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ABSTRACT. Equilibration error estimators have been shown to commonly lead to very accurate
guaranteed error bounds in the a posteriori error control of finite element methods for second
order elliptic equations. Here, we extend previous results by designing equilibrated fluxes for
higher-order finite element methods with nonconstant coefficients and illustrate the favourable
performance of different variants of the error estimator within two deterministic benchmark
settings.

After the introduction of the respective parametric problem with stochastic coefficients and
the stochastic Galerkin FEM discretisation, a novel a posteriori error estimator for the stochastic
error in the energy norm is devised. The error estimation is based on the stochastic residual
and its decomposition into approximation residuals and a truncation error of the stochastic
discretisation. Importantly, by using the derived deterministic equilibration techniques for the
approximation residuals, the computable error bound is guaranteed for the considered class of
problems. An adaptive algorithm allows the simultaneous refinement of the deterministic mesh
and the stochastic discretisation in anisotropic Legendre polynomial chaos. Several stochastic
benchmark problems illustrate the efficiency of the adaptive process.

INTRODUCTION

The a posteriori error analysis for conforming finite element methods for elliptic PDEs is well
understood and analysed [38, 4, 26, 1, 8]. Moreover, even the design of guaranteed upper error
bounds has been employed successfully for quite some time, see for instance [35, 18, 10, 12, 13].
Opposite to this, the a posteriori error control for numerical methods for PDEs with uncertain
data has only just begun, see [19, 20, 6]. In addition to the approximation errors encountered
in deterministic computations, stochastic problems usually lead to truncation errors due to the
representation of stochastic fields in a finite number of random variables. Also, depending on the
employed numerical method, the discretisation or sampling of the stochastic space introduces
either additional approximation errors or uncertainties regarding the reliability of the obtained
result. Ideally, with an adaptive numerical method, the different error contributions with regard to
the current discrete approximation would be controlled such that the errors equilibrate in some
sense. This necessitates the knowledge of computable reliable and efficient bounds for the
different error components which has only been obtained in some cases so far.

Given sufficient regularity of the solution, the highest possible convergence rates can be achieved
with projection or interpolation approaches, namely the stochastic Galerkin finite element method
(SGFEM) [29, 28, 24] or quasi-spectral stochastic collocation (SC) [2, 3]. These methods however
inevitably lead to high-dimensional algebraic systems. This severely limits their applicability to
problems of practical interest. A lot of research is thus devoted to the reduction of the complexity
of the discretisation. Theoretical results regarding the decay of coefficients of the stochastic data
and the regularity of the stochastic solution have led to a priori adapted stochastic discretisations,
see [23, 37, 3, 16, 37, 15, 17]. In particular, optimal convergence rates can be specified
depending on the problem data. For a recent overview we refer to [36]. Moreover, heuristic
adaptive procedures were mainly described for SC. For instance, a possibly beneficial refinement
strategy can be deduced by the fitting of observed numerical convergence, see [32, 33]. Another
approach which involves the solution of small auxiliary problems is described in [7]. Other
promising approaches include the determination of an adequate set of base functions by the
proper orthogonal decomposition or the reduced basis method [34, 14] and the representation of
the discretisation in low-rank tensor formats [22, 30].
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In this paper we pursue a different approach which is reminiscent of the systematic iterative
construction of problem-adapted discretisation spaces in the deterministic finite element method.
In contrast to the previously mentioned approaches, we exploit the orthogonality of the error of
the approximate solution on the discrete space as a key benefit of the SGFEM. This unique
property of the projection method is the pivotal feature which enables the development of reliable
and even guaranteed a posteriori error estimates, as shown in this paper. In our opinion, this
specific advantage over other methods clearly outweighs the somewhat higher computational
costs and implementation effort whenever the SGFEM is feasible for the problem at hand.

We first consider the Poisson model problem that seeks u ∈ V := H1
0 (D) with

−∇ · (a0∇u) = f in D, u = 0 on ∂D

on some Lipschitz domain D ⊂ Rd (d = 2, 3) with scalar diffusion coefficient a0 ∈ L∞(D).
Note that our derivations hold equally for other equations, in particular second order linear elliptic
equations, and more general boundary conditions.

The corresponding stochastic problem assumes the diffusion coefficient a to have the mean
value a0 and to depend on an infinite set of independent random variables. We reformulate
the stochastic PDE as a parametric PDE on the parameter domain Γ . The probability product
measure on Γ according to the random variables is denoted by π. For the discrete SGFEM
approximation uN of the exact solution u ∈ V := L2

π(Γ ;V ) ' L2
π(Γ ) ⊗ V , an explicit

residual-based a posteriori error estimator for the mean energy error

‖u− uN‖2L2
π(Γ ;V ) :=

∫
Γ

‖u− uN‖a0dπ :=

∫
Γ

∫
D

a0|∇(u− uN)|2 dxdπ

and the energy error

‖u− uN‖2A :=

∫
Γ

∫
D

a|∇(u− uN)|2 dxdπ

was recently analysed in [19, 20]. The a posteriori error indicators derived there lead to a provably
convergent adaptive algorithm for a certain class of stochastic problems. It is noteworthy that
the proposed algorithm ensures a balanced refinement of the spatial as well as the stochastic
discretisation.

Based on these results, this paper aims for guaranteed upper error bounds of both energy error
norms for a higher-order SGFEM discretisation on the basis of equilibration error estimators in
the spirit of [18, 10, 13]. For this, we derive the construction of global and local equilibrated fluxes
for the deterministic equation. This result then is employed with the stochastic residual to obtain
exact bounds for the discretisation error of the stochastic problem. A combination with some
tail error indicator as a measure for the truncation of the expansion of the diffusion coefficient
eventually leads to a guaranteed bound of the overall mean energy error.

The SGFEM discretisation assumes some expansion of the stochastic data which in our case
is the random field a(y, x) := a0(x) +

∑∞
m=1 am(x)ym for (y, x) ∈ Γ ×D, an orthonormal

basis of the parameter domain Γ with respect to the norm ‖·‖L2
π(Γ )

, and a discrete basis of the
physical domain D. For simplicity, we assume an affine dependence of a on the parameters
y := (ym)∞m=1 ∈ Γ where the ym are independent and uniformly distributed random variables
with probability measures πm. This leads to the product measure π := ⊗∞m=1πm and a
basis of L2

π(Γ ) consisting of tensorised Legendre polynomials (Pµ)µ∈F with the set F of
compactly supported multi-indices. Hence, a representation of the solution u ∈ V is given
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by u(x, y) =
∑

µ∈F uµ(x)Pµ(y) for (x, y) ∈ D × Γ with coefficients uµ ∈ V . The tensor
product Hilbert space V allows for a separate discretisation of the deterministic space Vh ⊂ V
with finite element ansatz functions based on a partition of D and a finite dimensional subspace
of the stochastic space L2

π(Γ ) by the selection of a finite set of active modes Λ ⊂ F with
|Λ| < ∞. With the associated polynomial basis Pµ, the discrete problem can be formulated
as coupled subproblems such that the discrete solution wN ∈ VN := span{Pµ} ⊗ Vh enjoys
Galerkin orthogonality separately for each active stochastic mode ν ∈ Λ in the sense that

rν(wN)(vh) :=

∫
D

fνvh dx−
∫
D

σh,ν · ∇vh dx = 0 for all vh ∈ Vh(0.1)

with some ν-dependent (deterministic) right-hand side fν and discrete stochastic stress σh,ν
with respect to uN . A detailed derivation of the weak formulation can be found in Section 4.

