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ABSTRACT. Massive and massless Gaussian free fields can be described as generalized Gaussian pro-
cesses indexed by an appropriate space of functions. In this article we study various approaches to ap-
proximate these fields and look at the fractal properties of the thick points of their cut-offs. Under some
sufficient conditions for a centered Gaussian process with logarithmic variance we study the set of thick
points and derive their Hausdorff dimension. We prove that various cut-offs for Gaussian free fields satisfy
these assumptions. We also give sufficient conditions for comparing thick points of different cut-offs.

1. INTRODUCTION

Let D ⊆ Rd with d ≥ 2 be a subset of Rd (possibly D = Rd). A Generalized Gaussian field (GGF, in
short) X is a collection of centered Gaussian random variables indexed by a certain class of functions
H , that is, the field can be written as {(X, f) : f ∈ H}. H is in the present paper a Hilbert space
of functions on D, and more specifically a Sobolev space. Notable examples of such GGFs, and the
ones especially considered in this article, are the massive and massless Gaussian free fields (GFF). The
study of GFFs has received considerable attention in the context of statistical mechanics and physics,
as they can be seen as multidimensional generalizations of Brownian motion (see Sheffield [23] for their
construction and properties).

The two most important places (among many) where such fields have shown prominence is the construc-
tion of the Liouville Quantum Gravity measure (Duplantier and Sheffield [7]) and the theory of Gaussian
multiplicative chaos (Kahane [16], Robert and Vargas [21]). In both these cases one constructs a random
measure on D ⊆ Rd, given formally by

mγ(dx) = exp

(
γX(x)− γ2

2
E
[
X(x)2

])
dx. (1.1)

Since X is not defined pointwise, the notation X(x) and hence (1.1) are merely formal. To avoid this
discrepancy, one defines suitable approximations which converge to the desired limiting measure. These
approximations, which are from now on referred to as cut-offs, form in turn a space-time Gaussian pro-
cess if certain conditions of positive-definiteness are satisfied. Among many methods of approximations
we would like to mention two of them: one taking into consideration the geometry of the indexing space
H (for example average processes), and another its covariance structure. In this article, we will be mainly
interested in the second method, namely, cut-offs created by removing the singularity of the covariance.
These approaches are used extensively in the recent literature (see Duplantier et al. [8] for example) and
are connected to the seminal work of Kahane [16]. We describe more explicitly some of these approxi-
mations in Subsection 2.2.

In the definition of the measure (1.1),X(x) should be replaced by the cut-offs given by a space-time cen-
tered Gaussian process {Xε(x) : x ∈ D, ε > 0}. The limit of such measures as ε goes to zero forms
an important object in mathematical physics. In general, for log-correlated models the limiting random
measure is known as Gaussian Multiplicative chaos (GMC) measure (after Kahane [16]). In particular,
when the field is either a planar massless or massive free field it is known as Liouville Quantum Gravity
measure. It is natural to ask whether different approximations almost surely give the same GMC. The
answer in full generality is not known yet. The question was already studied in Kahane [16], Rhodes and
Vargas [20] where, for certain cut-offs, the equality in law was proved. Also, in case of planar (massless)
GFF, it was shown by Duplantier and Sheffield [7] that measures created by circled average process and
by orthonormal basis expansion of H1

0 (D) (another approach to create cut-offs) are almost surely same.
To best of our knowledge this is the only almost sure result on equivalence of the measures known till
now.

In this article we continue this study of almost-sure universality of cut-offs with respect to thick points
(the term in this context was used in Hu et al. [14], and also referred to as multi-fractal behavior in
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Kahane [16]). This is the set of points which encapsulates the extremal behavior of the field. For a cut-off
{Xε(x) : x ∈ D, ε > 0} the thick points are defined as

T (a) =

{
x ∈ D : lim

ε→0

Xε(x)

Var (Xε(x))
= a

}
, a ≥ 0. (1.2)

Their importance comes from the fact that they have full mass for the Gaussian multiplicative chaos, and
give also information on the behavior of the so-called Liouville Brownian motion for the Liouville quantum
gravity measure (Garban et al. [10]). The main properties of the well-known cut-offs is that Var (Xε(x))
behaves like − log ε as ε goes to 0. Under an additional Hölder type condition we show in Theorem 2.1
that the Hausdorff dimension of T (a) has an upper bound of d− a2/2 when a <

√
2d. Note that similar

results were derived in Kahane [16] (for the lower bound) and with some extended conditions in Rhodes
and Vargas [20]. The Hölder type condition seems to be a minimal requirement as these fields are not
smooth and exhibit a fractal behavior. The condition is also satisfied by most of the cut-offs including the
circle average process in 2d and 4d case.

In the second part of our main result we show that under certain assumptions (see Theorem 2.2) the
Hausdorff dimension has a lower bound of d − a2/2 for a <

√
2d. To achieve this goal we follow the

approach in Kahane [16], who considers covariance kernels that can be written as series of truncated
positive, positive definite kernel. These conditions were extended in the work of Robert and Vargas [21]
and are are flexible enough to accommodate the covariance cut-offs in most cases. However we point out
here that circle average processes do not fall under this class of sufficient conditions. Hence it still remains
an open question to determine what the best conditions which can include all “reasonable” cut-offs are.

In view of the above results, one might ask whether there is a possibility of comparing the extremal
behavior for different processes. We give a partial answer to this query by imposing a sufficient condition
(see Theorem 2.3) on the difference of two cut-offs . In fact, we show that whenever this condition is
satisfied the cut-offs have the same fractal behavior. The outline of the article is as follows. In Section 2
we review the definitions of the fields and in Subsection 2.2 of some of the well known cut-offs procedures.
Then we state the main results with brief descriptions in Subsection 2.3. In Section 3 we first show that
the examples considered in Subsection 2.2 satisfy the assumptions of these results. Finally, in Section 4
we provide the proofs of these results.

2. CONSTRUCTION OF FREE FIELDS AND APPROXIMATIONS

2.1. Two examples of fields.

2.1.1. Massive free fields on Rd. Let Rd, d ≥ 2. Let S(Rd) be the Schwartz space consisting of smooth
functions whose derivatives decay faster than any polynomial. Let S ′(Rd) be the space of tempered
distribution which are also the continuous linear functionals on S(Rd). Also, S(Rd) form a dense subset
of S ′(Rd) with respect to weak*-topology. With C∞0 (D) we denote the set of smooth and compactly
supported functions on D. To avoid somehow lengthy notation, we set L2 = L2(Rd, dx) dropping the
reference measure. For ξ ∈ Rd, let 〈ξ〉m = (m2 + |ξ|2)1/2 and we denote by 〈ξ〉 = 〈ξ〉1. To avoid
confusion, we will denote in some instances the scalar product in a Hilbert space H by angle brackets
with a subindex as 〈 ·, ·〉H . For s ∈ R we denote the operator Bs

m : S(Rd) 7→ S(Rd) defined by

Bs
mφ(x) =

∫
Rd
e−i〈ξ,x〉Rd 〈ξ〉sm φ̂(ξ)dξ. (2.1)

This corresponds to the definition of the (formal) Bessel operator Bs
mφ := (m2I−∆)

−s/2
φ. Let us

denote Gm(x) = K0(m|x|), where K0(·) is the modified Bessel function; it is well known (see Stein
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[24]) that Ĝd(ξ) = 〈ξ〉−dm and hence one can write

B−dm φ(x) =

∫
Rd
Gd(x− y)φ(y)dy.

We want to look at generalized massive free fields indexed by f ∈ S(Rd) such that

E [(X, f)(X, g)] =
〈
f,B−dg

〉
L2 .

It can be shown that the functional

L(φ) = exp

(
−1

2

〈
φ,B−dm φ

〉
L2

)
,

is a positive definite functional and hence this induces a measure on S ′(Rd) whose characteristic func-
tional is given by L(φ) (we provide a short proof of the fact that it satisfies the conditions of the classical
Bochner-Milnos theorem in the Appendix 6). This gives us a generalized Gaussian field {(X, φ), φ ∈
S(Rd)} whose covariance can be represented by

E [(X,φ)(X,ψ)] =

∫
φ̂(ξ)ψ̂(ξ) 〈ξ〉−dm dξ (2.2)

(see Hida [12], Yaglom [26]). The tempered measure µ(dx) = 〈ξ〉−dm dξ can be realized as the spectral
measure of the covariance of this Gaussian process. We remark here that the Hilbert space associated
to the GGF X is in this case the fractional Sobolev space Hd/2(Rd), that we recall being definied by

Hs(Rd) := {φ ∈ S(Rd) : Bsφ ∈ L2(Rd)}, s ∈ R .

For details on the construction of such generalized Gaussian fields, we refer the interested readers to
Gel’fand and Vilenkin [11]. See also for a white noise representation (2.5) for the massive free fields in
Subsection 2.2.1.

2.1.2. Massless planar Gaussian Free Field. Let C∞0 (D) be space of smooth functions vanishing out-
side D, a bounded domain of Rd. Let H1

0 (D) be the Hilbert space which is closure of C∞0 (D) under the
norm

‖f‖2
H1 =

∫
D

‖∇f(λ)‖2dλ.

The dual of H1
0 (D) is given by H−1(D) equipped with the norm

‖f‖H−1 = sup
g∈C∞0 (D),‖g‖H1≤1

〈f, g〉 ,

where 〈, 〉 denotes the duality pairing. Note that for f, g ∈ C∞0 (D), we have by Green’s identity that
〈f, g〉H1 = 〈f,∆g〉L2 and it follows that 〈f, g〉H−1 = 〈f,∆−1g〉L2 , where for g ∈ C∞0 (D) one denotes

∆−1g(x) =

∫
D

GD(x, y)g(y)dy.

