

Due to chain factorization, it holds for any 1 ≤ k ≤M − 1 that

FM(x) = P(O1, . . . , OM) = P(O1, . . . , Ok)
M∏

j=k+1

P(Oj|Oj−1, . . . , O1).

Now assume that X is sub-Markovian of order k ≥ 2 (SMk) in the sense of Definition
2.2 in [4]. Then it holds for all k ≤ j ≤M that

P(Oj|Oj−1, . . . , O1) ≥ P(Oj|Oj−1, . . . , Oj−k+1) (7)

and, consequently,

FM(x) ≥ βk := P(O1, . . . , Ok)
M∏

j=k+1

P(Oj|Oj−1, . . . , Oj−k+1). (8)

Occasionally, we will write b`(x) or βk(x), respectively, instead of b` or βk, respectively, to
indicate the argument x at which the approximations are evaluated. Furthermore, we refer to `
and k, respectively, as the order of these (sum- or product-type) approximations.
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Remark 1

a) We note that the complexity of computing the sums Sk in (5) is high, because
(
M
k

)
k-

dimensional marginal probabilities have to be evaluated. However, for some applications,
for instance in multiple testing, a conservative bound on F̄M(x) is required, meaning that
F̄M(x) is approximated from above. Such conservative bounds are provided by the right-
hand side of (5). A computationally inexpensive alternative is the utilization of b2 from (6).
Under certain structural assumptions, sum-type bounds of higher order can be improved.
For example, the derivations in [13,14] are based on geometric or topological arguments.

b) In the general case the inequality relation in (7) is not fulfilled. However, βk often yields a
good approximation of FM(x) already for k ∈ {2, 3}, see Section 4. In the remainder,
we refer to βk as the product-type probability approximation (PTPA) of order k to FM(x).

3 Computational details

3.1 Mathematical derivations

Computation of Fk(·, ν, R) is feasible ifR possesses certain structural properties. In particular,
low-rank factorizations of R facilitate the computation. Specifically, in [17] it is outlined how to
obtain the integral representation

Fk(2x, 2κ,R) = E

[
k∏
j=1

Gκ

(
d−1
j x;

1

2
d−1
j ajSa

T
j

)]
, (9)

if R has an m-factorial representation, cf. Definition 1. The expectation in (9) refers to an (m×
m)-Wishart Matrix S ∼ Wm(2κ, Im).

Definition 1
A covariance matrix R ∈ Rk×k has an m-factorial representation with 1 ≤ m < k, if it allows
for a decomposition

R = D + AAT (10)

with a matrix A = (a1, . . . , ak) ∈ Ck×k of rank m, the columns of which are real vectors
aj ∈ Rk or purely imaginary vectors aj ∈ (iR)k, and a positive definite diagonal matrix
D = diag(d1, . . . , dk), where dj > 0 for all 1 ≤ j ≤ k.

Remark 2

(i) To simplify notation, we consider related decompositions R = D + AAT with full-rank
A = (a1, . . . , am) ∈ Ck×m.

(ii) Notice that a more general definition of m-factorial matrices is given, e. g., in Definition
1 of [17], where also negative values of the dj are allowed. For feasible computations,
however, restriction to positive values of the dj is required.
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Example 1

a) Every correlation matrix R ∈ Rk×k \ {Ik} has a (k− 1)-factorial representation. To see
this, let Λ = diag(λ1, . . . , λk) be the diagonal matrix containing the eigenvalues of R,
where w.l.o.g. λk = min1≤j≤k λj . Furthermore, let Λ̃ = Λ − λkIk. Application of the
Spectral Theorem for symmetric matrices yields the decomposition

R = UΛUT = UλkIkU
T + U Λ̃UT. (11)

Since U is an orthogonal matrix, it is clear that a (k − 1)-factorial representation with

D = λkIk, and A = U(Λ̃)1/2

is given by (11).

b) Let ρ ∈ (−1, 1). The equi-correlation matrix R = R(ρ) with entries 1 on the diagonal
and ρ off the diagonal has a one-factorial representation

R(ρ) = diag(1− ρ, . . . , 1− ρ) + AAT,

where A = (
√
ρ, . . . ,

√
ρ)TCk×1 with “rows” aj ≡

√
ρ ∈ R ∪ iR, j = 1, . . . , k.