The prior works [19, 20] showed that the total mean energy error can be split into two residual
parts, namely

(0.2) ‖u− uN‖2L2
π(Γ ;V ) = ‖RΛ(wN)‖2L2

π(Γ ;V
∗) + ‖R∂Λ(wN)‖2L2

π(Γ ;V
∗)

with the stochastic residual R(wN) := RΛ + R∂Λ. Here, ∂Λ denotes the boundary of the
active setΛ. The second term on the right-hand side of (0.2) is a tail (or truncation) error indicator
for the set of inactive modes, while the first approximation term further decomposes as

‖R(wN)‖2L2
π(Γ ;V

∗) =
∑
ν∈F

‖rν(wN)‖2V ∗(0.3)

into to the dual norms ‖rν(wN)‖V ∗ := supv∈V \{0} rν(wn)/‖v‖a0 of the single mode residuals
rν from (0.1). Their Galerkin orthogonality allows for the application of local equilibration error
estimators to estimate the dual norm of the residual rν .

This paper extends the local equilibration error estimator designs of [18, 10, 13] to higher-order
finite element methods and nonconstant diffusion coefficients which is especially required for
the application in stochastic problems. Their efficiency in the discrete and stochastic cases is
verified in several numerical benchmark examples with uniform and adaptive mesh refinement.

In the stochastic applications, the adaptive algorithm not only controls the mesh refinement of
the spatial discretisation but also the stochastic tail error, i.e. the set of active stochastic modes
and thus the discretisation and approximation quality of the stochastic space.

The outline of this paper is as follows. Section 1 starts with the formulation of the deterministic
problem with possibly nonconstant diffusion parameter a0 (e.g. the mean value of the diffusion
coefficient a in the later stochastic setting). Section 2 explains our equilibration error estimators
which include some novelties with respect to local equilibration for higher-order finite element
methods and nonconstant a0. The presentation is complemented by an extensive comparison
of the derived estimators in two settings, the L-shaped domain with constant coefficient and
the unit square with inhomogeneous coefficient. Section 3 introduces the stochastic setting, in
particular the polynomial chaos expansion of the stochastic space. Section 4 provides details
about the stochastic Galerkin finite element discretisation based on the variational formulation of
the stochastic problem as parametric PDE. In Section 5, we express the energy mean error in
terms of dual norms of stochastic residuals and their separation into deterministic residuals of
stochastic modes. With these, in Section 6 guaranteed explicit upper error bounds by application
of the deterministic equilibration error estimators of Section 2 to bound the local mode-dependent
deterministic residuals are designed. An adaptive algorithm which is steered by the derived
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error bounds is described in Section 7. Section 8 concludes the paper with a set of numerical
stochastic benchmark examples which illustrate the performance of the new exact a posteriori
error estimator.

1. DETERMINISTIC SETTING

This section introduces the Poisson equation as a model problem for the derivation of guaranteed
error upper bounds. Additionally, we briefly recall the treatment of inhomogeneous Dirichlet data.

1.1. Poisson model problem. The deterministic Poisson model problem with deterministic
coefficients on some Lipschitz domain D ⊂ Rd, d ∈ {2, 3}, seeks u ∈ V := H1

0 (D) := {v ∈
H1(D) : v|∂D = 0} with

−∇ · (a0∇u) = f in D, u = 0 on ∂D(1.1)

for some right-hand side f ∈ L2(D) and diffusion coefficient a0 ∈ L∞(D) that is uniformly
bounded from below by

(1.2) 0 < amin < ess inf
x∈D

a0(x).

The weak formulation employs the a0-weighted inner product

(u, v)V :=

∫
D

a0(x)∇u(x) · ∇v(x) dx for u, v ∈ V

which induces the energy norm ‖v‖2a0 := (v, v)V .

1.2. Discretisation and residual. For the discretisation consider a regular triangulation T ofD
into triangles (or tetrahedra in 3D) with sides E and nodesN . The discretisation with conforming
finite elements Vh := Pp(T ) ∩ V of degree p ≥ 1 where

Pp(T ) := {v ∈ L2(D) | ∀T ∈ T v|T is polynomial of maximal degree p}

leads to a discrete solution uh ∈ Vh and its discrete flux σh := a0∇uh as an approximation of
the exact flux σ := a0∇u. This solution is characterised by the Galerkin orthogonality property
r(Vh) = 0 for the residual

r(v) :=

∫
D

fv dx−
∫
D

σh · ∇v dx for all v ∈ V.

It is well known that the dual norm of the residual is equivalent to the energy error for homoge-
neous Dirichlet boundary data, i.e.,

‖r‖V ∗ := sup
v∈V

r(v)/‖v‖V = ‖u− uh‖a0 = ‖a−1/20 (σ − σh)‖L2(D).

1.3. Inhomogeneous Dirichlet data. In case of inhomogeneous Dirichlet boundary data, it
holds

‖u− uh‖2a0 = ‖r‖2V ∗ + inf
w∈H1(D)

w=u−uh along ∂D

‖w‖2a0 .
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Under the assumption uD ∈ H1(∂D) ∩H2(E), the special choice of w from [5] leads to

0 ≤ inf
w∈H1(D)

w=u−uh along ∂D

‖w‖a0 ≤ C‖h3/2a0,T ∂2(uD − uh)/∂s2‖L2(∂D),

with the local maximum diffusion coefficient a0,T |T := ess supx∈T a0(x) for all T ∈ T and a
generic constant C that only depends on the shape of the triangles but not on their size. For
meshes consisting of right isosceles triangles, [31] shows C ≤ 0.4980.

2. HIGHER-ORDER EQUILIBRATION A POSTERIORI ERROR ESTIMATION

We start with a common ansatz for the design of equilibrated fluxes q ∈ H(div, D) which yields
guaranteed upper bounds η(q) for the error u−uh in the energy norm. Subsequently, global and
local designs for equilibrated fluxes are explained. The local design is inspired by the lowest-order
equilibration estimators of [18, 10, 8] and is generalised to finite element methods of arbitrary
order p ≥ 1. The suggested technique solves local problems and constructs equilibrated fluxes
in the Brezzi-Douglas-Marini (BDM) finite element space [11] of order k ≥ p defined by

BDMk(T ) :=
{
vh ∈ Pk(T )d : [vh · nE] = 0 along all E ∈ E

}
.

Its subspace of Raviart-Thomas (RT) finite element functions reads

RTk−1(T ) :=
{
vh ∈ BDMk(T ) : ∃a ∈ Pk−1(T )d, b ∈ Pk−1(T ), vh(x) = a+ bx a.e.

}
.

In the following derivations, a piecewise L2 projection operator for f ∈ L2(D) onto Pk−1(T ) is
required which we denote by Πk−1(f).

2.1. Equilibration ansatz. First, an integration by parts allows to introduce an arbitrary q ∈
H(div, D) into the residual

r(v) =

∫
D

(f + div q)v dx+

∫
D

(q − σh) · ∇v dx for all v ∈ V.