Here GD(x, y) is the Green’s function for the Dirichlet problem on a planar domain and it is well known
that

GD(x, y) = π

∫ ∞
0

pD(t, x, y)dt. (2.3)

pD(t, x, y) is defined in the following way. Let τD = inf{t ≥ 0 : Bt /∈ D} be the first exit time from D
for a Brownian motion Bt. Then for {Bt : 0 ≤ t ≤ τD} there exists a transition sub-density pD(t, x, y)
which satisfies for all t > 0

Px (Bt ∈ A, t ≤ τD) =

∫
A

pD(t, x, y)dy.
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Also recall from [19, Chapter 3] that

pD(t, x, y) = p(t, x, y)− Ex

[
p(t− τD, BτD , y)1{t>τD}

]
,

where p(t, x, y) is the transition density of the unstopped Brownian motion (also called the Gauss-
Weierstrass heat kernel) given by

p(t, x, y) =
1

2πt
exp

(
−‖x− y‖

2

2t

)
.

A (massless) Gaussian free field can described as a centered Gaussian process indexed by H−1(D),
that is, a collection {(Φ, f) : f ∈ H−1(D)} such that

Cov ((Φ, f)(Φ, g)) = 〈f, g〉H−1 .

One can also consider it as a centered Gaussian field indexed by H1
0 (D) by duality (since (Φ, g)L2 =

(Φ,∆−1g)H1 where ∆−1g ∈ H1
0 (D) for f ∈ H−1(D)). Note that the variance in both cases is the

same, as ‖∆−1g‖2
H1 = ‖g‖2

H−1 . If we restrict ourselves to C∞0 (D) we get from the above observations

Cov ((Φ, f)(Φ, g)) =

∫
D

∫
D

f(x)g(y)GD(x, y)dxdy.

If D = [0, 1]2 the Gaussian Free Field has a formal representation as

Φ =
∑
j, k∈N

Xj,kej,k (2.4)

where ej,k are eigenfunctions given explicitly by

ej,k(x, y) = 2
sin(πjx) sin(πky)√

j2 + k2
,

which also form an orthonormal basis of H1
0 (D). This Φ converges almost surely in H−1(D) and hence

it is consistent with the above definitions. We refer the readers for a more detailed construction to Dubédat
[6] and Sheffield [23].

2.2. The construction of cut-offs. There are several ways in which one can approach the question of
approximating a field with infinite variance by cut-offs. We will list here only a few of those examples.

2.2.1. White-noise cut-offs for massive free fields. LetW be a Gaussian complex white noise with control
measure µ(dξ) = 〈ξ〉−dm dξ. Formally, the field X is given by the characteristic function of the white
noise. That is, if ζ(λ, ξ) = e−i〈λ,ξ〉Rd , one can represent the field as

X(λ) =

∫
Rd
ζ(λ, ξ)W (dξ),

which means that (X,φ) for φ ∈ S(Rd) has the stochastic integral representation

(X,φ) =

∫
Rd
φ̂(ξ)W (dξ).

It is well-known ([18, Chapter 1]) that for any f ∈ L2
C(Rd) the integral above is well-posed. Note that

under the control measure µ, the isometry property of the stochastic integrals again gives us the covari-
ance of the field as (2.2). Note that since W is a complex white noise with control measure µ which is
absolutely continuous with respect to the Lebesgue measure, the field can also be represented by using
a standard complex white noise W̃ (with control measure dξ) in such a way that

X(λ) =

∫
Rd
ζ(λ, ξ) 〈ξ〉−dm W̃ (dξ).
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Since this directly relates to the Bessel potential operator B−dm in (2.1), these fields can be thought of as

X :=
(
m2I−∆

)−d/2
W̃ . (2.5)

The above white noise representation helps to create the first example of white-noise cut-off. Pick now an
arbitrary ε > 0. We denote the white noise cut-off as

Xε(x) :=
1

ωd

∫
B(0, 1/ε)

ζ(x, ξ)W (dξ). (2.6)

Here ωd = 2πd/2/Γ(d/2) is the volume of the d-dimensional unit ball. Such cut-offs are also known
as ultra-violet (UV) cut-offs (see Rhodes and Vargas [20]). We call this a cut-off for the field since if we
denote by

Kε(x, y) = E [Xε(x)Xε(y)] =

∫
B(0, 1/ε)

ζ(x− y, ξ) 〈ξ〉−dm dξ (2.7)

then for f, g compactly supported smooth functions one has

lim
ε→0

∫
Rd

∫
Rd
f(x)g(y)Kε(x, y)dxdy =

∫
f̂(ξ)̂g(ξ) 〈ξ〉−dm dξ,

and the right hand is the same as (2.2). One can also introduce many other cut-offs. One example is by
taking a mollifier θ(ξ) that satisfies

1 θ is positive definite and symmetric,
2
∫

Rd θ(x)dx = 1,
3 |θ(x)| ≤ 1

1+|x|d+γ for some γ > 0,

(an example is the Gaussian density) one can define a cut-off as

Xε(x) :=

∫
B(0, 1/ε)

ζ(x, ξ)

√
θ̂(εξ)W (dξ), (2.8)

where W is again a complex white noise with control measure µ(dξ) = 〈ξ〉−dm dξ.

2.2.2. Integral cut-offs. This cut-off has been extensively used by Rhodes and Vargas [20] as it follows
under the scope of the work of Kahane [16]. Consider the massive GFF on Rd. For that one observes
that Kε(x, y)→ K0(m‖x− y‖) as ε→ 0 and x 6= y (on the diagonal the modified Bessel function is
infinite). For x 6= y one may write

K0(m‖x− y‖) =

∫ ∞
1

km(u‖x− y‖)du

u

where

km(z) =
1

2

∫ ∞
0

e−
m2|z|2

2v e−v/2dv.

Now one denotes the integral cut-off of the covariance for x, y ∈ Rd as

Hε(x, y) =

∫ 1/ε

1

km(u‖x− y‖)du

u
(2.9)

and associates to it a centered Gaussian process (we show in the appendix thatKε gives rise to a positive
definite functional). Note that even when x = y this is well defined and it follows that Hε(x, x) ∼ε→0

− log ε. For the planar GFF one can define the integral cut-offs as follows. One considers for ε > 0

Gε,D(x, y) = 2π

∫ +∞

ε

pD(s, x, y)ds. (2.10)
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It is well-known that Gε,D is a positive definite kernel (for a proof see [20, Section 5.2]) and hence one
can consider a Gaussian process Xε(x) such that E [Xε(x)Xε(y)] = Gε,D(x, y). Note that, as before,
it follows that for f, g ∈ C∞0 (D) one has that

lim
ε→0

∫
D

∫
D

f(x)g(y)Gε,D(x, y)dxdy =
〈
f,∆−1g

〉
L2 .

We note that Hε(x, y) in (2.9) and Kε(x, y) in (2.7) are different pointwise and indeed it can be shown
that there are x, y ∈ Rd, such that Kε(x, y) takes negative values whilst Hε(x, y) is always positive.

2.2.3. Transition semigroup cut-offs. These approximations instead rely on the particular transition semi-
group of the massless Gaussian field, which is given in terms of the transition kernel of Brownian motion
and follow somehow a mixed approach between the integral cut-off (compare for example (2.10) and
(2.9)) and the white-noise integration. Let us start with the planar case to illustrate the technique. Let W
be a standard space-time Gaussian white noise on D × (0,∞) with the Lebesgue measure as control
measure; define the stochastic integral corresponding to the Gaussian free field as

X(x) =
√

2π

∫
D×(0,∞)

pD(s/2, x, y)W (dy, ds).

Now one represents the approximating field as

Xε(x) :=
√

2π

∫
D×(ε,∞)

pD(s/2, x, y)W (dy, ds).

It follows again that E [Xε(x)Xε(y)] =
∫∞
ε
pD(s, x, y)ds (see Rhodes and Vargas [20]).

The very same decomposition works for the massive GFF too. Knowing that

B−d1 u(x) =

√
2π

Γ(d/2)

∫ +∞

0

∫
Rd

et td/2−1p(t, x, y)u(y)dtdy

we can set

Xε(x) :=

√
2π√

Γ(d/2)

∫
Rd×[ε,+∞)

et/2 t
1
2

(d/2−1)p(t/2, x, y)W (dt, dy).

Once more we have

E [Xε(x)Xε(y)] =

√
2π

Γ(d/2)

∫
[ε,+∞)

et ts/2−1p(t, x, y)dt.

This decomposition extends in general to any operator whose action can be represented through the
Brownian motion semigroup (as for example Hu and Zähle [13]). Being very similar to integral cut-offs
such as (2.10), in the paper we do not treat these approximations as separate cases but refer to integral
cut-offs for more general properties.

2.2.4. Other cut-offs. The properties of the aforementioned cut-offs rely on the removal of the singularity
of the covariance on the diagonal. There are however other cut-offs which can be constructed starting
from the geometry of the field. Here we would like to mention briefly a few of them.

Circle and sphere averages: Introduced by Duplantier and Sheffield [7], the circle average for the
planar massless Gaussian Free Field is based on the solution of the boundary value problem{

− 1
2π

∆Gε
x(y) = νxε , y ∈ D

Gx
ε (y) = 0, y ∈ ∂D (2.11)

for all x ∈ D, where νxε is the uniform measure on ∂D. The circle average for the GFF Φ is then
the process{(Φ, Gx

ε ) : x ∈ D, ε > 0}. This cut-off enjoys several important properties, among
which being the time-change of a Brownian motion and possessing short-range correlations, in
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contrast to white noise and integral cut-offs. To obtain a similar cut-off in higher dimensions is
trickier due to the more complex geometry, hence more work is needed (Chen and Jakobson [4]
treats the 4-dimensional case). In this case, one cannot work directly with the analogous solution
of (2.11), but has to modify the field to achieve the spatial Markov property again.

