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Abstract

Consider a time-harmonic acoustic plane wave incident onto a doubly periodic (biperiodic) surface

from above. The medium above the surface is supposed to be filled with a homogeneous compress-

ible inviscid fluid of constant mass density, whereas the region below is occupied by an isotropic and

linearly elastic solid body characterized by its Lamé constants. This paper is concerned with a varia-

tional approach to the fluid-solid interaction problems with unbounded biperiodic Lipschitz interfaces

between the domains of the acoustic and elastic waves. The existence of quasi-periodic solutions in

Sobolev spaces is established at arbitrary frequency of incidence, while uniqueness is proved only for

small frequencies or for all frequencies excluding a discrete set. A finite element scheme coupled with

Dirichlet-to-Neumann mappings is proposed. The Dirichlet-to-Neumann mappings are approximated

by truncated Rayleigh series expansions, and, finally, numerical tests in 2D are performed.

1 Introduction

Consider a time-harmonic acoustic plane wave incident onto an unbounded doubly periodic (or biperi-
odic) surface from above; see Figure 1. The medium above the surface is supposed to be filled with
a homogeneous compressible inviscid fluid with a constant mass density, whereas the region below is
occupied by an isotropic and linearly elastic solid body characterized by its Lamé constants. Due to the
external incident acoustic field, an elastic wave propagating downward is incited inside the solid, while
the incident acoustic wave is scattered back into the fluid. This leads to the fluid-solid interaction (FSI)
problem with unbounded biperiodic interfaces separating the domains of acoustic and elastic waves. The
problem has many applications in underwater acoustics, sonic and photonic crystals as well as in the field
of ultrasonic non-destructive evaluation; see [7, 10, 20, 28] and the references therein. In particular, the
investigation of surface (or Rayleigh) waves can be important in developing new surface acoustic wave
devices and planar actuators ( [10]). The application of periodic interfaces in the real world, e.g., grain
structure, lamination and fiber reinforcement as well as in the manufacturing of material surfaces, moti-
vates us to rigorously investigate FSI problems in periodic structures. Note that, so far, a vast literature
has come from the engineering community only.

Since Lord Rayleigh’s original work [23], grating diffraction problems have received much attention in both
the physical and mathematical communities. Consequently, the scattering of pure acoustic, elastic or elec-
tromagnetic waves has been studied extensively including theoretical analysis and numerical approxima-
tion, using integral equation methods (e.g., [3,25–27,29]), variational methods (e.g., [1,5,6,11,12,14,17,
18, 21]) or the coupling scheme [2]. In particular, the variational approach appears to be well adapted to
the analytical and numerical treatment of rather general two-dimensional and three-dimensional periodic
diffractive structures involving complex materials and non-smooth interfaces. To investigate the FSI prob-
lem, we establish an equivalent variational formulation in a bounded periodic cell involving two nonlocal
transparent boundary operators. Relying on properties of the Dirichlet-to-Neumann (DtN) maps for the
Helmholtz and Navier equations, we show the existence of solutions in quasi-periodic Sobolev spaces by
establishing the Fredholmness of the operator generated by the corresponding sesquilinear form. More-
over, uniqueness is proved at least for small frequencies or for all frequencies excluding a discrete set.
A non-uniqueness example in Lemma 4.3 shows that uniqueness does not hold in general, even if the
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Figure 1: Scattering of plane waves from an egg-crate shaped biperiodic surface in R
3.

interface is given by the graph of some smooth biperiodic function. This is in sharp contrast to the result
in [21] for the pure Helmholtz equation and that in [13] for the pure Lamé system, where the uniqueness
is proved via periodic Rellich’s identities for a scattering interface given by the graph of some function.
This suggests the possible existence of surface (Rayleigh or evanescent) waves in general settings, and
a corresponding search for eigensolutions may help to design new surface wave devices. Based on the
variational formulation, a finite element scheme with approximated Dirichlet-to-Neumann mappings in
form of truncated Rayleigh series expansions is proposed. The numerical analysis is performed, and 2D
examples are presented.

The paper is organized as follows. In Section 2 we rigorously formulate the interaction problems with
biperiodic Lipschitz interfaces separating the domains of acoustic and elastic waves. In Section 3 we
propose an equivalent variational formulation in a truncated periodic cell by introducing two non-local
transparent operators. Section 4 is devoted to the solvability of the FSI problem through the variational
approach. An energy balance formula will be stated in Section 5 and the numerical analysis of the finite
element method is given in Section 6. In the final Sections 7 and 8 we introduce the corresponding two-
dimensional setting and present numerical tests.

We end up this section by introducing some notation that will be used throughout the paper. Denote by
(·)> the transpose of a vector or a matrix, and by (·)∗ the adjoint of an operator. For a ∈ C, let |a| denote
its modulus, and for a ∈ C

3, let |a| denote its Euclidean norm. The notation a · b stands for the inner
product

∑3
j=1 ajbj of a = (a1, a2, a3)

>, b = (b1, b2, b3)
> ∈ C

3. For x = (x1, x2, x3)
> ∈ R

3, we write

x̃ = (x1, x2)
> so that x = (x̃>, x3)

>.

2 Mathematical formulations

We assume that an acoustic wave is incident onto a biperiodic Lipschitz surface Γ ⊂ R
3 from above.

Without loss of generality we suppose that Γ is 2π-periodic in x1 and x2, i.e.,

x = (x̃>, x3)
> ∈ Γ ⇒ (x̃> + 2π n>, x3)

> ∈ Γ for all n = (n1, n2)
> ∈ Z

2.

Denote by Ω+ the region above Γ, which is filled with a homogeneous compressible inviscid fluid with
the constant mass density ρf > 0. The incident wave is supposed to be a time-harmonic plane wave
of the form vin(x) exp(−iωt) with frequency ω > 0 and speed of sound c0 > 0, where the spatially
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dependent function vin takes the form

vin(x) = exp(ikθ̂ · x), θ̂ = (sin θ1 cos θ2, sin θ1 sin θ2,− cos θ1)
>∈S

2 := {x ∈ R
3: |x| = 1}. (1)

In (1), the vector θ̂ denotes the incident direction with the incident angles θ1 ∈ (−π/2, π/2), θ2 ∈
[0, 2π), and k = ω/c0 is the wave number in the fluid. We assume the region below Γ, denoted by Ω−,
is occupied by an isotropic and linearly elastic solid body characterized by the real valued constant mass
density ρ > 0 and the Lamé constants λ, µ ∈ R satisfying µ > 0, 3λ+ 2µ > 0.

Under the hypothesis of small amplitude oscillations both in the solid and the fluid, the direct or forward
scattering problem looks for the total acoustic field v = vin + vsc and the transmitted elastic field u
generated from a known (prescribed) incident wave vin such that (see e.g. [19,24,28])





(∆ + k2) v = 0 in Ω+,
(∆∗ + ω2ρ)u = 0 in Ω− , ∆∗ := µ∆ + (λ+ µ) grad div ,
η u · ν = ∂νv on Γ, η := ρfω

2 > 0,
Tu = −v ν on Γ.

(2)

Here, the notation ν = (ν1, ν2, ν3)
> ∈ S

2 denotes the unit normal vector on Γ pointing into Ω− and
∂ν u = ν · grad u. As a convention we shall use the symbol ∂j u to denote ∂u/∂xj . In (2), Tu stands
for the three-dimensional stress vector or traction having the form:

Tu = T (λ, µ)u := 2µ ∂ν u+ λ(div u) ν + µ ν × curl u on Γ. (3)

By Betti’s formula (see e.g., [22]), the role of the above stress operator in the Lamé equation is the same
as that of the normal derivative in the scalar Helmholtz equation.

Throughout the paper, we write α = (α1, α2)
> := k(sin θ1 cos θ2, sin θ1 sin θ2)

> ∈ R
2. Obviously, the

incident field vin is α-quasiperiodic in the sense that vin(x) exp(−iα · x̃) is 2π-periodic with respect
to x1 and x2. The periodicity of the structure together with the form of the incident wave implies that the
solution (v, u) must also be α-quasiperiodic, i.e., for w = v in Ω+ and w = u in Ω− it holds that

w(x̃+ 2π n, x3) = exp(2πiα · n)w(x1, x2, x3) for all n = (n1, n2)
> ∈ Z

2. (4)

Since the domain Ω± is unbounded in the ±x3-direction, a radiation condition must be imposed at infinity
to ensure well-posedness of the boundary value problem (2). Let

Γ+ := max
x∈Γ

{x3}, Γ− := min
x∈Γ

{x3}.

Following [21], we require that the scattered acoustic field vsc admits an upward Rayleigh expansion (see
also [4,6,15])

vsc(x̃, x3) =
∑

n∈Z2

vn exp(iαn · x̃+ iηnx3), x3 > Γ+, (5)

with the Rayleigh coefficients vn ∈ C. The parameters αn = (α
(1)
n , α

(2)
n )> ∈ R

2 and ηn ∈ C in (5) are
given by

αn = α+ n ∈ R
2, ηn =

{
(k2 − |αn|

2)
1
2 if |αn| ≤ k,

i(|αn|
2 − k2)

1
2 if |αn| > k,

for n ∈ Z
2. (6)
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To see the corresponding expansion of the elastic field, we decompose it into the compressional and
shear parts,

u =
1

i
(gradϕ+ curlψ) with ϕ := −

i

k2
p

div u , ψ :=
i

k2
s

curlu , (7)

where the scalar function ϕ and the vector function ψ satisfy the homogeneous Helmholtz equations

(∆ + k2
p)ϕ = 0 and (∆ + k2

s)ψ = 0 in Ω− , (8)

with the compressional and shear wave numbers defined as

kp := ω
√
ρ/(2µ+ λ) , ks := ω

√
ρ/µ.