If q ∈ H(div, D) is equilibrated in the sense that
∫
T
f + div q dx = 0 for all T ∈ T , an

elementwise Poincaré inequality gives, for any T ∈ T ,∫
T

(f + div q)v dx =

∫
T

a
−1/2
0,T (f + div q)a

1/2
0,T (v − vT ) dx

≤ 1

π
‖hTa−1/20,T (f + div q)‖L2(T )‖v‖V

where a0,T := ess infx∈T a0(x) and vT :=
∫
T
v dx/|T |. Note that in 2D the factor 1/π can be

replaced by the sharper Poincaré constant 1/j1,1 for triangles with the first positive root j1,1 of
the first Bessel function [27]. A Cauchy inequality in R|T | leads to

r(v) ≤

(∑
T∈T

(
1

π
‖hTa−1/20,T (f + div q)‖L2(T ) + ‖a−1/20 (q − σh)‖L2(T )

)2
)1/2

‖v‖V .
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Hence, we may define the generic error estimator η(q) for which holds

‖r‖2V ∗ ≤ η(q)2 :=
∑
T∈T

(
1

π
‖hTa−1/20,T (f + div q)‖L2(T ) + ‖a−1/20 (q − σh)‖L2(T )

)2

.

(2.1)

It remains to design an equilibrated quantity q by global or local equilibration techniques.

2.2. Global equilibration. The global equilibration error estimator for any discrete spaceQ(T ) ⊂
H(div, D) computes the constrained minimiser

q = argminτ∈Q(T )

{
‖a−1/20 (τ − σh)‖L2(Ω)

∣∣∣ div τ +Πk−1f = 0
}
.

Possible H(div, D)-conforming choices for Q(T ) are Raviart-Thomas (RTk−1(T )) or Brezzi-
Douglas-Marini (BDMk(T )) finite element spaces of any order k ≥ p for the given polynomial
order p of the discrete method. See [9] for a proof that the efficiency of these global equilibration
error estimators is robust with respect to p.

2.3. Local equilibration. The local equilibration error estimator solves local minimisation prob-
lems on the overlapping subtriangulations T (z) := {T ∈ T : z ∈ T} for every node z ∈ N
with adjacent sides E(z) := {E ∈ E : z ∈ E}, similar to the technique due to Destuynder and
Métivet [18] or Braess [10, 8]. For the application to higher-order finite element methods with
∇uh ∈ Pp−1(T ), we design an equilibrated BDM function q ∈ BDMk of order k ≥ p.

To cope with nonconstant diffusion coefficients, the piecewise polynomial stress approximation

σ̃h|T := Πk−1σh

enters the constraints for the local minimisation problems

(2.2) qz = argminτ∈Pk(T (z))d
{
‖a−1/20 τ‖L2(ωz)

∣∣∣ τ · n = 0 on ∂ωz \ ∂Ω,∀T ∈ T (z),

div τ +Πk−1(fϕz) + div(σ̃h)ϕz = 0 & ∀E ∈ E(z), [τ · nE] = −ϕz[σ̃h · nE]
}
.

The well-posedness of this problem for interior nodes is connected to the Galerkin orthogonality

r(ϕz) =

∫
D

fϕz − σh · ∇ϕz dx =

∫
D

Πk−1(fϕz)− σ̃h · ∇ϕz dx = 0 for all z ∈ N (D).

This, the chain rule and a piecewise integration by parts yields the consistency condition∫
ωz

div qz dx =
∑
E∈E(z)

∫
E

[qz · nE] ds = −
∑
E∈E(z)

∫
E

ϕz[σ̃h · nE] ds

= −
∫
ωz

div σ̃hϕz + σ̃h · ∇ϕz dx− r(ϕz)

= −
∫
ωz

Πk−1(fϕz) + div(σ̃h)ϕz dx.

With the partition of unity property
∑

z∈N ϕz ≡ 1, it is easy to see that q := σ̃h +
∑

z∈N qz ∈
BDMk(T ) indeed satisfies [q · nE] = 0 for all E ∈ E and

div q +
∑

z∈N (T )

Πk−1(fϕz) = div q +Πk−1(f) = 0.
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Hence, q is a valid equilibrated quantity that allows for (2.1).

Remark 2.1. (a) Note, that σ̃h − σh ≡ 0 for a0 ∈ P0(T ).
(b) The ansatz space for the local minimisation problems can be reduced to broken Raviart-
Thomas functions of order k − 1 if the jump condition [τ · nE] = −ϕz[σ̃h · nE] is replaced by
[τ · nE] = −Πk−1(ϕz[σ̃h · nE]). For p = 1 = k, this equals the condition in the equilibration
error estimator from [18, 10, 8].
(c) The local equilibration error estimator η(q) is equivalent to the classical residual error estima-
tor

η(q)2 ≈
∑
T∈T

h2T
a0,T

(
‖Πk−1(f) + div σh‖2L2(D) + ‖f −Πk−1(f)‖2L2(D)

)
+
∑
E∈E

hE
a0,E
‖[σh · nE]‖2L2(D).

A proof for the original Braess equilibration error estimator for p = 1 = k and a0 ≡ 1 can
be found in [8, Theorem 9.5, p.184 f.]. It can easily be extended to higher order fluxes. For
nonconstant coefficients a0 6∈ P0(T ), the additional term ‖a−1/20 (σh −Πk−1σh)‖L2(D) arises
which is of higher order for k > p.
(d) For practical purposes, the conditions in (2.2) can be (weakly) enforced by penalisation with
some sufficiently small ε > 0 in the functional

(2.3) F (τ) = ‖τ‖2L2(ωz)
+

1

ε
‖div τ +Πp−1(fϕz) + div(σ̃h)ϕz‖2L2(ωz)

+
1

ε
‖[(τ − σ̃hϕz) · nE]E‖2L2(E(z)) +

1

ε
‖τ · nE‖2L2(∂ωz\ΓD).

The discrete minimiser τ ∈ Pk(T (z))d of F is obtained by solving aε(τ, v) = `ε(v) for all
v ∈ Pk(T (z))d with

aε(τ, v) :=

∫
ωz

a−10 τ · v dx+
1

ε

∫
ωz

div τ div v dx+
1

ε

∫
E(z)

[τ · nE][v · nE] ds

+
1

ε

∫
E(∂ωz)\E(ΓD)

(τ · nE)(v · nE) ds(2.4)

`ε(v) := −1

ε

∫
ωz

(Πk−1(fϕz) + div(σ̃h)ϕz) div v dx− 1

ε

∫
E(z)

[σ̃h · nE][v · nE]ϕz ds.

The limit for ε→ 0 is the (conforming) minimiser qz.

2.4. Numerical comparison. Two numerical examples demonstrate the performance of the
local equilibration error estimators for different orders p = 1, 2, 3. The mesh refinement is
based on the common bulk criterion with some bulk parameter Θ ∈ (0, 1). For some estimator
η2 =

∑
T∈T η

2
T with local contributions ηT on each T ∈ T , we assume a marking setM⊂ T

of smallest cardinality such that

(2.5)
∑
T∈M

η2T ≥ Θ
∑
T∈T

η2T .

In the following experiments, the determination ofM is performed with Θ = 0.5 and the local
contributions of the equilibration error estimators from (2.1) for several realisations of q. All exact
energy errors and efficiency indices where computed with regard to a reference overkill solution.
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FIGURE 1. Convergence of the exact energy error and some error estimators for
FEM of degree p = 1 (left), p = 2 (middle) and p = 3 (right) for uniform and
adaptive mesh refinement versus the number of degrees of freedom (ndof) for the
stationary diffusion problem on the L-shaped domain as detailed in Section 2.4.1.
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FIGURE 2. Efficiency indices of the local and global equilibration error estimators
for different FEM degrees p = 1, 2, 3 and equilibration degrees k for uniform
(left) and adaptive (right) mesh refinement for the stationary diffusion problem on
the L-shaped domain as detailed in Section 2.4.1.