Orthonormal basis expansion: Generalized Gaussian Fields always feature an orthonormal basis
representation (Janson [15]), that can be described generally as follows. If {(X, ϕ) : ϕ ∈ H} is a
GGF associated to the Hilbert spaceH , and an orthonormal basis ofH can be written as (hn)n∈N,
then

(X, ϕ) =
∑
n∈N

〈ϕ, hn〉H hn, ϕ ∈ H.

More formally, the field is represented for every x ∈ D asX(x) =
∑

n∈N αnhn(x). Here (αn)n∈N
are i. i. d. standard Gaussians. In this sense, the approximation is given by

Xm(x) =
∑
n≤m

αnhn(x), m ∈ N .

We have already encountered this representation in the specific case of the planar GFF in (2.4).

2.3. Main results. In this section we discuss the main results of this article on fractal properties of the
cut-offs stated in the previous section. We give some general sufficient conditions under which the lower
bound and upper bound can be proved. We also give sufficient conditions for comparing fractal properties
of two different cut-offs. Later in the article we show that these sufficient conditions are satisfied by almost
all of the the cut-offs described above.

Theorem 2.1. If (Xε(x))ε≥0, x∈Rd , d ≥ 2, is a centered Gaussian process satisfying

(A) for all R > 0 and for all x, y ∈ B(0, R) and ε, η ≥ 0 we have

E
[
(Xε(x)−Xη(y))2

]
≤ ‖x− y‖+ |η − ε|

η ∧ ε
,

(B) the variance of the process satisfies

G(ε) := E
[
Xε(x)2

]
∼ε→0 − log ε.

Then letting

T≥(a,R) =

{
x ∈ B(0, R) : lim

ε→0

Xε(x)

G(ε)
≥ a

}
we have for a ≤

√
2d that dimH(T (a,R)) ≤ d− a2

2
almost surely, and for a >

√
2d that T≥(a,R) is

empty almost surely.

Theorem 2.1 is stated for balls of radius R, but it can be used to derive the upper bound by first covering
the space with a countable number of balls and then using the countable stability property of the Hausdorff
dimension, which reads as

dimH

(⋃
n∈N

Bn

)
= sup

n∈N
dimH (Bn) (2.12)

for an arbitray collection of sets (Bn)n∈N. In the following Corollary we treat as a separate case the
Massless GFF, both for its importance and for the slightly different proof.

Corollary 2.1. Let D be a bounded, convex regular domain. For δ > 0, denote D(δ) := {x ∈ D :
d(x, ∂D) > δ)}. If Xε(x) is a planar (massless) Gaussian free field integral cut-off, satisfying assump-
tions (A) and (B) on D(δ) for any δ > 0. If we denote

T≥(a,D) :=

{
x ∈ D : lim

ε→0

Xε(x)

G(ε)
≥ a

}
,
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then the conclusion of Theorem 2.1 holds with d = 2.

In Section 3 we will see that most of the cut-offs discussed in Subsection 2.2 satisfy the assumptions of
Theorem 2.1 and Corollary 2.1. A brief sketch of the proof is as follows. The condition (A) allows us to
have a modification which has nice bounds on the spatial and time variable almost surely. We use a strong
version of Kolmogorov-Centsov theorem from Hu et al. [14] to derive this. Using these path properties it
is possible to get an explicit cover of the space and also get good bounds for the diameters of the sets
used to form the cover. The upper bound then follows easily from the definition of Hausdorff dimension.

Now we give some sufficient conditions on the cut-off for which we have a matching lower bound. We
state the results for discrete time for ease of exposition, noting that it can be extended to continuous time
if the processes have a continuous modification.

Theorem 2.2. Suppose Xn(x) is a centered Gaussian process with covariance kernel denoted by
pn(x, y) which satisfies the following properties:

(C) for x 6= y, pn(x, y) ≤ 1
2

log 1
‖x−y‖ +H(x, y) where supx 6=y∈[0,1]d H(x, y) < C <∞.

(D) There exists a sequence of positive definite covariance kernels p̃n(x, y) such that pn(x, y) =∑n
k=1 p̃k(x, y), and moreover p̃n(x, x) = 1 for all x.

Let 0 < a ≤
√

2d and consider the set of thick points on D = [0, 1]d, that is,

T (a) :=

{
x ∈ D : lim

n→∞

Xn

n
= a

}
. (2.13)

Then we have dimH(T (a)) ≥ d− a2

2
almost surely.

If for a cut-off Xε(x), G(ε) = Var (Xε(x)) is monotone in ε, then one can apply the above result
to the process XG−1(n)(x) to get the lower bound for thick points from Theorem 2.2, which can now
be combined with Theorem 2.1 to get the result for the Hausdorff dimension of thick points easily. The
conditions in Theorem 2.2 are inspired by the works of Kahane [16]; we notice that cut-off constructed
through truncating the covariance structure fall under this category, for example white noise cut-offs,
integral cut-offs and semigroup cut-offs. The sphere average processes however are excluded from such
assumptions.

It is also important to note that condition (C) can be relaxed to the case where the upper bound holds
uniformly for n large enough. This important modification especially comes useful in dealing with white-
noise cut-offs which do not have positive kernels. We point out this important modification in Remark 4.1.

The proof follows in some steps the ideas of Kahane [16] (chiefly the construction of rooted measures).
The condition (C) allows one to construct a positive martingale using measures of the form (1.1) which
converge for every bounded set A. Now logarithmic bounds allow one to extend this convergence to
an L2 convergence. It is then standard to construct a limiting a measure out of it. However instead of
following the technical way of estimating the size of balls, we show that this measure has required finite
energy almost surely using uniform bounds and weak convergence techniques. Finally, we show that the
limiting measure thus obtained has finite energy and also gives full mass to the set of thick points. To
show that the latetr we need to use rooted measure techniques borrowed from Kahane [16] (see also
Duplantier and Sheffield [7]) and the strong law of large numbers under this measure.

As pointed out earlier, the above assumptions are not really useful when one deals with circle averages.
This drawback obviously raises the question on whether we can compare covariances of two cut-offs to
deduce the behavior of thick points. Our next result is in that direction.
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Theorem 2.3. Let Xε(x) and X̃ε(x) be two cut-off families for the same field on D. Let T (X, a) and
T (X̃, a) be the set of a-thick points for Xε(x) and X̃ε(x) respectively. Call Zε(x) := Xε(x) − X̃ε(x).
Suppose Zε(x) satisfies the following assumption:

(E) Zε(x) is symmetric in x and there exists universal constants C > 0, C ′ > 0 independent of ε and
x such that

E
[
Zε(x)2

]
≤ C (2.14)

and

E
[
(Zε(x)− Zε(y))2

]
≤ C ′

||x− y||
ε

. (2.15)

Then for all a > 0 we have dimH(T (X, a)) = dimH(T (X̃, a)) almost surely.

Again we will give an example in Section 3 where condition (E) would be satisfied. Unfortunately, we
cannot compare important processes like sphere average and white-noise cut-off through this theorem.
In fact, the bounded variance seems a bit restrictive and if this condition could be relaxed then one could
accommodate more interesting examples.

To prove Theorem 2.3 we show first that using Sudakov-Fernique one can compare the maxima of the
Gaussian process Zε(x) with a multivariate version of the OrnsteinâĂŞ-Uhlenbeck process for which
the order of expected maxima can be easily derived. To pass to the almost sure version of it one uses
bounded variances and Borell’s inequality. This allows one to compare the set of thick points and derive
the final result.

3. EXAMPLES

In this Section we explicitly show cut-offs that satisfy the assumptions of our theorems. We will concentrate
on massive and massless GFFs but the results in general can be applied to centered Gaussian process
with appropriate covariance structure too. Since we could not find comprehensive proofs in the literature
we try to outline the details explicitly.

3.1. White noise cut-off for massive GFF. We recall the cut-off (2.6)

Kε(x, y) =
1

ωd

∫
B(0,1/ε)

ζ(x− y, ξ) 〈ξ〉−d dξ,

where ζ(x− y, ξ) = e−i〈x−y,ξ〉. We now start with proving (A)-(D).

(A)

E
[
(Xε1(x)−Xε2(x))2

]
=

∫
Rd

(
ζ(x, ξ)1B(0,1/ε1)−ζ(x, ξ)1B(0,1/ε2)

)2

(||ξ||2 +m2)d/2
dξ

=

∫
Rd
ζ(x, ξ)2

(
1B(0,1/ε1)−1B(0,1/ε2)

)2 1

(||ξ||2 +m2)d/2
dξ

=

∫
Rd
|ζ(x, ξ)|2(11/ε2<|ξ|≤1/ε1)

2 1

(||ξ||2 +m2)d/2
dξ

≤ C

∫ 1/ε1

1/ε2

ρd−1

(ρ2 +m2)d/2
dρ

≤ C|ε2 − ε1|/ε1
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where we have used the inequality
∣∣∣log

(
x
y

)∣∣∣ ≤ |x−y|
x∧y . For the more general case we assume

(without loss of generality) ε1 ≤ ε2 so that

E
[
(Xε1(x)−Xε2(y))2

]
=

∫
Rd

(ζ(x, ξ)1B(0,1/ε1)−ζ(y, ξ)1B(0,1/ε2))
2

(||ξ||2 +m2)d/2
dξ

=

∫
B(0,1/ε2)

(ζ(x, ξ)− ζ(y, ξ))2 1

(||ξ||2 +m2)d/2
dξ

+

∫
Rd
ζ(x, ξ)2(11/ε2<|ξ|≤1/ε1)

1

(||ξ||2 +m2)d/2
dξ

≤ C
||x− y||
ε2

+
|ε2 − ε1|

ε1
≤ C
||x− y||+ |ε2 − ε1|

ε1 ∧ ε2
.

(B) It follows from the fact that,

E
[
Xε(x)2

]
=

1

ωd

∫
B(0, 1/ε)

1

(m2 + ‖ξ‖2)d/2
dξ ≈ − log ε.