Applying the downward Rayleigh expansion for the scalar Helmholtz equation to ϕ and the components
of ψ, i.e.,

ϕ(x̃, x3) =
∑

n∈Z2

ϕp,n exp(iαn · x̃− iβnx3), ψ(x̃, x3) =
∑

n∈Z2

Ψs,n exp(iαn · x̃− iγnx3)

with Ψs,n·(α
>
n ,−γn)

>=0, we finally obtain the corresponding expansion of u into downward propagating
plane elastic waves

u(x) =
∑

n∈Z2

{
Ap,n

(
αn
−βn

)
exp(iαn · x̃− iβnx3) + As,n exp(iαn · x̃− iγnx3)

}
, x3 < Γ−. (9)

In (9), the Rayleigh coefficients are given as

Ap,n := ϕp,n ∈ C, As,n :=

(
αn
−γn

)
× Ψs,n ∈ C

3.

In particular, we have the orthogonality

As,n ·

(
αn
−γn

)
= 0 for all n ∈ Z

2. (10)

The parameters βn and γn occurring (9) are defined analogously to ηn in (6) with k replaced by kp and
ks, respectively. By up and us we denote the compressional and shear parts of u, respectively, i.e., for
x3 < Γ−,

up(x) =
∑

n∈Z2

Ap,n

(
αn
−βn

)
exp(iαn · x̃− iβnx3), us(x) =

∑

n∈Z2

As,n exp(iαn · x̃− iγnx3).

Then, it is obvious that u = up + us and

(∆ + k2
p)up = 0, curlup = 0, (∆ + k2

s)us = 0, div us = 0 in Ω−.

Since ηn, βn and γn are real for at most finitely many indices n ∈ Z
2, we observe that only the finite

number of plane waves in (5) corresponding to |ηn| ≤ k and those in (9) corresponding to |βn| ≤
kp and |γn| ≤ ks propagate into the far field. These plane waves are referred to as the upward and
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downward outgoing plane waves, respectively. The remaining part consists of evanescent (or surface)
waves decaying exponentially as |x3| → +∞. Thus, the Rayleigh expansion (5) converges uniformly
with all derivatives in the upper half-space {x : x3 > b} for any b > Γ+, while (9) converges in the lower
half-space {x : x3 < a} for any a < Γ−.

Now, we can formulate our FSI problem as the following boundary value problem, in which the interface
Γ is not necessarily the graph of a biperiodic function.

(BVP): Given a biperiodic Lipschitz surface Γ ⊂ R
3 (which is 2π-periodic in x1 and x2 and which

splits R
3 into an upper and lower half space) and an incident field vin of the form (1), find a

scalar function v = vin + vsc ∈ H1
loc(Ω

+) and a vector function u ∈ H1
loc(Ω

−)3 that satisfy
the equations and transmission conditions in (2), the quasi-periodic boundary condition (4) and the
radiation conditions, i.e., that u and v admit the Rayleigh expansions in (5) and (9), respectively.

3 Variational formulation in a truncated domain

In this section we propose a variational formulation equivalent to (BVP), based on the approach of [15,21]
and [12,13] for the scattering of acoustic and elastic waves by diffraction gratings. Thanks to the periodicity
of the unbounded domains Ω±, we can restrict our discussions to one single periodic cell {x : 0 < xj <
2π, j = 1, 2} such that after a truncation in the x3-direction the compact imbedding of Sobolev spaces
can be applied. This, together with Friedrich’s inequality for the Helmholtz equation and Korn’s inequality
for the Navier equation, enables us to justify the strong ellipticity of the sesquilinear form generated by
the variational formulation.

We begin with introducing artificial boundaries

Γ±
b := {(x1, x2,±b) : 0 ≤ x1, x2 ≤ 2π} , ±b ≷ Γ± ,

and the bounded domains

Ω±
b := {x ∈ Ω± : 0 < x1, x2 < 2π, x3 ≶ ±b} .

For simplicity we still use Γ to denote one period of the grating surface; see Figure 2. Since Γ is a Lipschitz
surface, we may restrict our considerations to the case that Ω±

b are bounded Lipschitz domains in R
3. Let

H1
α(Ω

±
b ) denote the Sobolev space of scalar functions on Ω±

b which are α-quasiperiodic with respect to
x1 and x2.

Introduce the family of product spaces (including the energy space V1)

Vt = Vt(α) := V +
t × V −

t , V +
t := H t

α(Ω
+
b ), V −

t := H t
α(Ω

−
b )3,

equipped with the norm in the usual product space of H t(Ω+
b ) × H t(Ω−

b )3. Using the transmission
conditions in (2), it follows from Green’s and Betti’s formulas that, for (ϕ, ψ) ∈ V1,

−

∫

Ω+
b

(∆ + k2)v ϕ dx =

∫

Ω+
b

[
grad v ·gradϕ− k2vϕ

]
dx− η

∫

Γ

u·νϕ ds−

∫

Γ+
b

∂νv ϕ ds ,

−

∫

Ω−b

(∆∗ + ω2ρ)u·ψ dx =

∫

Ω−b

[
E(u, ψ) − ω2ρu·ψ

]
dx−

∫

Γ

v ν ·ψds−

∫

Γ−b

Tu·ψ ds ,

(11)
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Figure 2: The geometry settings in one periodic cell. Here Γ±
b :={(x1, x2,±b)

> : 0<x1, x2<2π} and
Ω±
b denotes the domain between Γ±

b and Γ.

where the bar indicates the complex conjugate, T is the stress vector defined by (3) and

E(u, ψ ) := 2µ

(
3∑

i,j=1

∂iuj ∂iψj

)
+ λ (div u)(divψ) − µ curlu · curlψ. (12)

Now we introduce the DtN maps T ± on the artificial boundaries Γ±
b .

Definition 3.1. For any w ∈ Hs
α(Γ

+
b ), s>0, the DtN operator T + applied to w is defined as ∂νv

sc|Γ+
b

,
where vsc is the unique α-quasiperiodic solution of the homogeneous Helmholtz equation in x3 > b
which satisfies the upward radiation condition (5) and has the Dirichlet boundary value vsc = w on Γ+

b .

Analogously, for any w ∈ Hs
α(Γ

−
b )3, s > 0, the DtN operator T − applied to w is defined as Tu|Γ−b

,
where u is the unique α-quasiperiodic solution of the homogeneous Navier equation in x3 < −b which
satisfies the downward radiation condition (9) and takes the Dirichlet boundary value u = w on Γ−

b .

In this paper we employ the following equivalent norm on Hs
α(R

2):

‖w‖Hs
α(R2) =

(∑

n∈Z2

(1 + |n|)2s |ŵn|
2
)1/2

, s ∈ R, (13)

where ŵn ∈ C are the Fourier coefficients of exp(−iα · x̃)w(x̃), that is,

w(x̃) =
∑

n∈Z2

ŵn exp(iαn · x̃). (14)

Letting w ∈ Hs
α(Γ

+
b ), s>0 be given as above, one can readily derive an explicit expression of the DtN

map T + from its definition as follows:

(T +w)(x̃) =
∑

n∈Z2

iηn ŵn exp(iαn · x̃), (15)

where ηn is defined as in (6). Analogously, for w ∈ Hs
α(Γ

−
b )3, s>0 of the form (14) with ŵn ∈ C

3, we
can represent the DtN map T − as

(T −w)(x̃) =
∑

n∈Z2

iWn ŵn exp(iαn · x̃), (16)
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where Wn is the 3 × 3 matrix given by

Wn = Wn(ω, ρ, α) :=
1

|αn|2 + βnγn



an bn −cn
bn dn −en
cn en fn


 , (17)

with

an := µ
[
(γn − βn)(α

(2)
n )2 + k2

sβn
]
, bn := −µα(1)

n α(2)
n (γn − βn),

cn :=
(
2µα2

n − ω2ρ+ 2µγnβn
)
α(1)
n , en :=

(
2µα2

n − ω2ρ+ 2µγnβn
)
α(2)
n ,

dn := µ
[
(γn − βn)(α

(1)
n )2 + k2

sβn
]
, fn := γnω

2ρ.

The expression of T + is well-known (see [15,21]), whereas that of T − can be derived following the way
in [13] for upward propagating elastic waves. Throughout the paper we assume ω is not an exceptional
frequency, i.e.,

ω 6∈ D0 :=
{
ω : ∃n ∈ Z

2 s.t. |αn(ω)|2 + βn(ω)γn(ω) = 0
}
, (18)

so that the denominator of (17) never vanishes. The condition (18) can be guaranteed if ω is sufficiently
small or if the relation λ+ 2µ ≤ ρc20 ( equivalently k ≤ kp) holds; see Theorem 4.4 (ii).

Remark 3.2. The condition ω 6∈ D0 is a technical assumption only. If ω ∈ D0 is an exceptional fre-
quency, then the DtN mapping is to be modified. For simplicity, we assume that the condition |αn(ω)|2 +
βn(ω)γn(ω) = 0 is satisfied if and only if n = n# for a fixed n# ∈ Z

2. Then we introduce the modified
DtN map

(T −
# w)(x̃) =

∑

n∈Z2: n6=n#

iWn ŵn exp(iαn · x̃).

