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ABSTRACT. We prove a uniqueness result for the drift-diffusion-model of se-
miconductor devices under weak regularity assumptions. Our proof rests on the 
convexity of the free energy functional and uses a new concavity argument. 
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1. INTRODUCTION 

Since the drift-diffusion-model has been established by van Roosbroeck in 1950 
[16] it has proven to be of fundamental significance for the mathematical descri-
bing and numerical simulation of carrier transport in semiconductor devices. The 
drift-diffusion-model is formed by a coupled system of a Poisson equation for the 
electrostatic potential and continuity equations for positive and negative carriers 
(holes and electrons). The existence of solutions to these device equations has been 
proved under natural assumptions (comp. [12, 3]). With respect to the unique-
ness of solutions the situation is more complex. Whereas steady state solutions to 
the device equations in general cannot expected to be unique by physical reasons 
(comp. (11, 10)), uniqueness of transient solutions should hold in principle, but has 
been proved only under unpleasant restrictions up to now. 
The first uniqueness result for the transient device equations was published by Mock 
[11] under strong regularity assumptions, excluding nonsmooth domains as well as 
mixed boundary conditions. More recently Gajewski & Groger [2] have shown weak 
solutions to be unique, provided the semiconductor obeys Boltzmann statistics. 
Concerning the physically more realistic Fermi-Dirac statistics, these authors [3] 
proved uniqueness of solutions having bounded gradients. In a forthcoming paper 
Groger & Rehberg [8] could relax this regularity condition essentially in the case 
of two space dimensions. 
The main result of this paper is a uniqueness result which rests on a new concavity 
argument involving density and conductivity as functions of the chemical potentials 
of electrons and holes. This argument allows to remove all regularity assumptions 
except for a mild Lq-condition with respect to the gradient of the electrostatic 
potential. Our idea of proof is based on the convexity of the free energy functional, 
which induces a natural metric in the space of solutions to the device equations. 
This approach has been discussed in [1] in a more abstract way. 
The plan of the paper is as follows: First we formulate the complete initial boundary 
value problem for the drift-diffusion-model. In Section 2 suitable function spaces, 
definitions and assumptions are introduced. The energy functional is discussed in 
Section 3. Section 4 is devoted to the proof of the uniqueness result. Finally, the 
assumptions are verified in Section 5. 

2. THE INITIAL BOUNDARY VALUE PROBLEM 

Let be: S = (0, T) a bounded time interval, n C IR_N, 1 ~ N ~ 3, a bounded 
Lipschitzian domain and Q = s x n. We suppose that an= I'v u r u rN, where 
the subsets fv, f, fN are pairwise disjoint and f v is closed and possesses positive 
surface measure. Moreover, v(xo) denotes the outer unit normal at Xo E an. 
The transient carrier transport in a semiconductor occupying the domain n can be 
described by the following system of partial differential equations: 

(2.1) 
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Here anri in what follows the subscript i stands for electrons i = n (negative) resp. 
holes i = p (positive). The physical meaning of the other quantities is: 

Vo - electrostatic potential, 
Vi - chemical potential, 
Ui = fi( vi) - carrier density, 
Ji = Ji( x, Vi, zi), Zi = \7( Vo+ eivi) - current density, 
c: - dielectric permittivity, 
D - density of impurities, 
Ti= ri(x,v),v = (v1),l = O,n,p- recombination/generation rate. 

From the functional analytic point of view it turns out to be advantageous to 
replace the Poisson equation (2.1) by the current conservation equation 

\7 · J +To= 0, (2.3) 

which results from (2.1) after differentiating with respect to time and eliminating 
Uit from (2.2). 
We complete (2.2)-(2.3) by initial conditions 

v1(0, ·) = V!Q on 0 

and boundary conditions 

V! = V!r 

v · J = k0uot + a, 
on S x I'v, 
Vi = Vir on S X I', 

- V • \7 Vat = koUot, V · J;, = 0 on S X I' N, 

where the functions vzr represent given boundary values and 

uo =Vo - var, 

a= exp(-k1t)(k2 + k3 lat exp(k1s)u0(s) ds). 