(C) Recall that G(ε) = Kε(x, x) = 1
ωd

∫ 1/ε

0
td(m2 + t2)−d/2 dt

t
. The required Gaussian process

satisfying (C) is XG−1(n)(x), so that pn(x, y) is given by

pn(x, y) =
1

2
E
[
XG−1(2n)(x)XG−1(2n)(y)

]
.

Note that this kernel is not in general positive. We first need to compute

Kn(x, y) =
1

ωd

∫
B(0, 1/G−1(n))

e−i〈x−y,ξ〉 〈ξ〉−dm dξ

=
(2π)d/2

ωdm‖x− y‖d−2/2

∫ 1/G−1(n)

0

td/2Jd/2−1(m‖x− y‖t)(1 + t2)−d/2dt

=
(2π)d/2Γ(d/2)

2πd/2

∫ m‖x−y‖/G−1(n)

0

td/2Jd/2−1(t)(m2‖x− y‖2 + t2)−d/2dt

= 2d/2−1Γ(d/2)

∫ m‖x−y‖/G−1(n)

0

td/2Jd/2−1(t)(m2‖x− y‖2 + t2)−d/2dt.

Let Tn(m‖x−y‖) := K0(m‖x−y‖)−Kn(m‖x−y‖). We see that Tn(a)→ 0 as n→ +∞,
and in addition the convergence is uniform. Indeed if d > 2 we get

|K0(m‖x− y‖)−Kn(m‖x− y‖)| = 2d/2−1Γ(d/2)

∣∣∣∣∣
∫ ∞
m2‖x−y‖
G−1(n)

td/2
Jd/2−1(t)

(m‖x− y‖2 + t2)d/2
dt

∣∣∣∣∣
≤ C

∫ ∞
m2‖x−y‖
G−1(n)

td/2

(m‖x− y‖2 + t2)d/2
dt ≤ C

∫ ∞
m‖x−y‖
G−1(n)

t−d/2dt ≤ C(m, d)
(
G−1(n)

)d/2−1 → 0

as n→∞. For d = 2, note that we can assume n large enough so that

J0(t) =

√
2

πt
cos
(π

4
− t
)
−
(

1
t

)3/2
sin
(
π
4
− t
)

4
√

2π
+ o

(
1

t

)5/2

.
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Therefore

|K0(m‖x− y‖)−Kn(m‖x− y‖)| ≤

∣∣∣∣∣
∫ ∞
m‖x−y‖
G−1(n)

t1/2 + o
(
t−1/2

)
m2‖x− y‖2 + t2

dt

∣∣∣∣∣
≤
∫ ∞
m‖x−y‖
G−1(n)

(
t−3/2 + o

(
t−5/2

))
≤ C

(
G−1(n)

)1/2 → 0.

Hence there exists an n0 such that for all n ≥ n0 uniformly in a ∈ (0, 1],

|Tn(m‖x− y‖)| ≤ 1.

We use the triangular inequality to say that

Kn(x, y) ≤ |Tn(m‖x− y‖)|+K0(m‖x− y‖) ≤ 1 +K0(‖x− y‖)

≤ −1

2
log ‖x− y‖+ L(x, y),

where L(x, y) is bounded function. It is important to stress at this point that showing Condition
(C) for all n is not immediate, and hence we will explain in Remark 4.1 how the proof of the lower
bound should be adapted in this case.

(D) We have that pn(x, x) = n and we can define

p̃k(x, y) =
1

2

∫
B(0,1/G−1(2k))

e−i〈x−y,ξ〉 〈ξ〉−d dξ −
∫
B(0,1/G−1(2k−2))

e−i〈x−y,ξ〉 〈ξ〉−d dξ.

It is easy to see that pn(x, y) =
∑n

k=1 p̃k(x, y). Also note that

p̃k(x, x) =
1

2

(
G(G−1(2k))−G(G−1(2k − 1))

)
= 1.

This shows condition (D) of the theorem.

3.2. Integral cut-off for massive GFF (2.9).

(A) We have

E
[
(Xε(x)−Xε(y))2] ≤ |E [Xε(x)2 −Xε(x))Xε(y)

]
|+ |E

[
Xε(y)2 −Xε(x)Xε(y)

]
|

of which we can bound one summand as∣∣E [Xε(x)2 −Xε(x)Xε(y)
]∣∣ =

1

2

∫ 1/ε

1

∫ ∞
0

e−v/2
(

1− e
‖x−y‖2m2u2

2v

)
dv

du

u

w:=
‖x−y‖2m2u√

v
=

1

2

∫ ∞
0

∫ ‖x−y‖2m2

ε
√
v

‖x−y‖2m2
√
v

e−v/2 dv
(

1− e−
w2

2

) dw

w

s:=w2

=
1

2

∫ ∞
0

(
e−
‖x−y‖2m2

2s − e−
‖x−y‖2m2

2ε2s

)(
1− e−s/2

) ds

s

=
1

2

∫ ‖x−y‖m
ε

0

(
e−
‖x−y‖2m2

2s − e−
‖x−y‖2m2

2ε2s

)(
1− e−s/2

) ds

s

+

∫ ∞
‖x−y‖m

ε

(
e−
‖x−y‖2m2

2s − e−
‖x−y‖2m2

2ε2s

)(
1− e−s/2

) ds

s
.
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Now in the first integral the integrand is bounded in absolute value by C v
2
, hence the whole integral

is smaller than C ‖x−y‖m
ε

. As for the second integral∫ ∞
‖x−y‖m

ε

∣∣∣∣(e−
‖x−y‖2m2

2s − e−
‖x−y‖2m2

2ε2s

)(
1− e−s/2

)∣∣∣∣ ds

s

≤
∫ ∞
‖x−y‖m

ε

e−
‖x−y‖2m2

2s

(
1− e−

‖x−y‖2m2

2s (ε−2−1)
)(

1− e−s/2
) ds

s

1−ex≤x
≤

∫ ∞
‖x−y‖m

ε

‖x− y‖2m2

2s

(
ε−2 − 1

) ds

s

≤ ‖x− y‖2m2

(
1− ε2)

ε2

)∫ ∞
‖x−y‖m

ε

ds

s2
≤ m

‖x− y‖
ε

.

Similarly we obtain the bound for |E [Xε(y)2 −Xε(y)Xε(y)]|.
(B) Using the fact that km(0) = 1 it follows that E [Xε(x)2] = − log ε.
(C) Note that Hn(x, y) = E [Xe−n(x)Xe−n(y)] this for x 6= y satisfies the following inequality

Hn(x, y) ≤ Gm(x, y) =
1

2
K0(m‖x− y‖) ≤ 1

2
log

1

m‖x− y‖
+H(x, y) (3.1)

We can derive supx,y∈[0,1]d H(x, y) ≤ C .
(D) We choose

p̃k(x, y) =
1

2

∫ e2k

e2(k−1)

km(u(x− y))
du

u
, k ∈ N .

With this normalization one has also p̃k(x, x) = 1.

3.3. Planar GFF semigroup cut-off (2.10). The proof for the planar GFF is a bit more involved than for
other cut-offs, and requires some preliminary lemmas and notations. We also would like to remind here
that a proof tailored on the 2-d massless GFF for Theorem 2.1 is given in Corollary 2.1. We first show
conditions (A) and (B) and for future references we put it as lemma.

Lemma 3.1. Fix δ > 0, and for a set D assume that D(δ) is an open convex domain. There exists a
constant C = C(δ) such that

E
[
(Xε(x)−Xη(y))2

]
≤ C
‖x− y‖+ |η − ε|

η ∧ ε

holds for all x, y ∈ D(δ) and G(ε) = Var (Xε(x)) ≈ − log ε as ε→ 0.

Proof. We first begin by showing the second statement. Recall that

G(ε) = 2π

∫ ∞
ε

pD(t, x, x)dt.

Also note that from [17, Section 2.4] we have the following upper and lower bounds on pD(t, x, x),

1

2πt
− 1

π e (d(x, ∂D))2 ≤ pD(t, x, x) ≤ 1

2πt
. (3.2)

Fix t0 > 1, then we ignore the part from (t0,∞) by using [17, Lemma 2.28], since∫ ∞
t0

pD(t, x, x)dt ≤ C(x, δ)

∫ ∞
t0

1

t(log t)2
dt <∞.
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Now using the fact that x ∈ D(δ), it follows from (3.2) that,

2ε

eδ2
− log ε+ log t0 ≤ G(ε) ≤ − log ε+ log t0 + C ′(x, δ).

The second claim is immediate after one lets ε → 0. Now we show the first bound. First we assume
x = y and ε < ε′ and use the fact that pD(t, x, y) ≤ p(t, x, y).

E
[
(Xε(x)−Xε′(x))2

]
= E

[
X2
ε (x)

]
+ E

[
X2
ε′(x)

]
− 2E [Xε(x)Xε′(x)]

=

∫ ∞
ε

pD(t, x, x)dt−
∫ ∞
ε′

pD(t, x, x)dt

=

∫ ε′

ε

pD(t, x, x)dt ≤
∫ ε′

ε

p(t, x, x)dt

≤ c

∫ ε′

ε

dt

t
= log

ε′

ε
≤ |ε

′ − ε|
ε ∧ ε′

.

