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Abstract

Using a delay differential equation model with two time delays, we investigate the dy-
namics of a semiconductor laser with an active cavity coupled to an external passive cav-
ity. Our numerical simulations indicate that when the coupling between the two cavities
is strong enough and the round-trip time of the active cavity is an integer multiple of the
round-trip time of the external passive cavity, a harmonic mode-locking regime can develop
in the laser with the pulse repetition period close to the passive cavity round trip time. We
also demonstrate that the output field intensity sensitively depends on the relative phase
between the electric fields in the two cavities giving rise to a resonant behavior. The period
and width of the resonances depend on the ratio of the round-trip times and the coupling
between the two cavities. We show that the coupled cavity system under consideration can
demonstrate a bistability between different regimes of generation.

1 Introduction

Passively mode-locked semiconductor lasers generate short optical pulses with high repeti-
tion rates varying from few to hundreds of GHz. They have important applications in optical
telecommunications, sampling, and division multiplexing [1, 2, 3, 4, 5, 6]. Optical spectrum of
these lasers is a frequency comb with the line spacing equal to the pulse repetition rate of the
mode-locked regime. This repetition rate is limited by the fact that active medium length must
be sufficiently large to achieve laser generation as well as by the operational frequencies of the
optical modulators [7]. Therefore, different methods for pulse repetition frequency multiplica-
tion in such lasers have been used. Among them are the schemes employing colliding pulse
mode-locking [8], the group delay dispersion in optical fibers (temporal fractional Talbot effect in
optical fibers) [9, 10], chirped fiber Bragg grating based on the same Talbot effect [11, 12], and
a number of uniform fiber Bragg gratings [7]. Another method of increasing the pulse repetition
rate in a mode-locked laser is based on the use of a Fabry-Perot interferometer as an external
spectral filter. This method is attractive due to its simplicity and robustness since commercially
available Fabry-Perot filters may be employed [13, 14]. Experimentally it was realized by differ-
ent authors, see, for example, Ref. [13, 14, 15, 16, 17]. The idea of this method is the following
[13]. If the separation between transmission peaks of Fabry-Perot interferometer is exactly m
times (m is an integer number) larger than the pulse repetition rate of the laser, then only those
laser modes will be transmitted through the Fabry-Perot filter which coincide with the transmis-
sion lines of this filter. Since this leads to an increase of the separation between the resulting
laser modes by m times, one can expect that the repetition frequency can be increased m times
[13]. Typical solid state mode-locked femtosecond lasers have free spectral range from about
100 MHz to 1 GHz [18, 19]. On the other hand, for the precision measurements of astronomical



objects, a comb spacing of 10 to 30 GHz is ideal [19]. This is why filtering of femtosecond-
laser frequency combs by an external Fabry-Perot cavity is used to generate a broad spectrum
of resolvable lines for astronomical measurements, for instance, in astronomical spectrograph
calibration (see reviews [19, 20, 21]).

The problem of mode selection in single section semiconductor lasers is one of the most im-
portant problems in the control of laser radiation parameters [22]. In particular, semiconductor
lasers with a fixed and predetermined number of primary modes are of interest for a number of
applications. For example, two-colour devices are useful for terahertz generation by photomixing
[23]. In order to achieve a single mode operation in Fabry-Perot semiconductor lasers different
methods have been used. In a distributed feedback laser, a Bragg grating in the active cavity
can result in single mode emission [24]. An alternative technique that can modify the lasing
spectrum is the incorporation of a number of scattering centers in the form of slots into the laser
cavity [25, 26]. This technique enables the design of single mode lasers, two mode lasers, or
passively mode-locked discrete mode lasers [27, 28].

Furthermore, systems consisting of optically coupled lasers can exhibit a very rich variety of dif-
ferent dynamical phenomena and have much in common with other nonlinear systems [29, 30,
31, 32, 33]. For example, in optically coupled phase locked lasers the break up of phase-locking
can lead to the appearance of chaotic dynamics [31]. The nonlinear dynamics in passively
mode-locked semiconductor lasers is actively studied nowadays [34]. In [35, 36, 37, 38, 39]
the dynamics of passively mode-locked semiconductor lasers was studied theoretically using
a system of delay differential equations model and experimentally. The dynamics of optically
injected and hybrid mode-locked semiconductor lasers was considered e.g. in [40, 41].

