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Abstract

Genetic association studies lead to simultaneous categorical data analysis. The sample

for every genetic locus consists of a contingency table containing the numbers of observed

genotype-phenotype combinations. Under case-control design, the row counts of every ta-

ble are identical and fixed, while column counts are random. The aim of the statistical

analysis is to test independence of the phenotype and the genotype at every locus. We

present an objective Bayesian methodology for these association tests, utilizing the Bayes

factor proposed by Good (1976) and Crook and Good (1980). It relies on the conjugacy of

Dirichlet and multinomial distributions, where the hyperprior for the Dirichlet parameter is

log-Cauchy. Being based on the likelihood principle, the Bayesian tests avoid looping over

all tables with given marginals. Hence, their computational burden does not increase with

the sample size, in contrast to frequentist exact tests. Making use of data generated by

The Wellcome Trust Case Control Consortium (2007), we illustrate that the ordering of the

Bayes factors shows a good agreement with that of frequentist p-values. Furthermore, we

deal with specifying prior probabilities for the validity of the null hypotheses, by taking link-

age disequilibrium structure into account and exploiting the concept of effective numbers

of tests. Application of a Bayesian decision theoretic multiple test procedure to The Well-

come Trust Case Control Consortium (2007) data illustrates the proposed methodology.

Finally, we discuss two methods for reconciling frequentist and Bayesian approaches to

the multiple association test problem for contingency tables in genetic association studies.

1 Introduction

Testing for association between two categorical variates by means of contingency table data is

a classical problem in statistics which can at least be traced back to Pearson (1900) and Fisher

(1922). For a comprehensive account of frequentist tests for this problem we defer the reader

to Agresti (2002). Bayesian methodology for categorical data analysis is nicely summarized by

Agresti and Hitchcock (2005); see also Gómez-Villegas and González-Pérez (2010) for later

developments.

In this work, we are considered with applications of Bayesian inference for contingency tables

to the field of genetic association studies with case-control setup. From the statistical point of

view, such studies lead to the problem of simultaneous categorical data analysis, meaning that

many contingency tables have to be analyzed simultaneously. Assuming a set of m > 1 bi-

allelic genetic markers with exactly two possible values Aj,1 and Aj,2 (say) for 1 ≤ j ≤ m, the

data for genetic locus j can in such type of study be summarized as in Table 1. Typically, single

nucleotide polymorphisms (SNPs) are used as markers, such that Aj,1, Aj,2 ∈ {A, C, G, T}
encode base pairs. However, our methodology is not restricted to SNP studies, but can also be

applied to more complex markers such as copy number variations (CNVs) of sections of the
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deoxyribonucleic acid (DNA), as long as the CNVs have the same binary status as SNPs as

considered by McCarroll et al. (2008), for example.

Table 1: Schematic representation of data for an association test problem at genetic locus j,

where the two possible alleles are denoted by Aj,1 and Aj,2.

Genotype Aj,1Aj,1 Aj,1Aj,2 Aj,2Aj,2

∑

Phenotype 1 x
(j)
11 x

(j)
12 x

(j)
13 n1.

Phenotype 0 x
(j)
21 x

(j)
22 x

(j)
23 n2.

Absolute count n.1
(j) n.2

(j) n.3
(j) N

The numbers n1. of cases (phenotype 1) and n2. of controls (phenotype 0) do not depend on

j and are fixed by experimental design. The aim of the statistical analysis is to test the family

of hypotheses H = (Hj : 1 ≤ j ≤ m), where the j-th null hypothesis Hj states that the

genotype at locus j is stochastically independent of the (binary) phenotype of interest. The

corresponding (two-sided) alternatives are denoted by Kj , 1 ≤ j ≤ m.

In the remainder of this work, for notational convenience, we will write x =

(

x11 x12 x13

x21 x22 x23

)

instead of x(j) =

(

x
(j)
11 x

(j)
12 x

(j)
13

x
(j)
21 x

(j)
22 x

(j)
23

)

for the data sample if only one specific locus is con-

cerned. Similarly, we will in such cases drop the subscript j in H and K and the superscript j in

n.1, n.2, and n.3 for ease of presentation, although column counts depend on j. The conditional

probability of observing x under the null hypothesis of no association, given all marginal counts

n = (n1., n2., n.1, n.2, n.3)
>, will be denoted by f(x|n) and is (in a compact, self-explaining

notation) given by

f(x|n) =

∏

n∈n
n!