Now to show the Condition (A) for x 6= y, we use the representation from Mörters et al. [19]

pD(t, x, y) = p(t, x, y)− Ex

[
p(t− TD, BTD , y)1{TD<t}

]
for Ex the law of a standard Brownian motion B with B0 = x. Note that

E
[
(Xε(x)−Xε(y))2

]
≤ |
∫ ∞
ε

pD(t, x, x)− pD(t, x, y)dt|

+

∣∣∣∣∫ ∞
ε

pD(t, y, y)− pD(t, x, y)dt

∣∣∣∣ .
We shall show that ∣∣∣∣∫ ∞

ε

(pD(t, x, x)− pD(t, x, y)) dt

∣∣∣∣ ≤ C
‖x− y‖

ε
. (3.3)

The other part follows similarly. So now note that (3.3) is satisfied if one replaces pD with p. We take D
to be a bounded domain, hence ∃M > 0 such that ‖x− y‖ ≤M for all x, y ∈ D(δ). So∫ ∞

ε

(pD(t, x, x)− pD(t, x, y)) dt =

∫ ∞
ε

(
1− exp

(
−‖x− y‖

2t

))
dt

t

≤ ‖x− y‖
2

2

∫ ∞
ε

dt

t2
≤ M

2

‖x− y‖
ε

. (3.4)

Now we need to show the term containing the expectation has a similar bound. First note that using a
multivariate version of the mean value theorem,

|p(t, z, x)− p(t, z, y)| ≤ |∇p(t, z, (1− λ)x+ λy)| ||x− y||

with λ ∈ [0, 1]. We use then the notation ξ := (1− λ)x+ λy to denote a point on the line starting from
x and ending at y. Observe that ξ ∈ D(δ). From Saloff-Coste [22] we have for any κ ∈ (0, 1)

‖∇ξp(t, z, ξ)‖ ≤
C(κ)√
tV (z,

√
t)

exp

(
− ||z − ξ||

2

4(1− κ)t

)
(3.5)

and V (x, r) is the volume of B(x, r). Now using this inequality we have
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∫ ∞
ε

Ex

[
(p(t− TD, BTD , x)− p(t− TD, BTD , y))1{t>TD}

]
dt

=

∫ ∞
0

Ex

[
(p(t− TD, BTD , x)− p(t− TD, BTD , y))1{t>TD∨ε}

]
≤ Ex

[∫ ∞
0

|p(t, B0, x)− p(t, BTD , y)|1{t>TD∨ε} dt

]
≤ Ex

[∫ ∞
τD

|p(t, B0, x)− p(t, BTD , y)| dt
]

t−τD=:s

≤ Ex

[∫ ∞
0

|p(s, B0, x)− p(s, BTD , y)| ds
]

(3.5)
≤ ‖x− y‖Ex

[∫ ∞
0

|p(s, B0), x)− p(s, BTD , y)| ds
]

≤ ‖x− y‖Ex

∫ ∞
0

exp
(
−−‖BTD−ξ‖

2

4(1−κ)s

)
s3/2

ds


≤ ‖x− y‖Ex

∫ ∞
0

exp
(
− −δ2

4(1−κ)s

)
s3/2

ds


= C(δ, κ)‖x− y‖ ≤ C(δ, κ)

‖x− y‖
ε

Note that here we have used the fact that BTD ∈ ∂D and since ξ ∈ D(δ) we have that ‖BTD −
ξ‖ ≥ δ. So the above inequality combined with (3.4) shows (3.3) and hence completes the proof of the
Lemma. �

(C) To show this condition it is sufficient to observe that

G(ε) :=
1

2

∫ ∞
ε

pD(t, x, y)dt ≤ 1

2

∫ ∞
0

p(t, x, y)dt =
1

2
G(x, y) (3.6)

where G is the whole-plane Green’s function for Brownian motion. We have also from [19, Thm.
3.34]

1

2
G(x, y) ≤ C +

1

2
log

1

‖x− y‖
, ‖x− y‖ ≤ 1.

(D) G(ε) is clearly decreasing in ε, so we define the kernels

p̃n(x, y) =
1

2

(∫ ∞
G−1(2n)

pD(t, x, y)dt−
∫ ∞
G−1(2n+2)

pD(t, x, y)dt

)
.

This allows us to say p̃n(x, x) = 1
2

(G(G−1(2n))−G(G−1(2n+ 2))) = 1.

3.4. Example for comparison: cut-offs (2.6) and (2.8). This example illustrates the fact, that the effect
of the mollifier θ in (2.8) does not affect the structure of thick points, as one might rightly expect. Indeed
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let us show that Assumption (E) holds. For the cut-off Xε(x) of (2.6) it holds that

E
[
(Xε(x)−Xε(y))2

]
≤
∫
B(0, 1/ε)

(ζ(x, ξ)− ζ(y, ξ))2

(||ξ||2 +m2)d/2
dξ ≤

C

∫
B(0, 1/ε)

1− cos(2π 〈y − x, ξ〉)
(||ξ||2 +m2)d/2

dξ =

C

∫
B(0, 1/ε)

1− cos(2π 〈y − x, ξ〉)
(||ξ||2 +m2)d/2

dξ
1−cos(x)≤x, x≥0

≤

C

∫
B(0, 1/ε)

〈y − x, ξ〉
(||ξ||2 +m2)d/2

dξ
Cauchy−Schwarz

≤

C ||x− y||
∫
B(0, 1/ε)

||ξ||
(||ξ||2 +m2)d/2

dξ =

C ||x− y||
∫ 1/ε

0

ρρd−1

(ρ2 +m2)d/2
dρ ≤ C ||x− y|| ε−1. (3.7)

Then we set Zε(x) := Xε(x)− X̃ε(x) for X̃ε(x) of (2.8). We have

E
[
(Zε(x))2

]
= E

[
(Xε(x)− Yε(x))2

]
≤
∫
B(0, 1/ε)

e4iπ〈x, ξ〉(1− θ̂(εξ))2

(||ξ||2 +m2)d/2
dξ =∫

B(0, 1/ε)∩supp(ϕ)c

∣∣e4i〈x, ξ〉
∣∣

(||ξ||2 +m2)d/2
dξ +

∫
B(0, 1/ε)∩supp(θ)

(1− θ̂(εξ))2

(||ξ||2 +m2)d/2
dξ ≤

C(m, d) +

∫
supp(θ)

(1− θ̂(εξ))2

(||ξ||2 +m2)d/2
dξ ≤ C(m, d) (3.8)

where we used the fact that θ̂(ε·) = 1
ε
θ̂
( ·
ε

)
and the bound

∣∣∣∣∣∣θ̂(ε·)∣∣∣∣∣∣
∞
≤ 1

ε

∣∣∣∣θ ( ·
ε

)∣∣∣∣
1

= 1. This shows

(2.14). To obtain (2.15) observe that

E
[
(Zε(x)− Zε(y))2

]
≤
∫
B(0, 1/ε)

(ζ(x, ξ)− ζ(y, ξ))2
(

1− θ̂(εξ)
)2

(||ξ||2 +m2)d/2
dξ

and from here one can proceed starting over again as in (3.7) to conclude the proof of the condition.

4. PROOF OF THE MAIN RESULTS

4.1. Proof of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. First, we claim that by Assumption (A) of Theorem 2.1, there exists a modification
X̃ε(x) of Xε(x) such that for every γ ∈ (0, 1/2) and χ, ζ > 0 there exists M > 0 such that∣∣∣X̃ε1(x)− X̃ε2(y)

∣∣∣ ≤M

(
log

1

ε2

)ζ
(|(x, ε1)− (y, ε2)|)γ

ε
(1+χ)γ
2

(4.1)

for all x, y ∈ B(0, R) and ε1, ε2 ∈ (0, 1] and ε2/ε1 ∈ (1/2, 2]. Indeed, by (A) we have that

E [(Xε1(x)−Xε2(y))α] ≤ C

(
|x− y|+ |ε1 − ε2|

ε1 ∧ ε2

)α/2
.

We can find α and β large enough such that
∣∣β
α
− 1

2

∣∣ < δ, and consequently by [14, Lemma C.1]

there exists a modification X̃ε(x) a.s. for which (4.1) holds. Without loss of generality we now work with
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this modification and with a slight abuse of notation denote it by Xε(x). Now we choose some suitable
parameters according to the regularity condition above. Let χ > 0, r ∈

(
0, 1

2

)
, ζ ∈ (0, 1), r̃ = (1+χ)r,

K = χ−1, rn = n−K , and

UR :=

{
x ∈ B(0, R) : lim

n→+∞

Xrn

G(rn)
≥ a

}
.

Since for t ∈ (rn+1, rn) we have by (4.1) and the fact that G(rn) = C log n(1 + o (1)),∣∣∣∣Xt(x)−Xrn(x)

G(rn)

∣∣∣∣ = O

(
(log n)ζ

G(rn)

)
= o (1) .

This shows that T≥(a,R) ⊆ UR. Let (xnj)
k̄n
j=1 be a r1+χ

n - net for points in B(0, R). Denote

An :=

{
j :

Xrn(xnj)

G(rn)
≥ a− δ(n)

}
with δ(n) = C(log n)ζ−1 (the constant C can be adjusted accordingly). Again using (4.1) it follows that,
for all N ≥ 1,

⋃
n≥N

⋃
j∈AN B (xnj, r

1+χ
n ) covers UR with sets having maximal diameter 2r1+χ

n .

We first note the estimate P (j ∈ An) using the following Gaussian tail bound as follows:

P (j ∈ An) ≤ P

(
Xrn(xnj)√
G(rn)

≥ (a− δ(n))
√
G(rn)

)
≤ C(log n)−1/2n−

a2

2χ
(1+o(1))

Furthermore

E [|An|] ≤ C(log n)−1/2knr
−d(1+χ)
n n−

a2

2χ
(1+o(1)) ≤ (log n)−1/2n−

a2

2χ
+d+ d

χ
+o(1). (4.2)

By denoting

α = d− a2

2
+ χ

d+ a2

2

1 + χ
,

we can estimate the size of the balls in the cover as follows,

E

[∑
n≥N

∑
j∈An

diam(B(xnj, r
1+χ
n ))α

]
≤
∑
n≥N

(log n)−1/2rα(1+χ)
n n−

a2

2χ
+d+ d

χ
+o(1)

≤
∑
n≥N

(log n)−1/2n−
1
χ

(1+χ)α− a
2

2χ
+d+ d

χ
+o(1)

= C
∑
n≥N

(log n)−1/2n−d < +∞.