The following lemma provides sufficient conditions for the existence of an m-factorial represen-
tation of a given correlation matrix R.

Lemma 2

a) Let R = (rij) be a (k × k) correlation matrix, k ≥ 3, with rij 6= 0 for all 1 ≤ i, j ≤ k.
Then R is one-factorial if and only if

∃c ∈ R ∪ iR with c2 < 1 such that ∀1 < j < ` ≤ k :
r1jr1`

rj`
= c2. (12)

In this case a representation is given by

R = D + aaT, a = (a1, . . . , ak), a1 = c, aj =
r1j

c
for j = 2, . . . , k

and D = diag(1− a2
1, . . . , 1− a2

k).

b) Let R ∈ Rk×k be a correlation matrix with spectral decomposition R = UΛUT, where
U ∈ Rk×k is an orthogonal matrix and the diagonal matrix Λ = diag(λ1, . . . , λk) > 0
contains the eigenvalues of R. W.l.o.g., assume that λ1 ≤ . . . ≤ λk. If there exists
an integer k̃ > 1 with λ1 = . . . = λk̃, then R has an m-factorial representation with
m = k − k̃.
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Proof.

a) Let us first assume that R has a one-factorial representation. This property is equivalent
to the solvability of the following system of equations.

r12 = a1a2, r13 = a1a3, · · · r1k = a1ak,
r23 = a2a3, · · · r2k = a2ak,

. . .
...

r(k−1)k = ak−1ak.

(13)

By assumption onR there exists a vector (a1, . . . , ak) ∈ Ck which solves (13). One can
set c := a1 6= 0, which is a real or an imaginary constant fulfilling c2 < 1. Then put
aj =

r1j

c
for j = 2, . . . , k.

In order to check the validity of this solution one has to verify that

r23 = r12r13
c2

· · · r2k = r12r1k

c2

. . .
...

r(k−1)k =
r1(k−1)r1k

c2
,

(14)

which is equivalent to the identities

c2 =
r12r13

r23

=
r12r14

r24

= · · · =
r1(k−1)r1k

r(k−1)k

, (15)

showing the assertion.

On the other hand, if the identities in (12) hold, one can construct a one-factorial repre-
sentation by setting a1 = c and using (13) for defining the values of a2, . . . , ak.

b) Setting D := λ1Ik, it holds
R = D + U Λ̃UT (16)

with Λ̃ = Λ − D = diag(0, . . . , 0, λk̃+1 − λ1, . . . , λk − λ1). It is easy to see that

A := U Λ̃1/2 has rank k− k̃, and therefore decomposition (16) is a valid (k− k̃)-factorial
representation.

Remark 3

a) In dimension k = 3 the condition in (12) is satisfied if r12r13r23 6= 0 and r12r13r
−1
23 < 1.

b) Notice that the eigenvalue condition in part b) in Lemma 2 will in general not be fulfilled
for correlation matrices occurring in applications. However, one can use this lemma for
an approximation of a general correlation matrix R by an m-factorial covariance matrix
Σ. Namely, entries in the diagonal matrix of eigenvalues of R can be substituted such
that the eigenvalue condition is satisfied.
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For the evaluation of (9), it is necessary to compute integrals of the form E[g(vTSv)] for a
Wishart-distributed random matrix S ∼ Wm(ν, Im), a (column) vector v ∈ Rm and some
scalar function g. This amounts to anm(m+1)/2-dimensional integration, because integration
has to be performed with respect to all non-redundant matrix entries. Proposition 1 provides
explicit expressions in the cases of m = 1 and m = 2.

