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A SEMIDISCRETE SCHEME FOR A PENROSE-FIFE
SYSTEM AND SOME STEFAN PROBLEMS IN R3

OLAF KLEIN

A

Abstract

This paper is concerned with the Penrose-Fife phase—field model and some Stefan
problems, in which the heat flux is proportional to the gradient of the inverse absolute
temperature. Recently, Colli and Sprekels proved that, as some parameters in the
Penrose-Fife equations tend to zero, the corresponding solutions converge against the
solutions to these Stefan problems.

Following their approach, we derive a time-discrete scheme for the Penrose-Fife
equations, such that analogous convergence properties hold. Furthermore, we show
some error estimates and prove the existence of solutions to the scheme.

1 Introduction

In [CS94], Colli and Sprekels considered an initial boundary value problem for a Penrose-
Fife system with nonconserved order parameter, and proved that solutions to this problem
for appropriate initial values converge against solutions to some Stefan problems, if the
parameter § or € or both in the equation for the order parameter tend to zero.

In this paper, we introduce a time—discrete scheme for the Penrose-Fife system. We will
repeat the a priori estimates derived in [CS94], and, following ideas from Colli, Horn, Lau-
rengot, Sprekels, and Zheng (see [CS95, Lau94, HSZ93]), we derive some L*(Q)-bounds.
Using the same techniques as Colli in [Col95], we get error estimates for our scheme. Thus,
we can prove convergence against the solution to the Penrose-Fife system, as the time step
size tends to zero, and against the solution to one of the Stefan problems, as § or € or both
also tend to zero. Moreover, we do not only derive an error estimate for the approximation
of the relaxed—in-time Stefan problem by Penrose-Fife, similar to the one derived by Colli,
but also for the other Stefan problems considered here.



2 Main results

2.1 Notations and desired problems

Before describing our problems, we introduce some auxiliary notations. Let 8 be the maximal
monotone graph defined by

(—00,0], for r=0

B(r) = {0} , for O<r<1 , : (2.1)
[0,+00), for r=1

and let (-,-) represent either the duality pairing between H'(Q)* and H*(Q) or the scalar

product in L?(£2). Here, Q C R? denotes a bounded domain with smooth boundary T'.

We consider a problem with a Penrose-Fife system (P, ), a relaxed—in—space Stefan problem
(P.), a relaxed-in—time Stefan problem (P;), and a Stefan problem (P) as in [CS94].

(Ps):| Find a quadruple (6, u, X, {) fulfilling

0 € H(0,T;L*(Q)) n L=(0,T; H(N)) N L™ (Qr), (2.2)
u e HY0,T;L*(Q)) n L*0,T;H*(Q)) N L= (Qr), . (2.3)

x € Wh(0,T; L*(Q)) n H'(0,T; HY(Q) n L=(0,T; H*(Q)), (2-4) .
¢ € L=(0,T; L*(Q)), (2.5)
g >0, u= % a.e.in Qrp, , (2.6).
0<x <1, £ef(x) ae in Qr, ' (2.7)

(Be(cof + Lx) (-, t),v) = K,/V’U,(-, t)eVudz + /('yu — ) (-, t)vdo
Q r

+(g(-,t),v), Yve HY(Q), forae te(0,T), (2.8)

ox: —eAx+€ = L{ugc—u) ae in Qp, (2.9)
9x o

n = 0 ae. in X, (2.10)

6(-,0) =6, x(0)=xs ae in Q. (2.11)

(Ps):| Find a quadruple (6, u, x, §) fulfilling

e L°0,T;I*(R), ueL®0,T;H\Q)), xe€I®Qr), (2.12)
cd+Lxy € WbH(0,T; HY(Q)), (2.13)
(cof + Lx)(-,0) = e, in HYQ), (2.14)
(2.5)—(2.8), and
x € Wh=(0,T;L*)), (2.15)
oxt+& = L(ugc—u) ae. in Qr, (2.16)
x(-,0) = x, ae in Q. (2.17)



(P.):| Find a quadruple (6,4, x,§) fulfilling (2.12)—(2.14), (2.5)~(2.8), and

x € L%(0,T; H¥(Q)), (2.18)

—eAx+§& = L(ug—u) ae in Qp, (2.19)
Ox .