Optical bistability have been intensively studied for decades because of its potential application
to all-optical logic and signal processing, see e.g. [42]. The existence of optical bistability in
the system comprising a cavity mode and an ensemble of two-level atoms was demonstrated
theoretically in [43]. It was shown that two stable cw regimes may coexist in this system and a
hysteresis was observed between these regimes when the frequency of the external harmonic
signal was changed. Optical bistability was also studied theoretically and experimentally in op-
tically injected semiconductor lasers [44], semiconductor lasers with optical feedback [45, 46],
two coupled semiconductor lasers [47], optically injected two-section semiconductor lasers [48],
and other laser systems.

Here using a delay differential equations model we study the dynamics of passively mode-
locked semiconductor ring laser coupled to an external passive cavity. The external cavity in
this case is used as a filter which suppresses certain longitudinal modes of the passively mode-
locked laser. We demonstrate an increase of pulse repetition frequency f,, by a factor of 2 and
3 when the external cavity length is 2 and 3 times smaller than the active cavity. We study the
dependence of these regimes on the model parameters and coupling coefficients between the
two cavities. We demonstrate that changing the relative phase between the two electric fields
in the two cavities leads to a periodic appearance of mode-locking windows with frequencies
2f, and 3 f,,, respectively. The period and width of these mode-locking windows depend on the
external cavity length.

Finally we demonstrate the existence of optical bistability between a mode-locked regime and
irregular pulsations in the model equations. We have found that a bistable behavior arises when



the relative phase between electric fields in two cavities and the pumping power are changed.

2 Model Equations

Our analysis is based on a set of delay differential equations (DDE) describing time evolution
of the electric field amplitudes in the active cavity A;(¢) and in the external cavity As(t), as
well as the saturable gain G(t), and the saturable absorption ()(t) in the gain and saturable
absorber (SA) sections of the active cavity (see Fig. 1). This model is given by:
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Here T} (15) is the round trip time in the active (passive) cavity. The parameters ¢ and 1 de-
scribe the phase shifts of the fields A; and A, after the round trip in the active and passive
cavity, respectively. Equations (1)-(4) generalize the model of a passively mode-locked semi-
conductor laser proposed in [35, 36, 37] to the case of two coupled cavities. The parameters
K, K1, and ko describe the reflectivities of the mirrors 3, 2, and 5, respectively, see Fig. 1. Typ-
ical values and a short description of the model parameters are given in Table 1. Each of the
two coupled cavities has its own spectral filtering element. Since the passive cavity is empty,
we assume that the spectral filtering bandwidth is much larger in the passive cavity than in the
active one, 2 > ~;. Below, for simplicity we will consider the case when 1) = 0. The effect of
the phase ¢ on the dynamics of coupled cavity laser is studied in Section 5. Let the active cavity
round trip time be equal to 25 ps. This corresponds to the pulse repetition frequency close to 40
GHz in the absence of external cavity and to 77 = 2.5 in the normalized units of Egs. (1)-(4)
[37], where the time is normalized to the carrier relaxation time in the absorber section (10 ps).

3 Results of numerical simulations

3.1 80-GHz mode-locking regimes

In this section we present the results of numerical simulations of (1)-(4) with the parameter
values given in Table 1. We demonstrate that when the external cavity length is approximately
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Figure 1: Schematic representation of mode-locked laser coupled to an external passive cavity.
The active cavity contains gain section, saturable absorber section, and a spectral filtering ele-
ment with the bandwidth ;. External passive cavity contains only a spectral filtering element the
width bandwidth 5 which is assumed to be much larger than that of the active cavity, v2 << ;.
Parameters «x, <1, and ko are the reflectivities of the mirrors M,, M3, and M5, respectively.