Further numerical examples in the context of PDE with stochastic data are discussed in Section 8.

2.4.1. Example 1: Constant coefficient on L-shaped domain. The first example considers equa-
tion (1.1) with homogeneous diffusion coefficient a0 ≡ 1 and f ≡ 1 on the L-shaped domain
D = (−1, 1)2 \ (0, 1)× (−1, 0). It is well-known that the solution exhibits a singularity at the
reentrant corner at (0, 0) which should be resolved by a successive refinement in its vicinity. With
this, the (otherwise reduced) optimal convergence rate is recovered. Figure 1 shows the conver-
gence history of the exact energy error and the global and local equilibration error estimators for
adaptive and uniform mesh refinement and polynomial degrees p = 1, 2, 3. The convergence
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rates for the different polynomial degrees and adaptive mesh refinement are optimal, i.e. higher
for larger p. With uniform refinement, we observe the same low decreased rate in all cases.

The plotted local equilibration error estimator with BDM functions and k = p always yields
a slightly better bound than the global equilibration with Raviart-Thomas functions of order
k = p−1. Figure 2 shows the efficiency indices of these two estimators and further configurations.
While the global error estimator with Raviart-Thomas functions attains efficiency indices around
1.4 for uniform mesh refinement, the efficiency indices of the local error estimators with BDM
functions and k = p are all below 1.2, very close to the global error estimator with BDM functions
and k = p. The error estimators with local problems solved by BDM functions of order k = p+ 1
all lead to very good efficiency indices below 1.5. The results for adaptive mesh refinement are
similar.

2.4.2. Example 2: Inhomogeneous coefficient on unit square. The second example consid-
ers equation (1.1) on the unit square D = (0, 1)2 with inhomogeneous diffusion coefficient
a0(x1, x2) = 3+sin(7πx1)+sin(9πx2) and f such that the homogeneous Dirichlet boundary
conditions are satisfied. In this setup, the analytic solution is known and used for the evaluation of
the error and the efficiency. Since a0 is nonconstant, σ̃h 6= σh appears in the local equilibration
estimator. Opposite to the first example, the solution in this experiment exhibits high regularity in
the entire domain. Thus, the convergence rates for the polynomial degrees p = 1, 2, 3 shown in
Figure 3 are optimal both for adaptive (top) and uniform (bottom) refinement.

In contrast to the first example, the efficiency indices of the global equilibration error estimator
with Raviart-Thomas elements of order k = p− 1 and of the local equilibration error estimator
with BDM element of order k = p are not as good as in the first example. This nonoptimality
seems to increase with the polynomial degree p and leads to efficiency indices of about 2.5 for
p = 1, 10 for p = 2 and even more than 30 for p = 3 as depicted in Figure 4. However, the
global equilibration error estimator with BDM elements of order k = p and the local versions with
order k = p+ 1 asymptotically regain their very good efficiency indices from the first experiment.
The cause for this behavior possibly is the highly oscillating diffusion coefficient. To perform the
local equilibration, an approximation of the flux σh by σ̃h = Πkσh is introduced in the estimator
and might cause additional errors and the degraded efficiency indices. With local ansatz spaces
of order k = p+ 1 this additional error becomes less significant and decreases with higher order.
Interestingly, the local equilibration error estimator with BDM functions of order k = p+ 1 leads
to significantly better efficiency indices than the global equilibration error estimator with BDM
function of order k = p, especially on coarse meshes. Note that this is also the case in the first
example, but only for p > 1.

3. STOCHASTIC MODEL PROBLEM

This section introduces the stochastic model problem which corresponds to (1.1) with stochas-
tic coefficient a. It is formulated as a parametric PDE depending on a countable infinite set
of parameters y which leads to the weak formulation of the problem, see [36] for a broader
presentation.

3.1. A parametric elliptic boundary value problem. We assume some Lipschitz domain
D ⊂ Rd, a sequence of scalar parameters y := (ym)m∈N and some coefficient function a with
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FIGURE 3. Convergence of the exact energy error and some error estimators
for FEM of degree p = 1 (left), p = 2 (middle) and p = 3 (right) for uniform
and adaptive mesh refinement versus the number of degrees of freedom (ndof)
for the stationary diffusion problem on the unit square domain as detailed in
Section 2.4.2.
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global BDM p = 1, k = 1 global BDM p = 2, k = 2 global BDM p = 3, k = 3
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FIGURE 4. Efficiency indices of the local and global equilibration error estimators
for different FEM degrees p = 1, 2, 3 and equilibration degrees k for uniform
(left) and adaptive (right) mesh refinement for the stationary diffusion problem on
unit square domain (bottom) as detailed in Section 2.4.2.

affine dependence on y with the representation

(3.1) a(y, x) := a0(x) +
∞∑
m=1

ymam(x), x ∈ D.

This could e.g. be the Karhunen-Loève expansion of the random field a with random variables
(ym)m∈N. We then consider the parametric elliptic boundary value problem

(3.2) −∇ · (a∇u) = f in D, u = 0 on ∂D.



11

We assume y ∈ Γ := [−1, 1]∞, i.e., |ym| ≤ 1, bounded first derivatives, i.e., am ∈ W 1,∞(D),

(3.3) ess inf
x∈D

a0(x) > 0 and
∞∑
m=1

∥∥∥am
a0

∥∥∥
L∞(D)

≤ γ < 1.

This implies convergence in (3.1) and positivity of a. With the operator A defined by

(3.4) A(y) : H1
0 (D)→ H−1(D), v 7→ ∇ · (a∇v) for y ∈ Γ,

equation (3.2) can be written as A(y)u(y) = f . Moreover, A can be expanded into an
unconditionally convergent series in the function space of linear maps L(V, V ∗) in the form

(3.5) A(y) = A0 +
∞∑
m=1

ymAm for all y ∈ Γ

where

(3.6) Am : H1
0 (D)→ H−1(D), v 7→ ∇ · (am∇v).

The assumptions regarding the coefficient a ensure uniform ellipticity and thus the unique
solvability of (3.2).

3.2. Weak formulation. The weak formulation of (3.2) with respect to the parameter y requires
a measure on the parameter domain Γ . We consider symmetric Borel measures which entails
that the parameters ym are independent and have symmetric distributions.

For each m ∈ N, let πm be the symmetric Borel probability measure of ym on [−1, 1]. The
product measure

(3.7) π :=
∞⊗
m=1

πm

is a probability measure on Γ . The weak formulation results from the integration of (3.2) with
respect to π, i.e.,

(3.8)

∫
Γ

〈A(y)u(y), v(y)〉dπ(y) =

∫
Γ

∫
D

f(x)v(y, x)dxdπ(y) := F (v),

where 〈·, ·〉 = 〈·, ·〉V ∗,V denotes the usual duality pairing between a vector space and its dual.
The left-hand side of (3.8) is a scalar product on V = L2

π(Γ ;V ) for w, v ∈ V ,
(3.9)

(w, v)A :=

∫
Γ

〈A(y)w(y), v(y)〉dπ(y) =

∫
Γ

∫
D

a(y, x)∇w(y, x) · ∇v(y, x)dxdπ(y)

which induces the energy norm ‖v‖2A := (v, v)A for v ∈ V . Moreover, the mean energy norm
reads

(3.10) ‖v‖2L2
π(Γ ;V ) :=

∫
Γ

∫
D

a0∇v · ∇v dxdπ(y).