5, = 0 aein X. (2.20)

(P):| Find a quadruple (§,u, x,£) fulfilling (2.12)—(2.14), (2.5)—(2.8), and

€ =L(uc —u) ae. in Q. (2.21)
Here, T' > 0 stands for a final time, the positive constants cg, &, L, uc represent physical

constants, and we have set Q7 :=Q x (0,7), ¥ :=T x (0,7).

2.2 Assumptions

1t is required that

g€ L% (9r), (2.22)
yeL®(X), v2c¢ aein X, v€L®X), ' (2.23)
CeL®(X), (>c¢ aein X, GeL®2), (2.24)

g € L*(0,T; L2(Q)), 7€ L™(0,T;C'I)), ¢eL®0,T;H*)), (2.25)

hold for two positive constants c,, c;. We assume that for the initial data 6;, x,

es 1= cols + Lixs, (2.26)
9, € HY(Q), 6,>0 ae. in Q, In(8,) € L*(£), (2.27)

xs € HY(Q), 0<x,<1 aein (2.28)

Ug i= gl €HY(), a<u,<b aein Q, (2.29)

hold for two positive constants a, b.

Except for the positive lower bound for ¢ and the regularity assumption (2.25), these are the
same assumptions as in Colli-Sprekels [€S94, (2.2)—(2.8)]. The lower bound for ¢ is required
to derive L*=(Q)-bounds for the approximation of 8, the regularity assumptions for v and
¢ are needed to prove the existence of an approximation for u in H2(Q). The regularity
assumption for g; is necessary for the error estimates.

From (2.27), we can obtain that (2.29) holds (see [CS94]).

2.3 The numerical scheme

Since in a numerical implementation one would like to change the time step size, we consider
decompositions of [0, T] that do not need to be uniform.



Definition 2.1 An admissible decomposition Z is a finite subset Z of [0,T] such that
Zz{to,tl,...,t}{} with0 =t <t1 <...<tg =T and

tm+1 - tm S 2(tm - tm-—l)) V1 S m < K. (230)
The width |Z| of the decomposition is defined by |Z| := 1éna.<:>cK(t,,, — tm-1)-

Remark 2.1 In (2.30), the factor 2 could be replaced by any constant greater than 1. Since
our decompositions will arise numerically by time step control, (2.30) is an upper bound for
the new time step size.

For § > 0,& > 0, 6ose, uose, Xose € L*(2), and an admissible decomposition Z = {to,t1,...,tx},
we define, for 1 < m < K,

tm

1
R := tm — tm—1, gm(z) == . / g(z,t)dt, Vz € Q, (2.31)
mtm—l .
L b ;]
() 1= / WoH)dt,  Gnlo) = / ¢(o,t)dt, Vo €T, (2.32)
mtm-—l mtm—l
" as well as
eose = Coblose + LXose, : (2.33)
and consider the problem: '
(Dzge):| For 1 <m < K find
O € L),  Um Xm € HAQ),  &n € L3(Q) (2.34)
such that
5&1——%"’-1 — eAXm +&n = L(uc —um) ae in 9, (2.35)
€n € B(Xm) aein 0, (2.36)
OXm .
—8&1{- = 0 aein T, (2.37)
and
co O ;0’"—1 4 [ Xm ;Xm_l + kAU, = gm ae in Q, (2.38)
0< Upy, Om= 1 a.e.in £, - (2.39)
Um
ou ‘
_plim — ¢ ein T, 9.40
Kp = = Ymlm ¢ a.e. in (2.40)
with
0o := Bose, Ug = Uose, X0 ‘= Xoée- (2.41)
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Applying Green’s formula, we can rewrite (2.38) and (2.40) as

0m—6m— m . Xm— v
/(co - 1+LX hx l)vdm—m/VumOVvdm
Q m ™ Q

—/(7mumv —(mv) dz = /gm'u dz, VYve HY(Q). (2.42)
r Q

We prove the following existence result in section 3:

Theorem 2.2 Assume that (2.22)-(2.25) hold. For all § > 0, € > 0, all admissible de-
compositions Z and all initial values Oyse, uose, Xose € L2(Q) there exists a unique solution to
( D Z,J,s) . '

Remark 2.2 We use the solution to (D Z,g,e) to construct an approximate solution
(§Z65, 72 ga EZJE) in (L*(0, T; L(£2)))* to the Penrose—Fife system (Pse). The function
§2% is defined linear in time on [tm—1,tm], such that éz‘se(tk) = 0 holds for £k =0,..., K.
" The functions 42% and %%% are defined analogously. We define £2°° for ¢ € (tme1,tm] @s

Ezg (t) = &m. We want to point out that neither §2% = <1 nor 7% cp ()2255) hold a.e.
on QT.