The subsequent sesquilinear form A in (23) is to be modified as follows. We replace the last term
−
∫
Γ−b

T −u · ψ ds in the square bracket by

−

∫

Γ−b

T −
# u · ψ ds− Ψ#(u) ·

∫

Γ−b

φ#ψ ds ,

where Ψ# : V1 −→ C
3 is a continuous linear vector-valued functional and where the function φ# :

R
3 → C is defined by φ#(x̃, x3) := 1

2π
exp(iαn#

· x̃). For Ψ# and the trace of the traction operator T ,

we have to require Ψ#(w−
j )=

∫
Γ−b
φ# Tw

−
j and Ψ#(w+

j )=
∫
Γ−b
φ#w

+
j+3 for j=1, 2, 3, where

w±
1 (x) :=

(
α>
n#
,±βn#

)>
exp

(
i(αn#

· x̃± βn#
[x3 + b])

)
,

w±
2 (x) :=

(
α(2)
n#
,−α(1)

n#
, 0
)>

exp
(
i(αn#

· x̃± γn#
[x3 + b])

)
,

w±
3 (x) :=

(
α>
n#
,±βn#

)>
exp

(
i(αn#

· x̃± γn#
[x3 + b])

)
.

The functions w+
j , j = 4, 5, 6 are chosen as constant vectors multiplied by φ# such that the mapping

C
33(λj)

3
j=1 7→

∑3
j=1 λj[T (w+

j ) − w+
j+3]|Γ+

b
has a trivial kernel.
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Setting a := 1
2
(−b+ Γ−) and Γ−

a := {x∈R
3 : 0<x1, x2<2π, x3 =a}, we can choose, e.g.,

Ψ#(u) :=

1

8π2βn#
|αn#

|2
1

exp(−iβn#
(a+b)) − exp(−iγn#

(a+b))

{∫

Γ−a

φ# u · (βn#
α>
n#
,−|αn#

|2)>

− exp(−iγn#
(a+ b))

∫

Γ−b

φ# u · (βn#
α>
n#
,−|αn#

|2)>
}∫

Γ−b

φ# Tw
−
1

+
1

4π2|αn#
|2

1

exp(−iγn#
(a+ b)) − exp(iγn#

(a+ b))

{∫

Γ−a

φ# u · (α
(2)
n#
,−α(1)

n#
, 0)>

− exp(iγn#
(a+ b))

∫

Γ−b

φ# u · (α
(2)
n#
,−α(1)

n#
, 0)>

}∫

Γ−b

φ# Tw
−
2

+
1

8π2βn#
|αn#

|2
1

exp(−iγn#
(a+b)) − exp(−iβn#

(a+b))

{∫

Γ−a

φ# u · (βn#
α>
n#
,−|αn#

|2)>

− exp(−iβn#
(a+ b))

∫

Γ−b

φ# u · (βn#
α>
n#
,−|αn#

|2)>
}∫

Γ−b

φ# Tw
−
3

+
1

8π2βn#
|αn#

|2
1

exp(iβn#
(a+b)) − exp(iγn#

(a+b))

{∫

Γ−a

φ# u · (βn#
α>
n#
, |αn#

|2)>

− exp(iγn#
(a+ b))

∫

Γ−b

φ# u · (βn#
α>
n#
, |αn#

|2)>
}∫

Γ−b

φ#w
+
4

+
1

4π2|αn#
|2

1

exp(iγn#
(a+ b)) − exp(−iγn#

(a+ b))

{∫

Γ−a

φ# u · (α
(2)
n#
,−α(1)

n#
, 0)>

− exp(−iγn#
(a+ b))

∫

Γ−b

φ# u · (α
(2)
n#
,−α(1)

n#
, 0)>

}∫

Γ−b

φ#w
+
5

+
1

8π2βn#
|αn#

|2
1

exp(iγn#
(a+b)) − exp(iβn#

(a+b))

{∫

Γ−a

φ# u · (βn#
α>
n#
, |αn#

|2)>

− exp(iβn#
(a+ b))

∫

Γ−b

φ# u · (βn#
α>
n#
, |αn#

|2)>
}∫

Γ−b

φ#w
+
6 .

Remark 3.3. Suppose that w satisfies the upward α-quasiperiodic Rayleigh expansion

w(x) =
∑

n∈Z2

{
Ap,n

(
αn
βn

)
exp(iαn · x̃+ iβnx3) + As,n exp(iαn · x̃+ iγnx3)

}
, x3 > Γ+,

as a solution to the Navier equation in Ω+, with the Rayleigh coefficients Ap,n ∈ C,As,n ∈ C
3 such that

As,n · (α
>
n , γn)

> = 0. Then one can prove that (see [13, Lemma 1])

(Tw)|Γ+
b

=
∑

n∈Z2

iW>
n ŵn exp(iαn · x̃),

where ŵn denotes the Fourier coefficient of exp(−iα · x̃)w(x̃, b) of order n. Hence, the matrix in (17)
differs from that in [13] only in the signs before cn and en.

8



Making use of the norm (13) and the asymptotic behavior

ηn, βn, γn ∼ i|n|, |βn − γn| ∼
1

|n|2
k2
s − k2

p

2
, |αn|

2 + βnγn ∼
k2
p + k2

s

2
as |n| → ∞,

one can straightforwardly verify that

T + : Hs
α(R

2) → Hs−1
α (R2), T − : Hs

α(R
2)3 → Hs−1

α (R2)3, s > 0

are both bounded operators. Moreover, the operator −Re T + is positive semidefinite over Hs
α(Γ

+
b ), i.e.,

−Re

∫

Γ+
b

T +ww ds = 4π2
∑

|αn|≥k

|ηn| |ŵn|
2 ≥ 0 for all w ∈ Hs

α(Γ
+
b ). (19)

Unfortunately, the positive semidefiniteness of −Re T − over Hs
α(Γ

−
b )3 does not hold in general (see

[12,13]). With the definitions of T ±, we can reformulate the terms ∂νv and Tu on the right hand sides of
(11) as

(∂νv)|Γ+
b

= f0 + T +(v|Γ+
b
), (Tu)|Γ−b

= T −(u|Γ−b
), (20)

with

f0 := (∂νv
in)|Γ+

b
− T +(vin|Γ+

b
), f0(x̃) = −2iη0 exp(iα · x̃− iη0b) ∈ H−1/2

α (Γ+
b ), (21)

which follows from the expression of vin in (1). Combining (20) and (11), we obtain the following variational
formulation of (BVP): Find (v, u) ∈ V1 such that

A
(
(v, u), (ϕ, ψ)

)
=

∫

Γ+
b

f0 ϕds for all (ϕ, ψ) ∈ V1, (22)

where the sesquilinear form A : V1 × V1 → C is defined as

A
(
(v, u), (ϕ, ψ)

)
:=

∫

Ω+
b

[
grad v · gradϕ− k2vϕ

]
dx− η

∫

Γ

u · ν ϕ ds−

∫

Γ+
b

T +v ϕ ds (23)

+η

[∫

Ω−b

[
E(u, ψ) − ω2ρu · ψ

]
dx−

∫

Γ

v ν · ψds−

∫

Γ−b

T −u · ψds

]

for all (ϕ, ψ) ∈ V1. The above sesquilinear form obviously generates a continuous linear operator A :
V1 → V ′

1 such that

A
(
(v, u), (ϕ, ψ)

)
= 〈A(v, u), (ϕ, ψ)〉 for all (ϕ, ψ) ∈ V1. (24)

Here V ′
1 denotes the dual space of V1 with respect to the duality 〈·, ·〉 extending the product in L2(Ω+

b )×
L2(Ω−

b )3.
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4 Solvability results

Having established the equivalent variational formulation in a truncated domain in Section 3, the purpose
of this section is to derive uniqueness and existence of weak solutions to the variational equation (24).
We first prove the strong ellipticity of the sesquilinear form A.

Lemma 4.1. The sesquilinear form A defined in (23) is strongly elliptic over V1, and the operator A
defined by (24) is always a Fredholm operator with index zero.

Proof. Since the matrix−Re (iW>
n ) is positive for large |n| (see [13, Lemma 2]), the operator−Re (T −)

can be decomposed into the sum of a positive definite operator T1 and a finite rank operator T2 from
H

1/2
α (Γ−

b )3 to H
−1/2
α (Γ−

b )3. We split the sesquilinear form A into the sum A = A1 + A2, where

A1

(
(v, u), (ϕ, ψ)

)
:=

∫

Ω+
b

[grad v · gradϕ+ vϕ ] dx−

∫

Γ+
b

T +v ϕ ds

+η

[∫

Ω−b

[
E(u, ψ) + u · ψ

]
dx+

∫

Γ−b

T1 u · ψds

]
,

A2

(
(v, u), (ϕ, ψ)

)
:= −

∫

Ω+
b

[
(1 + k2)vϕ

]
dx− η

∫

Γ

u · ν ϕ ds

+η

[∫

Ω−b

[
− (1 + ω2ρ)u · ψ

]
dx−

∫

Γ

v ν · ψ ds+

∫

Γ−b

T2u · ψ ds

]
.

Recalling (19) and Korn’s inequality (see, e.g., [19, Chap. 5.4] or [12]), we have

ReA1

(
(v, u), (v, u)

)
≥ c1

(
||v||2

V +
1

+ ||u||2
V −1

)
for all (v, u) ∈ V1,

with some constant c1 > 0. Moreover, applying the Cauchy-Schwarz inequality yields

ReA2

(
(v, u), (v, u)

)
≥ −c2

(
||v||2

L2(Ω+
b )

+ ||v||2L2(Γ) + ||u||2
L2(Ω−b )3

+ ||u||2L2(Γ)3

)

+ηRe (T2u, u)L2(Γ−b )3 ,

for some constant c2 > 0. From the compact imbeddings H1(Ω±
b ) ↪→ L2(Ω±

b ), H1/2(Γ) ↪→ L2(Γ)
and the compactness of T2, we conclude that the sesquilinear form A is strongly elliptic over V1 × V1.
Consequently, the operator A defined by (24) is always a Fredholm operator with index zero.

From Lemma 4.1 and the Fredholm alternative, it follows that the variational formulation (22) is uniquely
solvable provided the homogeneous operator equation A(v, u) = 0 has only the trivial solutions v =
0, u = 0. However, uniqueness cannot be proved in the general case. It will be shown below that only
the upward outgoing modes of vsc and the downward outgoing modes of u can be uniquely determined,
whereas the other evanescent modes maybe non-unique.