N !
∏

x∈x
x!

. (1)

Frequentist exact tests enumerate all tables x̃ with marginals equal to n according to some

real-valued test statistic T : X → R in order to compute a p-value, cf. Langaas and Bakke

(2013) and references therein. Assuming that T tends to smaller values under the alternative,

the non-asymptotic p-value based on T and conditional to n is given by

pT (x) =
∑

x̃:T (x̃)≤T (x)

f(x̃|n) = P (T (X) ≤ T (x)|H,n) . (2)

The remaining part of the paper is structured as follows. In Section 2, we revisit and work up

the computation of Bayes factors for testing association in a single contingency table according

to Good (1976) and Crook and Good (1980). Section 3 is devoted to the numerical computa-

tion of these Bayes factors. In Section 4, we apply the proposed Bayes factors to real genetic

association data generated by The Wellcome Trust Case Control Consortium (2007). Section

5 completes the probability model by discussing prior probabilities for the null hypotheses Hj ,

1 ≤ j ≤ m, and we apply a Bayesian decision theoretic multiple comparison procedure to the

data from Section 4. In Section 6, two methods are provided for reconciling the frequentist and

2



the Bayesian approach to the multiple association test problem. These methods may be consid-

ered as alternatives to the asymptotic (N → ∞) approach by Wakefield (2009). We conclude

with a discussion in Section 7.

2 Statistical methodology

Motivated by the conjugacy of Dirichlet and multinomial distributions, Good (1976) and Crook

and Good (1980) proposed objective Bayesian inference for one single contigency table in the

following manner.

Let X = (Xν)1≤ν≤t denote a random vector with t integer elements which takes values in the

discrete set

X = {(x1, . . . , xt)
> ∈ N

t
0 : 0 ≤ xν ≤ N for all 1 ≤ ν ≤ t,

t
∑

ν=1

xν = N}.

Furthermore, consider a vector p = (p1, . . . , pt)
> which is Dirichlet distributed on the (closed)

unit simplex in [0, 1]t with parameter vector a = (a1, . . . , at)
>, such that the conditional dis-

tribution of X given p is multinomial with t categories, total sample size N and vector p of cell

probabilities, M(t, N,p) for short. Assuming a1 = a2 = . . . = at = a, the unconditional

distribution of X is the (symmetric) Dirichlet-multinomial distribution with flattening parameter a,

which we will denote by DMultinomial(t, N, a). Its probability mass function is given by

DMultinomial ((xν)|t, N, a) =

(

N

(xν)

)

Γ(ta)

{Γ(a)}t

∏t
ν=1 Γ(xν + a)

Γ(N + ta)
, (xν) ∈ X ; (3)

see, for instance, Section 6.1.2 of Ng et al. (2011). In (3) and throughout the remainder, we use

the abbreviated notation (xν) for (x1, . . . , xt)
>. In the derivations of Good (1976) and Crook

and Good (1980), the function Φ, given by

Φ((xν), t, t
′) =

∫ ∞

0

DMultinomial ((xν)|t, N, a)φ
(a

t′

) da

t′
, (4)

plays a crucial role. In (4) and throughout the remainder, φ denotes the Lebesgue density of the

log-Cauchy distribution with location 0 and scale π, given by

φ(u) =
1

u[π2 + ln2(u)]
, u > 0. (5)

As argued by Good (1976), p. 1163, the log-Cauchy(0, π) hyperprior for the flattening parameter

is a proper proxy for the improper Jeffrey-Haldane density u 7→ u−1, and therefore particularly

suitable for objective Bayesian contingency table analysis. Henceforth, the symmetric Dirichlet

mixture prior with t categories and log-Cauchy(0, π) hyperprior with scaling parameter t′ for a
is denoted by D∗(t, t′).