2.4 Convergence results and error estimates

We now state the main results of this paper. They are proved in sections 4 and 5. -

Theorem 2.3 Approximation of the Penrose-Fife system:
Let § > 0, € > 0 be fized. Assume that (2.22)-(2.29),

xs € H*(Q), a;:: =0 a.e in T, (2.43)
gt € L™ (QT) , (2.44)
Oose = 93: Ugse = Us,  X08e = Xs» (2'45)

hold. Let (8, u,x, &) be the solution to (Ps.). Then there is a positive constant C, independent
of Z, such that

cZse 728 _ NZée _

”X - XHLw(o,T;LZ(n))an(o,T;Hl(n))+Hu u L2(0,T;L2(Q))+H9 L2(0,T5L2(Q)) < cylzl,
(2.46)

and, as |Z| tends to 0, it holds
%% — x  weakly in HY(0,T; HY(R)), (2.47)
7 weakly-star in ' WH(0,T; L*(Q)) n L*=(0, T; H*(Q)), (2.48)
EZJE — ¢ weakly-star in L™ (Q7), (2.49)
a%% —u  wedkly in H'(0,T;L*(Q)), (2.50)
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weakly-star in  L=(0,T; H'(Q)) N L™ (Qr), - (2.51)

weakly in " L*(t,, T; HX Q) V0 <t, <T, (2.52)
67% — 0  weakly in H'(0,T; L*(Q)), (2.53)
weakly-star in  L*°(0,T; H*(Q)) N L= (Qr). (2.54)

The existence of a unique solution to the Penrose-Fife equations follows from Proposition
2.6 in [CS94]. The assumption (2.44) is only needed since we use this Proposition. If
this assumptions did not hold, it would still be possible to prove that the limit of the
approximations is a solution to (P ).

The following Theorems correspond to the Theorems 2.8 to 2.10 in [CS94]. The existence
and uniqueness of the solutions to the Stefan problems were proved by Colli and Sprekels in
[CS94].

Theorem 2.4 Approximation of the relaxed—-in—time Stefan problem:
Let § > 0 be fized. Assume that (2.22)-(2.29), as well as

6058 = 63: Ugse — Usg, ) (255)

X0ée — EAXOJE = Xs a.c. in Q; (256)
0

Xose € H3(Q), ’8‘;& =0 aein T, (2.57)

hold. Let (8,u,x,&) be the solution to the relazed—in-time Stefan problem (Pgs). For every
- &> 0 there is a positive constant C, independent of Z, such that for 0 < e < £ it holds

Zde ~Zde AZde /
HX B X“Lw(o,T;LZ(Q)) + ”u ~ Uemize@y T ”9 —b L2(0,T5L1(R)) <C ( 2]+ \/E) :
, | (2.58)
As |Z| and € tend to 0, we have the convergences (2.49), (2.50), (2.51), and
X% — x  weakly-star in ' WH*(0,T; L2(Q)) n L*=(0, T; H*(Q)), (2.59)
' weakly-star in L™ (Qr), (2.60)
7% — 0 weakly-star in L™(0, T; L*()). (2.61)
Theorem 2.5 Approximation of the relaxed—in—space Stefan problem:
Let € > 0 be fized. Assume that (2.22)-(2.29), (2.48), (2.45), and
—eAxs +0B(xs) 2 L(ugc —us) a.e.in Q, (2.62)

hold. Let (0,u,x,&) be the solution to the relazed-in—space Stefan problem (P_s) For every
0 > 0 there is a positive constant C, independent of Z, such that for 0 < § < § it holds

+ e -0 oz = © (\/ﬁ - \/S) '

(2.63)
As |Z| and § tend to 0, we have the convergences (2.49), (2.50), (2.51), (2.52), (2.53),
(2.54), and

+ ”ﬁzas _

“52255 —x

L2(0,T;H(R2)) L?(0,T;L%(Q))

X%% — x  weakly-star in H'(0,T; H'()) N L=(0,T; H*(Q)). (2.64)



Theorem 2.6 Approximation of the Stefan problem:
Assume that (2.22)-(2.29), (2.57),