(2.4) 

(2.5) 

Remark. From the physical point of view I'v models Ohmic contacts. The condi-
tion on r describes interaction of the semiconductor with an outer electric circuit 
formed by inductivity (L = :J, resistance (R = ~) and parallely switched capa-
city ( c = ko). Finally, rN can be interpreted as interface between semiconductor 
and an isolator. 

3. DEFINITIONS AND ASSUMPTIONS 

We denote by Lq,(11 · liq, II · II = II · 112), 1 ~ q ~ oo, H 1 , H- 1 the usual spaces of 
functions defined on n (comp. [4, 5, 17)). Additionally we introduce 

Vo= {h E H1, h = 0 on I'v}, V = {h E Vo, h = 0 on I'}, 
H = {v = (vo,vi), Vo E Vo, Vi E L2}, llvll~ = llJ'Vvalll2 + Jlvnll 2 + llvvJJ2. 
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If X is a Banach space, Lq(S; X) is the space of Bochner measurable functions 
t - h(t) EX such that 

laT ilh(t)llk dt < 00. 

Definition 3.1. A function vector v = (vi), l = 0, n, p, is called (weak) solution of 
(2.2)-(2.5), if: 

(Dl) Vz E Loo(Q) n L2(S; H 1), Vot E L2(S; H 1), Vit E L2(S; H-1); 
(D2) vz(O) = v10; 
(D3) Vo = Vor on S X rD, Vi = Vir, on S X (I'D LJ f); 
(D4) for almost every t E Sit holds 

j(J · Vh + roh) dn = j(kouot + a.)h dI' + j kuoth dI'N, Vh E Vo, 

j[(uit + ri)h - eJi · Vh] dQ = 0, Vh EV. 

Remark. The integral involving Uit has to be understood in the sense of distribu-
tions, that means as dual pairing between H-1 and V. 

Definition 3.2. (3 E (n x lRY - R_N) is called Caratheodory function if: 
(i) the function x - f3(x, z) is measurable for every z E R_N; 

(ii) the function z - (3(x, z) is continuous in R_N for almost every x E Q; 
(iii) lf3(x, z)I:::; C(f3o(x) + lzl) , f3o E 12. 

We suppose the current densities Ji to have the representation 

Ji(x,s,z) = -(ai(s)z + bi(s)f3i(x,z) + J:(s)Ti(x,z)). (3.1) 
Moreover, we suppose constants K, K > 0 to exist such that for a. e. x E n, 
Vs, Vs1 E I = [-K, K], 0 < ls1 - s2I :::; K, Vz1 E R_N, j = 1, 2, the following 
assumptions are satisfied: 

(Al) Ji E C1(J), JI is Lipschitzian, JI(s) > O; 
(A2) 9i = JI o Ji-l is uniformly concave on I such that 

Gi ~ clJi(s1)- Ji(s2)12, c > 0, 

where 

(A3) ai E C(I), ai(s) > O; 
(A4) 

(A5) bi is Lipschitzian on I, bi(s) ~ O; 
(A6) f3i is Caratheodory function such that 

lf3i(x, z)I :::; C(3, f3i(x, 0) = 0, (f3i(x, z1) - f3i(x, z2)) · (z1 - z2) ~ O; 
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(A 7) Ii is Caratheodory function such that 

ri(x, 0) = 0, ('yi(x, z1) -1i(x, z2)) · (z1 ~ z2) 2:: m"YJz1 - z2J 2, m"Y > O; 

(A8) r1(x,v), l = O,n,p, is Caratheodory function, locally Lipschitzian with re-
spect to v; 

(A9) e E Loo, e(x) 2:: co> 0, 0 :'S ko E L00(fN), 0 :'S ki,k2,k3 E L00 (f); 
(AlO) V10 E Loo( Q), V1r E Loo( Q) n L2(S; H 1 ), Vort E L2(S; H 1 ). 

Remark. The coefficients ai, bi and JI may be interpreted as electrical conductivi-
ties. 