Returning to the case-control studies introduced in Section 1, recall that the row sums n1. and

n2. are necessarily the same for all 1 ≤ j ≤ m and fixed by experimental design. Hence, for
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one specific locus and under the corresponding null hypothesis, the only unknown model pa-

rameters are the multinomial probabilities p.1, p.2, and p.3 for the column counts. Good (1976)

proposed the D∗(3, 1) prior for (p.1, p.2, p.3)
> under the null, leading to a prior probability

of Φ((n.k), 3, 1) for the column counts, where 1 ≤ k ≤ 3. Based on this, the probability

of observing x under the null is equal to P(x|n1., n2., H) = Φ((n.k), 3, 1) × f(x|n). Analo-

gously, under the alternative, the D∗(6, 1) prior is assumed for the six unknown cell probabilities

(pik : 1 ≤ i ≤ 2, 1 ≤ k ≤ 3), such that Φ(x, 6, 1) gives the unconditional probability of ob-

serving x under the alternative. As the Dirichlet prior D∗(6, 1) necessarily implies the D∗(2, 3)
prior for the row counts, we obtain that P(x|n1., n2., K) = Φ(x, 6, 1)/Φ((n1., n2.)

>, 2, 3).

Altogether, this entails the Bayes factor

F2 =
P(x|n1., n2., H)

P(x|n1., n2., K)
=

Φ
(

(n1., n2.)
>, 2, 3

)

Φ((n.k), 3, 1)f(x|n)

Φ(x, 6, 1)

for testing H versus K, where the subscript 2 indicates that only the column counts (second

dimension of the table) are random.

Remark 1.

(i) Actually, Good (1976) and Crook and Good (1980) developed the methodology described

in this section for general (R × C)-tables. For our purposes, however, only the special

case of R = 2 and C = 3 is relevant.

(ii) Crook and Good (1980) also discussed further choices for the scale parameter, say s,

of the log-Cauchy density in (5). Exemplary computations (not shown here) however in-

dicated that the Bayes factor F2 is not very sensitive with respect to s, at least if F2 is

small. Therefore, we made use of the original recommendation by Good (1976) and took

s = π.

3 Computational details

Although the computation of F2 is rather straightforward, some caution is required in actual

implementation. As far as software is concerned, we implemented all routines described in this

section in MATLAB. This choice is mainly motivated by the fact that MATLAB provides the fully

vectorized function gammaln for evaluating the logarithmic Gamma function, which plays a

pivotal role in computing F2. Based on this function, the computation of f(x|n) has already

been described in Section 5 of Dickhaus et al. (2012).
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3.1 Computation of DMultinomial((xν)|t, N, a)

Taking logarithms in (3), we obtain that

ln (DMultinomial ((xν)|t, N, a)) =

[

ln(Γ(N + 1)) −

t
∑

ν=1

ln(Γ((xν + 1))

]

+ (6)

ln

(

Γ(ta)

{Γ(a)}t

∏t
ν=1 Γ(xν + a)

Γ(N + ta)

)

. (7)

The right-hand side of (6) is directly evaluatable with the gammaln function, while the sum-

mand displayed in (7) is efficiently implemented in the contributed MATLAB program

polya_logProb.m from the Fastfit toolbox by Thomas Minka.

As one additional pitfall, notice that the log-Cauchy distribution can produce extremely large real-

izations of the flattening parameter a, which leads to numerical problems in thepolya_logProb.m

program. On the other hand, we can exploit the well-known fact that the symmetric Dirichlet dis-

tribution degenerates for a → ∞, such that the random vector p = (p1, . . . , pt)
> tends to the

constant vector p∗ = (t−1, . . . , t−1)> almost surely as a → ∞. Consequently, it is possible

to accurately approximate DMultinomial(t, N, a) by M(t, N,p∗) whenever a exceeds some

threshold aupper. In our implementation, we chose aupper = 106. This choice was motivated

by some preliminary example computations which indicated that, within the range of numerical

double precision, the difference between DMultinomial(t, N, a) and M(t, N,p∗) is negligible

for a > 106.

3.2 Computation of Φ((xν), t, t
′)

Recall that

Φ((xν), t, t
′) =

∫ ∞

0

DMultinomial ((xν)|t, N, a)φ
(a

t′

) da

t′

= EA∼t′ log-Cauchy(0,π) [DMultinomial ((xν)|t, N, A)] . (8)

While the integral representation in (4) appears more convenient for numerical evaluation, it

turned out that numerical integration with respect to φ is rather challenging. Neither the quadra-

ture routines in MATLAB nor those in R could even verify that φ is a probability density. There-

fore, we made use of the equivalent representation in (8) and performed Monte Carlo inte-

gration. Namely, the theoretical expectation in (8) was replaced by the arithmetic mean of the

integrand evaluated at B pseudo-random numbers which behave like independent realizations

of A ∼ t′log-Cauchy(0, π). In our implementation, we used B = 100,000, leading to a small

Monte Carlo standard error.