Therefore
∑

n≥N
∑

j∈An diam(B(xnj, r
1+χ
n ))α < +∞ a.s. and this implies dimH(T≥(a,R)) ≤ d−

a2

2
a.s. by letting χ ↓ 0.

Now we show that for every R > 1, T≥(a,R) is empty for a2 > 2d using the above estimates. Since
a2 > 2d we have that a

2

2χ
− d(1 + 1

χ
) > 1 and hence,

∑
n≥1

P (|An| > 1) ≤
∑
n≥1

E [|An|] ≤
∑
n≥1

n
−
“
a2

2χ
−d(1+ 1

χ)
”
<∞.

and hence by the Borel-Cantelli lemma we can conclude that, if χ becomes arbitrarily small, |An| = 0
eventually and so T≥(a,R) is empty for a2 > 2d with probability one. �
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Proof of Corollary 2.1. Recall that from Lemma 3.1 we have that Conditions (A) and (B) hold for the
restricted domain D(δ), for any δ > 0. Now, since D is a regular domain we can write

D =
⋃
n∈N

D(δn)

for a suitable sequence δn ↓ 0 and d(D(δn), Dc) > 0. Now that by repeating the arguments in the
proof of Theorem 2.1 and using Lemma 3.1, we get that for all n, dimH

(
T (a,D(δn))

)
≤ 2 − a2

2
with

probability one. Hence by (2.12) we obtain that dimH(T (a,D)) ≤ 2− a2

2
almost surely. �

Now we provide a proof of the lower bound.

Proof of Theorem 2.2. For the proof of the lower bound we denote D = [0, 1]d. Let

B =
{
ω : dimH(T (a)(ω)) ≥ d − a2

2

}
. We first show that P (B) > 0. For this we use the fol-

lowing fact from [9, Theorem 4.13]. If µ is a mass distribution on F (that is, µ(F c) = 0) with Iα(µ) <∞
then dimH(F ) ≥ α. Now we make the following claim

Claim 4.1. There exists a random measure µ giving full mass to T (a) such that P (Iα(µ) <∞) > 0

with α = d− a2

2
.

Note that Claim 4.1 will show

P (B) = P

(
dimH(T (a)) ≥ d− a2

2

)
≥ P (Iα(µ) <∞) > 0.

To provide a proof of Claim 4.1 we break the proof into some basic steps.

Step 1: Construction of the measure. We pass now to define the approximation of the limiting measure
through the Radon-Nikodym derivative

Q(a)
n (x) := exp

(
aXn(x)− a2

2
E
[
Xn(x)2

])
= exp

(
aXn(x)− a2

2
pn(x, x)

)

so that we can choose the measure on [0, 1]d

µn(dx) := Q(a)
n (x)dx.

We now note down some basic properties of this measure.

E
[
µn[[0, 1]d]

]
= 1: one has, using Fubini,

E
[
µn[[0, 1]d

]
=

∫
[0, 1]d

E
[
Q(a)
n (x)

]
dx = 1. (4.3)
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E
[(
µn[[0, 1]d]

)2
]
<∞: For this notice in first place that Xn(x) + Xn(y) is Gaussian with mean

zero and covariance pn(x, x) + pn(y, y) + 2pn(x, y). Hence, again by means of Fubini,

E
[(
µn[[0, 1]d]

)2
]

=

∫
[0, 1]d

∫
[0, 1]d]

E
[
Q(a)
n (x)Q(a)

n (y)
]

dxdy

=

∫
[0, 1]d

∫
[0, 1]d

E

[
exp

(
a (Xn(x) +Xn(y))− a2

2
(pn(x, x) + pn(y, y))

)]
dxdy

=

∫
[0, 1]d

∫
[0, 1]d

e−
a2

2
(pn(x, x)+pn(y, y)) E [exp(a (Xn(x) +Xn(y)))] dxdy

=

∫
[0, 1]d

∫
[0, 1]d

e−
a2

2
(pn(x, x)+pn(y, y)) e

a2

2
(pn(x, x)+pn(y, y)+2pn(x, y)) dxdy

=

∫
[0, 1]d

∫
[0, 1]d∩{ y 6=x}

exp
(
a2pn(x, y)

)
dxdy

(C)

≤ sup
x, y∈[0, 1]d, x 6=y

ea
2H(x, y)

∫
[0, 1]d∩{y 6=x}

1

‖x− y‖a
2

2

dxdy

and for integrability it suffices to have a2

2
< d.

Finite energy: Now we show that the sequence of measures µn has finite energy, so let α < d− a2

2
.

Then we have

E [Iα(µn)] = E

[∫
[0,1]d

∫
[0,1]d

1

‖x− y‖α
dµn(x)dµn(y)

]
=

∫
[0,1]d

∫
[0,1]d

1

‖x− y‖α
E
[
Q(a)
n (x)Q(a)

n (y)
]

dxdy

=

∫
[0,1]d

∫
[0,1]d

1

‖x− y‖α
ea

2pn(x,y)dxdy

≤
∫

[0,1]d

∫
[0,1]d

1{x 6=y}
1

‖x− y‖α+a2 e
a2H(x,y)dxdy

≤ sup
x,y∈[0,1]d

ea
2H(x,y)

∫
[0,1]d

∫
[0,1]d

1{x 6=y}
1

‖x− y‖α+a2

2

dxdy < C.

Step 2: Limiting measure with finite energy. An easy application of Paley-Zygmund inequality shows
that

P (µn(D) > bE [µn(D)]) ≥ (1− b)2 E [µn(D)]2

E [µ(D)2]
,

which implies by (4.3)

P (µn(D) > b) ≥ (1− b)2 1

E [µn(D)2]
≥ (1− b)2

supn E [µn(D)2]
.

Also by Markov inequality we have that

P
(
µn(D) > b−1

)
≤ E [µn(D)]

b−1
= b.

One can choose b so small that (1− b)2/b > supn E [µn(D)2]. Hence there exists a v > 0 such that

P
(
b ≤ µn(D) ≤ b−1

)
= P (µn(D) ≥ b)−P

(
µn(D) ≥ b−1

)
>

(
(1− b)2

supn E [µn(D)2]
− b
)
> v > 0.

(4.4)
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Also, we get c <∞ such that

P (Iα(µn) > c) ≤ supn E [Iα(µn)]

c
< v/2.

Now using the simple inequality P (A ∩B) ≥ P (A)− P (Bc) we get

P
(
b < µn(D) < b−1, Iα(µn) ≤ c

)
≥ v

2
> 0.

Let us denote

Cn :=

{
ω : µn(D) ∈

[
b,

1

b

]
, Iα(µn) ≤ c

}
and C := lim sup

n→∞
Cn.

From (4.4) it follows immediately that P (C) = limn→∞ P (∪m≥nCm) ≥ limn→∞ P (Cn) > 0. Let
us denote byMb the Borel measures such that µ(D) ∈ [b, 1

b
]. It is well-known by Prohorov’s theorem

that all finite positive measures on a compact metric space form a compact metric space again. Now,
if µn ∈ Mb converges weakly to a measure µ then for every bounded continuous functions we have∫
D
f(x)dµn(x) →

∫
D
f(x)dµ(x) and hence since the function constantly equal to 1 is a bounded

continuous function on D we have that µn(D)→ µ(D) and hence µ ∈Mb. SoMb is a closed subset
of a compact space and hence compact.

We have also that µ→ µ⊗µ is continuous onMb. This follows easily as [0, 1]d is compact; it is enough
to show the convergence for products of bounded and continuous functions by the Stone-Weierstrass
theorem. More precisely, if µn weakly converge to µ then∫

f(x)g(y)dµndµn(y)→
∫
f(x)g(y)dµ(x)dµ(y).

But since the integrals are finite the convergence follows by weak convergence and hence the continuity
follows. So by continuity of the functional now we have, for any K <∞,

IKα (µ) =

∫ ∫ (
1

‖x− y‖α
∧K

)
dµ(x)dµ(y)

is continuous onMb and hence the functional µ 7→ supK>0 I
K
α (µ) = Iα(µ) is lower semi-continuous

of this subspace topology. The lower semi-continuity implies that the setM′ := {µ ∈M : Iα(µ) ≤ a}
for a <∞ is compact.

Fix ω ∈ C , hence there exist nk → ∞ such that ω ∈ Cnk and µnk(ω, ·) ∈ {µ : µ(D) ∈
[b, 1

b
], Iα(µ) ≤ a} = M′. Now by the previous paragraph we have that M′ is compact, so there

exists a further subsequence µnkl (ω)
w→ µ(ω) and µ(ω,D) > 0 and Iα(µ) <∞ for α ≤ d− a.

Step 3: Construction of the rooted (Peyrière) measure (Kahane [16]). Let Yn(x) be independent
(over n) Gaussian variables with covariance kernel given by p̃n(x, y). Hence we have that Xn(x) has
the same law as

∑n
i=1 Yi(x). Note that for any bounded (measurable) subset A ∈ [0, 1]d, µn(A) is a

positive martingale with respect to the filtration Fn generated by {Ym(x) : m ≤ n}, hence it converges
almost surely. In fact, Step 1 shows that supn≥1 E [µn(A)2] < C <∞ and hence µn(A) is a uniformly
integrable martingale and converges to some random variable CA in L2. The limiting random variable
satisfies the following two properties:

� for A and B bounded disjoint subsets of [0, 1]d we have that

CA∪B = CA + CB almost surely / L2,

� for any family of bounded sets {Am : Am ↓ ∅} one has CAm → 0 almost surely and in L2. For
the almost sure convergence, note that as E [C(Am)] → 0, by Markov’s inequality C(Am) → 0
with probability one.
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Now by applying [5, Theorem 6.1.VI] we get that there exists a measure ν such that µn converges weakly
to ν in L2 and almost surely. Note that by the weak convergence we have that

ν(A) ≤ lim inf
n→∞

µn(A),

for A bounded open subset of [0, 1]d. Also, by Fatou’s lemma we have that E [ν(A)] ≤
E [lim infn→∞ µn(A)] ≤ lim infn→∞ E [µn(A)] = vol(A) < ∞. Hence we have by the L2 con-
vergence

E [ν(A)] = lim
n→∞

E [µn(A)] = vol(A),

for every bounded open set A. Thus it is true that E
[
ν([0, 1]d)

]
= 1.