Existence and uniqueness of the solution u of (3.8) follow from the Riesz representation theorem.
Moreover, u coincides with the solution of (3.2) for π-a.e. y ∈ Γ .
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4. STOCHASTIC GALERKIN FEM

For the discretisation of the weak problem (3.8) with the stochastic Galerkin FEM, an orthonormal
system of polynomials as a basis for the stochastic space is defined. Upon a selection of a
(finite) active set Λ of stochastic modes, this leads to a semi-discretisation of the problem and
a semi-discrete best-approximation uΛ of u. The fully discrete system is obtained with the
discretisation of the deterministic space by higher-order FEM. By this, the fully discrete Galerkin
approximation uN is obtained.

Let F be the set of finitely supported multi-indices

(4.1) F := {µ ∈ N∞0 | |suppµ| <∞}

where suppµ := {m ∈ N | µm 6= 0} and let |µ| :=
∑

i∈suppµ µi. For any subset Λ ⊂ F , we
define suppΛ :=

⋃
µ∈Λ suppµ ⊂ N. The infinite set

(4.2) ∂Λ := {ν ∈ F \ Λ | ∃m ∈ N : ν − εm ∈ Λ ∨ ν + εm ∈ Λ}

defines the boundary of Λ. Likewise, the active boundary of Λ is defined by

(4.3) ∂◦Λ := {ν ∈ F \ Λ | ∃m ∈ suppΛ : ν − εm ∈ Λ ∨ ν + εm ∈ Λ}

which is a finite set in case that |Λ| <∞.

4.1. Tensor product orthogonal polynomial basis. For each m ∈ N, let (Pm
n )∞m=0 denote

an orthogonal polynomial basis of L2
πm([−1, 1]) of degree deg(Pm

n ) = n. Due to symmetry of
πm, such bases satisfy a recursion of the form

(4.4) βmn P
m
n (ym) = ymP

m
n−1(ym)− βmn−1Pm

n−2(ym) for n ≥ 1

with Pm
0 := 1 and βm0 := 0. We assume a uniform distribution dπm(ym) = 1

2
dym in which

case the (Pm
n )∞n=0 are Legendre polynomials and βmn = (4− n−2)−1/2.

An orthogonal basis of L2
π(Γ ) is obtained by tensorisation of the univariate polynomials. For any

µ ∈ F , the tensor product polynomial Pµ :=
⊗∞

m=1 P
m
µm in y ∈ Γ is expressed as the finite

product

(4.5) Pµ(y) =
∞∏
m=1

Pm
µm(ym) =

∏
m∈suppµ

Pm
µm(ym).

Recursion (4.4) implies

(4.6) ymPµ(y) = βmµm+1Pµ+εm(y) + βmµmPµ−εm(y)

with the Kronecker sequence εm := (δmn)∞n=1. Moreover, we set Pµ := 0 for µm < 0. The
family of polynomials (Pµ)µ∈F forms an orthonormal basis of L2

π(Γ ), see [36].

4.2. Stochastic discretisation. The solution u of (3.8) in the basis (Pµ)µ∈F of L2
π(Γ ) with

coefficients uµ ∈ V for µ ∈ F has the L2
π(Γ ;V ) convergent expansion

(4.7) u(y, x) =
∑
µ∈F

uµ(x)Pµ(y).
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The sequence of coefficients (uµ)µ∈F ∈ `2(F ;V ) is determined by the infinite coupled system

(4.8) A0uµ +
∞∑
m=1

Am
(
βmµm+1uµ+εm + βmµmuµ−εm

)
= fδµ0 for µ ∈ F .

For any subset Λ ⊂ F , we define the (stochastically) semi-discrete space

(4.9) V(Λ) :=
{
vΛ(y, x) =

∑
µ∈F

vΛ,µ(x)Pµ(y) | vΛ,µ ∈ V ∀ µ ∈ Λ
}
⊂ V := L2

π(Γ ;V ).

The Galerkin projection of u onto V(Λ) is the unique uΛ ∈ V(Λ) which satisfies

(4.10) (uΛ, v)A = F (v) for all v ∈ V(Λ).

If Λ is finite, the sequence of coefficients (uΛ,µ)µ∈F ∈ V Λ :=
∏

µ∈F V of uΛ is determined by
the finite system

(4.11) A0uΛ,µ +
∞∑
m=1

Am
(
βmµm+1uΛ,µ+εm + βmµmuΛ,µ−εm

)
= fδµ0 for µ ∈ Λ

where we set uΛ,ν = 0 for ν ∈ F \ Λ. Note that all terms in the sum (4.11) vanish for
m ∈ N \ suppΛ.

4.3. Deterministic discretisation. We discretise the deterministic space V by a conforming
finite element space Vp(T ) ⊂ V of degree p on some simplicial mesh T of D. Then, the fully
discrete space is defined by
(4.12)

Vp(Λ; T ) :=

{
vN(y, x) =

∑
µ∈F

vN,µ(x)Pµ(y) | ∀ µ ∈ Λ, vN,µ ∈ Vp(T )

}
⊂ V(Λ).

Similar to (4.10), the Galerkin projection of u is the unique uN ∈ Vp(Λ; T ) which satisfies

(4.13) (uN , v)A = F (v) for all v ∈ Vp(Λ; T ).

The sequence of coefficients (uN,µ)µ∈Λ ∈ Vp(T )Λ =
∏

µ∈Λ Vp(T ) for µ ∈ Λ is determined
by

(4.14)

∫
D

(A0uN,µ)v dx+
∞∑
m=1

∫
D

Am
(
βmµm+1uµ+εm + βmµmuµ−εm

)
v dx =

∫
D

fδµ0v dx

for all v ∈ Vp(T ). Note that we set uN,ν = 0 for ν ∈ F \ Λ as before.

5. EXPANSION OF THE STOCHASTIC RESIDUAL

In this section we are concerned with the definition of the stochastic residual with respect to some
discrete function wN ∈ Vp(Λ; T ). In particular, an appropriate splitting and decomposition
enables the derivation of mode-local residual contributions which can then be bounded by the
error estimator derived in Section 6.
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For any wN ∈ Vp(Λ; T ) and v ∈ V , the residualR(wΛ) ∈ L2
π(Γ ;V ∗) is defined with respect

to the exact solution u by

R(wN)(v) := (u− wN , v)A = F (v)− (wN , v)A

=

∫
Γ

∫
D

(fv − a∇wN · ∇v) dxdπ.

For ν ∈ Λ, the discrete stochastic stress reads

σν(wN) := a0∇wN,ν +
∞∑
m=1

am∇
(
βmνm+1wN,ν+εm + βmνmwN,ν−εm

)
and defines the local residuals rν(wN) ∈ L2

π(Γ ;V ∗) which are the projections ofR onto the
polynomial basis {Pν}ν∈F in the sense

rν(wN)(vν) = R(wN)(vνPν)(5.1)

=

∫
D

fδν0vν − σν(wN) · ∇vν dx for all vν ∈ V.(5.2)

Given any v =
∑

ν∈F vνPν ∈ L2
π(Γ ;V ), these local residuals spawn the global residual in the

sense that

R(wN)(v) =
∑
ν∈F

∫
Γ

Pν dπ

∫
D

fδν0v − σ(wN)ν · ∇v dx

=
∑
ν,µ∈F

∫
Γ

PνPµ dπ

∫
D

fδν0vν − σ(wN)µ · ∇vν dx

=
∑
ν∈F

rν(wN)(vν).