To this end, in addition to the notation in Section 2, we introduce two further functions. The first,
namely fκ : (0, π) −→ [0,∞), is given by

fκ(ϕ) :=

√
πΓ(κ− 1/2)

Γ(κ)
(sin2(ϕ))κ−1 (17)

and the second, namely h(·, ·, ·; β1, β2) : [0,∞)2 × [0, π] −→ [0,∞), is given by

h(s, t, ϕ; β1, β2) = β2
1s+ β2

2t+ 2β1β2 cos(ϕ)st (18)

for constants β1, β2 ∈ C.

Proposition 1 (cf. [3,15–17])
Let R ∈ Rk×k be a correlation matrix.

(i) Assume that R has a one-factorial representation R = D + aaT with a column vector
a = (a1, . . . , ak)

T the entries aj ∈ R ∪ iR of which satisfy a2
j < 1 for j = 1, . . . , k.

Then the cdf of the k-variate χ2-distribution with ν = 2κ ∈ N degrees of freedom and
pertaining correlation matrix R is given by

Fk(2x;R, 2κ) =

∞∫
0

k∏
j=1

Gκ

(
x

1− a2
j

;
a2
j

1− a2
j

t

)
ψκ(t) dt. (19)

(ii) Assume that R has a two-factorial representation

R = D + AAT, A ∈ Cp×2.

Let W = D−
1
2 and B = WA ∈ Ck×2, which entails WRW = Ik +BBT.

Then, with fk from (17) and h from (18), the cdf of the χ2
k(ν,R)-distribution with ν =

2κ ∈ N degrees of freedom and pertaining correlation matrix R is given by

Fk(2x;R, 2κ) =

π∫
0

∞∫
0

∞∫
0

k∏
j=1

Gκ(w
2
jx;h(s, t, ϕ; bj1, bj2))×

ψκ(s)ψκ(t)fκ(ϕ) ds dt dϕ.

(20)

(iii) Suppose R = (rij) ∈ R4×4 is such that an index ` ∈ {1, . . . , 4} exists for which the
conditional covariance matrix

R·|` := R−` − r`rT
`
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with
R−` = (rij)i,j 6=` ∈ R3×3 and r` = (rk`)k 6=` ∈ R3

has a one-factorial representation, say

R·|` = W−2 + aaT,W = diag(w1, w2, w3), a = (a1, a2, a3)T ∈ C3.

Then, with b1 = Wa ∈ C3, b2 = Wr` ∈ R3, fk from (17) and h from (18), the cdf of the
χ2

4(ν,R)-distribution with ν = 2κ ∈ N degrees of freedom and pertaining correlation
matrix R is given by

F4(2x;R, 2κ) =

π∫
0

x∫
0

∞∫
0

3∏
j=1

Gκ(w
2
jx;h(s, t, ϕ; b1j, b2j))×

ψκ(s)ψκ(t)fκ(ϕ) ds dt dϕ.

(21)

To sum up, Proposition 1 in connection with the first part of Example 1 allows for computing
F3(x, ν, R) for arbitrary ν ≥ 2 and R. The value F4(x, ν, R) can be computed exactly if (i) R
possesses a one-factorial representation (by means of Proposition 1.(i)), which can be checked
by applying part a) of Lemma 2, or (ii) at least one three-dimensional conditional covariance ma-
trix pertaining to R has a one-factorial representation (see Proposition 1.(iii)). If R ∈ R4×4 ful-
fills neither of the latter two conditions we propose two approximations to R = UΛUT (w.l.o.g.
λ1 ≥ . . . ,≥ λ4), which both rely on a substitution of the eigenvalues of R. Namely, consider

(I) R̃ = U Λ̃UT, where Λ̃ = diag(λ1, λ2, λ̄, λ̄) and λ̄ = 0.5(λ3 +λ4) is the average of the
two smallest eigenvalues,

(II) ˜̃R = U ˜̃ΛUT, with ˜̃Λ = diag(λ1, λ2, λ4, λ4).

Both R̃ and ˜̃R possess a two-factorial representation according to part b) of Lemma 2. An

approximation F4(x, ν, R̃) or F4(x, ν, ˜̃R), respectively, of F4(x, ν, R) is then computable by
means of Proposition 1.(ii).

