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Abstract 

Test particle dynamics in the vicinity of singularities of a scattering medium 
are important for a number of physical applications, one of which is the coupling 
of kinetic and continuum equations in numerical simulations. Out of several 
relevant questions arising in this context, the paper concerns boundary conditions 
for the related hyperbolic system of equations in a slab between two singularities. 
For a linear model problem, we investigate first exit times from the slab and give 
a complete characterization of the stochastic particle dynamics, which provides 
a classification of the hyperbolic systems into Cauchy problems and into those 
which have to be supplemented with boundary conditions. Properties of the 
corresponding process like ergodicity, recurrence and asymptotic behaviour are 
investigated. 

Key words: Kinetic equations, Markov process, probabilistic representation for 
PDE, ergodicity. 

1. Introduction 

Monte Carlo si:rp.ulations by n<;>w have established as the main tool for the numerical 
solution of linear and nonlinear kinetic equations, and their mathematical structure 
is well understood (see[3]). An important question concerning numerics for kinetic 
equations via Monte Carlo simulations is that of the coupling to continuum flows. The 
importance arises from (at least) two reasons. First, the complexity of continuum 
equations is lower than that for kinetic equations - due to the lack of integrations over 
v~locity space. Second, continuum regimes are often characterized by large collision 
frequencies of gas .particles. Simulating these with Monte Carlo techniques for kinetic 
equations requires small time steps and with this large computational effort. A couple· 
of recent publications by several scientists reflects the effort of coupling kinetic equa-
tions (in regimes where these are required) to continuum equations (used in regimes 
where these equations provide a sufficient description). An example for the coupling of 
nonlinear equations is given in [4]. In most cases, coupling techniques are developed by 
numerical experiments; theoreticai investigations are by now developed not very far. 

Continuum equations are derived by introducing a singularity into the kinetic equa-
tion. Consider the (for simplicity one-dimensional) kinetic equation for the density 
function f in phase space (with x as position and v as velocity vector) 

with appropriately chosen collision operator J (the precise form of which is here of no 
importance) and some vector u. Keeping At constant while rescaling A2 like l/c leads 
to a hyperbolic equation in the limit c -i- 0, while At l'V 1/ c and A2 l'V 1/ c2 results in 
a parabolic equation. (The latter case only holds if u is properly chosen as a certain 



moment of the unique eigenfunction of the collision operator J, see[l]). Results like 
these are described in a stochastic setting e.g. by Papanicolaou [17]. An example in 
a functional analytic framework (which in some cases is easier to handle and provides 
additional results) was treated in [2]. For a short review, including some physical and 
numerical background, see [1 ]. For the coupling of these "continuum equation&" to 
related kinetic equations, two cases are of particular interest. 

Suppose that in the whole computational domain, the collision frequencies differ at 
one order (or more) of magnitude (which may happen in a number of applications like 
gas expansion into vacuum, gas centrifuges, gas condensation, etc.) and that in regions 
of high collision frequencies a continuum description is appropriate. This forces on the 
kinetic side to introduce a space dependent function ..\2 with singularities reflecting the 
high collision frequencies. ' 

Consider the stationary version of the above kinetic equation and suppose that the 
situation requires a very fine grid refinement in a small region (like a boundary layer) for 
an appropriate numerics. This is described best by introducing a space transformation 
x --r e( x) where e has a large gradient close to the critical regime. This transformation 
again leads to space dependent Ai differing by orders of magnitude from one point to 
another. 

When considering Monte Carlo particle systems for the numerical simulation of 
such situations, a deep understanding of particle dynamics close to the singularity 
'is required. In particular, the probability for a particle. to cross the singularity and 
the crossing 'times are important characteristics, as well as the existence of stationary 
kinetic solutions in domains bounded by singularities. The answers to these questions 
have immediate consequences e.g .. for the formulation·of coupling conditions between 
different domains. To our knowledge,there do not .exist any investigations into these 
problems which are of great relevance for stochastic algorithms for transport problems. 
The present paper is a first step into the investigation of stochastic particle dynamics 
in the vicinity of singularities of the collision frequency. For simplicity, we restrict to 
one space dimension and kinetic dynamics described by a two-velocity model: 

The scope of the paper is as follows. In Section 2 we introduce a linear kinetic 
2-velocity model equation for a test particle in a slab [10 , r 0 ] with singularities at l0 and 
r 0 • The corresponding stochastic dynamics is that of a particle driven by a velocity 
which is a Markov process. The primary question is whether (dependent on the type 
of the singularities) the related system of hyperbolic equations is to be treated as a 
Cauchy problem or as a boundary value problem. The answer is intimately connected 
to the question of finiteness or infiniteness of first exit times from the slab. In Section 3, 
sufficient and necessary conditions for these are derived. In Sections 4 and 5, properties 
of the corresponding process like ergodicity, recurrence and asymptotic behavior are 
investigated and a complete classification of the hyperbolic systems as Cauchy problems 
or boundary value problems is given. Two examples in Section 6 conclude the paper. 