A consequence is the Parseval identity

‖R(wN)‖2L2
π(Γ ;V

∗) =
∑
ν∈F

‖rν(wN)‖2V ∗(5.3)

which holds with the dual norms

‖R(wΛ)‖2L2
π(Γ ;V

∗) := sup
v∈L2

π(Γ ;V )

R(wN)(v)/‖v‖L2
π(Γ ;V )

and

‖rν(wN)‖V ∗ := sup
v∈V

rν(wN)(v)/‖v‖V .

Remark 5.1 (Explicit derivation of (5.3)). Let u∗ ∈ L2
π(Γ ;V ) and u∗ν ∈ V be the Riesz

representations ofR(wN) and rν(wN) in the sense that

R(wN)(v) = (u∗, v)L2
π(Γ ;V ) for all v ∈ L2

π(Γ ;V )

and

rν(wN)(vν) = (u∗ν , vν)V for all vν ∈ V.
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Thus, ‖u∗‖L2
π(Γ ;V ) = ‖R(wN)‖L2

π(Γ ;V
∗) and ‖u∗ν‖L2(V ) = ‖rν(wN)‖V ∗ . Due to (5.1) and the

equality ‖v‖2L2
π(Γ ;V ) =

∑
ν∈F‖vν‖2V for any v =

∑
ν∈F vνPν ∈ L2

π(Γ ;V ), for ν ∈ F it holds

(u∗ν , vν)V = rν(vν) = R(vνPν) = (u∗, vνPν)L2
π(Γ ;V ) =

∑
µ∈F

((u∗)µPµ, vνPν)L2
π(Γ ;V )

= ((u∗)ν , vν)V .

Hence, u∗ν = (u∗)ν and so ‖u∗ν‖2V = ‖(u∗)ν‖2V . It follows that

‖R(wN)‖2L2
π(Γ ;V

∗) = (u∗, u∗)L2
π(Γ ;V ) =

∑
ν∈F

‖(u∗)ν‖2V =
∑
ν∈F

‖u∗ν‖2V

=
∑
ν∈F

‖rν(wN)‖2V ∗ .

In this way, the total energy error of the partial stochastic problems can be related to the energy
errors of the partial solutions u∗ν ∈ V (for every ν ∈ F ) that solve the Poisson problems
according to (4.14). This proves (5.3).

For any Ξ ⊂ F and v ∈ L2
π(Γ ;V ), we set RΞ(wN)(v) :=

∑
ν∈Ξ rν(wN)(vνPν). Since

rν(wN) vanishes for ν ∈ F \ (Λ ∪ ∂Λ), it holds the decomposition

(5.4) R(wN) = RΛ(wN) +R∂Λ(wN).

Due to orthogonality, this yields the identity

(5.5) ‖R(wN)‖2L2
π(Γ ;V

∗) = ‖RΛ(wN)‖2L2
π(Γ ;V

∗) + ‖R∂Λ(wN)‖2L2
π(Γ ;V

∗).

6. RESIDUAL BASED EQUILIBRATION ERROR ESTIMATION FOR THE STOCHASTIC PROBLEM

In this section, we derive guaranteed upper error bounds for the stochastic error u − wN , in
particular for the discrete best approximation uN ∈ Vp(Λ; T ) of u defined by (4.13). This is
established by the equivalence of the energy norm ‖·‖A and the L2

π(Γ ;V ) norm, namely

(6.1) (1− γ)‖v‖2L2
π(Γ ;V ) ≤ ‖v‖2A ≤ (1 + γ)‖v‖2L2

π(Γ ;V )

due to (3.3), see [25] for the derivation. Hence, by the Riesz representation theorem in
L2
π(Γ ;V ∗), for any wN ∈ Vp(Λ; T ) it holds

(6.2) ‖u− wN‖A = sup
v∈L2

π(Γ ;V )

∫
D
A(u− wN)(v) dx

‖v‖A
≤ 1√

1− γ
‖R(wN)‖L2

π(Γ ;V
∗).

It thus is necessary to devise bounds for the operator norm of the stochastic residual ‖R(wN)‖L2
π(Γ ;V

∗)

for which we make use of the splitting (5.5) into the approximation part of the residual ‖RΛ(wN)‖2L2
π(Γ ;V

∗)

and the stochastic tail ‖R∂Λ(wN)‖L2
π(Γ ;V

∗).

6.1. Upper bounds for the approximation residual. The upper bound for the approximation
part of the residual is based on the equilibration error estimators from Section 2 for the dual
norms of the residual components ‖rν(wN)‖V ∗ of (5.1). For some wN ∈ Vp(Λ; T ), the
following lemma defines the error estimator η(Λ, q) with respect to an equilibrated flux q(wN) =
(qν(wN,ν))ν∈Λ.
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Lemma 6.1. Given qν ∈ H(div, D) with
∫
T
fδν0 + div qν dx = 0 for all T ∈ T and all

ν ∈ Λ, it holds

(6.3) ‖RΛ(wN)‖2L2
π(Γ ;V

∗) ≤ η(Λ, q(wN))2 :=
∑
ν∈Λ

ην(qν)
2.

Proof. This is a direct consequence of Parseval’s identity (5.3) and (2.1). �

Remark 6.2. For wN = uN from (4.13), each local residual enjoys the Galerkin orthogonality
property rν(uN)(Vp(T )) = 0 which allows to estimate ‖rν(wN)‖V ∗ by all kinds of known error
estimators for Poisson problems. Further details can be found in [19, 20]. In particular, the
local equilibration error estimators from Section 2 can be used. For wN 6= uN without the local
Galerkin orthogonality, modifications beyond the scope of this paper are in order to ensure the
solvability of the local problems (2.2). The global equilibration error estimators can be used for
arbitrary wN .

6.2. Upper bounds for the tail of the residual. The stochastic tail error resulting from the
selection of a finite active set Λ ⊂ F is represented by the tail residual R∂Λ. For some
wN ∈ Vp(Λ; T ) and ν ∈ ∂Λ, we define

(6.4) ζν(wN) :=
∞∑
m=1

∥∥∥am
a0

∥∥∥
L∞(D)

(
βmνm+1‖wN,ν+εm‖V + βmνm‖wN,ν−εm‖V

)
.

Note that only terms for ν ± εm with m ∈ suppΛ do not vanish. The sum in (6.4) thus is finite.
For any ∆ ⊂ ∂Λ, let

(6.5) ζ(wN , ∆) :=

(∑
ν∈∆

ζν(wN)2

)1/2

.

Lemma 6.3 ([20] Lem. 3.4). If 0 ∈ Λ, for any wN ∈ Vp(Λ; T ) it holds

(6.6) ‖R∂Λ(wN)‖L2
π(Γ ;V

∗) ≤ ζ(wN , ∂Λ).