3.3 Computational complexity

As mentioned in the discussion around (1) and (2), a loop over all possible tables with given

marginals n cannot be avoided if exact frequentist tests are to be carried out. Clearly, the num-

ber of such tables that have to be enumerated increases drastically with the sample size N ,
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see Bakke and Langaas (2012). Unconditional asymptotic tests, typically based on chi-square

approximations, are often considered a convenient alternative for large N . However, the chi-

square approximation can be very poor in extreme tail areas, even if N is very large, cf. Langaas

and Bakke (2013). Hence, if m is large and a strong multiplicity adjustment is necessary (high

quantiles of the null distribution of the test statistic are needed), the chi-square approximation

is doubtful. Clearly, there are other (asymptotic or non-asymptotic) frequentist test approaches

which are under certain assumptions on the expected cell counts more robust than chi-square

tests; see, e. g., Lydersen et al. (2009) for a biostatistics tutorial with practical guidelines for

choosing a marginal testing strategy in the case of a (2 × 2)-table. However, an automated

application of such guidelines for a large number of contingency tables simultaneously, where

parameters like the expected minor allele frequency are prone to change considerably from one

genomic position to the other, appears extremely challenging.

In contrast to these problems, the computational complexity of computing F2 remains constant

for any N . Plainly speaking, the reason is that the parameter space for (pik : 1 ≤ i ≤ 2, 1 ≤
k ≤ 3) is independent of N , while the sample space X crucially depends on N . Being based

on the likelihood principle, Bayesian tests do not have to explore the sample space, but the

parameter space. Also, no asymptotic considerations are required. The only costly (non-scalar)

operation in our implementation of F2 is the generation of B pseudo-random Cauchy numbers,

see Section 3.2. However, from our experience it is not necessary to choose B as a function of

N .

Remark 2. All MATLAB worksheets that were used to derive the results presented in this paper

are available as supplementary material from the author upon request.

4 Computation of Bayes factors from real data

In this section, we apply the proposed methodology to the Crohn’s disease substudy reported

by The Wellcome Trust Case Control Consortium (2007). More precisely, we restricted our

attention to m = 1,778 pre-screened loci. The pre-screening has been performed by sample-

splitting with respect to N and applying a false discovery rate-based screening criterion to

the first subsample of size N/2 as described in Section 6.2 of Dickhaus et al. (2012). The

computation of F
(j)
2 for 1 ≤ j ≤ m = 1,778 was performed on the second subsample which

has not been used for screening. This mimics a two-stage study design which is often chosen

in genome-wide association studies.

Table 2 displays the 34 smallest of the 1,778 Bayes factors in increasing order. Bold-face rows

indicate SNPs that were declared significantly associated with Crohn’s disease by the multiple

test from Section 3.4 of Dickhaus et al. (2012); see Table 3 in their paper. It becomes apparent

that the 34 positions with smallest Bayes factors comprise 23 out of the 24 loci with significant

associations reported by Dickhaus et al. (2012). A closer investigation of the data corresponding

to the only “non-replicated“ SNP, namely rs11816049 with Bayes factor F
(rs11816049)
2 = 6.85722,

revealed that the significance reported in Table 3 of Dickhaus et al. (2012) for this SNP is actually

an artifact of their randomization technique. The contingency table for this locus is given by
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x(rs11816049) =

(

0 1 874
0 0 1468

)

. Conditional to all five marginal counts, there are only two

possible realizations of this table. Therefore, one can randomize the entire table probability of

f(x(rs11816049)|n) = 0.3735, and this has lead to the artifactually small p-value for rs11816049

in Table 3 of Dickhaus et al. (2012). The last column of Table 2 compares the frequentist p-

values with Bayes factors quantitatively. Namely, we applied the “p-value calibration“ method

B(p) by Sellke et al. (2001) to the p-values from the fourth column. As the authors argue below

their equation (2), B(p) provides a lower bound on the Bayes factor. This property is numerically

verified by our data.