B(xs) 2 L(uc—wu,) ae in Q, (2.65)

a a :
Upse — '2"X065 = Us — §Xs, 9055 - Uose a.e. in Q, (266)
—eAXose + B (xose) D L(uc—uose) ae in Q, (2.67)

hold. Let (6,u, x, &) be the solution to the Stefan problem (P). For all § > 0, £ > 0 there is
a positive constant C, independent of Z, such that for 0 < § < § and 0 < ¢ < ¢ it holds

~Zde __
”E L2(0,T;L%(n)) + “u 20,7503 (@) L2(0,T;L(Q))
< C(\/|Z|+5%+si). (2.68)

As|Z|, 8, and € tend to 0, we have the convergences (2.60), (2.61), and

ZJE

” NZse _

EZJE —+ ¢ weakly-star in  L*=(0,T; L*(Q)), (2.69)

@%% — u  wedkly-star in H'(0,T;L3(Q)) n L=(0, T; HX(Q)). (2.70)

Remark 2.3 If the assumption g; € L%(0,T; L>(f)) in (2.25) is not fulﬁlled the error
estimates do not hold, but one can prove the convergences in the Theorems 2.3 to 2.6 using
compactness arguments as in [CS94, Section 4].

Passing the error estimates for the approximation to the limit, we get an error estimate for the
solution to the Penrose-Fife system with respect to the Stefan problems under consideration.

Corollary 2.7 Assume that (2.22)-(2.29) and (2.44) hold.

a) If Oose, Loss, and Xose are defined as in one of the Theorems 2.4 to 2.6, the problem ( Ps,)
with 8, and xs replaced by Bys. and xose, has a unique solution (655,1#55, X%, 5’55).

b) Let § > 0, > 0 be fized and let (8, u, x,£) be the solution to the relazed—in—time Stefan
problem (Ps). If Oose, wose, and Xxose are defined as in Theorem 2.4, then there ezists a
positive constant C, such that, for 0 < e < g,

+[uf® - w +]|o% - < Cve. (2.1)

“X - X"L°°(0,T;L2(Q)) L2(0,T;L2(Q)) L2(0,T5LY(Q)) —

c) Let § > 0,e > 0 be fized and let (9,u,x,€) be the solution to the relazed—in—space
Stefan problem (P.). If 6ose, Uose, and Xose are deﬁT_zed as in Theorem 2.5, then there
exists a positive constant C, such that, for 0 < § <0,

de

% = x + || - + 6% - <CVs. (2.72)

L2(0,T;HY(Q)) ”Lz(O,T;Lz(Q)) L2(0,T5L2(Q) —



d) Letd > 0,2 > 0 be fized and let (0, u, X, €) be the solution to the Stefan problem (P). If
Bose, Uose, and Xose aTe deﬁ_ned as in Theorem 2.6, then there exists a positive constant
C, such that, for0 < § < d and0<e <§g,

+ “u&: _

+ 6% -0

<C (5 + 54)
(2.73)

[ = €l 070 ;
L?(0,T5L2(R)) L?(0,T;L2(Q)) L(0,T5LM®)) —

Proof. Assertion a) follows from [CS94, Proposition 2.6] and Lemma 4.1. For K € N
we define the admissible decomposition Z = {to,t1,...,tx} with t; := T£. Theorem 2.3,
Lemma 4.1, and a) yield, as K tends to oo, that

XZJE — X&s strongly in LOO(O,T, Lz(ﬂ)) N LZ(O,T, HI(Q)),

gzéz-: . 555 weakly-star in L*™ (QT) )

a%% %, §%% 0%  strongly in L*(0,T; L*(Q)),

hold. Therefore, thanks to the weak—star lower semicontinuity of norms, (2.71), (2.72), resp.
(2.73), follow from (2.58), (2.63), resp. (2.68). O

Remark 2.4 The error-estimate (2.71) is similar to the one derived by Colli in [Col95,
Theorem 3], except for the norm for % — g. Colli estimates the C°([0, T], H*(Q)")-norm of
this error. : ‘ ‘

3 Proof of Theorem 2.2

In this section, we will prove Theorem 2.2. First, we will have a close look at the approxi-
mation of the data. Next, we consider the equations for u,, and 8,, and finally the complete
system (2.34)—(2.40).