Remark 4
In principle, F4(x, ν, R) can also be computed exactly if R itself has a two-factorial representa-
tion, see Proposition 1.(ii). However, we are not aware of any method to check the existence of
a two-factorial representation (in the sense of Definition 1) of a four-variate correlation matrix.
Lemma 2 in [17] offers the possibility to perform such a check, but it does not ensure positive val-
ues of the entries in the diagonal matrix D appearing in (10). Hence, an automated application
of Proposition 1.(ii) to R ∈ R4×4 is only possible in special cases by our implementations.

3.2 Notes on the implementation

The computation of Fk(·, ν, R) for ν ≥ 2 and a correlation matrix R by means of the inte-
gral representations in Proposition 1 has been implemented in MATLAB (version R2013b). All
MATLAB programs are available from the first author upon request. The computations consist
of three principle steps.

8



a) check of correlation matrices:

In order to find the suitable representation, the structure of the correlation matrix R is
analyzed by means of Lemma 2. It is noted that the computation can only be performed
exactly if all eigenvalues of R are greater than a certain (small) threshold. Otherwise, the
variable corresponding to the smallest eigenvalue is eliminated and computation is done
in dimension k − 1.

b) numerical integration:

The one-dimensional integral displayed in (19) is approximated by the built-in MATLAB
function integral on the finite interval [0, U ]. The upper bound U is chosen automat-
ically and only depends on the degrees of freedom ν or κ = ν/2, respectively.

For the three-dimensional integrals in (20) or (21), respectively, integration with respect to
ϕ ∈ [0, π] is approximated with a composite Simpson’s rule. The inner, two-dimensional
integral with respect to the variables s and t is computed on a fixed grid of values 0 =
ϕ1 < ϕ2 < . . . < ϕN = π for ϕ with the built-in MATLAB function integral2.
Integration is performed on a finite area [0, U ]2 or [0, U ]× [0, x], respectively. Again, N
and U are determined automatically.

c) approximation of the series Gκ(x, δ):

The recursion T0 = 1, Tk+1 = Tkδ/(k + 1), k ≥ 0, is used to compute the partial
sums

exp(−δ)
K∑
k=0

δk

k!
γ(κ+ k;x) = exp(−δ)

K∑
k=0

Tkγ(κ+ k;x),

where K is chosen automatically.

4 Numerical experiments

In this section we assess the numerical accuracy and the computational efficiency of the pro-
posed implementations. We compare the analytical formulas from Section 3.1 with Monte Carlo
approximations which are based on the stochastic representation (1). In this, we restrict our
attention to the case of ν = 2 degrees of freedom due to its relevance for the application that
we are going to present in Section 5.

4.1 Validity of implemented routines for k ∈ {3, 4}

Here we present some results for correlation matrices in R3×3 (Table 1) and in R4×4 (Tables
2 and 3). As noted before, it is possible to compute F3(·, 2, R) exactly up to any required
numerical precision, unless the correlation matrix is close to singularity. On the contrary, it is
only possible to compute F4(·, 2, R) for special structures ofR. Here we have chosen matrices
which satisfy these structural requirements. While Table 2 compares exact computations with
Monte Carlo approximations, Table 3 compares the proposed approximation methods (I) and (II)
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from below Proposition 1 with the respective exact values. From our results (confirmed by further
simulations not presented here) the approximation R̃ is recommended over the approximation
˜̃R. Alternative approximations based on Taylor expansions can be found in Section 6.5 of [3].