While Table 2 focusses on the 34 smallest Bayes factors, Figure 1 displays a scatter plot of

p-values against Bayes factors for all m = 1,778 SNPs under investigation. The high value

of approximately 0.69 for Spearman’s rank correlation coefficient between the two quantities

confirms that the good accordance between the orderings of frequentist p-values and Bayes

factors extends beyond the subset of small Bayes factors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

p-values

B
ay

es
 F
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to

rs

Spearman rho = 0.6884

Figure 1: Scatter plot of p-values against Bayes factors computed from data for m = 1,778
pre-screened genomic positions. Data were generated by The Wellcome Trust Case Control

Consortium (2007), sub-study for Crohn’s disease.
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Table 2: The 34 smallest Bayes factors computed from the data on Crohn’s disease reported by

The Wellcome Trust Case Control Consortium (2007). Bold-face rows correspond to significant

associations when applying the frequentist multiple test from Section 3.4 of Dickhaus et al.

(2012). The last column contains a lower bound on the Bayes factor as a function of the p-value

from the fourth column; see equation (2) of Sellke et al. (2001).

Chromosome SNP Bayes factor F2 p-value B(p)
2 rs6752107 8.202e-07 1.243e-08 6.151e-07

2 rs10210302 9.218e-07 1.374e-08 6.762e-07

2 rs6431654 9.521e-07 1.461e-08 7.165e-07

2 rs3792106 9.738e-07 1.264e-08 6.248e-07

2 rs3828309 2.400e-06 3.709e-08 1.725e-06

1 rs11805303 0.0001377 1.528e-06 0.00005563

5 rs17234657 0.0003479 9.397e-07 0.00003545

16 rs2076756 0.0006028 3.835e-06 0.0001300

5 rs9292777 0.0006926 7.460e-06 0.0002394

5 rs1505992 0.0008678 5.337e-06 0.0001761

1 rs2201841 0.0009063 8.980e-06 0.0002837

5 rs11750156 0.001321 6.876e-06 0.0002222

5 rs1122433 0.001467 7.619e-06 0.0002441

5 rs10055860 0.001531 8.035e-06 0.0002562

5 rs1553577 0.002525 1.590e-05 0.0004775

1 rs10489629 0.002814 4.325e-05 0.001181

5 rs1553576 0.003703 2.262e-05 0.0006578

5 rs4957317 0.004201 2.635e-05 0.0007552

5 rs4957313 0.004259 2.681e-05 0.0007671

5 rs6896604 0.005239 3.293e-05 0.0009238

1 rs12119179 0.005239 5.510e-05 0.001469

5 rs6866402 0.007412 4.746e-05 0.001284

16 rs17221417 0.008712 7.688e-05 0.001980

16 rs2066843 0.008857 6.230e-05 0.001640

5 rs10473203 0.009061 4.716e-05 0.001277

5 rs11747270 0.009616 1.610e-05 0.0004831

1 rs11209033 0.009909 0.0001071 0.002661

7 rs10228407 0.01140 0.0002086 0.004806

5 rs4957295 0.01679 0.0001104 0.002736

5 rs10213846 0.01827 0.0001164 0.002867

16 rs3135499 0.01897 0.0002507 0.005650

5 rs11957134 0.01954 3.629e-05 0.001009

5 rs4957297 0.02126 0.0001369 0.003310

5 rs1000113 0.02264 4.210e-05 0.001153

5 Decision theoretic multiple comparisons

5.1 Prior probabilities for the null hypotheses

For the application of Bayesian decision theoretic multiple comparison procedures as consid-

ered, for instance, by Müller et al. (2004), Müller et al. (2007) and León-Novelo et al. (2013),
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the probability model from Section 2 has to be completed by specifying prior probabilities for the

null hypotheses Hj , 1 ≤ j ≤ m. In this, especially for large m, it is common practice to assign

the same prior probability π0 (say) to each Hj ; cf., for instance, Chapter 2 of Efron (2010) and

the references therein. Principled ways towards a multiplicity-adjusted choice of π0 have been

presented by Dawid (1987) and Scott and Berger (2010), among others. Assuming exchange-

ability of the Hj , Dawid (1987)’s proposal was to take π0 = Π
1/m
0 , where Π0 = Prob(H0),