2. Probabilistic representation of solutions for systems of hy-
perbolic equations 

Consider a system of ordinary differential equations interacting with a Markov chain 

dX 
d:; = a(X, Z) (2.1) 
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where X = (X1 , ... , Xn)T, a(x, z) = (a1(x, z), ... , an(x, z)r are n-dimensional vectors, 
Z is the Markov chain with m states z1, ... , Zm· Let the functions aiJ(x) = ai(x, Zj), 
i = 1, ... , n, j = 1, ... m, x E Rn, satisfy Lipshitz condition and grow at infinity not 
faster than a linear function of x. We assume the infinitesimal matrix Q of the chain 
Z to depend on the state x of X : 

[

-q1(x) q12(x) ... qim(x) l 
Q = q21:x) -q~(x) ·:· q2m

0

(x) 

qm1(x) qm2(x) ... -qm(x) 

where qi(x), qij(x) are continuous nonnegative bounded in Rn functions and the relation 

LqiJ(x) = qi(x) 
#i 

(2.2) 

is fulfilled. Then the system (2.1) generates a Markov process (X, Z) with infinitesimal 
generator 

Af(x, Zi) = t ak(x, Zi) ~f (x, Zi)-qi(x )f(x, Zi)+ L qij(X )f(x, Zj), i = 1, ... , m, x E Rn 
k=l UXk #i 

(2.3) 
The use of (2.3) makes possible to obtain a probabilistic representation for the solution 
of a Cauchy problem for systems of hyperbolic equations 

+Lqij(x)ui+c(x,zi), i=l, ... ,m, xERn, t>O 
#i 

Ui(O, x) = f(x, Zi), i = 1, ... , m 

The representation has a form 

Ui(t, X) = Ef(Xx,z; (t), Zx,z;(t)) exp(l b(Xx,z;(s ), Zx,z; (s ))ds) 

(2.4) 

(2.5) 

+El exp({ b(Xx,z;(i9), Zx,z;( i9))di9)c(Xx,z; (s ), Zx,z;(s ))ds, i = 1, ... , m, X E Rn, t ~ 0 
. (2.6) 

where Xx,zi(s),Zx,zi(s) is a realization of the Markov process (X,Z) starting from 
X(O) = x, Z(O) = Zi· 

The formula (2.6) is valid if, for instance, the functions fi(x) = J(x,zi), bi(x) = 
b( x, z;), c;( x) = c( x, z;), and the partial derivatives i:;_( x ), i = 1, ... , m, j = 1, ... , n, 

J 
are continuous bounded functions in Rn. 

Let an initial distribution of (X, Z) be given by density Ai(x ), i = 1, ... , m, i.e. 
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Le~ A;( x )ak( x, z;) have continuous partial derivatives a~;ak) and integrals 
Xk 

I ._ i ~ 8(,,\(x)ak(x, zi))d . _ 1 i- L.; 
8 

x, i- , ... ,m 
Rn k=l Xk 

(2.7) 

absolutely converge. Then the density 7/Ji( s, x) of (X, Z) at times satisfies the following 
system of differential equations 

87/Ji = _ t 8(7/Jiak(x,zi)) _ qi(x)'l/Ji + Lqii(x)'l/;j 
8s k=l 8xk #i 

(2.8) 

with initial conditions 
7/Ji(O, x) = ..\i(x), i = 1, ... , m (2.9) 

As a consequence we obtain that ..\i(x) describes a stationary distribution, provided 
the integrals (2. 7) absolutely converge, if and only if it satisfies the following system 

(2.10) 

It should be noted that all .what has been said above is correct if we take some open 
set V ~Rn provided Xx,zi(t) E 'D, for any x E 'D, i = 1, ... , m, t > 0. 

Let us make some observations of bibliographical nature. The first probabilistic 
representation of the solution for hyperbolic equation (for telegraph equation) belongs 
to M.Kac. The sufficiently general sy~tems of ordinary differential equations acting 
by a Markov ch~in were considered in [12]. The detailed description of the process 
(X, Z) was done in [14]. In a lot of papers such a process was treated in connection 
with random evolutions (see, for instance, [7], [9], [8] and references there). In all 
of these papers the process Z does not depend on a state of the process X. The 
interaction of general processes X and Z is considered in [15]. Instead of the system 
of ordinary ·differential equations (2.1) it is possible to examine a system of stochastic 
differential equations interacting with a Markov chain as well. Both Cauchy problems 
and boundary value problems for systems of partial differential equations arising in 
connection with interacting Markov processes are considered in [16]. 

Let us now pass to a boundary value problem. Here we restrict to a. system of 
two hyperbolic equations concerning functions u1 ( t, x) and u2 ( t, x) where x is a one-
dimensional variable. Thus the system (2.1) is an one-dimensional equation and the 
chain Z has two states. Let us denote a(x, z1) = .a1(x), a(x, z2 ) = a2(x). Due to (2.2) 
we have 

Consider the system 

8u1 8u1 
Bt + ai(x) Bx + (b1(x) - qi(x))u1 + qi(x)u2 + c1(x) = 0 

Introduce initial 
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and boundary conditions 

(2.13) 

It is assumed that the functions fi(t, x) are continuous in their domain of definition 
and 

(2.14) 
Denote b(x,zi) = bi(x), c(x,zi) = ci(x), J(t,x,zi) = fi(t,x). Define the first exit time 

Tt,x,zJl, r] = inf { s : Xt,x,zj ( s) fj. [l, r]} 

where l::; x::; rand Xt,x,zj(s), Zt,x,zj(s), s 2:: t, is a realization of the Markov process 
(X, Z) starting from X(t) = x, Z(t) = Zi. 

Then the solution of the problem (2.11 )-(2.14) has the following probabilistic rep-
resentation 

(2.15) 

where T = Tt,x,zi [lo, ro]· . 
Of course, due to homogeneity of (X, Z) and due to independence of b and c on 

time we can start at the zero instant, putt= 0 in (2.15) and take Xx,zj(s), Zx,zJs), 
T == Tx,zJlo,ro], T /\ (t1 - t) instead of Xt,x,zi(s), Zt,x,zi(s), T = Tt,~,zi[l0 ,r0], T /\ t1 in 
(2.15). . 