In the sequel, we use the notation ||-|| for the L?(Q2)-norm and |||, for the L?(€)-norm, for
all p € [1,00). |Q2] will denote the Lebesgue measure of the domain 2.

3.1 Approximation of the data

Now we estimate the approximation of the data.

Lemma 3.1 Assume that (2.22)-(2.25) hold. There ezist positive constants Cg, Cy, Cs, in-
dependent of € and 6, such that for all admissible decompositions Z = {to,t1,...,tx} it

holds: ‘
The functions gm, Ym, and (n defined in (2.31) and (2.32) fulfill, for 1 < m < K,

Ym € CHT),  (m € H(D), (3.1)
9l ey + IFmlley =[Gl sy + Gl ) < o (32)
Ym = Cy, ¢mn=>c ae in T, (3.3)
1 1
Tmv € H2(T'), ”7"‘2’“1{7(1“) Cy ||v||H§(r) , Yve Hz(T), (3.4)



and, for 1 <m < K,

<m+1 - Cm

+ I

” TYm+1 — Ym
Le=(T)

Pm

<G, (3.5)
L>=(T)

where the positive constants c, and c; are specified in (2.23)-(2.24).

Proof. From (2.22)-(2.24) and (2.30) one can derive (3.2) elementary with C, :=
191z @2y + 1Ml e i1y F 1€ ooy + ”C“LM(O,T;H%(PW the lower bounds in (3.3), and
(3.5) with Cp := 3||%| po(zy + 3 [|¢ill ew(sy)- Since (2.25) yields that (3.1) holds, v -+ v
is a linear continuous mapping from both L?(T") and H*(T') into itself, with norm less than
V3 [ ¥mll o ry- Since H 2(T") is an interpolation space of L?(T') and HY(T') (see [Ama93, (5.2),
(5.3), (5.193]) it follows from (3.2) that (3.4) holds.

O

3.2 The temperature equation

First we consider the equations (2.38) and (2.40) for u,,.

Lemma 3.2 Suppose that (2.22)-(2.25) hold. For all admissible decompositions .
Z = {to,t1,...,tx}, allm € {1,...,K}, and all f € L?*(Q), there ezists a unique solu-
tion u € H*(Q) to

—coﬁ—l—a — kAu = |, v>0 ae in Q (3.6)
0
TYml + na—:: =(n a.e in T. (3.7)

To prove this Lemma, we will interpret (3.6), (3.7) as an operator equation and show that
the corresponding operator is maximal monotone and surjective.

Lemma 3.3 The operator A : D(A) C L?(Q) — L*(Q) defined by

Au = —h:’u—nAu a.e. in (3.8)

D(4) = {u € H¥(Q):u fulfills (3.7) and u>0 a.e. in Q} (3.9)

18 mazimal monotone.

Proof. Even if we cannot apply [Bré71, Corollary 13] directly, since v,, and (,, are not
constant in I, the proof of this corollary can be translated to our situation. Thus we will

give only a sketch of the proof.
Using (3.3), we can, similarly to [Bré71, Theorem 12], derive a convex and lower semicon-
tinuous mapping ¢ : L?(2) — (—o0, o0}, such that its subdifferential 8¢ fulfills

0¢(u) = —kAu ae. in Q, D(3¢)={ue HQ):u fulfills (3.7) }. (3.10)
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To prove that the operator defined in (3.10) is the subdifferential, we use that (3.1) and
[Ama93, Theorem 9.2], for every f € L?(Q), yield the existence of a unique solution to

0
u—rkAu=f ae in £, ——n—ﬂ =Ynt —(n ae. in T.

on
We define k : R — (—o00, 0] by

—2In(z) for z>0

k(z) = { +00 otherwise (3.11)

This function is convex and lower semicontinuous. As in [Bré71, p. 115], we can derive a
convex and lower semicontinuous mapping 9 : L*(Q) — (—o0, 0], whose subdifferential
fulfills D(8¢) = {u € L*(2) : w> 0 ae. in Q} and v € d¢(u) if and only if v = 72 a.e. in
Q2. Analogously to [Bré71, Corollary 13|, we obtain, using (3.3), (3.2) and [Bré71, Theorem
9], that 8¢ + 89 = A is maximal monotone. O

Lemma 3.4 The operator A defined in Lemma 3.8 is coercive in L*(Q), i.e.

