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Abstract. We prove a class of inequalities closely related to Poincare's Inequality. 
Roughly speaking, these inequalities state that for many reaction-diffusion systems 
the free energy can be estimated by the corresponding dissipation rate. This allows 
to describe the asymptotic behaviour of such reaction-diffusion systems without using 
global uniform bounds for the concentrations. 

1. Introduction 

In this pape:r we shall deal with reaction-diffusion processes of m species Xi, ... , Xm, 
which can be modeled by equations of the following form: 

~~i - div( di grad Ui) = t(kpUap - k~U{Jp)(/3pi - O'.pi) in n, i = 1, ... , ffi 1 (1) 
p=l 

ou· ovi = 0 on an, i = 1, ... 'm. (2) 

Here ·u = ( u1 , ... ,~um) is a vector of concentrations and the right hand side of ( 1) 
represents reactions 

of mass action type. For an explanation of the notation used in ( 1), ( 2) see the next 
section. 

Systems of reactions of mass action type have been investigated, e.g., by Horn and 
Jackson [HJ], Horn [Ho], and Feinberg [Fei). Starting from their results some years ago 
we proved in [Gr) (in a somewhat more general context) that a trajectory of a system 
of type ( 1), ( 2) approaches exponentially a spatially homogeneous thermodynamic 
equilibrium if only this trajectory is globally bounded. The assumption of global 
boundedness is rather unpleasant. In this paper we shall avoid such an assumption. 
We shall prove under weak hypotheses that the (suitably scaled) free energy is not 
only a Lyapunov function for the system (1 ), (2) but decays exponentially as time 
tends to infinity. 

The main tool for our investigation of asymptotic behaviour is a class of inequalities 
closely related to Poincare's Inequality. These inequalities show that, for a large class 
of reaction diffusion systems, the free energy can be estimated by the corresponding 
dissipation rate. 

In the next section we introduce the necessary notation and recall a result on stationary 
solutions to (1), (2), which is important for our considerations. Section 3 is devoted to 
the formulation and the proof of the main results. In the fast section we shall indicate 
possible generalizations and discuss some simple examples. 
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2. Preliminaries 

Throughout this paper n denotes a bounded Lipschitzian domain in IRN. With respect 
to the data of our reaction-diffusion system, i.e., the coefficients of diffusion d1 , ... , dm, 
the coefficients of reaction k1 , ... , kr, k~, ... , k~, and the vectors of stoichiometric co-
efficients 0:1, ... , ar, /31, ... , /3r we assume that 

di E L 00 ( f2), di ~ Co > 0, i = 1, ... , m, 
kP E L00 (!1), k~ E L00 (!1), kP ~ c0 > 0, k~ ~ c0 > 0, 
ap E Z~, /3P E Z~, p = 1, ... , r. 

p=l, ... ,r,} (Al) 

As usual, for u E IR m and a E l,~, we define u°' :- u~ 1 • ••• • ·u~m. The elements of 
IR~ will also be regarded as constant functions on n. This will not lead to misunder-
standings. Moreover, we define ]pm :=int IR~. 

Essential for our results is the assumption 

(A2) 

This means that there exists a spatially homogeneous simultaneous equilibrium for all 
pairs of reactions. In general the set E consists of more than one point (cf. Theorem 1 
below). For the remaining part of this paper we fix e EE. We define 

(3) 

The elements of L2 (f2; IR~) will be interpreted as states of the system under consid-
eration, and F(u) will be called the free energy of the state u. Later we shall discuss 
the dependence of F on the choice of e (see Remark 3 below). 

It is easily checked that the functional Fis strictly convex on L2(f2; IR~). Moreover, 
F(u) ~ 0, and F(u) = 0 if and only if u = e. The Gateaux derivativeµ= F'(u), if 
it exists, is the vector of the chemical potentials corresponding to the state u. From 
(3) it follows, at least formally, that µ = (µ1 , ... , µm) =log¥· Here and later we use 
the following notation: If v E IR~, w E lPm then ;}; and log w mean the vectors with 

v· the components w: and log wi, respectively. 

Now we shall give a precise meaning to the proble.m (1), (2). 