Table 1: Typical parameter values used in simulations

spectral filtering bandwidth in the active cavity o 15
spectral filtering bandwidth in the passive cavity Yo 50
non-resonant field intensity attenuation factor per cavity round-trip K1 = ko | 0.3
linewidth enhancement factor in gain section Qg 0
linewidth enhancement factor in saturable absorber section Qg 0
pump parameter 90 0.5
unsaturated absorption qo 2
carrier relaxation rate in gain section Yy 0.01
carrier relaxation rate in saturable absorber section Yq 1
ratio of gain and absorber saturation intensities S 10
optical phase shift in the active cavity (0 0
optical phase shift in the passive cavity ) 0
active cavity round trip time T 2.5
passive cavity round trip time T, T1/2,1T1/3

twice smaller than the laser cavity length, 7o ~ T} /2, an increase of the pulse repetition
frequency by a factor of 2 can be achieved. First, we study the evolution of dynamical regimes
with the increase of the reflectivity x of the mirror 3. The bifurcation diagram in Fig. 2 shows
the laser pulse peak intensity as a function of k. To calculate this diagram we have used the
following procedure. First, Egs. (1)-(4) have been integrated from ¢ = 0 to ¢ = 5000 in order
to skip the transient behavior. Next, during the time interval from ¢ = 5000 to ¢ = 7000,
the maxima of the intensity time trace | A;(¢)|?> have been plotted for each given value of the
parameter k.

In Fig. 3 four different examples of the laser intensity time trace are given. When the reflectivity
K is small (strong coupling) the laser operates in a cw regime with the electric field intensity
independent of time. The intensity time trace illustrating this regime is shown in Fig. 3a. This
regime is indicated as C'WW in Fig. 2. An increase of k leads to the appearance a harmonic
mode-locking regime (M L») with the pulse repetition frequency close to 80 GHz (see Fig. 3b).
In this regime the laser emits two pulses per active cavity round trip time 7. The peak intensity
of these pulses increases with k for & < 0.5. Further increase of the reflectivity x up to 0.8
leads to a decrease of the pulse peak intensity. When x becomes larger than 0.8 a transition
to a regime M Lo, with two pulses in the cavity having different peak intensities takes place
via period doubling bifurcation (Figs. 3c). One of these pulses has larger pulse peak power and
the other-smaller than the peak power of the harmonic mode-locking regime with two identical
pulses shown in Fig. 3b. Finally, at large coupling strengths x = 1 the laser undergoes a
transition to fundamental mode-locking regime with the repetition frequency 38.88 GHz, see
Fig. 3d.

Fig. 4 has been obtained in a similar way to Fig. 2, but with the linear gain g, taken as a bifurca-
tion parameter instead of . As it is seen from Fig. 4, when the linear gain gq is small enough,
the laser exhibits a Q-switching regime QS with the laser intensity oscillating at a low frequency
(2 GHz), which is approximately one order of magnitude smaller than the pulse repetition fre-
quency f, of the fundamental mode-locking regime. The corresponding time trace and power



Figure 2: Bifurcation diagram presenting the sequence of dynamical regimes taking place with
the increase of the reflectivity k. 7o, = T7/2, other parameter values are given in Table 1.
CW, M Ly, and M Lo, indicate continuous wave, 80 GHz mode-locking regime, and 80 GHz
mode-locking regime with 2 pulses in the cavity having different peak powers, respectively.
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Figure 3: Intensity time traces at different values of the reflectivity parameter . (a): CW regime,
k = 0.02, (b): 80 GHz mode-locking M Lo, k = 0.3, (c): harmonic mode-locking regime with
two pulses having different peak powers M Lo, k = 0.9, (d): 40-GHz fundamental ML regime,
k=1

spectrum are presented in Fig. 5. Q-switching regimes in passively mode-locked quantum dot
lasers were studied theoretically in [39]. For the values of the parameter gy within the interval
(0.161,0.361) the laser operates in a cw regime. With further increase in the pump parameter
go, a transition to a harmonic mode-locking regime with approximately twice higher repetition
rate takes place as shown in Fig. 3b. Finally, for large go > 1.5 a cw regime stabilizes once
again.