x F3(x, 2, R) F̂3(x, 2, R)
2 0.2778281 0.2779077
4 0.6646115 0.6646023
6 0.8643435 0.8643429
8 0.9478280 0.9478538
10 0.9803673 0.9803720
12 0.9926888 0.9926845
14 0.9972918 0.9972840
16 0.9989997 0.9990013

time 0.08s 554.07s

x F3(x, 2, R) F̂3(x, 2, R)
2 0.3225955 0.3226139
4 0.6935769 0.6936257
6 0.8766919 0.8767142
8 0.9524740 0.9525019
10 0.9820150 0.9820436
12 0.9932537 0.9932654
14 0.9974814 0.9974821
16 0.9990621 0.9990631

time 8.54s 760.75s

Table 1: Numerical values of F3(·, 2, R). The correlation matrix R in the left table is one-
factorial, hence the formula from Proposition 1.(i) is used for computation. The correlation matrix
R in the right table is two-factorial, and the formula from Proposition 1.(ii) is applied. The values
F̂3(·, 2, R) correspond to Monte Carlo approximations by means of (1) with 108 independent
repetitions. The last row indicates computing time.

x F4(x, 2, R) F̂4(x, 2, R)
2 0.2993742 0.2993301
4 0.6731993 0.6732463
6 0.8623824 0.8623593
8 0.9446312 0.9446057
10 0.9782977 0.9782724
12 0.9916350 0.9916207
14 0.9968125 0.9968157
16 0.9987953 0.9987975

time 0.14s 539.41s

x F4(x, 2, R) F̂4(x, 2, R)
2 0.1956750 0.1956808
4 0.5924941 0.5925014
6 0.8292380 0.8292630
8 0.9333548 0.9333743
10 0.9747319 0.9747557
12 0.9905420 0.9905466
14 0.9964819 0.9964933
16 0.9986957 0.9986995

time 6.22s 902.18s

Table 2: Numerical values of F4(·, 2, R). The correlation matrix R in the left table is one-
factorial, hence the formula from Proposition 1.(i) is used for computation. The correlation matrix
R in the right table has a pertaining one-factorial conditional covariance matrix, and the formula
from Proposition 1.(iii) is applied. The values F̂4(·, 2, R) correspond to Monte Carlo approx-
imations by means of (1) with 108 independent repetitions. The last row indicates computing
time.

Summarizing the results of Tables 1 and 2 we observe a clear advantage of the exact com-
putational methods in comparison with Monte Carlo approximations. The methods from Propo-
sition 1 are as accurate as a Monte Carlo approximation with a huge number of pseudo rep-
etitions, but their computing time is drastically smaller. In view of applications to multiple test
problems with several thousands of hypotheses as occurring frequently in modern life sciences
(see our Section 5 and Part II of [1] for some examples), the proposed computational methods

10



x F4(x, 2, R) F4(x, 2, R̃) F4(x, 2, ˜̃R)
2 0.181286 0.179202 0.223520
4 0.580074 0.577999 0.637647
6 0.823400 0.821883 0.859265
8 0.931065 0.930019 0.948667
10 0.97391 0.973257 0.981698
12 0.990263 0.989887 0.993521
14 0.996390 0.996185 0.997705
16 0.998666 0.998557 0.999182

Table 3: Comparison of the approximations of R by R̃ or ˜̃R, respectively. The approximation
by averaging the two smallest eigenvalues yields a tighter approximation and approximates
F4(·, 2, R) from below. With increasing x the approximations become better. The computation
of the exact probabilities is performed by means of Proposition 1.(iii).

are therefore clearly preferable. In such applications, F3(x) or F4(x) has to be evaluated for
large (multiplicity-adjusted) quantiles x several thousand times.

4.2 Approximations for M > 4

Here we consider higher dimensionalities M and assess the numerical accuracy of the proba-
bility bounds from Lemma 1.

Table 4 corresponds to M = 10. We compare the PTPAs β2 and β3 with Bonferroni bounds of
order 2 and 3, respectively. Because of the high number of terms which have to be evaluated
for the computation of b3 there is no gain in computing time in comparison with the more exact
Monte Carlo approximation. However, the PTPA β3 is very fast and yields very good approxima-
tions. The advantages of b2 are its guaranteed conservativeness (meaning that F10(·, 2, R) is
approximated from below) and its small computing time.

In analogy to Table 4, Table 5 presents results for dimensionality M = 20. Due to its immense
computation time we dispense with b3 in Table 5.