The ~entioned probabilistic representation can be .strongly obtained with help of 
Dynkin's formula [5] 

Ef(Yy(r)) - f(y) = E f Af(Yy(s))ds, g = Af (2.16) 

which is valid under broad assumptions con~erning some homogeneous Feller Markov 
process Y with infinitesimal generator A, T =Ty is a Markov moment for Y, Ery < oo. 

We pay attention that owing to the employment of the probabilistic representation 
the initial conditions (2.12) in the boundary value problem (2.11)-(2.14) are given on 
the right end point of the considered time interval in contrast to tradition to give 
initial condition on the left end point. But any traditional problem can be reduced by 
conversion of time to the problem in which initial conditions pass to the right end. 

The representation (2.15) substantially .makes use of conditions (2.14). If the func-
tions q1(x), q2(x), a1(x), -a2(x) remain continuous and strongly positive only on the 
interval 10 < x < r 0 and if at 10 or r 0 some of them receive the values 0 or oo then 
the singular cases can arise (for example, the situation is possible that the process X 
cannot attain the ends of interval (!0 , r 0 ) for finite time and the boundary conditions 
(2.13) become senseless). In such cases the statement of the problem depends on the 
behavior of the process X on the interval (!0 , r 0 ). The definition of the process on the 
interval (!0 , r 0 ) with time life 

Tx,zj(l0 ,r0 ) = sup{rx,zi[l,r]: lo< l < r < ro} 

can be done in the usual way. Our approach to the behavior. in many respects repeats 
the well known investigation of the one-dimensional diffusion on the bounded interval 
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due to Feller (see, for instance, [5], [11]). We are interested in questions w~en it 
is possible to examine a boundary value problem for the system (2.11) and when a 
Cauchy problem. Concerning methodology we follow the exposition of one-dimensional 
diffusion in [6] and [10]. In the case when the ends 10 and r 0 are unattainable in finite 
time for the process X we are interested in the existence of a stationary distribution 
and in ergodic characteristics of the process with their consequences for the system of 
hyperbolic equations. Here we follow [13], where such questions have been considered 
for diffusion equations. 

3. The attainment probability and mean value of the first exit 
time 

So we treat the scalar equation 

dX di= a(X,Z) 

where X E (10 , r0 ), the Markov chain Z takes two values z1 and z2 , and a1(x) = 
a(x, z1) > 0, a2(x) = a(x, z2) < 0, q1(x) > 0, q2(x) > 0 on the whole interval (10 , r0 ). 

We assume the functions a1(x), a2(x) to satisfy Lipshitz conditions and the functions 
q1(x), q2(x) to be continuous on (l0 ,r0 ). Let [l,r] E (l0 ,r0 ) and l ~· x ~ r. On the 
closed interval [l, r] all the functions ai, a2, qi, q2 are bounded and bounded away from 
zero. In that case it is possible to prove that rx,zi [l, r] < oo with probability 1 and 
Erx,zi [l, r] < oo: 

We shall find the probabilities 

Pi( x) =Pi( x; l, r) = P(Xx,zi ( Tx,zi [l, r]) = l), i = 1, 2 

Pi ( x) = Pi ( x; l, r) = P ( X x ,zi ( r x ,zi [ l, r]) = r) = 1 - Pi ( x; l, r), i = 1, 2 

The first of them is the probability that Xx,zi ( t) attains l earlier than r and the second 
orie that Xx,zi(t) attains r earlier than l. Note if Xx,zi(rx,zi[l,r]) = l (correspondingly 
Xx,zi(rx,dl,r]) = r) then Zx,zi(rx,zi[l,r]) ·= Z2 (correspondingly Zx,zi(rx,zJl,r]) = z1) 
and T/,z2 [l, r] = 0, Tr,z1 [l, r] = 0. Therefore P1 (r) = 0, P2( l) = 1 and .P1 ( r) = 1, .P2(l) = 0. 
Let us use Dynkin's formula (2.16) taking in it as Y the process (X, Z). If we put 
g = 0, i.e. Af = 0, and J(r, z1) = 0, J(l, z2 ) = 1 then 

and the formula (2.15) gives us 

Hence the desired probability Pi( x) is the solution of the boundary value problem (we 
take f1(x) = f(x, z1), f2(x) = J(x, z2)) 

of1 
ai(x) ox - qi(x)f1 + qi(x)h = 0 

oh a2(x) ox - q2(x)f2 + q2(x)f1 = 0 (3.1) 
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with boundary condition 
fi(r) = 0, h(l) = 1 (3.2) 

Analogously the probability Pi(x) satisfies the same system (3.1) but with boundary 
conditions 

f1(r) = 1, h(l) = 0 (3.3) 
Of course Pi ( x) can be found from equality Pi ( x) = 1 - Pi ( x). Denote 

Note that k1 (x) > 0 and k2(x) < 0 on the whole interval (l0 ,r0 ). Solving the problems 
(3.1)-(3.2) and (3.1)-(3.3) we obtain the following theorem. 