im A%y _ (3.12)
luli=eolu] |
Proof. Let u in D(A) be arbitrary. Applying Green’s formula, the definition of A,

Young’s inequality, and Lemma 3.1, we see that
¢
(4u,w) = [(mu—Ca)udo +5|Vul - == [0
T ™m

Cy 2 1 / 2 2 Co
> 2 2 _ — VvV — e .
= 7 ”u”L (I') % J Ca. do +K’” U’“ ‘ hm |QI

Recalling Lemma A.2, we infer that there are two positive constants C,C’, such that
(Au,u) > C ||ull3q) — C' for all u in D(A). Therefore (3.12) holds. m

Now we are going to prove Lemma 3.2. Let f € L%(Q) be arbitrary. By Lemma 3.3 and
Lemma 3.4, the operator A is maximal monotone and coercive. Therefore, recalling [Tib90,
Chapter I, Theorem 2.4], we see that A is surjective. Thus we have u € D(A) with Au = f.
Thanks to Lemma 3.3, u is a solution to (3.6) and (3.7).

Suppose we have another solution v. Rewriting (3.6) and (3.7) in terms of the differences,
testing it by u — v, applying Green’s formula and (3.3), we obtain

_ % (u—1v)? o2 Y
O—hmh/ ” dz + &||V(v — v)|| +I/c7(u v)“do.

Since uv > 0 a.e. in €2, this yields u = v. This finishes the proof. )
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3.3 Existence of a solution to the system

Theorem 2.2 follows by induction and the following Lemma.

Lemma 3.5 Assume that (2.22)-(2.25) are satisfied. Moreover, let any admissible decom-
position Z = {to,t1,...,tx}, anym € {1,...,K}, and any functions 0,,_1, Xm—1 € L3(Q),
be given. Then there exists a unique solution to (2.34)-(2.40).

Proof. We will prove the existence of a solution to (2.34)—(2.40) via Schauder’s fixed
point theorem. It follows from [Bré71, Corollary 13] and Lemma 3.2 that for every (u, x) €
L?(Q) x L*() there exists a unique solution (&, ¥) =: ¥(u, x) in H2(Q) x H2(Q) to

5%— —eAxX + B(X) > L(uc — u) + 5X;l"—1 a.e. in €, (3.13)
1 ~ X — Xm-1 om—l .
_com — KAT = —0m “+ L hm - Cp hm a.e. 1n Q, (314)
0< a.e.in Q, (3.15)
ox . 0Ou :
e 0, Ymi+ Kg = Cm a.e.in T. (3.16)
This defines a mapping ¥ : L%(Q) x L*(Q) — L%(Q) x L*(Q).
We define
‘ M = {(u, x) € HY(Q) x H{(Q):0<x <1 ae.in Q} (3.17)
Let (u, x) € M be arbitrary and define (@, %) := ¥(u, x). There are £,0 € L*(Q), such that
65—:}%3_—1 —eAx+ €= L(uc —u) ae. in Q, (3.18)
= ~ 1
Eepflx), 6= 7 & in Q. (3.19)

‘Obviously, by (3.14)—(3.16), any fixed point (u,x) of ¥ yields a solution (5, u, X, é) to
(2.34)—-(2.40), and vice versa. Therefore, it is sufficient to prove that ¥ has a unique fixed
point. ‘

We obtain from (3.13) that ¥ is in D(8) = [0, 1] a.e. in Q. Thus we have (4,%) € M;.

We test (3.14) by k., @, integrate, apply Green’s formula, (3.16), (3.3) and Young’s inequality,
to obtain

1
—co |Q] + hmk “V’&Hz + hm/ (%’-'&2 - 2—6‘—7-(,2,1) do
r

< / (=hmgm + L(X — Xm-1) — CoOm-1) Edz.
Q

We conclude, using Lemma A.2, Schwarz’s inequality, (3.2), and (3.17), that there is some
constant C; > 0, such that

- 1 -
b ey < 019045 [ O3+ (nCo100-+ LI + L ltma| + el 131
r
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This yields, by Young’s inequality, that hm(j’lé |[17,||fa,1(Q < Cy, with
1 2
Cr = o] + 5 / 0240 + = (Gt DI+ L [xmesl] + o 0l
1/tm

For Cj := ;—%Cz, we have (&, X) in Mj with
My = {(T,%) € My : [Tl 0) < Cs} - (3.20)