5 Application to genetic association studies

Genetic association studies lead to simultaneous categorical data analysis, meaning that many
(2 × 2) or (2 × 3) contingency tables have to be analyzed simultaneously, where every single
contingency table summarizes study data for one position (locus) on the human genome. The
aim of the statistical analysis is to carry out a test for association with a given (typically binary)
phenotype at every locus under consideration. To this end often a family of χ2 test statistics
is constructed. For more details about statistical models and inferential methods we defer the
reader to [2] and Section 4.1 of [4]. Here we only mention that the locus-specific χ2 statistics
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x F̂10(x, 2, R) 1− b3 β3 β2 1− b2

2 0.0934656 0 0.0609471 0.0393610 0
4 0.4509507 0 0.3929242 0.3436422 0.1080684
6 0.7368419 0.5391698 0.7023297 0.6729185 0.6287352
8 0.8862372 0.8454660 0.8718640 0.8602538 0.8530283
10 0.9534348 0.9442863 0.9482151 0.9443324 0.9432289
12 0.9815152 0.9792150 0.9797413 0.9785392 0.9783770
14 0.9927744 0.9920345 0.9922077 0.9918605 0.9918371
16 0.9972293 0.9967913 0.9970237 0.9969403 0.9969370

time 744.83s 583.73s 38.56s 0.48s 0.43s

Table 4: Comparison of sum-type approximations and product-type approximations in case of
M = 10. The values F̂10(·, 2, R) correspond to Monte Carlo approximations by means of (1)
with 108 independent repetitions. The last row indicates computing time.

x F̂20(x, 2, R) β3 β2 1− b2

2 0.0259720 0.002834 0.002494 0
4 0.2947225 0.146186 0.141662 0
6 0.6203213 0.487080 0.490405 0.334661
8 0.8239834 0.758304 0.769148 0.744267
10 0.9245446 0.899017 0.904437 0.900520
12 0.9690100 0.960167 0.962528 0.961944
14 0.9876556 0.984835 0.985681 0.985596
16 0.9952047 0.994312 0.994599 0.994587

time 1143.4s 62.71s 2.37s 2.49s

Table 5: Comparison of sum-type approximations and product-type approximations in case of
M = 20. The values F̂20(·, 2, R) correspond to Monte Carlo approximations by means of (1)
with 108 independent repetitions. The last row indicates computing time.

typically exhibit strong dependencies within blocks of genetic loci due to the biological mecha-
nism of inheritance. Hence, under the global hypothesis of no genotype-phenotype associations
at all, the computational methods described in Sections 2 to 4 are highly relevant for calibrating
simultaneous test procedures in the sense of [5] with respect to control of the familywise error
rate (FWER). If strict FWER control is targeted it is important to approximate F̄M(x, ν, R) from
above. In this, M denotes the number of loci, x denotes a multiplicity-corrected χ2 quantile,
ν = 1 (ν = 2) in case of marginal (2× 2) or (2× 3) contingency tables, respectively, and the
correlation matrix R encodes the dependencies among loci.

We note that the aforementioned strong dependencies among the test statistics allow for a re-
laxation of the necessary adjustment for multiplicity in comparison with the case of independent
test statistics. Following [11] and [4], one transparent way to express the relaxed multiplicity cor-
rection is to compute so-called effective numbers of tests based on PTPAs. Information about the
so-called linkage disequilibrium (LD) matrix R is publicly available from web-based databases
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for a variety of target populations. Here, we compute an effective number of tests of order 3 in
the sense of Theorem 3.1 in [4] based on LD information taken from the international HapMap
project (http://hapmap.ncbi.nlm.nih.gov/). For exemplary purposes we restrict
our attention to loci on chromosome 21 in the CHD population (Chinese in Metropolitan Denver).