Parseval’s identity yields ‖R∂Λ(wN)‖2L2
π(Γ ;V

∗) =
∑

ν∈∂Λ‖rν(wN)‖2V ∗ . The indicator ζ(wN , ∂Λ)

is defined as an infinite sum in (6.5), for ν ∈ ∂Λ \ ∂◦Λ and it holds

(6.7) ζν(wN) =
∥∥∥am
a0

∥∥∥
L∞(D)

βm1 ‖wN,µ‖V .

Summing over all inactive dimensions not in suppΛ leads to the error indicator

(6.8) ζ̄µ(wN , Λ) := ‖wN,µ‖V

 ∑
m∈N\suppΛ

(∥∥∥am
a0

∥∥∥
L∞(D)

βm1

)2
1/2

for µ ∈ Λ.

The terms in the sum are independent of wN and µ. We assume that this infinite sum can be
evaluated. Hence, ζ(wN , ∂Λ) reads

(6.9) ζ(wN , ∂Λ)2 =
∑
ν∈∂◦Λ

ζν(wN)2 +
∑
µ∈Λ

ζ̄µ(wN , Λ)2.
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6.3. The complete upper bound. The combination of the approximation residual error estimator
η(Λ, q(wN)) of Lemma 6.1 and the tail error estimator ζ(wN , ∂Λ) of Lemma 6.3 yields the total
error estimator ηA.

Corollary 6.4. For any wN ∈ Vp(Λ; T ), it holds

‖u− wN‖A ≤ ηA :=
1√

1− γ
(
η(Λ, q(wN))2 + ζ(wN , ∂Λ)2

)1/2
.

7. ADAPTIVE ALGORITHM

The adaptive algorithm described in this section is reminiscent of the algorithms presented
in [20, 19] to which we refer for further details. In the following, we identify functional modules
which encapsulate different aspects of the adaptive algorithm. Given some mesh T , a finite set
Λ ⊂ F including 0 and a fixed polynomial degree p, we assume that the Galerkin projection
uN ∈ Vp(Λ, T ) of (4.13) is obtained by a function

uN ← Solve[Λ, T ].

The error indicators of Section 6 are computed by the methods

(ηT (uN , Λ))T∈T , η(uN , Λ, T )← Estimatex[uN , Λ, T ],

(ζν(uN))ν∈∂◦Λ, ζ(uN , ∂Λ), (‖uN,µ‖V )µ∈Λ ← Estimatey[uN , Λ].

With these, a separate marking of elements of the mesh T and of modes of the inactive boundary
∂◦Λ ⊂ F \ Λ of Λ is carried out by the functions

M← Markx[ϑx, (ηT (uN , Λ))T∈T , η(uN , Λ, T )],

∆← Marky[ϑy, (ζν(uN))ν∈∂◦Λ, ζ(uN , ∂Λ), (‖uN,µ‖V )µ∈Λ]

with refinement parameters 0 < ϑx, ϑy < 1. Refinex is analog to the deterministic refine-
ment (2.5) and details about the procedure Refiney can be found in [20, Sec. 5.2]. The
obtained smallest setsM⊂ T and ∆ ⊂ ∂Λ satisfy the Dörfler property, i.e.,

η(uN , Λ,M) ≥ ϑxη(uN , Λ, T ) and ζ(uN , ∆) ≥ ϑyζ(uN , ∂Λ).

With these marking sets, the following methods produce a refined regular mesh T ∗ and an
enlarged active set Λ∗, namely,

T ∗ ← Refinex[T ,M] and Λ∗ ← Refiney[Λ,∆].

In our case, Λ∗ = Λ ∪∆ but other choices are possible. A single iteration step of an adaptive
algorithm which returns either a refined T ∗ orΛ∗ is given by the function ASGFEM. For numerical
simulations as performed in Section 8, this function has to be called iteratively until either a
defined error bound threshold or a maximum problem size is reached.

Remark 7.1. Since the employed spatial equilibration error estimator η is equivalent to the
residual based error estimator used in [20], the convergence and optimality results shown there
directly carry over to the error estimator presented here.
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T ∗, Λ∗ ← ASGFEM[Λ, T , ϑx, ϑy]
uN ← Solve[Λ, T ]
(ζν)ν∈∂◦Λ, ζ, (‖uN,µ‖V )µ∈Λ ← Estimatey[uN , Λ]
(ηT )T∈T , η ← Estimatex[uN , Λ, T ]
if η ≥ ζ then
M← Markx[ϑx, (ηT )T∈T , η]
T ∗ ← Refinex[T ,M]

else
∆← Marky[ϑy, (ζν)ν∈∂∗Λ, ζ, (‖uN,µ‖V )µ∈Λ]
Λ∗ ← Refiney[Λ,∆]

8. IMPLEMENTATION AND NUMERICAL EXAMPLES

This section is devoted to the numerical assessment of the proposed a posteriori error estimator.
We employ the global mixed error estimator with BDM functions of Section 2.2 since our implemen-
tation for this estimator is in fact the most efficient (regarding computation time and also accuracy)
with the same polynomial degree as the FEM space. A local error estimator would only slightly
increase the over-estimation of the error as illustrated in the deterministic case in Section 2.4.
The adaptive algorithm of Section 7 is implemented with the open source framework ALEA [21]
which has already been used for the ASGFEM presented in [19, 20]. For the evaluation of the
stochastic energy error of the numerical solution, we employ Monte-Carlo sampling based on a
realisation-wise reference solution as described in Section 8.1. Subsequently, the performance
of the new exact error estimator with regard to some benchmark problems on the square and the
L-shaped domain as in [19, 20] is examined in Section 8.2.

8.1. Evaluation of the error. For experimental verification of the reliability of the error estimator,
the error of the parametric solution is computed by Monte Carlo simulations. For this, a set of
M independent realizations {y(i)}Mi=1 of the stochastic parameters is determined. The y(i)m are
sampled according to the probability measure πm of the random variable ym. The mean-square
error e of the parametric SGFEM solution uN ∈ Vp(Λ, T ) is approximated by a Monte Carlo
sample average

‖e‖2V =

∫
Γ

‖u(y)− uN(y)‖2V dπ(y) ≈ 1

M

M∑
i=1

‖ũ(y(i))− uN(y(i))‖2V .(8.1)

Note that the sampled solutions ũ(y(i)) are approximations of the exact u(y(i)) = A−1(y(i))f
since the differential operator is discretised on a fine reference mesh which is obtained by another
uniform refinement of the adapted mesh generated from the SGFEM discretisation of the final
iteration. Moreover, the truncated expansion (3.1) of the random field a(y, x) is expanded by the
trailing largest 200 terms which are not considered by the best approximate parametric solution.
We choose M = 150 for the Monte Carlo sampling of the reference error (8.1) which proved to
be sufficient to assess the reliability of the error estimator.

8.2. The stochastic diffusion problem. We examine numerical simulations for the stationary
diffusion problem (3.2) in a plane, polygonal domain D ⊂ R2. As in [19, 20], the expansion
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coefficients of the stochastic field (3.1) are given by

(8.2) am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2)

where αm is of the form ᾱm−σ̃ with σ̃ > 1 and some 0 < ᾱ < 1/ζ(σ̃) with the Riemann zeta
function ζ . Then, (3.3) holds with γ = ᾱζ(σ̃). Moreover,

(8.3) β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m)

with k(m) = b−1/2 +
√

1/4 + 2mc, i.e., the coefficient functions am enumerate all planar
Fourier sine modes in increasing total order. To illustrate the influence which the stochastic
coefficient plays in the adaptive algorithm, we examine the expansion with slow and fast decay of
αm, setting σ̃ in (8.2) to either 2 or 4. The computations are carried out with conforming FEM
spaces of polynomial degrees 1, 2 and 3. For the adaptive algorithm ASGFEM of Section 7, the
marking parameters are ϑx = ϑy = 1/2. The initial mesh T0 for newly activated µ ∈ F \ Λ
and the quadrature rule with exact integration of polynomials up to degree 15 are such that the
solutions with respect to the oscillating coefficients am are computed with good accuracy.