Lemma 4.2. Assume (vsc, u) ∈ V1 is a solution pair to the variational problem (22) with vin = 0 (or
equivalently, f0 = 0). Then there holds

vn = 0 for |αn| < k, Ap,n = 0 for |αn| < kp, |As,n| = 0 for |αn| < ks,

where vn, Ap,n and As,n denote the Rayleigh coefficients of vsc and u (see (5) and (9)).
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Proof. Taking the imaginary part of (22) with ϕ = vsc, ψ = u, vin = 0 and using the fact that η > 0, we
get

−Im
(
T + vsc, vsc

)
L2(Γ+

b )
− η Im

(
T − u, u

)
L2(Γ−b )3

= 0. (25)

From the explicit expressions for T + and T −, we can derive that

Im
(
T + vsc, vsc

)
L2(Γ+

b )
= 4π2

∑

n:|αn|<k

ηn |vn|
2,

Im
(
T − u, u

)
L2(Γ−b )

= 4π2
( ∑

n:|αn|<kp

βn |Ap,n|
2 ω2ρ+

∑

n:|αn|<ks

γn |As,n|
2µ
)
,

(26)

where the second equality follows from the arguments in proving [13, Lemma 3]. Since ηn > 0 for
|αn| < k, βn > 0 for |αn| < kp and γn > 0 for |αn| < ks, we complete the proof of Lemma 4.2 by
combining (25) and (26).

Using the arguments of the above proof, we cannot prove uniqueness of solutions to (22) for general
biperiodic Lipschitz interfaces separating domains of the fluid and solid. Moreover, uniqueness does not
hold in general, even if Γ is the graph of a smooth biperiodic function. To see this, we construct a non-
uniqueness example where Γ is a flat surface parallel to the x1x2-plane.

Lemma 4.3. Assume that Γ = Γ0 := {x : x3 = 0} is a flat interface, the incident angle θ2 = 0 and
that k = kp = k sin θ1 + m0 for some m0 ∈ Z. Then there exists at least one non-trivial solution pair
(vsc, u) ∈ V1 to the homogeneous variational problem A((vsc, u), (ϕ, ψ)) = 0 for all (ϕ, ψ) ∈ V .

Proof. Observing that the interface Γ0 is invariant in x2 and the incident direction θ̂ = (sin θ1, 0,− cos θ1)
is orthogonal to the x2-axis, the original three-dimensional scattering problem reduces to a two-dimensional
problem in the x1x3-plane. Consequently, we look for upward and downward Rayleigh expansion solu-
tions vsc and u of the special form

vsc(x) =
∑

m∈Z

vm e
i(α̃mx1+ηmx3), x3 > 0,

u(x) =
∑

m∈Z


Ap,m



α̃m
0

−βm


 ei(α̃mx1−βmx3) + As,m



γm
0
α̃m


 ei(α̃mx1−γmx3)


 , x3 < 0,

with vm, Ap,m, As,m ∈ C, α̃m := α1 + m = α
(1)
n for n = (m, 0). Here, α1 = k sin θ1 due to

the assumption that θ2 = 0. The parameters ηm, βm, γm for m ∈ Z are defined in the same way as
ηn, βn, γn (see (6)) with n = (m, 0) and α = (α1, 0)>. Note that the solution pair (vsc, u) does not
depend on x2.

Elementary calculations show that, using ν = (0, 0,−1) on Γ0,

(Tu)(x)|Γ0 = i
∑

m∈Z

(
2µα̃mβm ω2ρ− 2µα̃2

m

2µα̃2
m − ω2ρ 2µα̃mγm

)(
Ap,m
As,m

)
eiα̃mx1 ,

ν · u(x)|Γ0 =
∑

m∈Z

(Ap,mβm − As,mα̃m) eiα̃mx1 ,

(∂νv
sc)(x)|Γ0 =

∑

m∈Z

−i vmηme
iα̃mx1 .

11



Hence, the coupling conditions between v = vsc and u on Γ0 are equivalent to the algebraic equations

Dm




vm
iAp,m
iAs,m


 = 0, Dm :=




0 2µα̃mβm ω2ρ− 2µα̃2
m

−1 2µα̃2
m − ω2ρ 2µα̃mγm

−ηm/(ρfω
2) βm −α̃m


 (27)

The determinant of Dm is given by

Det(Dm) = −
ηm
ρfω2

∣∣∣∣
2µα̃mβm ω2ρ− 2µα̃2

m

2µα̃2
m − ω2ρ 2µα̃mγm

∣∣∣∣− ω2ρ βm.

Under the assumption that k = kp and k = k sin θ1 + m0 = α̃m0 for some m0 ∈ Z, we have
ηm0 = βm0 = 0. Thus, the linear system (27) has the non-trivial solution (vm0 , Ap,m0 , As,m0), if this
vector satisfies the relation

vm0 + iλk2Ap,m0 = 0, As,m0 = 0.

This implies that, one of the non-trivial solutions (vsc, u) is of the form

vsc(x) = c eikx1 in x3 > 0, u(x) = −ic/(λk2) (k, 0, 0)> eikx1 in x3 < 0,

for a constant c ∈ C.

Below we show the existence of Jones frequencies for the FSI problem in periodic structures. The fre-
quency ω ∈ R+ is called a Jones frequency with the quasi-periodic parameter α = (α1, α2)

> ∈ R
2, if

there exists at least one non-trivial α-quasiperiodic solution to the boundary value problem

(∆∗ + ω2ρ)u = 0 in Ω−, Tu = 0, ν · u = 0 on Γ, u admits an expansion (9). (28)

Obviously, the solution (0, u) solves the homogeneous transmission problem (2) with vin = 0, provided
u is a solution of (28). This implies that the FSI problem is not uniquely solvable at Jones frequencies. To
construct a non-trivial solution to (28), we suppose that γn=

√
k2
s − |αn|2 =0 for some n∈Z

2 and that
Γ:={x : x3 =0} is a flat surface. Then the following α-quasiperiodic function is a solution of (28):

u(x) =

(
α⊥
n

0

)
eiαn·x̃ =



−α

(2)
n

α
(1)
n

0


 ei(α

(1)
n x1+α

(2)
n x2).

Although there is no uniqueness in general, we can verify the existence of solutions to (BVP) at any
frequency ω ∈ R and the unique solvability for all frequencies excluding possibly a discrete set. This
exceptional set does not necessarily include the values ω ∈ D0 for which there is an n ∈ Z

2 with
|αn|

2 + βnγn 6= 0 (cf. Remark 3.2). The main results of this section are stated in the following theorem,
where the number c0 denotes the speed of sound in the fluid.

Theorem 4.4. (i) For the incident plane wave vin of the form (1), there always exists a solution (v, u) ∈
V1 to the variational problem (22) and hence to (BVP).

(ii) Assume λ + 2µ ≤ ρc20. There exists a small frequency ω0 > 0 such that for all ω ∈ (0, ω0] the
solution to (22) is unique. Moreover, the variational problem (22) admits a unique solution for all
frequencies excluding a discrete set D with the only possible accumulation point at infinity.
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Proof. (i) The variational problem (22) can be formulated as the equivalent operator equation A(v, u) =
F0, where F0 ∈ V ′

1 is defined as the right hand side of (22). By the Fredholm alternative and Lemma
4.2, this operator equation (22) is solvable provided F0 is orthogonal to all solutions (ṽ, ũ) of the homo-
geneous adjoint equation A∗(ṽ, ũ) = 0, i.e., 〈F0, (ṽ, ũ)〉 = 0. Note that the ṽ of such a pair can always
be extended to a solution of the Helmholtz equation in the unbounded domain Ω+ by setting

ṽ(x) =
∑

n∈Z2

ṽn exp(i αn · x̃ − iηn[x3 − b]), x3 > b,

where the Rayleigh coefficients ṽn are determined as the n-th Fourier coefficient of (e−iα·x̃ṽ)|Γ+
b

. The
above ṽ has a finite number of incoming plane waves that propagate downward, while the others terms
in the sum are exponentially growing modes as x3 → ∞. On the other hand, by arguing as in the proof
of Lemma 4.2, it can be derived by taking the imaginary part of the equation

0 = 〈A∗(ṽ, ũ), (ϕ, ψ)〉 = 〈(ṽ, ũ),A(ϕ, ψ)〉 = A
(
(ϕ, ψ), (ṽ, ũ)

)

with (ϕ, ψ) = (ṽ, ũ) that ṽ has vanishing Rayleigh coefficients of the incoming modes, i.e., ṽn = 0 for
|αn| < k. In particular, we have ṽ0 = 0 and hence

〈F0, (ṽ, ũ)〉 =

∫

Γ+
b

f0 ṽds =

∫

Γ+
b

f0 ṽ0 exp(−i α0 · x̃)ds(x̃) = 0,

with f0 given in (21). Applying the Fredholm alternative yields the existence of a solution to (BVP).