3.2 120-GHz mode-locking regimes

In this subsection we study the dynamics of a passively mode-locked semiconductor laser cou-
pled to an external cavity of length L /3, where L is the active cavity length (75 = T3/3). In
the simulations we have used the parameter values gy = 3, k1 = 0.3, and ko = 0.9. Other
parameter values are given in Table 1. Similarly to the case in the previous section, when the
coupling strength « is large enough one can expect the appearance of harmonic mode-locking
regime with “multiplied” pulse repetition frequency 3 f,.. Such regimes were observed in numeri-
cal simulations of a model of passively mode-locked semiconductor laser without external cavity



Figure 4: Pulse peak power | A;|? versus gy, k = 0.3, Ty = T} /2. Other parameter values are

given in Table 1. Q-switching regime shown in Fig. 5 is indicated as ).S.
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Figure 5: Laser intensity time traces for go = 0.1, and x = 0.3 (a). Power spectrum (b). Other
parameter values are the same as in Fig. 4.
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Figure 6: Bifurcation diagram illustrating pulse peak power | A;|? as a function of reflectivity
Ty = T1/3, g0 = 3, k1 = 0.3, and ko = 0.9. Other parameter values are given in Table 1.
Mode-locking regimes with three pulses in the cavity having different peak powers are indicated
M Ls,. Intensity time trace of this regime is shown in Figs. 6a,b. M L3 indicates harmonic

mode-locking regime with the pulse repetition rate 120 GHz, see Fig. 6d.

(v = 1) at sufficiently large values of the pumping parameter g [37].

Bifurcation diagram illustrating the dependence of the pulse peak power |A; |2 on the reflectivity
K is presented in Fig. 6. When £ < 0.05 the laser exhibits periodic pulsations (A L3,) with
the period close to 27} /3 determined by the sum of the length of the two cavities. Two intensity
time traces of this regime corresponding to x = 0.01 and x = 0.03 are plotted in in Figs. 7a,b.
At slightly larger reflectivities the laser starts to operate in CW regime (see Fig. 7¢). When
K becomes close to 0.07 harmonic mode-locking regime with the “multiplied” pulse repetition
frequency close to 3 f,, appears. The field intensity time trace for this regime is shown in Fig. 7d.
Finally, when k becomes large enough a transition from the harmonic mode-locking regime to
a CW regime takes place.

To study the effect of the injection current on the harmonic mode-locking regime with the pulse
repetition frequency 3 f,,, in Fig. 8 we present a bifurcation diagram illustrating the dependence
of pulse peak power |Aﬁ on the pump parameter gq. This figure corresponds to the fixed value
of the reflectivity K = 0.15, for which this regime occurs in Fig. 6. When g, is small enough
the laser operates in Q-switching (QS) regime (see Fig. 9), which corresponds to a periodic
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Figure 7: Laser intensity time traces for different values of the reflectivity . (a): M L3, regime
of periodic pulsations with the period determined by the sum of the round trip times of the two
cavities, 277 /3, k = 0.01, (b): M L3, regime, k = 0.03, (c): CW regime, x = 0.05, (d): 120
GHz mode-locking regime M L3, x = 0.15. Other parameter values are the same as in Fig. 6.
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Figure 8: Pulse peak power | A;|? versus go, Th = T1/3, k = 0.15,k; = 0.3, and k5 = 0.9.
Other parameters are the same as in Fig. 6.

pulse train with the pulse peak power oscillating at low frequency close to 1.7 GHz. When g
becomes close to 0.3 harmonic mode-locking regime with the pulse repetition frequency close
to 3f, (M L3) appears, as it is seen in Fig. 7d. Finally, for go > 0.66 a CW regime becomes
stable.

Our analysis indicates that the harmonic mode-locking regimes with the pulse repetition rate
3 f, can be observed not only in the case when the external cavity is three times shorter than
the active one T, = T3 /3, but also for 75 = 277 /3. In both this cases every third mode of
the active cavity coincides with a certain mode of the external passive cavity and, hence, the
mode-locking regimes with the pulse repetition rate 3 f,, can be expected. Bifurcation diagram
obtained for the case 7o = 27} /3 is similar to that shown in Fig. 6.