8.2.1. Square domain. The first example is the stationary diffusion equation (3.2) on the unit
square D = (0, 1)2 with homogeneous Dirichlet boundary conditions and with right-hand side
f ≡ 1. The results of the adaptive algorithm ASGFEM for a slow decay of the coefficients with
σ̃ = 2 and a fast decay with σ̃ = 4 are depicted in Figures 5–8. The amplitude ᾱ in (8.2) was
chosen as γ/ζ(σ̃) with γ = 0.9, resulting in ᾱ ≈ 0.547 for σ̃ = 2 and ᾱ ≈ 0.832 for σ̃ = 4.
Figure 5 shows the error estimator ηA and the reference error obtained by Monte Carlo sampling
as described in Section 8.1 in the top row.

It can be observed that the rate of the error decay increases as expected for p = 1 to p = 3
large with P1 to P3. The respective rates are approximately the same as the decay rates of
the error which is further verified in the graphs of the efficiency index ηA/‖e‖A in Figure 6. For
p = 1 and p = 2, the efficiency lies in between 3 and 5 and becomes somewhat larger for p = 3.
Asymptotically, for p = 1, 2, 3 an efficiency of 4 seems to be reached. The different behaviour
of the adaptive algorithm in dependence of the polynomial FEM degree can be examined in
the bottom row of Figure 5 which shows the number of active multi-indices and the number of
mesh cells with respect to the total number of degrees of freedom. In case of p = 1, the spatial
approximation error dominates and thus leads to a strong refinement of the mesh with relatively
few stochastic modes being activated. On the opposite, the approximation error for p = 3 is small
even for a coarse spatial discretisation, resulting in a dominating truncation error with respect to
the stochastic modes. Consequently, the set of multi-indices grows strictly monotonically with
each refinement step while the FEM mesh stays coarse. The relation of the energy error and the
number of active stochastic modes is pictured in Figure 7. We also point out that while the p = 1
and p = 3 discretisations lead to (opposite) exclusive refinements, either of the physical or the
stochastic space, the discretisation with p = 2 results in a dominating approximation error in
the beginning which at a certain point reaches the same size as the stochastic truncation error.
This can be observed by the addition of stochastic modes after 104 degrees of freedom (but not
before).

Note that the graphs for the settings with slow and fast decay seem to be rather similar. However,
there is a fundamental difference in the stochastic dimensions and the respective polynomial
degrees activated for the anisotropic discrete stochastic space. We illustrate this in detail in
Figure 8 where the active stochastic dimensions and the polynomial approximation order per
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FIGURE 5. Convergence of the error estimator in the energy norm with FEM
of degree p = 1, 2, 3 for the stationary diffusion problem on the square with
homogeneous Dirichlet boundary conditions for slow (σ̃ = 2, left) and fast
(σ̃ = 4, right) decay. Error estimator and sampled error (top) and cardinality of
active set and number of mesh cells per active stochastic mode (bottom) for total
number of degrees of freedom.

dimension is depicted. First, it can be observed that higher order FEM discretisations lead to
the activation of more stochastic dimensions for the stochastic discretisation with both decay
rates. Second, in case of slower decay, more stochastic dimensions are taken into account than
with faster decay of the coefficient terms. With the p = 3 FEM, the slow decay setting yields
33 active stochastic dimensions with a maximum degree of 3 for the first stochastic dimension
while this is degree 7 with the fast decay setting, leading to only 10 stochastic dimensions for
approximately the same number of dofs. Since the first stochastic dimensions contain the most
stochastic information of the coefficient, the polynomial degrees for their approximation is larger
that for higher stochastic dimensions. In fact, for most active dimensions, a linear approximation
seems to be adequate. This clearly shows that stochastic discretisations can greatly benefit from
anisotropic problem adapted spaces.

8.2.2. L-shaped domain. A standard benchmark problem for deterministic a posteriori error
estimators is the stationary diffusion problem (3.2) on the L-shaped domain D = (−1, 1)2 \
(0, 1)× (−1, 0). It is well-known that the solution exhibits a singularity at the reentrant corner
at (0, 0) which has to be resolved by a pronounced mesh refinement in its vicinity in order to
achieve optimal convergence rates. The previous remarks in Section 8.2.1 regarding the setup
of the coefficient and the error evaluation are also valid with this example. The convergence of
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FIGURE 7. Number of active multi-indices with FEM of degree p = 1, 2, 3 for the
stationary diffusion problem on the square domain with homogeneous Dirichlet
boundary conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with
respect to the energy error.

the error estimator and its efficiency with regard to the error determined by (8.1) are depicted in
Figures 9–12.

In comparison to the first stochastic example, the higher convergence rate for p = 3 FEM
only becomes apparent after 104 dofs are reached, i.e., later than previously in the case of
slow decay. Nevertheless, here and even more obvious in the setting with faster decay, the
discretisation with p = 3 clearly exhibits the highest rate when compared with p = 1, 2. The
error estimator in general performs better, i.e. more efficient, than in Section 8.2.1, as can be
seen in Figure 10. Here, the efficiency indices lie at around 4 for all approximation orders and
both coefficient parameters. Also note that, in contrast to the previous example, the mesh gets
refined immediately for all polynomial degrees since the error caused by the singularity (i.e.,
the approximation error) dominates the overall error and first has to be reduced. Thus, the
refinement of the mesh and the active set Λ is carried out quasi simultaneously for p = 1, 2, 3
as is depicted in Figure 9 (bottom row). The dependence of the energy error on the number of
active stochastic modes is shown in Figure 11. Moreover, Figure 12 illustrates the maximum
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FIGURE 8. Polynomial degree for each stochastic mode with FEM of degree
p = 1, 2, 3 (top to bottom) for the stationary diffusion problem on the square
domain with homogeneous Dirichlet boundary conditions for slow (σ̃ = 2) and
fast (σ̃ = 4) decay.

degrees of the activated stochastic dimensions after the last refinement step of the experiment.
As before, the lowest order discretisation with p = 1 mainly has to improve the approximation
quality of the physical space which results in a low number of stochastic dimensions being taken
into account. For p = 2, 3 FEM, the stochastic spaces grow much larger. Again, for faster
decay of the stochastic coefficients, the first stochastic dimensions carry the most information
and hence require a more accurate approximation by the activation of larger degree polynomial
chaos modes, namely up to degree 6 for p = 3. This leads to an anisotropic discretisation of the
stochastic space since for most stochastic dimensions a lowest order discretisation apparently is
sufficient.

Due to the adaptive refinement of the mesh, the otherwise degraded convergence rate (see
experiments with uniform refinement in Section 2.4.1) is recovered by the resolution of the
corner singularity. Again, the number of active stochastic modes increases substantially with the
polynomial degree of the FEM while retaining rather coarse meshes.
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