(ii) We first prove uniqueness for small frequencies. The assumption λ+ 2µ ≤ ρc20 implies that k ≤ kp.
If A(vsc, u) = 0 for some (vsc, u) ∈ V , we conclude from k ≤ kp and Lemma 4.2 that the zero-order
Rayleigh coefficients of vsc and u vanish, i.e., v0 = 0, Ap,0 = 0 and As,0 = 0. This together with the
asymptotic behavior

|ηn| ≥ C0 (1 + |n|2)1/2, |n| 6= 0, as k = ω/c0 → 0+,

for some constant C0 > 0, leads to the estimate (see (19))

Re

{
−

∫

Γ+
b

vsc T +vscds

}
= 4π2

∑

|n|6=0

|ηn| |vn e
iηnb|2

= 4π2
∑

n∈Z2

|ηn| |vn e
iηnb|2

≥ C1 ||v
sc||2

H
1/2
α (Γ+

b )
, (29)

for some C1 > 0 and ω ∈ (0, ω1] with ω1 > 0 being sufficiently small. In a completely similar manner,
from the asymptotic properties of the matrix Wn as ω → 0+ (see [12, Lemma 2]) we obtain

Re

{
−

∫

Γ−b

u · T −u ds

}
≥ C2 ||u||

2

H
1/2
α (Γ−b )3

. (30)

Inserting (29) into (22) and setting (ϕ, ψ) = (vsc, 0), vin = 0, we arrive at

0 = ReA
(
(vsc, u), (vsc, 0)

)

≥ ||grad vsc||2
L2(Ω+

b )
+ C1 ||v

sc||2
H

1/2
α (Γ+

b )
− ω2/c20 ||v

sc||2
L2(Ω+

b )
− ω2 ρf

∫

Γ

u · νvsc ds.

13



Applying Friedrich’s and the Cauchy-Schwarz inequalities, it follows that

0 ≥ C3||v
sc||2

H1
α(Ω+

b )
− C4 ω

2||u||2L2(Γ)3 , ω ∈ (0, ω1], (31)

for some constants C3, C4 > 0 uniformly in all ω ∈ (0, ω1]. Similarly, inserting (30) into (22) with
(ϕ, ψ) = (0, u) and f0 = 0 and applying Korn’s inequality (see e.g., [19, Chap. 5.4] or [12]), we obtain

0 = ReA
(
(vsc, u), (0, u)

)
≥ C5||u||

2
H1

α(Ω−b )3
− C6 ||v

sc||2L2(Γ), ω ∈ (0, ω1], (32)

where C5, C6 > 0 are independent of ω ∈ (0, ω1]. Now, combining (31), (32) and using the trace lemma
we arrive at vsc = 0, u = 0 for all ω ∈ (0, ω0] with some small frequency ω0 > 0. The existence follows
directly from uniqueness by the Fredholm alternative.

In view of the analytic Fredholm theory (see e.g. [8, Theorem 8.26] or [16, Theorem I. 5. 1]) and the
unique solvability of (BVP) at small frequencies, we obtain uniqueness and existence for all frequencies
ω ∈ R

+\D, where D is a discrete set including the set D0 of exceptional frequencies (see (18)).
Note that the DtN maps T ± are not analytic at ω ∈ D0. Moreover, we conclude from the arguments
in [12, Theorem 6] or [15, Theorem 3.3] that D cannot have a finite accumulation point. The proof is
completed.

Remark 4.5. Theorem 4.4 (i) remains valid for a broad class of incident waves of the form

vin(x) =
∑

n∈Z2:|αn|<k

qn exp(iαn · x̃− iηnx3), qn ∈ C.

5 Energy balance

The energy balance in the FSI problem asserts that the sum of the reflected energy in the fluid and the
transmitted energy in the solid should be equal to the energy of the incident wave. Let the incident plane
wave vin = exp(iα ·x′−η0x3) be given by (1), with η0 = k cos θ1. Define the efficiency of the reflected
acoustic wave of order n as

E+
n :=

ηn
η0

|vn|
2.

This is the ratio of the energy flux of the reflected mode of order n over the energy flux of the incoming
mode. The energy flux is measured over a unit of time period on a unit square parallel to the x1x2-plane.
In the FSI problem, the efficiencies of the transmitted compressional and shear elastic waves in the fluid
are defined as

E−
p,n :=

βn
η0

|Ap,n|
2 ω2ρ η, E−

s,n :=
γn
η0

|As,n|
2 µ η,

respectively. The energy balance formula which can be used as an indicator of the validity of the numerical
solution is formulated as follows.

Theorem 5.1. It holds that

1 =
∑

n∈Z2:ηn>0

E+
n +

∑

n∈Z2:βn>0

E−
p,n +

∑

n∈Z2:γn>0

E−
s,n.
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Proof. It follows from (11) that

0 =

∫

Ω+
b

[
grad v · gradϕ− k2vϕ

]
dx− η

∫

Γ

u · νϕ ds−

∫

Γ+
b

∂ν v ϕ ds

+η

[∫

Ω−b

[
E(u, ψ) − ω2ρu · ψ

]
dx−

∫

Γ

v ν · ψds−

∫

Γ−b

T −u · ψds

]
,

for all (ϕ, ψ) ∈ H1(Ω+
b ) ×H1(Ω−

b )3, where v = vin + vsc denotes the total acoustic field in the fluid.
Choosing (ϕ, ψ) = (v, u) and taking the imaginary part of the above expression yields (cf. (25))

Im
(
∂νv, v

)
L2(Γ+

b )
+ η Im

(
T − u, u

)
L2(Γ−b )3

= 0, (33)

It can be readily checked that

Im
(
∂νv, v

)
L2(Γ+

b )
= Im

(
∂νv

in, vin
)
L2(Γ+

b )
+ Im

(
T + vsc, vsc

)
L2(Γ+

b )
. (34)

Indeed, by the definition of T + (see (15)) we observe

Im
[(
∂νv

in, vsc
)
L2(Γ+

b )
+
(
T + vsc, vin

)
L2(Γ+

b )

]

= 4π2 Im
[
−iη0v0 e

−2iη0b + iη0v0e
2iη0b

]
= 0

where v0 denotes the zero-th order Rayleigh coefficient of vsc (see (5)). On the other hand,

Im
(
∂ν v

in, vin
)
L2(Γ+

b )
= −4π2 η0. (35)

Inserting (35), (26) and (34) into (33) yields the desired result of the lemma.

Remark 5.2. If the Rayleigh expansion of u takes the following form equivalent to (9):

u(x)=
∑

n∈Z2

{
Ap,n

(
αn
−βn

)
exp(iαn · x̃− iβnx3) +

(
αn
−γn

)
×Ãs,n exp(iαn · x̃− iγnx3)

}
, (36)

for x3 < Γ− with Ãs,n ∈ C
3 such that Ãs,n · (αn,−γn)

>=0, then it holds that (cf. (26))

Im

∫

Γ−b

u · T −u ds = 4π2ω2ρ




∑

n:|αn|<kp

βn |Ap,n|
2 +

∑

n:|αn|<ks

γn |Ãs,n|
2


 . (37)

In this case, the definition of the efficiency E−
s,n in Theorem 5.1 should be replaced by

E−
s,n :=

γn
η0

|Ãs,n|
2 ω2ρ η.

The quantity in (37) denotes the energy flux through Γ−
b for the transmitted elastic wave of the form (36).

15



6 Discretization via truncated DtN mappings and finite element method

(FEM)

6.1 Truncation of DtN mappings

Clearly, for the numerical treatment of the infinite number of terms in the definition of the DtN maps (15)
and (16), we have to truncate the sums. We choose an integer N > 0 and introduce the truncated DtN
maps

(T +
N w)(x̃) :=

∑

n∈Z2: |n|≤N

iηn ŵn exp(iαn · x̃), (38)

(T −
N w)(x̃) :=

∑

n∈Z2: |n|≤N

iWn ŵn exp(iαn · x̃). (39)

We suppose that N is sufficiently large that all the propagating plane wave modes have indices with
|n| ≤ N . Replacing the DtN maps in (23), we arrive at the approximate sesquilinear form

AN
(
(v, u), (ϕ, ψ)

)
:=

∫

Ω+
b

[
grad v · gradϕ− k2vϕ

]
dx− η

∫

Γ

u · ν ϕ ds−

∫

Γ+
b

T +
N v ϕ ds (40)

+η

[∫

Ω−b

[
E(u, ψ) − ω2ρu · ψ

]
dx−

∫

Γ

v ν · ψds−

∫

Γ−b

T −
N u · ψds

]
.

Using this, the equation (22) turns to

AN
(
(vN , uN), (ϕ, ψ)

)
= F0

(
(ϕ, ψ)

)
:=

∫

Γ+
b

f0 ϕds for all (ϕ, ψ) ∈ V1, (41)

which is equivalent to the operator equation AN(vN , uN) = F0. Here AN : V1 → V ′
1 is the approxi-

mate operator of A appearing in the operator equation A(v, u) = F0 corresponding to (22). Now the
exponential decay of the Rayleigh coefficients imply the following truncation error estimate.