Theorem 3.1. Let l0 < l < r < r0 and l::::; x::::; r. Then the following formulae are 
valid · 

_ . _ J;k1(e)exp(-f[k(c;)dc;)de 
Pi ( x) - Pi ( x' l, r) - 1 - ft k2 ( e) exp ( - f[ k ( c;) de;) de ( 3. 4) 

1 - J; k2(e) exp(- f[ k( c; )de; )de 
P2(x) = P2(x; l, r) = 1 - H k2(e) exp(- f[ k(c;)dc;)de (3.5) 

_ (x) = _ (x· l r) = 1 _ (x) = 1 +ft ki(e)exp(J/.k(c;)dc;)de (3.6) 
Pi Pi ' ' Pi 1 +ft ki ( e) exp(J/ k( c; )de; )de 

- x - - x. l r - 1 - x - - ft k2 ( e) exp (lie k ( c;) de;) ae 
P2( ) -P2( ' ' ) - P2( ) - 1 +fir ki(e)exp(J1e k(c;)dc;)d~ (3.7) 

Let us pass now to the calculation of the mathematical expectations Erx,zJl, r]. In 
the next theorem we give two kinds of formulae for the expectations. The formulae 
(3.8)-(3.10) are adjusted to an analysis of the behavior of the process X on the right 
end r 0 and (3.11 )-(3.13) are adjusted for l0 • Denote 

1 1 
m(x) = ai(x) - a2(x) 

We have m( x) > 0 on the whole interval (l0 , r0 ). 

Theorem 3.2. Let l0 < l ::::; x ::::; r < r0 • Then 

Er,,,z,[l,r] = C[l,r] [ ki(e)exp(- fe' k(<;)d<;)de 

r 1 r r' + lx (ai(e) - ki(e) le m(17) exp(- le k(c;)dc;)d17)d~ (3.8) 

Er,,,z, [I, r] = C[I, r](l - [ k2(e) exp(- le' k( <;)d<;)de) 

(3.9) 

where 
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and 

where 

Erx,z, [/, r] = C[l, r](l + [ ki (e) exp([ k( c;)dc;)de) 

-1\1 ~ e) + ki (e) l m( T/) exp(l k( c; )de; )drJ )de 

Erx,z, [l, r] = -C[I, r] [ k2( e) exp([ k( c; )de; )de 

-1\2~ e) - k2( e) l m( T/) exp(l k( c; )de; )drJ )de 

(3.11) 

(3.12) 

Proof. Let us use again the Dynkin's formula (2.16) taking in it as Y the process 
(X, Z). If we put g = -1, i.e. Af = -1, and f(r, z1) = 0, f(l, z2) = 0 then 

and the formula (2.15) gives 

· Thus the required mathematical expectation is the solution of the .following boundary 
value problem 

8A · 
ai(x) ax - qi(x)f1 + qi(x)h = -1 

8f2 
a2(x) ax - q2(x)f2 + q2(x)f1 = -1 

A(r) = o, h(l) = o 
Formulae (3.8)-(3.13) are obtained by direct solution of this problem. Theorem 3.2 is 
proved. 

4. A Cauchy problem or a boundary value problem depending 
on attainability of interval ends 

Introduce integrals 

(4.1) 

(4.2) 

Note that both the boundedness of the integral (4.1) (or (4.2)) and the unboundedness 
of it does not depend on the choice of r (or l). The probability Pi(x; l, r), i = 1, 2, 
monotonically decreases under l l 10 and therefore it has a limit which is denoted 
as Pi(x; 10 , r). Analogously, ih(x; 10 , r), Pi(x; l, r0 ), Pi(x; l, r0 ), denote the corres.ponding 
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limits. It is clear that, for example, Pi(x; 10 , r) = 0 if I(l0 , r] = oo (see formulae (3.4)-
(3. 7) ). 

Theorem 4.1. Let 
(4.3) 

Then for 10 < x ~ r, i = 1, 2, the time Tx,zi(l0 , r] is finite with probability 1 and the 
relation 

Xx,zi(rx,zi(lo,r]) = r 
is also fulfilled with probability 1. 

If 

then the event 

has the probability 
0 < P(B) = Pi(x; 10 , r) < 1 

and the event 

has the probability 
P(A) = Pi(x; lo, r) = 1 - Pi(x; lo, r) 

Besides for w E B the time Tx,zi (lo, r] is finite. 
The analogous statement is just for [l, 1 0 ). 

Proof. Let us consider the event 

( 4.4) 

under fixed x, Zi, rand 10 < l < r. Clearly, the sequence of the events grows with l l l0 , 

B = U10 <Z<rB1 and P(B) = limP(Bz). Due to Theorem 3.1Pi(x;10 , r) = 0 in the case 
l!lo 

(4.3) and 0 < Pi(x;l0 ,r) < 1 in the case (4.4). Consequently P(B) = Pi(x;l0 ,r) = 1 
in the case (4.3) and it is equal to 0 < Pi(x; 10 , r) < 1 in the case (4.4). Further for 
w E Bz the time Tx,zi (lo, r] coincides with rx,zi [l, r] and therefore for every w E B it is 
finite. Thus it remains to prove only that P(A) = 1 ·- Pi(x; 10 , r). Note that under 
t j Tx,z,(l0 ,r] the Xx,zi(t) either has a limit, and then this limit is equal either 10 or r, 
or has not any limit. Let us prove that the event 

C = {w: Xx,zi(t) has no limit under t j Tx,zi(l0 , r]} 

has the probability 0. For every w E C there exist two rational numbers r1 < r2 which 
belong to the interval ( 10 , r) and such that 

(4.5) 

Prove that the probability of the event ( 4.5) is equal to 0. Indeed there exists the infinite 
sequence of Markov moments Tn in which X attains r2 after r1 • And the probability to 
attain r earlier than r1 from r2 is positive. Therefore the probability not to attain r 
for an infinite number of such steps is equal to 0, i.e., it is proved that ~he probability 
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of the event ( 4.5) is equal to 0. But the event C belongs to the countable union of such 
events. So the equality P(C) = 0 is proved. Hence P(A U B) = 1. Theorem 4.1 is 
proved. · · 

Theorem 4.2. If 
I(l0 ,1] = oo, J[l,r0 ) = 00 

then for every 10 < x < r0 , Zi, i = 1, 2, 

( 4.6) 

the time 7x,zi(l0 , r0 ) is equal to oo with probability 1, and the process (X, Z) is recurrent, 
i.e., {in our case) for any two points (x, Zi), (y, Zj), x, y E (l0 , r0 ), i,j == 1, 2, the proba-
bility P { 7:%,':/ < oo} where 7:%,':{ is the first time in which the process (Xx,zi(t), Zx,zi(t)) 
attains (y, Zj) is equal to 1. 