Let V := H 1 (f2; 1Rm) n L00 (0; IRm)), let V+ be the usual positive cone in V, and let 
V* be the dual to V. We define A: V--+ V* by 

(Au, v) := l t,{ d; grad u; ·grad v;+ t, k,e"' [ (~)"' - (~t] (a,; - /l,;)v}x 

(4) 
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Then the problem (1 ), (2) can be written precisely as follows: 

~~+Au= 0, u E Lf0 c(1R+; H 1 (h; JR~)) n L~c(1R+; L00 (D; 1Rm)); (I) 

here ~~l denotes the derivative of u with respect to time in the sense of V* --valued 
distributions. The spaces occurring in (I) have the usual meaning (see, e.g., [Zei]). 
The requirement u E L~c(1R+; L00 (D; 1Rm)) could be replaced by a weaker one, but 
this is not important for our purposes. 

Let u be a solution to (I). Then u is a function of time t with values in V. As is known 
from thermodynamics, the corresponding dissipation rate is 

d . /du ) - dt F ( u ( t)) = - \ di ( t), µ ( t) 

Eliminating ~Y by means of (I) we obtain for the dissipation rate: 

- :/'(u(t)) = 1 t { d; grad u;(t) ·grad logu;(t) 

Therefore, for all functions u E V+, we define the dissipation rate 

f { m r [ U ap U {3p] 'U ap-{3p} 
D(u) :=Jn ~ 4di !grad JUil 2 + ~ kpe°'P (~) - (~) log(~) dx. (5) 

(If JUi ~ H 1(D) for some i E {1, ... , m} or precisely one of the two expressions 
( ¥ )°'p, ( ¥ )f3p vanishes, then D( u) is to be interpreted as +oo.) We want to find 
conditions guaranteeing 

F(u) :S cD(u) for some positive constant c. (6) 

If (6) were true for all u(t), where again u denotes a solution to (I), then we would 
have 

d 1 
dtF(u(t)) = -D(u(t)) :S ---;;F(u(t)), 
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and F(u(t)) would decrease as exp(-t/c). 

Remark 1. Let u be a solution to (I). Then, as is easily checked, 

1 (u(t) - u(O))dx ES:= span {,81 - 0:1, ... , Pr - O'.r}. (7) 

The space S will be called the stoichiometric subspace of JRm . 

. The following theorem gives some information about the stationary solutions to (I), 
in particular about the set E of equilibria introduced in (A2). 

Theorem 1. 

i) If Au= 0, where Ui 2 0, Ui -Io! i = 1, ... 'm, then u EE. 

ii) u E E {:::=:} log.¥ E S1-, ·u E ]pm. (As usual, S1- denotes the orthogonal complement 
of S in JRm.) 

iii) For every a E 1Pm the set (a + S) n E consists of a single point. 

Remark 2. A result including Theorem 1 has been proved already in [Gr]. For the 
convenience of the reader we repeat the proof here. 

Proof of Theorem 1. i) Let u be a solution to Au = 0 such that Ui 2 0, Ui -:j:. 0, 
i = 1, ... , m. Let, for the time being, all Ui be larger than a positive E. Then by 
means of the test functions log( ui/ ei), i = 1, ... , m, we obtain from A.u = 0 (cf. the 
discussion of the dissipation rate above) 

(8) 

The result (8) remains true also if a positive lower bound for the ui is not known in 
advance. This can be shown using the test functions log((ui+c:)/ei), i = 1, ... , m, and 
letting c: --+ 0. From (8) it follows that the components of u are constant functions. 
Because of the assumption ui 2 0, Ui -:j:. 0, i = 1, ... , m, the components of u must be 
positive. The relation (8) implies also that 

( ~e)°'P = (~e){3p' · p = 1, ... ,r. 

Hence u is in E. 
ii) Evidently, u E ]pm satisfies ( 9) (and thus belongs to E) if and only if 

u 
(ap-{3p)·log-=0, p=l, ... ,r, 

e 
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i.e., if and only if ·u E Si_. 
iii) Let a E JPm, and let 1111 := (a + S) n IR~. We define 

m 1Ui y 
J(u) := ~ log-: dy for u E IR~. 

i=l ei ei 

From the prope.rties of f it follows that there exists a unique u E At/ where f takes its 
·minimal value on NI. Fort> 0 we have · 

d Lm u·+t(a·-u·) - f ( u + t (a - u)) = log i i i ( ai - Ui). 
dt e· i=l t 

This shows that, for sufficiently small t > 0, the value f ( u + t( a - u)) would be strictly 
less than f ( u) if one ore more of the components of u would vanish. By the choice of 
u this is not possible. Hence all Ui are strictly positive, and 

d ~ ~ 0 = -d f (u + t(j3p - ap)) I = L.)/3pi - api) log-, 
t t = o . ei t=l 

p = 1, ... ,r. 