Lemma 6.1. i) Suppose (v, u) ∈ V1 is the solution of A(v, u) = F0 with F0 as in (41), then the Rayleigh
coefficients of (v, u) satisfy

v(x) =
∑

n∈Z2

v+
n exp(iαn ·x̃+iηn[x3−b]) + vin(x), x3 > Γ+, |v+

n | ≤ c‖v‖H1
α(Ω+

b )q
|n|, (42)

u(x) =
∑

n∈Z2

{
u−p,n

(
αn
βn

)
exp(iαn ·x̃−iβn[x3+b]) + u

−
s,n exp(iαn ·x̃−iγn[x3+b])

}
, x3 < Γ−,

|u−p,n| ≤ c‖u‖H1
α(Ω−b )3q

|n|, |u−
s,n| ≤ c‖u‖H1

α(Ω−b )3q
|n|, (43)

for any n. Here c and q are constants independent of N and (u, v) such that c>0 and 0<q<1. Recall
that u

−
s,n ·(α

>
n ,−γn)

>=0.
ii) Suppose (vN , uN) ∈ V1 is the solution of AN(v, u) = F0 with F0 as in (41), then the Rayleigh
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coefficients of (vN , uN) satisfy1

vN(x) =
∑

n∈Z2

{
v+
N,n exp(iαn ·x̃+ iηn[x3 − b]) + v−N,n exp(iαn ·x̃− iηn[x3 − b])

}
+ vin(x), (44)

x3 > Γ+,

v−N,n = 0 if |n| ≤ N, v−N,n = v+
N,n if |n| > N, |v±N,n| ≤ c‖vN‖H1

α(Ω+
b )q

|n|, (45)

uN(x) =
∑

n∈Z2

{
u+
N,p,n

(
αn
βn

)
exp(iαn ·x̃+ iβn[x3 + b]) + u

+
N,s,n exp(iαn ·x̃+ iγn[x3 + b])

+u−N,p,n

(
αn
−βn

)
exp(iαn ·x̃− iβn[x3 + b]) + u

−
N,s,n exp(iαn ·x̃− iγn[x3 + b])

}
,

x3 < Γ−,

u+
N,p,n = 0, u

+
N,p,n = 0 if |n| ≤ N, u+

N,p,n = u−N,p,n, u
+
N,p,n = u

−
N,p,n if |n| > N,

|u±N,p,n| ≤ c‖uN‖H1
α(Ω−b )3q

|n|, |u±
N,s,n| ≤ c‖uN‖H1

α(Ω−b )3q
|n|, (46)

for any n. Here c and q are constants independent of N and (u, v) such that c>0 and 0<q<1. Note
that u

±
N,s,n ·(α

>
n ,±γn)

>=0.
iii) Suppose the operator A : V1 → V ′

1 is invertible. Then, of course, the problem (BVP) is uniquely
solvable. Moreover, there is an integer N0>0 s.t. AN : V1 → V ′

1 is invertible for N≥N0 and

sup
N≥N0

‖A−1
N ‖ <∞. (47)

For (v, u) ∈ V1 the solution of A(v, u) = F0 with F0 as in (41) and for (vN , uN) ∈ V1 the solution of
AN(v, u) = F0 with the same F0, we obtain the estimate

‖(v, u) − (vN , uN)‖V1 ≤ c‖(v, u)‖V1q
N , (48)

for any N . Here c and q are constants independent of N and (v, u) such that c>0 and 0<q<1.

Proof. i) The solution v is analytic in the layer {x : Γ+<x3<b} and admits the Rayleigh expansion
(42). In particular, v restricted to {x : Γ+<x3<Γ++2ε} with a small ε>0 is a smooth function. Setting
Γ+
ε := {x : x3 = Γ++ε}, each Sobolev norm ‖v|Γ+

ε
‖Hs(Γ+

ε ) is bounded by a constant multiple of the

H1/2 norms of the restrictions to the curves {x : x3 = Γ+} and {x : x3 = Γ++2ε}, i.e., bounded by
constant times ‖v‖H1

α(Ω+
b ). Thus the Fourier coefficients v+

n exp(iηn[Γ
++ε − b]) of v restricted to Γ+

ε

satisfy
∣∣v+
n exp(iηn[Γ

++ε− b])
∣∣ ≤ c‖v‖H1(Ω+

b ),

|v+
n | ≤ c‖v‖H1

α(Ω+
b )q

|n|, q := exp(Γ++ε− b),

where we have used ηn ∼ i|n| for |n| → ∞. The assertions for u follow analogously.
ii) According to the integral

∫
Γ+

b
T +
N v ϕ in the variational form (40), the solution vN satisfies the boundary

1For the simplicity of the formulas, we assume ηn 6= 0. The at most finite number of terms with ηn = 0 do not affect the
asymptotics. Note that, for ηn =0, the modes x 7→ exp(iαn ·x̃ ± γnx3) are to be replaced by x 7→ exp(iαn ·x̃)(1 ± x3).
Moreover, for the simplicity of the formulas, we assume γn 6= 0 and βn 6= 0. Again, the at most finite number of exceptional
terms do not affect the asymptotics.
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condition ∂3vN |Γ+
b

= T +
N (vN |Γ+

b
), i.e., by (44) we conclude

ηnv
+
N,n − ηnv

−
N,n =

{
ηn(v

+
N,n + v−N,n) if |n| ≤ N

0 if |n| > N.
(49)

Hence, v−N,n=0 for |n|≤N and v+
N,n = v−N,n if |n|>N . The proof of the remaining assertions for vN is

analogous to that of part i). Note e.g. that the boundedness of the Rayleigh coefficients over {x : x3 =
Γ++ε} follows from the boundedness of the Fourier coefficients over the planes {x : x3 = Γ++pε}
for p = 0.5, 0.75, 1.25, 1.5. The assertions for uN follow analogously.
iii) In accordance with Lemma 4.1 the operator A : V1 → V ′

1 is strongly elliptic. Due to the proof of
this lemma, AN : V1 → V ′

1 is strongly elliptic too. Indeed, the only N dependent parts of AN are the
integrals over Γ±

b . The truncated operator −Re TN is positive semidefinite (cf. (19)) and its quadratic
form can be estimated from below by zero too. Similarly, we can treat the truncation T1,N of T1. The
truncation T2,N of the compact operator T2, however, tends to zero in operator norm as N → ∞. Thus
AN : V1 → V ′

1 is strongly elliptic at least for sufficiently large N .

Moreover, the above mentioned proof of Lemma 4.1 implies the uniform strong ellipticity estimate

Re 〈AN(v, u), (v, u)〉 ≥ c‖(v, u)‖2
V1

− Re 〈U(v, u), (v, u)〉

with constant c and compact operator U independent of N . We define BN := AN + ReU and B :=
A+ReU . Then the uniform strong ellipticity of the AN and A implies that ReBN and ReB are coercive,
i.e., the B−1

N are uniformly bounded and B−1
N converges to B−1 strongly. From

AN = BN(I − B−1
N ReU) = BN(I − B−1ReU) − BN(B−1

N − B−1)ReU

= BNB
−1(B − ReU) − BN(B−1

N − B−1)ReU

=
(
A−1BB−1

N

)−1

− BN(B−1
N − B−1)ReU , ‖(B−1

N − B−1)ReU‖ → 0,

we conclude that A−1
N is uniformly bounded. Using this fact and the exponential decay of the Rayleigh

coefficients in the parts i) and ii) of the lemma, the estimate (47) is a simple consequence of

(v, u) − (vN , uN) = A−1F0 −A−1
N F0 = A−1

N (AN −A)A−1F0,

‖(v, u) − (vN , uN)‖V1 ≤ c‖(AN −A)(v, u)‖V1 .

6.2 FEM

Now we consider the classical FEM. We introduce FE meshes over the domains Ω±
b and denote the

meshsize, i.e., the maximal diameter of the simplex subdomains by h. Using this h, we denote the space
of piecewise linear functions in V1, which are linear over each subdomain of the mesh, by Vh. Note that,
for the sake of simplicity, we restrict ourselves to the linear case. Higher order elements can be treated
analogously and are useful especially for large wavenumbers. For a given truncation number N and a
given mesh of meshsize h, we compute the approximate solution (vN,h, uN,h) ∈ Vh as the solution of
the finite-element system

AN
(
(vN,h, uN,h), (ϕh, ψh)

)
= F0(ϕh), (50)
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for all (ϕh, ψh) ∈ Vh.

To get convergence estimates for this FEM, we need the following two assumptions on the regularity of the
solution. Suppose the Sobolev space index s1, s2 are fixed in the intervals (1, 2] and [0, 1), respectively.

(RA1) For given v0 and u0, consider the boundary value problem of quasi-periodic
functions (v, u) ∈ H1

α(Ω
+
a ) ×H1

α(Ω
−
a )3 defined by





(∆ + k2) v = 0 in Ω+
a := {x ∈ Ω+

b : x3 <
1
2
(b+ Γ+)},

(∆∗ + ω2ρ)u = 0 in Ω−
a := {x ∈ Ω−

b : 1
2
(−b+ Γ−) < x3},

η u · ν = ∂νv on Γ,
Tu = −v ν on Γ,
v = v0 on Γ+

a := {x : 0 < x1, x2 < 2π, x3 = 1
2
(b+ Γ+)},

u = u0 on Γ−
a := {x : 0 < x1, x2 < 2π, x3 = 1

2
(−b+ Γ−)}.

(51)

Suppose that any solution (v, u) of the variational formulation correspond-
ing to (51) with v0 ∈ Hs1−1/2(Γ+

a ) and u0 ∈ Hs1−1/2(Γ−
a )3 has the regu-

larity v ∈ Hs1(Ω+
a ) and u ∈ Hs1(Ω−

a )3.

(RA2) Consider the sesquilinear form corresponding to (51)

C
(
(v, u), (ϕ, ψ)

)
:=

∫

Ω+
a

[
grad v · gradϕ− k2vϕ

]
dx− η

∫

Γ

u · ν ϕ ds (52)

+η

[∫

Ω−a

[
E(u, ψ) − ω2ρu · ψ

]
dx−

∫

Γ

v ν · ψds

]
.

Clearly, for any functional F ∈ V ′
1 , the solution (ϕ, ψ) of the adjoint varia-

tional equation C((v, u), (ϕ, ψ)) = F(v, u),∀(v, u) ∈ V1 is in V1. We sup-
pose that, for F(v, u) := 〈v, fv〉 + η〈u, fu〉 with functions fv∈H

−s2(Ω+
a )

and fu∈H
−s2(Ω−

a )3, the solution (ϕ, ψ) is in H2−s2(Ω+
a ) ×H2−s2(Ω−

a )3

and satisfies the estimate

‖ϕ‖H2−s2 (Ω+
a ) + ‖ψ‖H2−s2 (Ω−a )3 ≤ c

{
‖fv‖H−s2 (Ω+

a ) + ‖fu‖H−s2 (Ω−a )3

}
, (53)

where c is independent of fv and fu.