If 
I(l0 , r] < oo, J[l, r0 ) = oo (I(l0 , r] = oo, J[l, r0 ) < oo) ( 4.8) 

then 

If 
I(l0 , r] < oo, J[l, r0 ) < 00 (4.10) 

Proof. Let ln l 10 , rn j r 0 and 11 < x < r1. Consider (l0 , r1]. Due to Theorem 
4.1 Xx,zi(t) attains r1 with probability 1 in a finite time 71. Note that Xx,zi(71) = r1 
and Zx,zi ( 71) == z1. Now consider (11, ro). Again due to Theorem 4.1 Xr1 ,z1 (t) attains 
11 with probability 1 in. a finite time 72 • At the moment 71 + 72 the process (X, Z) 
is at the state li, z2 • In a finite time 73 our process will be at the state r 2 , z1 and so 
on. The relation ( 4. 7) is proved. The infinity of 7x,zi (l0 , r0 ) follows from the uniform 
boundedness below of all 7n thanks to bounded velocity on the [11 , r 1]. The recurrence 
property easily follows from foregoing reasoning. Let I(l0 , r] < oo and I[l, r0 ) == oo. 
Introduce the set 

The probability of this set is equal to P(Ar) == Pi(x;l0 ,r) == l -fii(x;l0 ,r), and Ar 
increases under r j ro. But Pi(x; 10 , r) < Pi(x; l, r) for any 10 < l < x and Pi(x; l, r) l 0 
under r j r0 by virtue of (3.6)-(3.7) and the condition I[l, r0 ) = oo. Thus the sec-
ond assertion of the theorem is proved. The formula ( 4.11) follows from equality 
{ w: limtiTx,zi(10 ,r0 ) Xx,zi (t) == lo}= UAr· The analogous equality gives the first part of 
the formula ( 4.12). By the same way as in Theorem 4.1 it is possible to prove that 
limtiTx,zi (lo,ro) Xx,zi ( t) exists with probability 1 and it is equal to either 10 or r 0 • Hence 
Pi(x; lo, ro) + Pi(x; 10 , ro) = l. Theorem 4.2 is proved. 
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Corollary. The process (X, Z) is recurrent if and only if the condition (4.6) is 
fulfilled. 

··Both in Theorem 4.1 and in Theorem 4.2 there was no indication whether the 
time T is finite or infinite in the cases (4.4), (4.8) and (4.10). But this question is 
very important. For example, if for all (x, ~-i) the time Tx,zi(l0 , r0 ) is equal to oo with 
probability 1 then one can examine only a Cauchy problem for the system of hyperbolic 
equations (2.11). In reality the time T can be either finite or infinite. Moreover it is 
either finite or infinite at once for all w from the corresponding event. 

First of all let us note that if Erx,zi ( 10 , r] < oo then Tx,zi ( 10 , r] < 1 with probability 
1. Therefore the next theorem is devoted to the case Erx,zi ( 10 , r] = oo. As follows 
easily from Theorem 3.2 finiteness or infinity of the Erx,zi(l0 , r] does not depend on x, 
Zi, r, 10 < r < r0 , 10 < x < r, i = 1,2 (of course, Erx,zi(l0 ,r] = limzl/0 Erx,zi[l,r] since 
Tx,zi[l,r] j Tx,zi(lo,r] with l ! 10 ). 

Introduce the integrals 

r 1 r r' J( lo, r] = lzo (- a
2
(0 - k2(~) le m(17) exp(- le k( c:; )de:; )d17 )d~ ( 4.13) 

_ ;;To 1 le re J[l,ro) = 
1 

(ai(e) +k1(e) 
1 

m(17)exp(lr] k(c:;)dc:;)d17)de (4.14) 

It is clear (see the formulae (3.8)-(3.10)) that under the condition I( 10 , r] < oo the 
integral J( l0 , r] and the mathematical expectation Erx,zi ( l0 , r] are simultaneously either 
finite or infinite. The same is just with respect to J[l, r0 ) and Erx,zi [l, r0 ) provided that 
J[l, r 0 ) < 00. 

Theorem 4.3. Let 
I(lo, r] < oo, J( lo, r] = oo 

Then for 10 < x < r, Zi, i = 1, 2 

(4.15) 

P {Tx,zi(l0 , r] = oo, lim Xx,zi(t) = l0 } = P { lim Xx,zi(t) = l0 } = Pi(x; 10 , r) 
, tirz,zi (/o,r] tjrz,zi (/o,r] 

. (4.16) 
i:e., provided (4.15) the left end l0 can be attained only in infinite time. 