Now we construct the rooted measure using this ν. Let us define a measure on [0, 1]d × Ω as

M(dx, dω) = νω(dx)P (dω) .

Note that by the previous observation M([0, 1]d × Ω) = 1 and hence M is a probability measure. We
observe that for any g compactly supported (possibly random) it holds that∫

[0,1]d
g(x)µk(dx)

d→
∫

[0,1]d
g(x)ν(dx)

by L2 convergence, from which also L1 convergence follow:

E

[∫
[0,1]d

g(x)ν(dx)

]
= lim

k→∞
E

[∫
[0,1]d

g(x)µk(dx)

]
. (4.5)

Step 4: Yn(x) are independent under M . First note that Xn(x)
d
=
∑n

i=1 Yi(x). Let us denote by

P (a)
n (x) = exp

(
aYn(x)− a2

2
p̃n(x, x)

)
.

This will help us to show that for all bounded positive continuous functions and N ≥ 1∫ N∏
n=1

fn(Yn(x))dM =
N∏
n=1

∫
fn(Yn(x))dM. (4.6)

Note that (gN(x) :=
∏N

n=1 fn(Yn(x)))∫ N∏
n=1

fn(Yn(x))dM = E

[∫
[0,1]d

N∏
n=1

fn(Yk(x))ν(dx)

]

= E

[∫
[0,1]d

gN(x)ν(dx)

]
(4.5)
= lim

k→∞
E

[∫
[0,1]d

gN(x)µk(dx)

]
.

Choose k > N and using the fact that Qk(x)
d
= P

(a)
1 (x) · · ·P (a)

N (x) · · ·P (a)
k (x) we have that

E

[∫
[0,1]d

gN(x)µk(dx)

]
= E

[∫
[0,1]d

gN(x)P
(a)
1 (x) · · ·P (a)

N (x) · · ·P (a)
k (x)dx

]
=

∫
[0,1]d

E

[
N∏
n=1

fn(Yn(x))P (a)
n (x)

]
dx.



21

The last line follows since E
[
P

(a)
m (x)

]
= 1 for m ≥ 1. Now we claim that {E [fn(Yn(x))Pn(x)]} are

independent random variables in x. Let us define a new probability measure as

P′(dω) = P (a)
n (x)P (dω) .

Now note that the law of Yn(x) under P′ is given as follows

P′(Yn(x) ∈ dy) = exp

(
ay − a2

2
p̃n(x, x)

)
P (Yn(x) ∈ dy)

=
1√

2πp̃n(x, x)
exp

(
ay − a2

2
p̃n(x, x)− y2

2p̃n(x, x)

)
dy

=
1√

2πp̃n(x, x)
exp

(
−(y − ap̃n(x, x))2

2p̃n(x, x)

)
dy

Therefore E
[
fn(Yn(x))P

(a)
n (x)

]
= E′[f(Zn)] where Zn ∼ N(ap̃n(x, x), p̃n(x, x)). So this gives us∫ N∏

n=1

fn(Yn(x))dM
(4.6)
=

N∏
n=1

EM
[
fn(Yn(x))P (a)

n (x)
]
.

Finally we note that, by repeating the calculations above,

N∏
n=1

∫
fn(Yn(x))dM =

N∏
n=1

lim
k→∞

E

[∫
[0,1]d

fn(Yn(x))dµk(x)

]
=

N∏
n=1

E
[
fn(Yn(x))P (a)

n (x)
]
.

Step 5: Law of Yn under rooted measure. To recap, from the previous step we have that for a compactly
supported function ∫

f(Yn(x))dM = E
[
f(Yn(x))P (a)

n (x)
]

= E′[f(Z)],

where Z is a random variable independent of x and n and is distributed like N (ap̃n(x, x), p̃n(x, x))
under P′. In particular, by taking smooth approximations to the identity function we get that∫

Yn(x)dM = a.

Set

A(x, ω) := {ω : x ∈ T (a)c}.
By the strong law of large numbers, A(x, ω) has M -probability zero, and hence ν(T (a)c) = 0 P-almost
surely. Hence ν is a mass distribution on T (a).
Step 6: Uniqueness of the measures: Recall from Step 2 that we can find a non-null random set C
where we can find a limit measure µ(ω, ·) with finite α-energy for α < d − a2

2
. Also we have along a

subsequence

P

(
ω ∈ C :

∫
D

f(x)µnm(ω, dx)→
∫
D

f(x)µ(ω, dx),∀f ∈ Cb(D)

)
> 0.

On the other hand Step 5 yields a full-measure set S and a measure ν(ω, ·) for which T (a)c is P-almost
surely a null set:

P

(
ω ∈ S :

∫
D

f(x)µnm(ω, dx)→
∫
D

f(x)ν(ω, dx),∀f ∈ Cb(D)

)
= 1

So we have that for an appropriate subset of a probability space

P (ω : ν(ω, ·) = µ(ω, ·)) ≥ P (C ∩ S) > 0.
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This in particular shows that P (ω : Iα(µ) <∞, µ(T (a)c) = 0) > 0 and hence this shows Claim 4.1.
We now complete the proof using a 0-1 law to prove {Iα(µ) <∞, µ(T (a)c) = 0} is a tail event.

Step 7: 0-1 law. Recall that {Yk(x) : x ∈ [0, 1]d} is a centered Gaussian process with covariance
given by p̃k(x, y). Also, we know that {Xn(x), x ∈ [0, 1]d, n ∈ N} has the law of {

∑n
j=0 Yj(x), x ∈

[0, 1]d, n ∈ N}. So{
x ∈ [0, 1]d : lim

n→∞

Xn(x)

n
= a

}
d
=

{
x ∈ [0, 1]d : lim

n→+∞

∑n
j=0 Yj(x)

n
= a

}
.

Let us denote the sigma field generated by the process {Yn(x) : x ∈ [0, 1]d} by Fn. Let Tn =
σ(
⋃
j≥nFj). Note that the sigma fieldsFj are independent. Denote the tail sigma field by T =

⋂
n>0 Tn.

We claim that B ∈ T . In fact, let

Aj :=
⋃
N≥j

⋂
m≥n≥N

{
ω :

∣∣∣∣∣∑
j≤m

Yj(x)

m
−
∑
j≤n

Yj(x)

n
− a

∣∣∣∣∣ < 1

j

}
.

We see that Aj ∈ Tj and Aj ∈ T` for any ` ≤ j. Since we have⋂
j

Aj =

{
lim

n→+∞

∑
j≤n

Yj(x)

n
= a

}

we can see that
{

limn→+∞
∑

j≤n
Yj(x)

n
= a
}
∈ Tj for any natural number j. So it follows by Kol-

mogorov’s 0-1 law that P (B) ∈ {0, 1}. Since P (B) > 0 by Steps 5 and 6, we have that P (B) = 1
and this completes the proof.

�

Remark 4.1. The proof of Theorem 2.2 requires a different argument for white noise cut-offs. Step 1 in
fact can be said to hold eventually for n large enough, as Condition (C) holds from a certain n0 onwards.
The limiting event C described in Step 2 depends on the tail behavior of the measures µn and hence
remains the same. What one should be careful about is the L2 convergence of the martingale µn(A) in
Step 3 which is ensured by Doob’s martingale inequality, since

sup
n≤n0

E
[
µn(A)2

]
≤ CE

[
µn0(A)2

]
≤ C.

4.2. Proof of Theorem 2.3. Before we start the proof of Theorem 2.3, we state a useful claim which we
implement in the proof.

Claim 4.2. Let {Gε(x), x ∈ B(0, R), ε ∈ (0, 1)} be a centered Gaussian process, such that for some
positive constant C

E
[
(Gε(x)−Gε(y))2

]
≤ C
||x− y||

ε
. (4.7)

Then there exists constants C1 (depending only on C , d and R) such that

E

[
sup

x∈B(0,R)

Gε(x)

]
≤ C1

√
− log ε.

Proof of Claim 4.2. Without loss of generality let us take R = 1, D = B(0, 1) and let T (x) be a
continuous, stationary, centered Gaussian process (indexed by x ∈ D) with

Cov(T (x), T (y)) =
σ

ρ
exp(−ρ‖x− y‖),
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where σ = 2C and ρ is some positive constant less than ε/2. Such a Gaussian process exists, see for
example [2, Lemma 2.1]. Using the fact that 1− e−x ≥ (x ∧ 1)/2 we have that

E
[
(T (x/ε)− T (y/ε))2

]
=
σ

ρ
− 2Cov(T (x/ε), T (y/ε))

=
σ

ρ

(
1− exp

(
−ρ ||x− y|| ε−1

))
≥ C
‖x− y‖

ε
.

This shows that E [(Gε(x)−Gε(y))2] ≤ E [(T (x/ε)− T (y/ε))2]. Hence by Sudakov-Fernique’s in-
equality ([1, Theorem 2.9]), we have that

E

[
sup
x∈D

Gε(x)

]
≤ E

[
sup
x∈D

T (x/ε)

]
= E

[
sup

x∈B(0,ε−1)

T (x)

]
. (4.8)

Now we can can apply Lemma 11.2 of Chatterjee [3] to conclude that

E

[
sup

x∈B(0,ε−1)

T (x)

]
≤ C(d)

√
logN(B(0, 1/ε)),

where, for A ⊆ Rd, N(A) denotes the 1-packing number. Since it is bounded by the 1-covering number
of B(0, 1/ε), it is easy to see that N(B(0, 1/ε)) is bounded from above by ε−d and hence the claim
now follows from (4.8). �

Now using Claim 4.2 we derive a proof of Theorem 2.3.