Remark 6.2. The assumptions (RA1) and (RA2) are fulfilled for smooth boundaries Γ. If Γ is piece-
wise linear, then the assumptions hold if the singularities at the vertices and edges are sufficiently mild
(cf. e.g. [9]).

Theorem 6.3. Suppose the operator A : V1 → V ′
1 is invertible, i.e., the variational equation (22) is

uniquely solvable for any right hand from V ′
1 .

i) There exist N0 > 0 and h0 > 0 such that, for any N >N0 and h < h0, the FEM system (50) has a
unique solution (vN,h, uN,h)∈ Vh. For N → ∞ and h → 0, the FEM solutions (vN,h, uN,h) converge
in the norm of V1 to the solution (u, v) ∈ V1 of (22).
ii) Suppose the right hand F0 is defined as in (41), i.e., in accordance to the plane wave incidence in the
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scattering problem (BVP). Furthermore, suppose regularity assumption (RA1) is satisfied with 1<s1≤2.
Then there exist constants c and q with c>0 and 0<q<1 such that, for any N>N0 and h<h0,

‖(vN,h, uN,h) − (v, u)‖V1 ≤ c‖(v, u)‖Hs1 (Ω+
b )×Hs1 (Ω−b )3{h

s1−1 + qN}. (54)

iii) Suppose the right hand F0 is defined as in (41). Furthermore, suppose the regularity assumptions
(RA1) with 1< s1 ≤ 2 and (RA2) with 0≤ s2 < 1 are satisfied. Then there exist constants c and q with
c>0 and 0<q<1 such that, for any N>N0 and h<h0,

‖(vN,h, uN,h) − (v, u)‖Hs2 (Ω+
b )×Hs2 (Ω−b )3 ≤ c‖(v, u)‖Hs1 (Ω+

b )×Hs1 (Ω−b )3{h
s1−s2 + qN}. (55)

Proof. i) Clearly, (vN,h, uN,h) − (v, u) = [(vN,h, uN,h) − (vN , uN)] + [(vN , uN) − (v, u)]. In view
of Lemma 6.1, it remains to analyze the convergence [(vN,h, uN,h) − (vN , uN)] → 0. However, all
estimates for this FEM must be shown uniformly w.r.t. N . We denote the L2 orthogonal projection of V1

onto the spline space Vh byPh. From the proof of Lemma 6.1, we recallAN = BN−ReU with a compact
operator U , the uniform coercivity Re 〈BN(v, u), (v, u)〉 ≥ c‖(v, u)‖2 and the strong convergence
A−1
N → A−1. In accordance with the proof of [18, Lemma 5.5], the uniform stability follows if we can

show that the operator norm of (Ph − I)A−1
N ReU : V1 → V1 is smaller than any prescribed threshold

for h sufficiently small (compare the operator (Ph − I)B−1T in [18, Lemma 5.5]). However, this is true
since

(Ph − I)A−1
N ReU = (Ph − I)[A−1ReU ] + (Ph − I)[A−1

N −A−1]ReU ,

since [A−1ReU ] and U are compact, and since Ph → I as well as A−1
N → A−1. Now the uniform

stability implies

‖(vN , uN) − (vN,h, uN,h)‖V1 ≤ c inf
(ϕh,ψh)∈Vh

‖(vN , uN) − (ϕh, ψh)‖V1 . (56)

The uniform convergence of the FEM in the norm of V1 follows since the discrete set {(vN , uN) : N =
0, 1, . . . } is precompact due to (vN , uN) → (v, u).
ii) This part follows from (56) and the approximation property of finite-element functions if we can prove
‖(vN , uN)‖Hs1 (Ω+

b )×Hs1 (Ω−b )3 < c. However, ‖(vN , uN)‖V1 < c and the proof to Lemma 6.1 i) and ii)

implies that the Hs1 norms over Ω±
b \ Ω±

a are uniformly bounded. Consequently, we conclude v|Γ+
a
∈

Hs1−1/2(Γ+
a ) and u|Γ−a ∈ Hs1−1/2(Γ−

a )3 such that assumption (RA1) yields

‖(vN , uN)‖Hs1 (Ω+
b )×Hs1 (Ω−b )3 < c.

iii) The estimate in Sobolev norms of order less than 1 follows from Nitsche’s trick, from part ii) of
the Lemma and from the approximation property. It remains only to show that the operators A∗

N :
H2−s2(Ω+

b ) × H2−s2(Ω−
b )3 → H−s2(Ω+

b ) × H−s2(Ω−
b )3 are invertible with uniformly bounded in-

verse operators. More precisely, for given gv ∈ H−s2(Ω+
b ) and gu ∈ H−s2(Ω+

b )3, we have to show that
the solution (ϕ, ψ) = [A∗

N ]−1(gu, gv) ∈ V1 satisfies

‖ϕ‖H2−s2 (Ω+
b ) ≤ c

{
‖gu‖H−s2 (Ω+

b ) + ‖gv‖H−s2 (Ω+
b )3

}

‖ψ‖H2−s2 (Ω+
b )3 ≤ c

{
‖gu‖H−s2 (Ω+

b ) + ‖gv‖H−s2 (Ω+
b )3

}
.
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We choose a partition of unity 1 =
∑3

j=1 χj(x3) with smooth functions χj such that

[
1

4
Γ+ +

3

4
b, b

]
⊆ {x3 : χ1(x3) = 1)} ⊆ suppχ1 ⊆

[
1

2
(Γ+ + b), b

]
,

[
3

4
Γ− −

1

4
b,

3

4
Γ+ +

1

4
b

]
⊆ {x3 : χ2(x3) = 1)} ⊆ suppχ2 ⊆

[
1

2
(Γ− − b),

1

2
(Γ+ + b)

]
,

[
−b,

1

4
Γ− −

3

4
b

]
⊆ {x3 : χ3(x3) = 1)} ⊆ suppχ3 ⊆

[
−b,

1

2
(Γ− − b)

]
.

So it is sufficient to prove the regularity estimates for the functions [χ1ϕ], [χ2ϕ], [χ2ψ] and [χ3ψ] instead
of ϕ and ψ.

The functions [χ2ϕ] and [χ2ϕ], however, are solutions of the boundary value problem appearing in the as-
sumption (RA2) with H−s2 bounded right-hand side. Thus [χ2ψ] and [χ3ψ] have bounded H2−s2 norms
according to assumption (RA2). The function [χ1ϕ] is a solution of the Helmholtz equation with inhomo-
geneous H−s2 bounded right-hand side and the boundary condition ∂3[χ1ϕ]|Γ+

b
= T ∗

N([χ1ϕ]|Γ+
b
). Now

we take a quasi-periodic H−s2 extension of the right-hand side of the Helmholtz equation which has a
bounded support in x3-direction. Using a volume potential based on a quasi-periodic Green’s function sat-
isfying the radiation condition for the lower half plane, we can construct a quasi-periodic solution ϕ0 of the
inhomogeneous Helmholtz equation with the just extended right-hand side. Since this isH2−s2 bounded,
it remains to estimate the H2−s2 norm of ϕ00 := [χ1ϕ]− ϕo. This function, however, is a solution of the
homogeneous Helmholtz equation in {x : 0 < x1, x2 < 2π, x3 < b} satisfying the radiation condition
and the inhomogeneous boundary condition ∂3ϕ00|Γ+

b
− T ∗

N(ϕ00|Γ+
b
) = ∂3ϕ0|Γ+

b
− T ∗

N(ϕ0|Γ+
b
). The

uniform H2−s2 bound of the solution of the latter problem can be derived easily by Rayleigh expansions.
Finally, the estimate for [χ3ψ] is analogous to that for [χ1ϕ].

7 Variational formulation in two dimensions

In this section, we interchange the second and third components of the points in R
3 and assume that the

biperiodic surface Γ is invariant in the x3-direction. The cross-section of Γ in the (x1, x2)-plane will be
represented by a curve Λ which is 2π-periodic in x1. All elastic waves are assumed to be propagating
perpendicular to the x3-axis, so that the problem can be treated as a problem of plane elasticity. This
implies that the incident plane wave is of the form

vin(x1, x2) = exp(iαx1 − iη0x2), α := k sin θ, η0 := k cos θ, (57)

where θ ∈ (−π/2, π/2) denotes the incident angle.

The boundary value problem for finding α-quasiperiodic solutions v = v(x1, x2) and u = u(x1, x2) =
(u1(x1, x2), u2(x1, x2))

> can be formulated analogously to (2) with the two-dimensional traction opera-
tor having the form

Tu = 2µ ∂nu+ λ div u n + µ

(
n2 (∂1u2 − ∂2u1)
n1 (∂2u1 − ∂1u2)

)
on Λ , (58)
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where n = (n1, n2)
> denotes the exterior unit normal on Λ. As done in 3D, we will confine ourselves to

a single periodic cell by setting

Λ±
b :=

{
(x1,±b)

>: 0≤x1≤2π
}
, Ω±

b :=
{
(x1, x2)

>: ∃x ∈ Ω± s.t. 0<x1<2π, x2 ≶ ±b
}
.