Proof. Suppose the contrary, i.e., for some x, Zi, 10 < x < r, i = 1, 2 there exist 
T > 0 and 8 > 0 such that 

( 4.17) 

The theorem will be proved if we show that from ( 4.17) it follows Erx,zi (l0 , r] < oo. 
At the beginning let us prove the following assertion. 
If for some T1 > 0 and 81 > 0 the inequality 

holds for all x,zi, 10 < x < r, i = 1,2, then Erx,zi(l0 ,r] < oo. 
Indeed from ( 4.18) it follows 

p { Ty,zj(lo, r] >Ti} :::; 1 - 81 
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for ally, Zi, 10 < y < r, i = 1, 2. Hence 

Analogously it can be ascertained that 

From here 
00 

Erx,zi(lo, r] < L (m + l)T1 · (1 - 81r < oo 
m=O 

The above-mentioned assertion is proved. 
Thus it remains to prove that the inequality ( 4.17) which holds for some fixed x, Zi 

implies the 'inequality ( 4.18) and it must be fulfilled for all x, Zi, 10 < x < r, i = 1, 2. 
Before let us note that if the inequality ( 4.17) holds for Zi = z1 then it holds for Zi · z2 

a fortiori. Let it be fulfilled for x, z2• Take the point" x, z1• It is not difficult to show 
that there exist l > 0 and 8 > 0 such that . 

P { rJ,~; ~ t, Xx ,z1 ( t) E [ x, r) for all 0 ~ t ~ t} ~ 8 

Therefore 

Thus we can regard without loss of generality that ( 4.17) is fulfilled for z1 and z2 at 
once. But then it is fulfilled a fortiori for all x, Zi, where 10 < x ~ x, i = 1, 2. Let 
us consider now x :::; x < r. For such x the mathematical expectation Erx,zi [x, r] is 
uniformly bounded by some number T0 • From here we have 

and 

So the inequality is realized for all x, Zi, 10 < x < r, i = 1, 2. Theorem 4.3 is proved. 
Now on the basis of Theorems 4.2 and 4.3 we are able to establish when the Cauchy 

problem is possible for the following system of hyperbolic equations 

8u1 8u1 
-8 = a1(x)~ + (b1(x) - qi(x))u1 + q1(x)u2 + c1(x) t ux ' 
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8u2 8u2 
at =a2(x)ax +q2(x)u1+(b2(x)-q2(x))u2+c2(x), l0 <x<r0 , t>O (4.19) 

with initial conditions 
Ui ( 0, X) = fi ( X), i = 1, 2 

That is possible only in four cases. List them: 

I( 10 , r] = oo, J[l, r 0 ) = 00 

I(l0 ,r] = oo, J[l,r0 ) < oo, J[l,r0 ) = oo 

I(l0 , r] < oo, J(l0 , r] = oo, J[l, r0 ) = oo 

1(10 , r] < oo, J(l0 , r] = oo, J[l, r0 ) < oo, J[l, r0 )' = 00 

( 4.20) 

( 4.21) 

( 4.22) 

( 4.23) 

( 4.24) 

In the other cases it is necessary to pose some boundary conditions at least on one 
of the ends 10 and r 0 • 

Of course, the solution of the Cauchy problem ( 4.19)-( 4.20) in each of the cases 
(4.21)-(4.24) is given by formula (2.6), where m = 2, l0 < x < r0 , b(x, zi) = bi(x), 
c(x, zi) = ci(x), f(x, zi) = fi(x), i = 1, 2. 

Let us examine the asymptotic behavior of the solution under t --+ oo when bi( x) = 
0, ci(x) = 0, i = 1,2. In this case the solution of the problem (4.19)-(4.20) has the 
simple for~ (see (2.6)) 

Ui(t,x) = EJ(Xx,z~(t)) ( 4.25) 

If, for definiteness, the functions fi(x), i = 1, 2, are continuous on [!0 , r0 ] and they are 
equal to zero at the points.10 and r 0 , then in the cases (4.22)-(4.24) 

liin ui(t,'x) = 0 
t-+oo 

( 4.26) 

due to Theorems 4.2 and 4.3. 
In the most interesting case ( 4.21) the asymptotic behavior of the solution dep~nds 

on whether the process (X, Z) is ergodic. 

5. Ergodicity and asymptotic behavior of the solution of the 
Cauchy problem 

The case ( 4.21) is the only case when the process (X, Z) is recurrent (see Corollary 
to Theorem 4.2). Following Kolmogorov's classification of recurrent Markov chains 
R.Z.Khasminskii [13] has subdivided recurrent diffusion processes into positive ones 
and null ones. In our case the recurrent process (X, Z) (i.e., I(l0 , r] = oo, l[l, r0 ) =·oo) 
is positive if for all ( x, zi), (y, Zj) 

(5.1) 

Otherwise the recurrent process (X, Z) is null process. Remind that due to Theorem 
4.2 the time rX;:/ < oo with probability 1. 

It is not difficult to prove that the condition (5.1) is fulfilled if and only if simulta-
neously 

C(l0 , r] = lim C[l, r] < oo 
lilo 
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and 
C[l, 1 0 ) == lim C[l, r] < oo 

riro 

Theorem 5.1. If I(l0 , r] == oo then C(l0 , r] < oo if and only if 

(5.2) 

If l[l, 1 0 ) == oo then C[l, 1 0 ) < oo if and only if 

f ro le k [ l, r o) == 
1 

m ( e) exp ( -
1 

k ( c;) de;) de < oo (5.3) 

The recu11ent process is positive if and only if 

rro re 
110 m( 0 exp( - le k( c; )de; )de < oo (5.4) 

where lo < c < to (clearly, the convergence of the integrals (5.2)-(5.4) does not depend 
on a choice of r, l, c). 