4 Nonzero linewidth enhancement factors

In this subsection we study the effect of the linewidth enhancement factors on the dynamics of
Egs. ( 1)-( 4). It is known that at sufficiently large linewidth enhancement factors mode-locking
regime can be destabilized leading to the appearance of irregular pulsations. The influence of

11
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Figure 9: (a): Intensity time traces illustrating Q-switching regime for gy = 0.14, (b): Spectrum.
Ty =1T1/3, k = 0.15, k1 = 0.3, ke = 0.9. Other parameters are the same as in Fig. 8.

the a-factors on the dynamics of passively mode-locked semiconductor laser without external
cavity was studied in [37]. Fig. 10 was obtained by taking the linewidth enhancement factors
as bifurcation parameters. It is seen from Fig. 10a corresponding to o, = 1.0 that the largest
pulse peak powers were observed in the case when the linewidth enhancement factors in the
two sections are approximately equal: o, = «, ~ 1. This can be intuitively explained as
follows [37]. Since gain and loss enter in equation (1) with opposite signs, the contributions of the
gain and absorption sections into the pulse chirp must compensate each other, at least partially,
when the two linewidth enchancement factors have the same sign. When « is increased the
pulse peak power decreases a transition to chaotic and cw regimes takes place (starting from
ag ~ 1.7). Similar behavior was observed for o, = «;, see Fig. 10b: the pulse peak power
decreases with the increase of the two linewidth enhancement factors and a transition to chaotic
regime takes place at oy, = oy = 3. It was found in [37] that this transition is associated with the
intermittency between mode-locking solution and chaotic intensity pulsations. Slightly above the
transition point, time intervals characterized by almost regular mode-locking behavior alternate
with irregular spiking. The duration of the "regular"time intervals decreases with the increase of
«y, and, finally, a fully chaotic regime develops. The break up of mode-locking regime can be
explained by the presence of intracavity dispersion. When the linewidth enhancement factors
are large, frequency separation of the laser modes becomes nonequidistant due to the strong
intracavity dispersion, and mode-locking regime disappears.

12
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Figure 10: Bifurcation diagrams obtained by changing the linewidth enhancement factors «
and o,. Tp = T /2. (a) Maxima of the intensity time trace vs o, a,; = 1.0, (b) Maxima of the
intensity time trace vs o, = «, kK = 0.5. Other parameters are given in Table 1.
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5 Influence of the relative phase ¢

In the previous section we assumed that the relative phase between the fields in both cavities
is @ = 0. This means that the frequency of the central mode of the active cavity coincides with
that of the passive cavity. In order to satisfy this condition it is necessary to make optical length
of the external cavity n times smaller than the optical length of the active cavity (Ls = L;/n,
n-integer number) with the precision of a small fraction of a wavelength. However, since in
reality it is rather difficult to build the two cavities with such a high precision, it is interesting
to consider the dynamics of the coupled cavity laser in the case when the central mode of the
passive cavity is shifted in frequency with respect to that of the active cavity, ¢ # 0. To this
end we take the phase ¢ as the bifurcation parameter and perform numerical integration of
the model equations (1)-(4) with the parameters given in Table 1, 7o = 77/2, and k = 0.5.
Bifurcation diagram illustrating the dependence of the pulse peak power | A; |2 on the parameter
¢ is presented in Fig. 11. It is seen that this dependence has a multi-resonant character and
is periodic with the period equal to 27. This periodicity can be easily understood by taking into
account the invariance of equations (1)-(2) under the transformation ¢ — ¢+ 27. In Fig. 11 the
values of ¢ characterized by a single-valued pulse peak power (peak powers of all pulses in the
intensity time trace are equal, see Fig. 12a) correspond to mode-locking regimes with the pulse
repetition frequency close to 2 f,,. The pulse peak power of this regime achieves its maximum
at = km with k£ = 0,£1,+2.... Finally, near ¢ = (1/2 + k)7 regimes with non-periodic
pulsations (N P P) of the pulse peak power are observed. The intensity time traces of these
regimes corresponding to a cloud of points in Fig. 11 are shown in Fig. 12b for ¢ = 0.57.