Consequently (cf. ii)), u E (a+ S) n E. Conversely, let u E (a+ S) n E. Then, because 
of ii), the derivatives off in all directions of S vanish. Hence u is the unique point of 
a + S at which f takes its minimal value. 

Remark 3. Let e be any point of the set E introduced in (A2), and let F be defined 
in analogy to F by 

F(u) := [ t ~ui log~. dy dx. 
Jn i=I lei ei 

Then 

F(u) - F(u) := [ t (ui log ~i - ei + ei) dx. 
Jn i=l e, 

According to (10) we have 

e 
(j3P - ap) log= = 0, p = 1, ... , r. 

e 

From (11) and ( 12) it follows that F - F is constant on each of the classes 

{ u E L2 (D; IR~) : 1 u dx E a+ S} , a E IR~. 
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Remark 4. Using (12) one can easily show that the dissipation rate D(u) defined in 
(5) is independent of the choice of the equilibrium state e. 

3. Main Results 

For the formulation of our main results we shall need the following additional assump-
tion: 

a E DIR~ n (e + S) ==} (~)°'P-/= (~)/3p for some p E {1, ... ,r}. (A:3) 

We know from Theorem 1 that the only equilibrium in lPm n ( e + S) is e. Assumption 
( A3) says that there is no equilibrium in IR~ n ( e + S) which is on the boundary of IR~. 
Examples of systems satisfying (A3) will be given in the last section. There we shall 
also discuss the necessity of the assumption ( A3) for the validity of our main result. 

Finally we assume that 

(A4) 

(As usual, \al := a1 + ... +am for every multi-index a E Z~). The number pis the 
maximal order of reactions occurring in our system. The assumption (A4) guarantees 
that u°'P and uf3P depend continuously in L2 (D) on Ui E H 1 (D), i = 1, ... , m. 

Now we are ready to state the main result of the paper. 

Theorem 2. Let the hypotheses (Al)-(A4) be satisfied. Then, for every R > 0, there 
exists CR > 0 such that1 for u E V+ satisfying F(u) ~ R, we have 

F(u) S cR ( D(u) +IQ 1 (u - e)dxl') . (13) 

Here Q denotes the projection onto the orthogonal complement of the stoichiometric 
subspace S of lRm. 

Proof. 1. Suppose that the theorem is false. Then there exist R > 0 and sequences 
( Cn), (un) in IR and V+, respectively, such that Cn ---+ oo and 

(14) 
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In view of the definition of D (cf. (.5)) this implies that 

lim { Jgrad ~l2dx = 0, i = 1, ... , m. 
n-+co lo ( 1.5) 

From F(un) :::; R it follows that the sequence (un) is bounded in L1(D; IRm). Thus, 
passing to a subsequence if necessary, we may assume that ( JU;:i) converges in H 1 (D) 
to a constant function which will be written as J<Li. Then (14) implies that 

Q r (a - e)dx = lim Q r (un - e)dx = o. lo n-+co lo 
Thus a E e + S. We may also assume that Uni(x) --+ ai for almost every x E n. 
Therefore from (14) by means of Fatou's Lemma it follows that 

Consequently, 

(?:.e)Cip = (?:.e)/3p' p = 1, ... ,r. 

In view of assumption (A3) this is possible only if a E lPm, and Theorem 1 yields 
a= e. Thus JU;:i--+ fo in H1 (D), i = 1, ... , m. This gives Un --+ e in Lq(D; IRm) 
for some q > 1 and F(un)--+ F(e) = 0. 
2. Let An := J F('un), and let Vn be defined by yiu;:; = fo(l + AnVni), i = 1, ... , m. 
(Note that An > 0 by (14).) Then AnVn--+ 0 in H 1(D; IRm). In view of the elementary 
inequality 

(e - T/) log { ~ 41 VZ - JrW for e, T/ > o 
T/ 

it follows from (14) that 

2 

+ Cn Q l t ei(Anv~i + 2Vni)dx 
0 i=l . 
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By definition of An and Vn we have (cf. (3)) 

(17) 

For every c E]O, l] there exists c > 0 such that, fore> -1, 

< {3e2 + 2e ::; (3 + 2c)e2 for e ::; c 
- 3e2 + 2e+e for e > c . 