H0 =
⋂m

j=1 Hj , is specified by the researcher. Westfall et al. (1997) extended Dawid (1987)’s

idea to cases with strong dependencies between the null hypotheses. In the context of genetic

association studies, such strong dependencies are present at least in blocks of loci which are

in linkage disequilibrium (LD) with each other. LD is the technical way to refer to correlations

between the allelic states of different genetic markers in the same chromosome, see Lewontin

and Kojima (1960). In human populations some combinations of alleles along the same chro-

mosome (haplotypes) occur at frequencies that are different from what would be expected out

of random combinations of the markers’ allelic frequencies. The biological reason for this is the

mechanism of inheritance, which implies that blocks of DNA are necessarily inherited jointly. It

is important to note that LD information is available from external databases (for example, those

by The International HapMap Consortium (2005) and The 1000 Genomes Consortium (2010))

before the actual study data are ascertained. Therefore, utilization of LD in the definition of π0

is recommendable. Based on this idea, we propose to modify π0 = Π
1/m
0 in that m is replaced

by the effective number of tests Meff.; cf. Dickhaus and Stange (2013), Section 4.3 of Dickhaus

(2014), and references therein. In particular, quantification of Meff. on the basis of probability

bounds of order 2 (making use of the bivariate between-marker correlations, i. e., the LD coeffi-

cients) has been advocated by Moskvina and Schmidt (2008) and Dickhaus and Stange (2013).

For the example described in Section 4, Dickhaus et al. (2012) applied this method and arrived

at an effective number of tests of Meff. = 1,350.45 < m = 1,778.

Remark 3. The methodology by Moskvina and Schmidt (2008) and Dickhaus and Stange (2013)

for computing Meff. makes use of probability bounds for chi-square test statistics. These are

not part of our Bayesian probability model. A generic method for computing the effective num-

ber of tests, which only depends on the eigenvalues of the LD matrix, has been developed by

Cheverud (2001) and Nyholt (2004). In practice, however, their method leads to very large ef-

fective numbers of tests and its usage is therefore not recommended (Dickhaus et al. (2012)).

Another method which is solely based on a principal component analysis of the LD matrix is the

simpleM method derived by Gao et al. (2008).

5.2 Application of Bayesian multiple tests to real data

Here, we return to the real data example from Section 4 and explain how to apply one spe-

cific Bayesian decision theoretic multiple comparison procedure to this dataset. First, making

use of the methodology described in Section 5.1, we transformed Bayes factors into posterior

probabilities, by computing

1 − vj = P(Hj |data) =
F

(j)
2

π1/π0 + F
(j)
2

, π1 = 1 − π0, 1 ≤ j ≤ m.
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Next, we consider actions (decisions) dj ∈ {0, 1}, where dj = 1 has the interpretation that Hj

gets rejected (decision in favor of Kj), 1 ≤ j ≤ m. Following Müller et al. (2004), we let the

posterior expected counts of false positive and false negative decisions, respectively, be defined

as

FD =

m
∑

j=1

dj(1 − vj), FN =

m
∑

j=1

(1 − dj)vj ,

and consider the expected posterior loss (i. e., posterior risk) functional given by

R(d, data) = cFD + FN, d = (d1, . . . , dm)>,

for a given cost parameter c > 0. The functional R(d, data) is a natural extension of (0, 1, c)
loss functions for testing a single hypothesis to the multiple testing setting (cf. Müller et al.

(2004), p. 992).

Proposition 1 (Theorem 1 of Müller et al. (2004)). The Bayes-optimal decisions under the risk

functional R(d, data) are given by

dj = 1 ⇐⇒ vj ≥ c/(c + 1), 1 ≤ j ≤ m.

Proposition 1 shows that the decision in favor of Kj takes place as soon as the posterior prob-

ability vj for the validity of Kj is large enough (depending on the cost c). Since vj is an antitone

transformation of F
(j)
2 , dj equivalently amounts to a thresholding of these Bayes factors.