Resonant behavior similar to that presented in Fig. 11 was observed in the case T, = 7' /3 as
well, see Fig. 13. However, in this case the maximal pulse peak power of the harmonic mode-
locking regime at ¢ = km, k = 2, 4+4, 4+6... and ¢ =~ 0.66k7, k = 1, £2... is larger than that
in the case T, = T} /2 and the windows of non-periodic pulsations are located around ¢ =
0.47, m, 1.77. The nonperiodic NPP regimes appear as a result of destabilization of harmonic
mode-locking due to the interference between the electric fields in the two cavities. Note that
the resonant behavior shown Fig. 11 is similar to the dependence of the transmission function
of a Fabry-Perot cavity on the relative phase ¢ [49].

6 Optical bistability

Bistable devices are important in the field of optical signal processing. They can be used as
optical logic elements. In the present section we demonstrate the appearance of optical bista-
bility in the model equations (1)-(4). We consider the case of nonzero linewidth enhancement
factors in the gain and absorber sections, o, = 3 and «, = 1. Fig. 14 shows the dependence
of the field intensity maxima | A;|? on the phase ¢ for T, = T} /3. This figure was obtained by
numerical integration of the model equations at each value of the parameter ¢ on an equidistant
grid with the solution calculated at the previous value of ¢ taken as an initial condition. After
the integration the pulse peak intensities were plotted versus the phase ¢. This procedure was
repeated with stepwise increasing and stepwise decreasing of the phase parameter ¢. Black
circles and red crosses in Fig. 14 correspond to the case when parameter ¢ was increased and

14
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Figure 11: Pulse peak power |A;|? versus ¢. k = 0.5, k1 = 0.3, Ky = 0.3, and Ty, = Ty /2.
Other parameters are given in Table 1. N PP indicates a regime with non-periodic pulsations
of the electric field, see Fig. 12b.
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Figure 12: Intensity time traces |A;(t)|* calculated for different values of the parameter ¢.
(a): 80 GHz mode-locking, @ = m(b): regime of non-periodic pulsations NPP, ¢ = 0.57.
K1 = ko = 0.3,k =0.5,and T, = T1/2. Other parameter values are given in Table 1.
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Figure 13: Bifurcation diagram of the pulse peak power |A;|? versus ¢. k = 0.15, k1 = 0.3,
ko = 0.9, and Ty = T}/3). Other parameter values are given in Table 1.

decreased, respectively. It is seen from the figure that within the intervals 0.647 < ¢ S 0.747
and 1.37 < ¢ < 1.47 the laser exhibits a bistability between harmonic mode-locked states
(M Ls) with the repetition rate close to 120 GHz and non-periodic regimes (/N P P). Further-
more, our simulations demonstrated that the appearance of optical bistability in the system is
related to nonzero linewidth enhancement factors in the gain and absorber sections.

In typical experiments on optical bistability the laser output power is measured as a function
of the injection current [45, 46, 47]. The diagram shown in Fig. 15 is similar to those in Fig. 4
and Fig. 8, but was obtained with the pump parameter g taken as a bifurcation parameter
instead of the detuning ¢. Fig. 15 was obtained for the case when the external cavity length
was three times smaller then that of the active cavity, 7, = 717/3. It is seen from this figure
that when pumping is small the laser operates in Q-switching regime (QS). With the increase
of go a transition to harmonic mode-locking regime with the pulse repetition rate close to 120
GHz (M Lsy) takes place, see black circles in Fig. 15. Finally, at gy ~ 1.5 the laser starts to
operate in CW regime (C'IW;). When the pump parameter is decreased (red crosses in Fig. 15)
the laser starts from a CW regime (C'W,, in Fig. 15), but the electric field intensity in this case is
larger than that of the regime C'IW;. The regime C'W}, is stable for gy = 0.65. Below this value
a transition to a harmonic mode-locking regime with the frequency close to 3 f,, (M Ls;) takes
place. Further decrease of gg leads to the transition to Q-switching regime QS coinciding with

that obtained by increasing go.