In total this chromosome comprises M = 18,143 loci. We divided the chromosome into
B = 363 blocks of size 50 each (notice the last of these blocks comprises only 43 loci).
We consider ν = 2 degrees of freedom corresponding to (2 × 3) contingency tables (i. e., to
diploid genotypes) and make the assumption that loci from different blocks lead to stochasti-
cally independent χ2 test statistics. Under this assumption the effective number of tests can be
calculated for every block separately, and the total effective number of tests is the sum of the
block-specific ones. We may remark here that, if the assumption of independent blocks is not ful-
filled, our proposed effective number of tests is conservative in the sense that it over-estimates
the true value. This is due to the extension of the Gaussian correlation inequality to multivariate
chi-square distributions which has recently been proved in [18]. Throughout the remainder we
consider FWER control at level α = 0.05.

Based on Theorem 3.1 in [4] the effective number of tests of order 3 in one block b is given by

M
(3)
eff,b =

log(1− αB)

log(F1(xb, 2))
=

log(1− α)

B log(F1(xb, 2))
, 1 ≤ b ≤ B = 363,

where αB = 1 − (1 − α)1/B corresponds to the assumption of independent blocks and xb is
implicitly defined by β3(xb) = 1− αB , where β3 exploits the dependency structure in block b,
expressed by the corresponding LD submatrix.

Figure 1 displays M (3)
eff,b for 1 ≤ b ≤ B − 1 (we omitted the B-th block which is smaller than

the others), together with their average (B−1)−1
∑B−1

b=1 M
(3)
eff,b. For the entire chromosome we

obtained an effective number of tests of order 3 of M (3)
eff = 13,676.4, meaning that effectively

only approximately two third of the M = 18,143 loci contribute to the calibration with respect
to the FWER level α.

Remark 5

a) At this stage of the analysis, neither the actual study data nor the precise definition of the
binary phenotype to be analyzed is required. Hence, the value for the effective number of
tests can be pre-computed and re-used for several association studies in the same target
population.

b) Actually, the dependency structure among the χ2 test statistics corresponding to diploid
genotypes is slightly more involved than the one among the Xj from (1). Hence, M (3)

eff is
only one out of several possible approximations of the true third-order effective number of
tests. We defer the reader to Sections 4 and 6.4 of [3] for a detailed discussion and further
approximation approaches. Anyway, all these approximations require the computation of
F3(·, 2, R).
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Figure 1: Block-specific effective numbers of tests for the real data example from Section 5,
where the block size equals 50. The effective number of tests varies between the blocks. The
stronger the dependence among the test statistics within a block the smaller is the effective
number of tests. The horizontal line displays the average effective number of tests among all
considered blocks.
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6 Discussion

The computation of multivariate χ2 probabilities plays an important role in many fields of modern
statistics, especially in multiple testing. Scientific and technological progress in the relevant
application areas leads to larger and larger systems of hypotheses to be tested simultaneously,
requiring fast methods to compute the necessary multiplicity-adjusted rejection thresholds for
the marginal χ2 test statistics. While one can approximate these thresholds straightforwardly by
Monte Carlo methods due to the rather simple stochastic representation of a multivariate chi-
square distributed random vector, our proposed numerical methods are computationally much
more efficient. With them, low-dimensional probabilities can be computed with high precision in
a fraction of the time required for Monte Carlo simulations. Furthermore, we have demonstrated
sum-type and product-type approximations for high-dimensional χ2 probabilities.

For practical applications, we recommend PTPAs of appropriate order. Although a rigorous
mathematical analysis of their conservativity (meaning that F̄M(x, ν, R) is approximated from
above) is very involved (see the corresponding references in [4]), our experience is that they
often yield tight approximations, in particular for larger values of x. The latter property is im-
portant for applications in large-scale multiple testing, where small exceedance probabilities
F̄M(x, ν, R), i. e., large values of x, have to be considered because of the necessary strong
adjustment for multiplicity.

Future work shall aim at implementing further types of multivariate χ2 distributions which exhibit
a more complex dependency structure. For instance, the rather general type given in Definition
4.6 of [1] is relevant for certain multiple test problems with unbalanced degrees of freedom and
inhomogeneous correlation matrices among the multivariate normal vectors appearing in the
stochastic representation (1). Furthermore, automated matrix factorization criteria going beyond
the ones presented in Lemma 2 would be helpful tools for an even more exact computation of
multivariate χ2 probabilities.
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