Therefore, (17) implies that, for some positive constant c, 

Since gradvni------> 0 in L2 (!1;1RN) (cf. (16)) this is possible only if 

(18) 

·without loss of generality we may assume that 

exists in H 1 (!1; 1Rm). Obviously, b does not vanish and is constant on n. We are going 
to show that this leads to a contradiction. 

The term in the second line of (16) can be written as follows: 

r m 2 

4 L kpeaP [ (L(O'.pi-:-- /)pi)Vni) + Wnp], 
p=l i=l 

where Wnp is a finite sum of terms of the form >.t 1 - 2 v~, / E Z~, 2p > It! > 2 
(cf. hypothesis (A4)). We remark that 

Therefore, dividing (16) by 4cnllvnll;:P(O;Rm) and letting n------> oo we obtain 

r ( m )2 0? L ;>;, k,e"' ~(a,; - {3,;)b; dx. 
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Hence 

m 

L(ap; - /3p;)bi = 0, p = 1, ... , r, 
i=l 

i.e., b E s.l.. Let Zn be the vector the components of which are 

By (16) Qzn ---r 0 as n ---r oo (cf. (18)). Therefore the limit z := limn_,.00 Zn (which 
exists) is in S. It has the components zi = 2eibi\n\, i = 1, ... , m. Here and later on 
\n\ denotes the measure of n. Because b E SJ. we find 

m m 

0 = L biZi = 1n1 L e;b7, 
i=l i=l 

in contradiction to b =f. 0. This contradiction completes the proof of Theorem 2. 

Remark 5. An inspection of the preceding proof shows that the assertion of Theo-
rem 2 can slightly be improved. The inequality (13) remains true if the dissipation 
rate D( u) in that inequality is replaced by the generally smaller term 

To see this one has to check the derivation of the inequality (16). 

Corollary. Let the hypotheses of Theorem 2 be satisfied and let u be a solution to (I). 
1\iforeover, let e be the unique element of E in JAi fo. u(O) dx + S (cf. Theorem 1,iii)). 
Then, for some .\ > 0, 

Vt?. 0: F(u(t)) ~ F(u(O)) exp(-.\t). 

Proof. For ·t > 0 and every c > 0 we have 

t j du u( s) + c:) F(u(t) + c:) - F(u(O) + c:) =Jo \ dt (s),Iog e ds. 

Using the equation for ~~ and letting c; ---r 0 we find 

F(u(t)) + lt D(u(s))ds ~ F(u(O)). 
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Similarly, for every ), > 0, 

exp(>.t)F(u(t)) +it exp(>.s)[->.F(u(s)) + D(u(s))]ds:::; F(u(O)). 

Since F( u( t)) :::; F( u(O)) we are in a position to use Theorem 2. Note that 

Q 1(u(s)-e)dx=0 

because 

1 (u(s) - e)dx = 1 (u(s) - u(O) + u(O) - e)dx ES 

(cf. Remark 1 and the condition imposed on e in the formulation of the corollary). 
Hence Theorem 2 shows that >.F( u( s)) :::; D( u( s)) and therefore 

exp( >.t )F(u( t)) :::; F( u(O)) 

for each sufficiently small ), > 0. 

Remark 6. Let 

( u+v) d(u,v) := F(u) + F(v) - 2F ~ for arbitrary u, v E L2 (D; JR~). 

Since F is strictly convex we have d( u, v) ;.:::: 0, and d( u, v) = 0 if and only if u = v. As 
a consequence of ( 11) the function d is independent of the choice of the equilibrium 
state e. It is easy to check that, for some positive constants c0 and Cs, 

provided that 

Hence d( u, v) behaves similar as a square of a distance of u and v. Functions of this 
type have been used by [GG] and [Gal, Ga2] for the proof of uniqueness and regularity 
results. 
In view of F(e) = 0 and F 2': 0 we have d(u, e) = F(u) + F(e) - 2F(u~e) :::; F(u). 
Hence, under the hypotheses of the corollary, 

d(u(t),e):::; F(u(t)):::; F(u(O))exp(->.t) for some>.> 0. 
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4. Generalizations and examples 

In the following remarks we want to indicate that the result of Theorem 2 can be 
generalized in several directions. 

Remark 7. Theorem 2 and its corollary remain true if the hypothesis with respect 
to the constants of reaction (cf. (Al)) is replaced by the weaker hypothesis 

kp ;_:::: 0, k~ ;_:::: 0, 1 kpdx > 0, 1 k~dx > 0, p = 1, ... , r. 