The upward and downward Rayleigh expansions for vsc and u can be expressed as

vsc(x)=
∑

n∈Z

vn exp(iαnx1 + iηnx2), x2 > Λ+,

u(x) =
∑

n∈Z

{
Ap,n

(
αn
−βn

)
exp(iαnx1−iβnx2) − As,n

(
γn
αn

)
exp(iαnx1−iγnx2)

}
, x2<Λ−,

(59)

with αn, ηn, βn and γn defined analogously to the 3D case. The DtN maps T ± can be represented as

(T +w)(x) :=
∑

n∈Z

iηn ŵn exp(iαnx1) for w =
∑

n∈Z

ŵn exp(iαnx1) ∈ Hs
α(Λ

+
b ), s ≥ 1/2, (60)

(T −w)(x) :=
∑

n∈Z

iWn ŵn exp(iαnx1) for w =
∑

n∈Z

ŵn exp(iαnx1) ∈ Hs
α(Λ

−
b )2, s ≥ 1/2, (61)

where Wn is the 2 × 2 matrix

Wn :=

(
ω2βn/dn −2µαn + ω2αn/dn

2µαn − ω2αn/dn ω2γn/dn

)
, dn := α2

n + βnγn. (62)

The expression (62) follows from the arguments of [12] and differs from the matrix corresponding to
upward propagating elastic waves only in the signs of the off-diagonal terms. We state the variational
formulation for the FSI problem in the two-dimensional setting as follows: Find (v, u) ∈ V1 := H1

α(Ω
+
b )×

H1
α(Ω

−
b )2 such that

A
(
(v, u), (ϕ, ψ)

)
=

∫

Λ+
b

f0 ϕds for all (ϕ, ψ) ∈ V1, (63)

where the sesquilinear form A : V1 × V1 → C is defined analogously to (23) with Λ, Λ±
b , n in place of

Γ, Γ±
b and ν, and

E(u, ϕ) = (2µ+ λ) (∂1u1 ∂1ϕ1 + ∂2u2 ∂2ϕ2) + µ (∂2u1 ∂2ϕ1 + ∂1u2 ∂1ϕ2)

+λ (∂1u1 ∂2ϕ2 + ∂2u2 ∂1ϕ1) + µ (∂2u1 ∂1ϕ2 + ∂1u2 ∂2ϕ1) .

The function f0 ∈ H
−1/2
α (Λ+

b ) on the right hand of (63) is given by

f0(x1) := −2iη0 exp(iαx1 − iη0b).

All the uniqueness, existence and non-uniqueness results in Section 4 carry over to the 2D case. More-
over, there holds the energy balance formula

1 =
∑

n∈Z:ηn>0

ηn
η0

|vn|
2 + ω2ρ η

(
∑

n∈Z:βn>0

βn
η0

|Ap,n|
2 +

∑

n∈Z:γn>0

γn
η0

|As,n|
2

)
. (64)
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The variational formulations (63) and (22) are convenient for theoretical justifications. However, in numer-
ical implementations we prefer the following formulation equivalent to (63):

A
(
(vsc, u), (ϕ, ψ)

)
=

∫

Γ

(
∂nv

inϕ− ηnvin · ψ
)
ds for all (ϕ, ψ) ∈ V1. (65)

In other words, we compute the scattered field vsc = v − vin instead of the total field v over the domain
Ω+
b .

The truncation of the DtN mappings and the FEM can be defined analogously to the 3D case. With a
straightforward generalization of the conditions (RA1) and (RA2), Theorem 6.3 remains true.

8 Numerical examples

In this section, we present several numerical tests to confirm our theoretical results in 2D. We take the
parameters

ω = 1, µ = 1, λ = 1, ρf = 2, ρ = 1.

The computational domains Ω±
b are discretized by quasi-uniform triangular elements. A direct solver is

employed for computing solutions of the resulting linear system. In our numerical tests, the energy function
is defined by

EN,h :=
N∑

n=−N :ηn>0

ηn
η0

|vN,hn |2 + ω2ρη

(
N∑

n=−N :βn>0

βn
η0

|AN,hp,n |
2 +

N∑

n=−N :γn>0

γn
η0

|AN,hs,n |
2

)
,

vN,hn :=
1

2π

∫

Γ+
b

vN,h(x1, b) exp
(
− i(αnx1 + ηnb)

)
dx1,

AN,hp,n :=
1

2π

1

α2 + βnγn

∫

Γ+
b

uN,h(x1, b) · (αn,−γn)
> exp

(
− i(αnx1 + βnb)

)
dx1,

AN,hs,n :=
1

2π

1

α2 + βnγn

∫

Γ+
b

uN,h(x1, b) · (−βn,−αn)
> exp

(
− i(αnx1 + γnb)

)
dx1,

where N = 20 is the truncation number of the Rayleigh series. Note that the exact value of the energy
function is E∞,0 =1 (cf. (64)).

We first introduce a model problem with analytical solutions so that the accuracy of the numerical solutions
can be evaluated. Assume that the scattering interface Γ is the straight line Γ0 := {(x1, x2) : x2 = 0}.
Recall the incident plane wave (57). Then the unique solution of (2) takes the form

vsc(x) = a1 exp(iαx1 + iη0x2), x ∈ Ω+, (66)

u(x) = a2

(
α

−β0

)
exp(iαx1 − iβ0x2) + a3

(
γ0

α

)
exp(iαx1 − iγ0x2), x ∈ Ω−, (67)

where the coefficients aj, j=1, 2, 3 can be obtained by solving the linear system



iη0 ρfω
2β0 −ρfω

2α
0 2iµαβ0 2iµγ2

0 − iµk2
s

1 2iµβ2
0 + iλk2

p −2iµαγ0






a1

a2

a3


 =




iη0

0
−1


 . (68)
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(a) <u1 (b) <u2 (c) <vsc

(d) <u1

N,h (e) <u2

N,h (f) <vsc
N,h

Figure 3: Exact and numerical solutions with k = 1 and meshsize h = 0.0245 for straight line interface.

This system is easily derived from the transmission conditions.

For this first example, we consider the model problem and set the height of the computational domain
above the interface to b = π. Figure 3 shows the exact and numerical solutions of the elastic displacement
in the solid and the scattered acoustic field in the fluid, where we have taken k = 1 and meshsize
h = 0.0245. In Figure 4 we present the numerical error ‖(vsc, u) − (vscN,h, uN,h)‖ in the spaces

V0 := L2
α(Ω

+
b ) × L2

α(Ω
−
b )2, V1 := H1

α(Ω
+
b ) ×H1

α(Ω
−
b )2

with respect to 1/h for k = 1, 3 and 5. We can obviously observe that

||(vsc, u) − (vscN,h, uN,h)||V0 = O(h2), ||(vsc, u) − (vscN,h, uN,h)||V1 = O(h). (69)

Next, we compute the Rayleigh coefficients vN,hn from the values of the numerical solution vscN,h taken on

Γb. In Figure 5, we show the values of vN,hn exp(iηnπ) and vn exp(iηnπ) for n=−20, . . . , 20. Note
that, for the exact solution, only the Rayleigh coefficients of order zero do not vanish. The exact and the
computed Rayleigh coefficients together with the numerical energy function are listed in Table 1.

In the second example, we consider the two smooth grating profiles Γ=Γf :={(x1, f(x1)) : 0<x1<
2π} with f defined as (see Figure 6):

(1) f(x1) = 0.4 sin(x1),

(2) f(x1) = 0.3 sin(x1) + 0.2 sin(2x1)

and plot the corresponding numerical energy functions with respect to 1/h in Figure 7. In these cases the
wavenumber in the fluid is taken as k = 9 and we have set b = 3. The numerical solutions are consistent
with the proposed energy balance formula and thus support our theoretical results.
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Figure 4: Log-log plot of errors vs. 1/h. Errors in V0-norm (left) and V1-norm (right).
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Figure 5: Exact and numerical values vn exp(iηnb) and vN,hn exp(iηnb) for n = −20, · · · , 20 with
k = 1, b = π and meshsize h = 0.0245.
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k |v0| |vN,h0 | |Ap,0| |AN,hp,0 | |As,0| |AN,hs,0 | EN,h
1 0.1429 0.1428 0.8571 0.8571 0.4949 4.4949 0.9999
3 1.0000 0.9997 3.5175 3.5074 4.1741 4.1643 0.9995
5 1.0000 0.9996 3.2065 3.1781 3.3911 3.3636 0.9993
7 1.0000 0.9988 3.1041 3.0389 3.1919 3.1278 0.9757

Table 1: Exact and numerical Rayleigh coefficients of order zero and numerical energy function with
meshsize h = 0.0491.

b=0.7 b=1 b=2 b=3 N0

(h=0.3181) (h=0.3385) (h=0.3083) (h=0.3621)

k = 1 4 3 2 2 2
k = 3 5 4 4 4 5
k = 5 7 7 7 9 8

Table 2: The values of N0 compared with the Nτ depending on k and b.

In the third example, we consider system (2) with inhomogeneous right-hand side over the interface
g ∈ H−1/2(Γ) and h ∈ H−1/2(Γ)2, that is,





(∆ + k2) v = 0 in Ω+,
(∆∗ + ω2ρ)u = 0 in Ω−,
η u · ν − ∂νv = g on Γ,
Tu+ v ν = h on Γ.

(70)

The investigations presented in Sections 2-7 are still true for (70). Now we choose g and h such that the
exact solutions of (70) take the forms (66) and (67) with a1 = 1, a2 = 2 and a3 = −1. In Figure 8 we
present the numerical errors for grating 1 in the spaces V0 and V1 with respect to 1/h for k = 1, 3 and 5.
Again, we observe that (69) holds. Next we consider the problem (70) for grating 2 with homogeneous data
f=g=0 and the corresponding approximate solution for a fixed mesh. We define k0 :=max{k, kp, ks}
and set N0 :=max{|n| : |αn|≤k0 or |α−n|≤k0} and

Nτ := min

{
N :

||(vscN,h, uN,h) − (vsc20,h, u20,h)||V0

||(vsc20,h, u20,h)||V0

≤ 0.001

}
.

Table 2 exhibits the numbersNτ andN0 depending on the wave number k and the x2-coordinates ±b of
the truncation boundaries Γ±

b . The truncation number N can be chosen relatively small. In our example,
we even do not need to choose Nτ larger than N0.
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Figure 6: One-dimensional periodic interfaces.
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Figure 7: Numerical energy function EN,h vs. 1/h for the one-dimensional periodic interfaces.
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