Table 3 lists the number of rejections (according to the decision rule defined in Proposition 1) as

a function of Π0 and c. As expected, the number of rejections is a decreasing function both of

c and of Π0. If c = 0, then only the type II error component contributes to the risk R(d, data),

such that R(d, data) can trivially be optimized by rejecting all null hypotheses. However, as c
increases, the number of rejections sharply decreases. This is the price that has to be paid for

the high (effective) multiplicity of the problem, because π0 = Π
1/1350.45
0 is close to one for all

considered values of Π0. However, for the SNPs with the five smallest Bayes factors (namely

those which are smaller that 10−5, see Table 2), the data overrule even large values of Π0 and c,

such that the corresponding five null hypotheses are rejected under any parameter configuration

in Table 3.

6 Frequentist-Bayes reconciliation

The good accordance between frequentist p-values and Bayes factors that we have reported

in Section 4 leads to the question if the frequentist and the Bayesian approach can be recon-

ciled under our setup. To this end, Wakefield (2009) considered the saturated logistic regression

model corresponding to the contigency table data for testing genetic associations. In an asymp-

totic setting (N → ∞), he derived a Gaussian prior for the regression coefficients which is

guaranteed to lead to an ordering of the Bayes factors which coincides with that of frequentist

p-values.
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Table 3: Number of rejected null hypotheses according to the decision rule from Proposition 1

as a function of the prior probability Π0 for the global hypothesis H0 and the cost parameter c.

Π0 c number of rejections Π0 c number of rejections

0.1 0.0000 1778 0.7 0.0000 1778

0.1 0.0125 51 0.7 0.0125 32

0.1 0.0250 45 0.7 0.0250 27

0.1 0.0500 38 0.7 0.0500 21

0.1 0.1000 29 0.7 0.1000 15

0.1 0.2500 21 0.7 0.2500 11

0.1 0.5000 16 0.7 0.5000 7

0.1 1.0000 14 0.7 1.0000 6

0.1 2.0000 9 0.7 2.0000 5

0.1 4.0000 7 0.7 4.0000 5

0.1 10.0000 6 0.7 10.0000 5

0.3 0.0000 1778 0.9 0.0000 1778

0.3 0.0125 45 0.9 0.0125 21

0.3 0.0250 39 0.9 0.0250 16

0.3 0.0500 29 0.9 0.0500 14

0.3 0.1000 24 0.9 0.1000 9

0.3 0.2500 16 0.9 0.2500 6

0.3 0.5000 14 0.9 0.5000 6

0.3 1.0000 10 0.9 1.0000 5

0.3 2.0000 7 0.9 2.0000 5

0.3 4.0000 6 0.9 4.0000 5

0.3 10.0000 5 0.9 10.0000 5

0.5 0.0000 1778

0.5 0.0125 40

0.5 0.0250 32

0.5 0.0500 27

0.5 0.1000 19

0.5 0.2500 14

0.5 0.5000 11

0.5 1.0000 7

0.5 2.0000 6

0.5 4.0000 5

0.5 10.0000 5

As outlined in Section 4, one computationally very inexpensive method to transform F2 to the p-

value scale is to apply the inverse transformation [B(p)]−1 (Sellke et al. (2001)) to F2, provided

that F2 is smaller than 1. This leads to the upper p-value bound

p(F2) = −
F2

e × LambertW(−1,−F2/e)
, (9)

where e = exp(1) and LambertW(−1, ·) denotes the branch of the Lambert W function with
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parameter k = −1, see http://www.maplesoft.com/support/help/Maple/

view.aspx?path=LambertW for details. The right-hand side of (9) is easily computable

with standard statistics software. Since B(p) is a one-to-one mapping for p ∈ (0, e−1), it is

guaranteed that the order of the Bayes factors and that of the upper p-value bounds defined by

(9) coincide. However, in terms of statistical significance, this approach is conservative, because

p(F2) is an upper bound on the actual p-value and may not be sharp.

Based on our considerations from Sections 1 and 2, a maybe more straightforward, albeit com-

putationally very intensive approach towards the reconciliation problem consists in interpreting

the Bayes factor as a statistic F2 : X → R and carrying out a frequentist significance test

based on this test statistic. Let us briefly outline a simulation scheme for a Monte Carlo approx-

imation of the distribution of F2 under H (Algorithm 1). For this, we denote by f ∗
2 the actually

observed value of the Bayes factor F2 at a given genetic locus based on the corresponding

contingency table x.

Algorithm 1.

0. Take n1., n2., and f ∗
2 as input. Fix a number BMC of Monte Carlo repetitions. Initialize the

integer counter with 1.