Remark. As a consequence of (Al), (A2) it holds 

2 . 2 
Gi 2:: cJs1 - s2l ~ cJgi1 - 9i2l , 

Vs1, Vs2 E JR, Jsji :SK, 0 < Js1 - s2i :S K,, 

where Gi and 9ij are given by (A2). 

4. ENERGY FUNCTIONAL 

For u = (u1) E L 2(S; H) we define the energy functional 

J [ k0 2 a 2 ] j ko 2 + -Uo +-k dI' + -Uo dI'N. 
2 2 3 2 

For a solution v to (2.2)-(2.5) the function 

t--+ <P(t) = F(Ev(t)), Ev= u = (uo,un,up), 

is absolutely continuous. Moreover, for a. e. t E S we find by (D4) 

p 

<P'(t) = j[e'VVot · Vuo + ~Uit(vi -vir)] dD. 
i=n 

+ j[(k0uot + a)uo - ~: a 2] dI' + j kouotUo dI'N 
p 

= j [-J · Vuo +~(Ji· Vuo + Uit(vi - Vir ))] dD. 
i=n 

4 
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Remark. From (4.1) it is clear, that <P can be looked at as Lyapunov function of 
(2.2)-(2.3) in some situations. Indeed, let for example v0r + eivir = r 0 = 0, ri = 
exp(vn + vp) - 1. Then, we infer from (4.1), using (3.1),(A3),(A5)-(A7), 

p 

<P'(t) = jr~ Ji· zi - (exp(vn + vp) - l)(vn + vp)] dfl:::; 0. 
i==n · 

5. UNIQUENESS 

In this section the uniqueness result will be proved. To this end let us suppose that 
we are given two solutions vi = ( vzi), j = 1, 2, of (2.2)-(2.5) such that llviillLoo(Q) S 
K, llvi1 - Vi2llLoo(Q) S K. We introduce 

as a kind of distance between v1 and v2 . Our aim is to show that 

c1llv(t)il1 S d(t) S c2 fot CT(s)l!v(s)il1 ds, t ES, v = V1 - v2, 

where CT E L1(S). 

Lemma 5 .1. There exists a constant c > 0 such that 

cllv(t)ll1 S d(t). 

Proof. Because of (Al) the function 'lj;(y) = J~ fi- 1 (s) ds, y E JR, is convex. Mo-
reover, setting 

co= min{ff(s), Isl SK}, c1 = max{Jf(s), Isl SK}, (5.1) 

we find by elementary calculations that for Yi = fi( Sj ), ls1 I S K, 

( Y1 + Y2) 1 2 co 2 '¢(Y1) + '¢(Y2) - 21/J ~ -IY1 - Y2I ~ -ls1 - s2I . 2 4~ 4~ 

This estimate along with the uniform convexity of the energy functional F with 
respect to u 0 proves the lemma. D 

Lemma 5.2. Suppose in addition to (D1} that the solutions Vi satisfy the regularity 
condition 

IVvoil E L2q/(q-N)(S; Lq), j = 1, 2, q > N. (5.2) 

Then there exists a constant c such that 

t 2 

d(t) Sc 1 CT(s)llv(s)111 ds, CT(t) = 1 + :E llYi(t)Jl~q/(q-N), Yi= Vvoi·(5.3) 
0 i==l 
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Proof. Setting 

vz = Vz1 - vz2, 
Vo1 + Vo2 . _ 1,-1 (Uil + Ui2) Vim - · 

I 2 l 
Vom = --2--

Yi= Vvoj, Zij = V(voj + eiVij), Zim = V(vom + eiVim), 
a = a1 - a2, 1 = 11 - 12, r1 = r11 - r12, 

we infer from ( 4.1) and (A8) 

d'(t) = j[~rovo + .t (lij · (zij - Zim) - rij(Vij - Vim))] d0. - ~ j ~2 a 2 dI' 
1,3=1 . 3 