Proof. The first two assertions are proved identically and we shall prove the second 
one. From the formula (3.13) we have · 

Because C[l, r] ==. Erz,z1 [l, r] then C[l, r] grows with r j 1 0 arid therefore the limit in (5.5) 
(finite or infinite) always exists. Since C[l, r] grows with r j 1 0 and the denominator 
in (5.5) goes to oo with r j 1 0 due to condition l[l, 1 0 ) == oo, the numerator in (5.5) 
also must go to oo and consequently we have the uncertainty : in (5.5). Thanks to 
L'Hopital's rule 

r f{ ki ( e) fze m( TJ) exp(!; k( c; )de; )dTJde - . . ft m( TJ) exp(!; k( c; )de; )dTJ 
r\~ 1 + H ki ( e) exp(!/ k( c; )de; )de - ~\~ exp(J{ k( c; )de;) 

== lim r m( TJ) exp(- {
71 

k( c;)dc;)dTJ = k[l, ro) 
riro Jz Jz 

If K[l, 1 0 ) == oo then the limit (5.5) all the more is equal to oo and hence it remains 
only to prove that from K[l, 1 0 ) < oo follows C[l·, 1 0 ) < oo or, that is the same, that 
from C[l, ro) = 00 provided l[l, ro) = 00 follows K[l, ro) = 00. We shall prove the last 
assertion by contradiction. 

So let l[l, 1 0 ) = oo, C[l, 1 0 ) = oo but K[l, 1 0 ) < oo. We need the following inequality 

1 + q1 (r) f{ m(e) exp(![ k(c;)dc;)de C[l ] 
qi (r) exp(f{ k( c; )de;) > ' 1 (5.6) 

which is the simple consequence of the inequality 

dC[l, r] 
0 dr > 
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From (5.6) 

qi (r) exp(
1J,r k(, )d.;) > C[l, rJ - [ m( e) exp( - l k(, )d.; )de > C[l, r] - k[Z, r 0 ) (5. 7) 

From here in view of C[l, r 0 ) = oo we have 

C[l, r] - K[l, r0 ) > 1 

for all r which are sufficiently close to r0 • From (5.7) for such r we have 

and therefore there exists a constant q such that for all e ~ l the following inequality 

is fulfilled. From here 

i.e., the integral f{ 0 k1 ( e)de is convergent. But from convergence of this integral follows 
easily the convergence of the integral l[l, r0 ). The obtained contradiction proves the 
second assertion of the theorem. The last assertion follows from the fact that the 
relation (5.4) is fulfilled if and only if K(l0 , r] < oo and J?[l, r0 ) <: oo. Theorem 5.1 is 
proved. 

Theorem 5.2. The positive process (X, Z) has a stationary measure with the 
density 

L {x 1 
Ai(x) = a1(x) exp(- le k(c;)dc;) = ·a1(x) · J

1
: 0 m(e)exp(Jt k(c;)dc;)de 

. L 1x 
,\2 ( x) = --(-)exp(- k( c; )de;) = 

a2 x c 

1 
(5.8) 

where the constant L is equal to 

Proof. The equations (2.10) for the density in our case have a form 

(5.9) 

and it can be immediately checked that density ,\1 (x), ,\2 (x) from (5.8) satisfies (5.9). 
Theorem 5.2 is proved. 

Let us prove now that there is not any bounded harmonic function with the excep-
tion of constant functions if, for example, l[l, ro) = oo (remember that a ~unction is 
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harmonic if Ef(Xx,zi(t), Zx,zi(t)) = f(x, Zi) for all lo< x < ro and Zi, i = 1, 2). Indeed, 
the harmonic function f(x, zi) must satisfy the equality 

Af = 0 

which is equivalent to the system (3.1). From (3.1) we have 

fi(x)-h(x) = Coexp(J:x k(c;)dc;), fi(x) = C1 +coJ:x ki(~)exp(;;~ k(c;)dc;)d~ (5.10) 
l . l l 

Since f 1(x) == f(x, z1 ) must be bounded we obtain Co== 0. Hence from (5.10) h(x) == 
fi(x) == C1. 

The obtained property of the process (X, Z) together with existence of the station-
ary measure proves that the recurrent positive process (X, Z) is ergodic. In the next 
theorem we give some ergodic char~cteristics of the process (X, Z). They can be proved 
by the same way as in [13]. 

Theorem 5.3. If 

I(l0 , r] == oo, J[l, r0 ) == oo, I<(l0 , r] < oo, K[l, r0 ) < 00 (5.11) 

then the process (X, Z) is ergodic and consequently for any bounded on .(l0 , r0 ) function 
(and, for definiteness, continuous) f ( x, zi) == fi( x) with probability 1 

(5.12) 

Moreover· 
I it 1 lat lim - Ef(Xx z·(s ), Zx z·(s ))ds == lim - Ui(s, x )ds t-+oo t o ' ' ' ' t-+oo t o 

= J:r
0 

(f1(x),\1(x) + h(x),\2(x)dx 
lo 

(5.13) 

arid 

Remark about null process. Let us take as initial function fi( x) for definite-
ness the nonnegative continuous function (fi(x) ~ 0) which is not trivial (fi(x) =/= 0) 
and has a compact support in (l0 , r 0 ). We already know for such a function that 
limt-+ooui(t,x) == 0, i = 1,2, for a nonrecurrent process and limt-+ooui(t,x) > 0 for 
a recurrent positive process. Further, the integral f0

00 ui( t, x )dt is convergent for a non-
recurrent process and is divergent for a recurrent positive process. For a recurrent null 
process limt-+oo ui·( t, x) == 0, i == 1, 2, but the integral f0