The proof is essentially the same. In particular, we can treat systems, where chemical 
reactions take place only in a part of the domain ff. 

Remark 8. The definition ( 4) of the operator A can be generalized as follows: 

+ L ~ '~1 k,e"' [ (~)"' - (~t] (a,, - (!,,)v,du. 

This means that the equations (1) remain unchanged whereas the boundary conditions 
(2) are to be replaced by 

i = l, ... ,m. _ 

These boundary conditions model reactions taking place only on the boundary an of 
the domain n. If the order of these additional reactions does not exceed ~ :=; if N > 2 
then Theorem 2 is again true. The proof is to be modified in an obvious manner. In 
the same way one could treat reactions taking place on a part of the boundary or on 
an interface separating parts of the domain n. 

Remark 9. It would be desirable to generalize the main inequality proved above to 
the following cases: 

i) The underlying reaction system is no longer reversible but only weakly 
reversible (see [Fei) or [Gr] for a definition of that notion). 

ii) The species can be electrically charged. 
iii) The relations between chemical potentials and concentrations are given 

by µi = log(gi(u)ui), i = 1, ... , m, where gi(u) is the so called coefficient 
of activity of the species Xi, which is a known function of the vector of all 
concentrations. 
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In these cases the definitions of F( u) and D( u) have to be modified appropriately. 

Example 1. Let two species react as follows: 

This means that the reaction of X 1 and X 2 produces something which is available to 
such an amount that it is not necessary to include it in the balance equations. The 
corresponding reaction term is ku 1 u 2 - k' = k( u1 u 2 - K). For the sake of simplicity 
we assume that k, k', and J{ are positive constants. Then 

The assumptions (Al), (A2), (A3), (A4) are satisfied, if N:.:; 4. It is easy to see that 
51- =span {(1, -1)} and 

Theorem 2 says that 

1 t flog: dydx S CR { 1 (t, lgradfoil2 

provided that the left hand side is less or equal R. In particular, for every e > 0, 

1 t t log ~dy dx S CR { 1 (t, !grad foil' 

provided that the left hand side is less or equal R. 

Example 2. \Ve assume that the reactions Xi+::=! 0, i = 1, ... , m, take place on the 
boundary an. This corresponds to the boundary conditions 
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For the stoichiometric vectors we have 

O'.ji = Dj;, /3) = 0, j = 1, ... ,m. 

Consequently, S = lRm and Q = 0. Hence the assumptions (Al)-(A4) are satisfied. 
Theorem 2 gives 

provided the left hand side is less or equal R. 

Example 3. Assume that we are given only one species X and that the reaction 
X ~ 2X takes place in n. Let the corresponding reaction term be u - u 2 • Then 
E = {l} and S = JR. In this example the assumption (A3) is not satisfied: 0 is a 
stationary solution. The inequality 

r rl logy dy dx :::;; CR r(jgrad y1uj 2 + ( u 2 - U) log U) ·dx lri Ji , }~ 

. fails for every constant CR for u near 0. 

This example is typical: If (A3) is not satisfied then there exists a (spatially homoge-
neous) state u such that D( u) = 0 and u E e + S whereas F( u) > 0. 

Example 4. Let the reactions X 1 + X 2 ~ 2X3 take part in n, and let the reaction 
term be U1 U2 - u~. Then E = { e E 1P3 : ei e2 = en' O'. = (1, 1, 0), /3 = (0, 0, 2), and 
S =span {(l, 1, -2)}. We choose e = (1, 1, 1). The asssumptions (Al), (A2), (A3), 
(A4) are satisfied, if N:::; 4. Theorem 2 gives 

+ ll (u1 - U2)dxl2+11 (u1 + U2 + U3 - 3)dxn 

provided that the left hand side is less or equal R. 

Remark 10. Simple examples show that in general the constant CR in Theorem 2 
cannot be chosen independent of R, i.e. one cannot prove that 
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Remark 11. In the introduction we have stressed the fact that for our results on the 
asymptotic behaviour of reaction-diffusion systems global bounds for the concentra-
tions are not necessary. It seems worth mentioning that for a special reaction-diffusion 
system Glitzky, Groger, and Hiinlich [GGH] were able to prove the existence of global 
bounds for the concentrations using the main result of this paper.· 

Acknowledgement. The author is indebtet to R. Hiinlich for helpful discussions. 
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