2 

~ j .~ lij · (zij - Zim) d0. + cllv(t)111"· (5.4) 
1,3=1 

In view of ( A2) we have 

and hence 

1 2 
Zim = 2 L[9ijZij + (1 - 9ij)Yj]· 

j=l 

Thus, setting Zi = Zi1 - Zi2, y =Yi ~ Y2, we find 

2 1 2 

.~ lij · (Zij - Zim) = 2[.~ GJij · Zij 
1,3=1 1,3=1 

2 

+ L(9i2li1 - 9i1li2) . Zi (5.5) 
i=l 

2 2 

- L( li1 + li2) · L(l - 9ii )Yi]· 
i=l j=l 

We are now going to estimate the right-hand side of (5.5) term by term. To this 
end we drop the subscript i for convenience. From (3.1) (5.1) and (Al)-(A7) we 
see that 

Next, setting 9m = g((u1 + u2)/2) and using (A6), (A7), we get 
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(g2J1 - giJ2) · z = -[g2(a1z1 + bif31 + gTng111) - gi(a2z2 + b2f32 + gTng212)] · z 
1 = -[g2a1z1 - gia2z2 + 2(g2b1 + gib2)(f31 - /32) 

1 + 2(g2b1 - gib2)(f31 + /32) + gTng1g2(r1 - 12)] . z 
(5.7) 

:::; -(g2a1z1 - gia2z2) · z + cJvl lzl - 25Jzl2 

:::; -(g2a1z1 - g1a2z2) · z + clvl2 - 5lzl2. 

Now, setting 

and noting that by (A 4) 

we find by (A4) 

2 

G L ajlzjl2 + (g2a1z1 - gia2z2) · z = Alz112 + Blz212 - C z1 · z2 
j=l 

2:: Alz112 + Blz212 - ~ ((A/B)112 lz11 2 + (B/A)1/2lz21 2) 

= (i -(1- 4A:A~ C2 )112) (Alz112 + Blz2l2) 

2:: 4AB8- c2 (lz1l2 /B + lz2l2 /A) 

2:: 5G(lz112 + lz2l 2). 

Thus it follows from (5.6) and (5.7) 

2 2 

G L Ji· Zj + (g2J1 - g1J2) · z :::; clvl2 - 5( GI: lzil2 + lzl2). (5.8) 
j=l j=l 

We turn now to the remaining term from (5.5). Using (3.2), (A6), (A7) and setting 
g = g1 - g2 , we get 
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2 1 2 

1(11+12) · ?=(l -g1)Y1I = 12(11+12) · (GLY1 -gy)I 
J=l j=l 

1 2 
::; 2111+12l(GI: IY1I + jgllYI) 

j=l 
2 

::; c(l + lz1I + lz2l)(GL: IY1I + G112 lyl) 
(5.9) 

j=l 
::; 5G(lz1l2 + lz2!2) + c(5)(G(IY1l2 + IY2l2) + IYl 2 + lvl2). 

Setting u = I:;=l llY1ll~q/(q-N) E Li(S), we find by means of the inequalities of 
Holder, Gagliardo-Nirenberg [13] and Young [9] 

j GIY1l2 dn::; llGllq/(q-2)llY1ll~ ::; c1ivll~q/(q-2)1iY1ll~ 

::; cl!Vvll 2N/qllvi12<q-N)/qllY11l~ ::; ~llVvJl 2 + c(5)ullvll 2 ( 5.lO) 

::; 5( llzll2 + llY 11 2) + cCTllv 11 2· 
Now the lemma follows from (5.4), (5.5) and (5.8) - (5.10). D 

We are now able to state our main result. 

Theorem 5.1. Let v3, j = 1, 2, be (weak) solutions of {2.2)-(2.5) such that the 
regularity assumption (5.2) is satisfied. Let in addition 

llvijllLoo(Q) ::; K, llvil - Vi2llLoo(Q) ::::; K 

and {A1)-{A9) be satisfied. Then v1 = v 2. 

(5.11) 

Proof. The theorem is a consequence of Lemma 4.1, Lemma 4.2 and Gronwall's 
Lemma (comp. [9]). D 

Remark. In view of the initial condition (2.4) the second part of (5.11) can be 
replaced by supposing the solutions v3 to be continuous in time and space. 