1. For b from 1 to BMC do:

(a) Draw a pseudo-random number a(b) from the log-Cauchy(0, π) distribution.

(b) Draw a pseudo-random tuple (n
(b)
.1 , n

(b)
.2 , n

(b)
.3 )> from DMultinomial(3, N, a(b)). This step

can for instance be performed by making use of the MATLAB routine

polya_sample.m from the Fastfit toolbox by Thomas Minka.

(c) Draw a pseudo-random table x̃(b) from the conditional distribution with point mass func-

tion f(·|n(b)), where n(b) = (n1., n2., n
(b)
.1 , n

(b)
.2 , n

(b)
.3 )>. This step can be performed

efficiently by making use of the AS 159 algorithm by Patefield (1981). A MATLAB

implementation can be found under the URL http://people.sc.fsu.edu/

~jburkardt/m_src/asa159/asa159.html.

(d) Compute the Bayes factor F
(b)
2 based on x̃(b). If F

(b)
2 ≤ f ∗

2 , increase counter by 1.

2. Return the relative frequency

p̂F2
(x) =

counter

BMC + 1
. (10)

The following result is an immediate consequence of the law of large numbers and the construc-

tion of p̂F2
(x).

Proposition 2.

(a) The quantity p̂F2
(x) defined in (10) consistently (BMC → ∞) approximates the frequen-

tist p-value pF2
(x) = P (F2 ≤ f ∗

2 |H).

(b) The p-value pF2
(x) is an increasing transformation of f ∗

2 .
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Remark 4. Notice that p̂F2
(x) cannot be smaller than (BMC + 1)−1. In practice, one will there-

fore typically have to choose BMC very large to ensure that p̂F2
(x) can possibly be smaller

than a multiplicity-adjusted significance threshold. Since the present paper proposes the usage

of Bayesian decision theoretic multiple comparison procedures, we do not present numerical

values for the p̂F2
(x(j)), 1 ≤ j ≤ m, here.

7 Concluding remarks

We have presented an application in which Bayesian inference is easier and less computational

demanding than (exact) frequentist inference. The main reason for this is that the parameter

space stays constant with increasing sample size, while the cardinality of the sample space

increases with N . Our approach enables the researcher to carry out decision theoretic multiple

comparison procedures for testing genetic associations. Such procedures incorporate the prior

probability for the validity of the global hypothesis as well as potentially non-symmetric costs for

false decisions into the statistical methodology. Furthermore, we discussed several ways how

to transform the proposed Bayes factors (which are very easy to compute in our setting) into

p-values, such that the ordering of both summary statistics with respect to the genetic loci under

investigation is the same.

There are several possible extensions of this work. First, recall that we considered a non-

informative prior for the random column counts (n.1, n.2, n.3)
>. However, in practice there will

often be prior information about the prevalence of the disease (the expected relative frequency

of phenotype 1) and about the locus-specific allele frequencies in the target population. Incor-

porating this information into a different prior for (n.1, n.2, n.3)
> is straightforward. Second, one

may incorporate linkage disequilibrium information not only in the construction of Meff., but more

explicitly in a probability model for π0 (cf. Geisser (1984)) or for the observables themselves, as

proposed by Malovini et al. (2012). Third, it may be interesting to study the effect of the discrete-

ness of X on the performance of decision theoretic multiple comparison procedures relying on

posterior probabilities. In the frequentist context, Finner et al. (2010), Habiger and Peña (2011)

and Dickhaus et al. (2012) have recently demonstrated that randomization techniques can in-

crease the statistical power to detect true alternatives in discrete models. Finally, an interesting

and challenging problem consists in adapting the concept of effective numbers of tests to the

Bayesian context. There are at least two possible ways in this respect: One may analyze the

equation πMeff.

0 = Π0 under a probability model (with block dependencies) that explicitly incor-

porates the biological mechanism leading to LD, or one may replace the chi-square statistics

considered by Moskvina and Schmidt (2008) and Dickhaus and Stange (2013) by Bayesian

quantities, for instance by local false discovery rates as proposed by Yekutieli (2013).

Finally, one limitation of our approach in comparison to that of Wakefield (2009) is that non-

genetic covariates are not included in our probability model. Future research shall aim at ex-

tending the model such that adjustments for such covariates become possible.
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