Physical reasons of the appearance of bistability can be different. For example, it was demon-
strated in Ref.[47] that bistability in 2 coupled semiconductor lasers arises due to the gain satu-
ration that is strongly affected by the mutual coupling of the two cavities.

To demonstrate that the bistability shown in Fig. 15 is related to the presence of the nonzero
linewidth enhancement factors in the model equations we integrated these equations with «
taken as a bifurcation parameter, and gy = 2.98, see Fig. 16. Red crosses and black circles

16
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Figure 14: Bifurcation diagram of the pulse peak power |A;|* versus ¢. ¢qo = 3, Kk = 0.15,
k1 = 0.3, Ky = 0.9, T, = T1/3, ay = 3,4 = 1. Black circles (red crosses) correspond to
the case when ¢ was increased (decreased). Other parameter values are given in Table 1.

were obtained by decreasing the parameter «, from oy, = 3 to oy, = 0 along the branches
CW,, and C'W;, respectively, see Fig. 15. The result of these simulations is plotted in Fig. 16.
It is seen from Fig. 16 that two stable CW branches coexist for o, < a; =~ 0.55. However, at
small oy < a; the branch CW with smaller laser intensity becomes unstable and bistability
disappears.

7 Conclusions

In conclusion, we have studied the dynamics of a 40-GHz passively mode-locked semiconductor
laser coupled to an external passive cavity. Our analysis was based of a set of delay differential
equations governing the time evolution of the electric field envelopes in the two cavities, sat-
urable gain, and saturable absorption. We have shown that the dynamical behavior of the laser
depends strongly on the length of the external cavity, the coupling strength between the two
cavities, pumping parameter, and the relative phase ¢. If the length of the external cavity is two
or three times smaller than the length of the active cavity and the coupling between two cavities
is strong enough, it is possible to generate mode-locking pulses with the “multiplied” repetition
frequency close to 2 f, or 3 f,, respectively.

We have investigated the effect of the linewidth enhancement factors on the laser dynamics. In
particular, our numerical simulations indicate that at large linewidth enhancement factors mode-
locking regimes with the pulse repetition rates 2 f,, and 3 f,, can be destroyed and, as a resuilt,
a chaotic behavior can develop. Beak up of the mode-locking regimes can be attributed to the
intermode distance variation due to the intracavity dispersion.

We have studied the effect of the phase ¢ describing the relative position of the two frequency
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Figure 15: Bifurcation diagram of the pulse peak power | A;|* versus pump parameter go. o =
3,k =0.15k1 = 0.3,kp =0.9,T, =T1/3, oy = 3,a, = 1, and ¢ = 0. Black circles (red
crosses) correspond to the case when gy was increased (decreased). Other parameter values
are given in Table 1. C'W; and C'W, indicate two bistable CW regimes. M Ls; and M Lg;,
correspond to harmonic mode-locking regimes with the pulse repetition frequency close to 120
GHz.
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Figure 16: Bifurcation diagram of the pulse peak power |A; |?

parameter values are the same as in Fig. 15.

versus a. go = 2.98. Other
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combs associated with active and passive cavity on the system behavior. Numerical simulations
indicate that the pulse peak power has a periodic dependence on ¢ and there is a transition
between nonperiodic and mode-locking regimes when ¢ changes. This periodic dependence
seems to have the same nature as the dependence of the transmission function of a Fabry-
Perot cavity on the electric field phase.

We have demonstrated the existence of optical bistability between different laser operation
regimes. The bistability arises when the linewidth enhancement factors are nonzero in the gain
and the saturable absorber sections. At zero or sufficiently small linewidth enhacement factors
no bistability was observed in our numerical simulations.

Authors are grateful to M. Radziunas and I. Kashchenko for helpful discussions.
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