6. APPLICATIONS 

As to the existence of solutions v in the sense of Definition 3.1, we refer to [3]. 
Further, the electrostatic potential v0(t), t > 0, turns out to be weak solution of 
Poisson's equation (2.1), provided the initial value v(O) = (vw) satisfies (2.1). Thus 
standard regularity results for weak solutions to linear elliptic equations can be 
applied to verify the condition (5.2). In particular, under quite general conditions 
it can be proved [6] that 1Vv0(t)I E Lq for some q > 2. Concerning conditions 
guaranteeing q > N = 3, we refer to [15). Finally, results implying continuity of 
solutions to drift-diffusion-equations in the spatially two-dimensionally case can 
be found in [7]. 
We turn to the verification of the basic assumptions and restrict us to the most 
involved conditions (A2) and (A4). 
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Condition ( A2) 
A sufficient condition for (A2) is: 

Lemma 6.1. Let f E C3 (R) satisfy 

!' > 0, f"2 > !'!'". 
Then g = f' o f-1 is uniformly concave. 

Proof. For Si, S2 E JR' s = 82 ; 81 ' we have 

( S1 + S2) fl fl 2g 2 - g(s1) - g(s2) = -s2 Jo lo g11(s1 + (r + TJ)s) dr dTj. 

Since 
f 'f/11 - f"2 "( ) f-1 g s = f'3 0 ' 

the lemma follows. D 

Using this lemma, it is easy to show that the function 

T (6)1/3 fa(s)= T/3!2 , T/ = clog(l + ~), T = exp(2s/3), c = ; , (6.1) 

satisfies (A2) for arbitrary 0 < "'' K < oo. fa serves in some situations as simple 
but sufficient approximation of the Fermi function 

2 f 00 0 dt 
fi(s) = .F(s) = -/1F lo 1 + exp(t- s) ' (6.2) 

which is the favoured example from the physical point of view, since Fermi-Dirac 
statistics is based on it. Unfortunately, it seems to be difficult to prove rigorously 
that the Fermi function satisfies (A2). However, computer calculations make this 
evident(comp. [Fig. 1]). 
In many physical situations Boltzmann statistics is considered as sufficient appro-
ximation for Fermi-Dirac statistics. Boltzmann statistics is based on 

fi(s) = f(s) = exp(s), (6.3) 

which implies 

9i(s) = s., Gi = 0. (6.4) 

Thus (6.3) violates (A2) (and also (A4)) and can be looked at merely as (nonallo-
wed) limit case. However, uniqueness results under Boltzmann statistics have been 
proved in [3] for the special case r = 0, using only the chemical part of the energy 
functional, i. e. 
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for defining a distance. Moreover, as a pleasant consequence of ( 6.4) even the 
regularity condition (5.2) could be removed in [3] . 
Condition (A4) 
There are different options for ai. A first physically interesting choice is [14] 

which verifies (A4) trivially with p = 0, provided 9i is strictly concave. A frequently 
used choice is [3] 

(6.5) 

Of course, both choices coincide under Boltzmann statistics. 
By computing levels of the function p(si, s 2 ) corresponding to (6.2) and (6.5) it 
can be made evident (comp. [Fig. 2]) that the condition (A4) holds for finite K 
and suitable ""· In particular, the trace of this function given by 

. (ff" - !'2)2 -[(log(log J)')']2 p(s) - hm - (s) ~ (s) 
- s2-+ .. 1=s - 2j2(f"2 - f' J111 ) - 2(1og J')" ' 

satisfies 

p( s) < 1, s E JR. (6.6) 

For the approximation (6.1 ), one gets rigorously 

. ( T - 7J )2 
hm = 0 < pf ( s) = < lim = 1. 

S-+-00 .. T( T - 7J + 277 2 I c) $-+OO 

Remark. The 'local' condition (6.6) along with the continuity of the function p 
imply the 'global' condition (A4) for sufficiently small K,. 
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