00 ui( t, x )dt is divergent. These 
properties express those facts that a null process for the most part of time is in the 
neighborhoods of the ends 10 and r0 • But on the other hand because it is recurrent it 
spends the infinite time in the neighborb.ood of any point of the interval (l0 , r 0 ). Besides 
for null process there exists the stationary unbounded measure with the help of which 
it is possible to investigate its asymptotic behavior. However we do not consider here 
t.hese properties and the other ones (see [13]) of null processes. 
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6. Some applications and examples 

Example 1. Consider the equation 

dX = Z · ( 1 - x 2 )a - oo < a < oo dt ' (6.1) 

where the Markov chain Z takes two. values z1 = 1 and z2 = -1, q1 (x) = q2(x) = 
(1 - x 2 )''Y, -oo <I < oo, and X E (-1, 1). We have 

ai(x) = (1- x 2r, a2(x) = -(1 - x2)a, ki(x) = (1 - x 2)1- 01
, 

k2(x) = (1 - x2
)'-

01
, k(x) = 0, m(x) = 2(1 - x2t 01 

Direct and not complicated calculations give that under 

1- a:::; -1 (6.2) 

the process (X,Z) is recurrent (the case (4.21): J(-1,0] = oo, l[O,l) = oo), under 

1- a> -1, a~ 1 (6.3) 

the process (X, Z) is nonrecurrent but the ends of interval (-1, J..) are not attainable for 
finite time (the case (4.24): J(-1,0] < oo, J(-1,0] = oo, l[O,l) < oo, J[0,1) = oo),. 
and under 

I - a> -1, a< 1 (6.4) 

the ends of interval (-1, 1) are attainable for finite time (the case: J(-1, O] < oo, 
J(-1, O] < oo, l[O, 1) < ~' J[O, 1) < oo ). In the cases (6.2) and (6.3) it is possible to 
consider the Cauchy problem for the corresponding system of hyperbolic equations and 
in the case (6.4) we need some boundary conditions. The case (6.2) gives a recurrent 
positive (ergodic) process (the case: J(-1,0] = oo, K(-1,0] < oo, l[O,l) = oo, 
K[O,l) < oo) under 

t.- a :::; -1, a < 1 

and a recurrent null process (the case: J(-1, O] = oo, K(-1, O] = oo, l[O, 1) = oo, 
K[O, 1) = oo) under 

1- a:::; ...,...1, a~ 1 

Example 2 (see [14]). Let us consider the equation 

dX 
-d = -eX + Z (e > 0) t· 

(6.5) 

where the .Markov chain Z takes two values z1 = b, z2 = -b (b > 0), qi(x) = q2(x) = 
b b 

q =const> 0 and X E (l0 , ro) = (--, - ). 
e e 

We have 

b b 
a1 ( x) = b - ex > 0, a 2 ( x) = -b - ex < 0, - - < x < -e e 

q q 2eqx 2b 
ki(x) = .b ' k2(x) = b ' k(x) = b2 2 2' m(x) = b2 - e2x2 -ex - -ex -ex 

17 



It is not difficult to verify that the relations ( 5.11) are fulfilled here. Therefore the 
process (X, Z) defined by (6.5) is recurrent positive process and it has stationary mea-
sure (which was found in ([14]) ). Due to Theorem 5.2 this measure has the following 
density 

(b2 2 2)q/c (b2 2 2)q/c 1 1 
.\1 (x)=M· -ex , .\2 (x)=M· -ex , -=-·(2b)2qfcB(l,!l.) (6.6) 

b-ex b+cx M c cc 

where B is the beta-function: 

Consider the stochastic differential equation with additive noise 

dX = -cXdt + adW(t) (6.7) 

where W(t) is a standard Wiener process. 
This equation has the solution with stationary measure 

1 x2 
p(x) = O" ·exp(---J 

vf2i·- 2·~ J2C 2c 

(6.8) 

which is known as Ornstein-Uhlenbeck process. 
The equatioff (6.5) is obtained like the equation (6.7) by acting of additive noise on 

·equation · 
dX · -=-eX 
dt 

for which the trivial solution is asymptotically stable. Of course, the noise in ( 6.5) has 
another nature and in particular therefore the stationary measure in the case (6.5) has 
the bounded support. Let us take in (6.5) 

b = 7vq, 7 > 0 

and let q ~ oo. With growing q the interval (10 , r 0 ) = (-1vq_, 1,;q) is growing as 
c. c 

well. Substituting in ( 6.6) b = 7 v0, we obtain the density depending on q. Denote this 
density by Ai(x; q). It turns out that 

lim >.;(x;q) = 
1 

1 ·exp(-~), i = 1,2 
q-+oo 2yl2i . - 2 I , J2C · 2c 

The. relation (6.9) can be easily proved if we use the formula 

I'(µ)I'(v) 
B(µ,v)=f(µ+v)' µ>0, v>O 

which connects beta-functions with gamma-functions and Stirling's formula 

lim r(s) = 1 
S-+00 vf2ie-S 3s-l/2 
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Therefore the limit density for X coincides with the density of the Ornstein-Uhlenbeck 
process under / = O'. 

Let us return to (6.5) where Z again takes two fixed values z1 = b, z2 = -b and 
b b 

X E (--, - ) but q1 and q2 depend on x. Let the dependence have a form 
c c 

where a can take any values. If a < 0 then the switching frequency of the process Z 

h d b d b . "\ . d 'f . d near t e en s -- an - grows to mfimty an I a > 0 it ecays. 
c c 

Direct calculations give us that under a > 0 we have the case ( 4.24) and under a::; 0 
we obtain the recurrent positive process, i.e., under all -oo < a < oo it is possible to 
consider the Cauchy problem for corresponding system of hyperbolic equations. 
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