Proof of Theorem 2.3. First observe that Assumption (E) implies we can apply the modified Kolmogorov-
Centsov theorem as in Theorem 2.1 and derive that, for x ∈ D = B(0, R) and ε ∈ (0, 1], there exists a
modification Z̃ε(x) of Zε(x) such that for every γ ∈ (0, 1/2) and a, b > 0 there exists M > 0 such that∣∣∣Z̃ε1(x)− Z̃ε2(y)

∣∣∣ ≤M

(
log

1

ε2

)b
(‖x− y‖+ |ε1 − ε2|)γ

ε
(1+a)γ
2

(4.9)

for all x, y ∈ B(0, R) and ε1, ε2 ∈ (0, 1] and ε2/ε1 ∈ (1/2, 2].

We work with a modification of the process and also use the same notation for the process and its
modification. First we show that

lim sup
ε→0

Zε(x)

− log ε
= 0. (4.10)

From Claim 4.2 we have that E [supx∈D Zε(x)] ≤ C
√
− log ε. By Borell’s inequality ([1, Chapter 5.1]),

P
(∣∣∣∣sup

x∈D
Zε(x)− E

[
sup
x∈D

Zε(x)

]∣∣∣∣ ≥ r

)
≤ Ce−cr

2/2, (4.11)

where c = (supx∈D E [Zε(x)2])−1. Let a > 0 and if we choose εn := n−1/a, rn =

√
log ε

−3a/c
n then it

follows that
∞∑
n=1

P

(∣∣∣∣sup
x∈D

Zεn(x)− E

[
sup
x∈D

Zεn(x)

]∣∣∣∣ ≥ rn

)
≤ C

∞∑
n=1

1

n3/2
< +∞.

Now by an easy application of Borel-Cantelli we have that supx∈D Zεn(x) = o(− log εn) almost surely,
since rn

− log εn
→ 0 as n → +∞. Now we claim that due to continuity we can move from the discrete
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sequence to the continuous sequence. We plug in (4.9) the choice of εn = n−1/a and let ε ∈ (εn+1, εn)
in order to have∣∣∣∣sup

x∈D
Zε(x)− sup

x∈D
Zεn(x)

∣∣∣∣ ≤ (log
1

εn

)b |ε− εn|γ
ε

(1+a)γ
n

≤ C(log n)b = o(log n).

This implies that | supx∈D Zε(x)−supx∈D Zεn (x)|
− log εn

→ 0 and hence, using Zε(x) = Zε(x)−Zεn(x) +Zεn(x)

we get that lim supε→0
Zε(x)
− log ε

= 0 almost surely. What is left to show is the equality of the set of thick

points, and we begin with the inclusion T (X, a) ⊆ T (X̃, a) almost surely. The other follows similarly.

Let x ∈ T (X, a), then as a consequence of (4.10) it holds that lim supε→0

eXε(x)
− log ε

≥ a. Since Zε(x) is a
symmetric process in x, we have

lim inf
ε→0

X̃ε(x)

− log ε
≥ lim inf

ε→0

(
inf
x∈D

−Zε(x)

− log ε

)
+ lim inf

ε→0

Xε(x)

− log ε
.

Hence using lim infn xn = − lim supn(−xn) we have

lim inf
ε→0

X̃ε(x)

− log ε
≥ lim inf

ε→0

Xε(x)

− log ε
= a.

This completes the proof of the fact that T (X, a) ⊆ T (X̃, a); reversing the roles of Xε(x) and X̃ε(x)
we get the other inclusion to complete the proof. �

5. ACKNOWLEDGMENTS

We thank an anonymous referee of a previous article for providing us the question and some ideas on
Theorem 2.3.

6. APPENDIX

Lemma 6.1. IfBm is a symmetric operator on Rd with Fourier multiplierm(·) such that supξ∈Rdm(ξ) =

c′ < ∞, then the characteristic functional L(φ) := exp
(
−1

2

〈
φ,B−dm φ

〉
L2

)
is a positive definite func-

tional and continuous in the Frechét topology of S(Rd).

For our proof we will follow the ideas contained in Sun and Wu [25].

Proof. Let φ ∈ S(Rd) and s ≥ 0, and define

L(φ) = exp

(
−1

2

〈
φ, B−dφ

〉
L2

)
= exp

(
−1

2

〈
B−d/2φ, B−d/2φ

〉)
= exp

(
−1

2
(〈φ, φ〉H−d/2

)
.

(6.1)
One clearly has L(0) = 1. The positive definiteness can be shown by verifying the condition

n∑
j=1

n∑
k=1

zj z̄kL(φj − φk) ≥ 0

for all n ∈ N, z1, . . . , zn ∈ C and φ1, . . . , φn ∈ S(Rd). Let then µ be a Gaussian measure on
V = span(φ1, . . . , φn), with covariance matrix given by

(〈
B−d/2φk, B

−d/2φj
〉
L2

)
i, j=1, ..., n

and hence∫
V

ei〈B−d/2φ,B−d/2t〉µ(dt) = L(φ)
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for all φ ∈ S(Rd). Now (F here denotes the Fourier transform)

n∑
j=1

n∑
k=1

zj z̄kL(φj − φk) =
n∑

j,k=1

∫
V

zj z̄ke
i〈B−d/2(φj−φk),B−d/2t〉µ(dt)

=

∫
V

∣∣∣∣∣
n∑
j=1

zje
i(〈B−d/2φj ,B−d/2t〉

∣∣∣∣∣
2

µ(dt) ≥ 0.

Using the inequality that |e−x − e−y| ≤ ‖x− y‖ we have that

|L(φ)− L(ψ)| ≤ |
〈
B−d/2φ,B−d/2φ

〉
−
〈
B−d/2ψ,B−d/2ψ

〉
|

= |
〈
φ,B−dφ

〉
−
〈
ψ,B−dψ

〉
|

= |
〈
Fφ,FB−dφ

〉
−
〈
Fψ,FB−dψ

〉
|

= | 〈Fφ,m(·)Fφ〉 − 〈Fψ,m(·)Fψ〉 |

=

∣∣∣∣∫
Rd

(
|φ̂(ξ)|2 − |ψ̂(ξ)|2

)
m(ξ)dξ

∣∣∣∣
≤ c

∣∣∣‖φ̂‖2
2 − ‖ψ̂‖2

2

∣∣∣ .
Now it is easy to see that the map φ 7→ ‖φ‖2 is continuous in the Fréchet topology of S(Rd). �

Remark 6.1. Note that the Fourier multiplier for the Bessel operator Bs
m is (m− 4π‖ξ‖2)

−s/2
and thus

satisfies the above assumptions.

Lemma 6.2. The function

Hε(x, y) =

∫ 1/ε

1

km(u‖x− y‖)du

u
,

where km(z) = 1
2

∫∞
0
e−

m2|z|2
2v e−v/2dv, is positive definite for each ε > 0.

Proof. In full generality, we will show that fk(x, y) =
∫ b
a
km(u(x−y))

u
du is a positive definite functional for

any 0 ≤ a < b <∞. To this purpose we consider φ in C∞c (Rd). To show that∫
Rd

∫
Rd
φ(x)φ(y)fk(x, y)dxdy ≥ 0

we expand the expression as follows:∫
Rd

∫
Rd
φ(x)φ(y)fk(x, y)dxdy

=

∫
Rd×Rd

φ(x)φ(y)

(∫ b

a

(
1

2

∫ ∞
0

e−
u2m2‖x−y‖2

2t e−t/2 dt

)
du

u

)
dxdy

=
(2π)d/2

2

∫
Rd×Rd

φ(x)φ(y)

(∫ b

a

(∫ ∞
0

e−
u2m2‖x−y‖2

2t

(2πt)d/2
ud
td/2

ud
e−t/2 dt

)
du

u

)
dxdy

∃C(m)>0
= C(m)

∫
Rd×Rd

∫ b

a

∫ ∞
0

φ(x)φ(y)p

(
t

m2u2
, x, y

)
td/2

ud
e−t/2dt

du

u
dxdy

The semi-group property of the Gauss-Weierstrass heat kernel

p(t, x, y) =

∫
Rd
p(t/2, x, z)p(t/2, z, y)dz
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is well-known. Hence we have∫
Rd×Rd

φ(x)φ(y)fk(x, y)dxdy

= C(m)

∫
Rd×Rd

{∫ b

a

(∫ ∞
0

φ(x)φ(y)p

(
t

m2u2
, x, y

)
td/2

ud
e−t/2 dt

)
du

u

}
dxdy

= C(m)

∫
Rd×Rd

{∫ b

a

[∫ ∞
0

(∫
Rd
φ(x)φ(y)p

(
t

2m2u2
, x, z

)
p

(
t

2m2u2
, y, z

)
dz

)
td/2

ud
e−t/2 dt

]
du

u

}
dxdy

= C(m)

∫
Rd

{∫ b

a

[∫ ∞
0

(∫
Rd
φ(x)p

(
t

2m2u2
, x, z

)
dx

)(∫
Rd
φ(y)p

(
t

2m2u2
, y, z

)
dy

)
td/2

ud
e−t/2 dt

]
du

u

}
dz

= C(m)

∫
Rd

{∫ b

a

[∫ ∞
0

(∫
Rd
φ(x)p

(
t

2m2u2
, x, z

)
dx

)2
td/2

ud
e−t/2 dt

]
du

u

}
dz ≥ 0.

�
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