In the sequel, we will assume (u, x) € Ma. Now, testing (3.18) with hn, X, applying Young’s
inequality, Green’s formula, (3.16) and Schwarz’s inequality, leads to

0, . ] ' - z - -
SRR = 5 xmesl® + P [V + o [ e < L fuc =l 11
Q

Since we have ¥ in [0,1] and €% > 0 a.e. in Q by (3.19) and the definition of 3, this yields,
by (3.20),

1P + A [0y < o ot P o 192+ B Li2fc + Pun Lo/ G0 = G
Thus, (4, %) is in Mj with
Ms = {(@,X) € Mz : hne |Xl[3pq) < Cs} - (3.21)
Since (3.21), (3.20), and (3.17) yield |
Ms={(8,%) € HY(Q) x H(Q) : hme [l %1(0) < Css [@ll31qy < Cs, 0< X < Lace. Q,

we obtain (see [Zei90b, (79c)]) that M is a nonempty, convex, compact set in L?(£2) x L?(2)
and, by construction, that ¥ maps Mj into itself. Since we obtain from Lemma 3.6 that ¥
is (L?(Q) x L*(Q))-continuous, the Schauder fixed point theorem yields the existence of a
fixed point of ¥ in Mj.

Lemma 3.6 ¥ is an (L3(Q)) x L%(Q))-continuous mapping.
Proof.  Let (u®,x®), (u®, x®) € L2(Q) x L(Q) be arbitrary, and
('{2(")‘, )"((i)) =T (u(i), x(i)) for i=1,2,
wima® —g® =y ® @ o g® @ = 5O 5@,

It follows from (3.13)—(3.16) that there are €1, £® e L2(Q), such that

5% —eAx+EV - = Ly ae in Q, (3.22)

a® >0, a® >0, £Mepxr®), £ epx?) aein Q, (3.23)
Coh,,,ﬂ+~1)ﬁ,(2) — KAT = L% a.e. in (3.24)

g% =0, Yml+ m-g—z =0 aein T. (3.25)

12



Testing (3.22) with X, applying Green’s formula, (3.25), and the inequality (€@ — £®)g > 0
(by (3.23) and the monotonicity of 8), we get

5 o _ ]
I+ VRIP < - [ugdo. (3.26)
m Q

Testing (3.24) with hn,, using Green’s formula, (3.25), (3.3), and Schwarz’s inequality, we

find
2

/ ~(1) (2) dz +hm07|lUl|Lz(r) +hmnHVuH < L/X'u,d:r
Q

Using Lemma A.2, (3.23) and Young’s inequality, we get for some Cy > 0,
henCs [l 2y < L / Xidz. (3.27)
3 .
Adding (3.26) and (3.27), and applying Young’s inequality, we find

Jd ., . - = - - _
o ”X“2 +e “VX”2 + hmCs ”u”irl(g) < —L/uxd:v + foudx (3.28)
™ Q

L
< rhm flull + =

Cs
I%I1° + L2 P + 2 5 Nl -

2h 2C5h

Thus, we have proved that ¥ is Lipschitz—continuous.on L2(2) x L2() . o

It remains to show the uniqueness of the fixed point. Suppose (uV), x(V), (1, x?) are two
fixed points of ¥. Thus we can repeat the estimates in the proof of Lemma (3.6) with & = u
and ¥ = x. Hence, (3.28) yields u®) = u® and x() = ¥® in H(Q).

. a

4 TUniform Estimates

In the sequel, we will assume that there are two positive upper bounds § and # for § and e,
ie.
0<§<d, O<e<E (4.1)

We will consider initial values s, Ugse, Xose and assumptions corresponding to one of the
Theorems 2.3 to 2.6, § > 0, € > 0 with (4.1), and an admissible decomposition Z =
{to, t1,- .-, tx}-

In the sequel Ci, fori e [N will always denote positive generic constants, independent of ¢
and the decomposition Z. They may depend on §, if (Pg) or (P;) is considered as limit
problem, but they are independent of 4, if we consider (P.) or (P) as limit problem. Thus
the constants only depend on ¢ if ¢ is fixed. -

We start by deriving some properties of the initial values. The first Lemma modifies Lemma
3.2 in [CS94].

13



Lemma 4.1 The initial values Oys., ugse, and xose considered in the statements of Theorems
2.8 to 2.6 are uniquely determined and satisfy (2.57). Moreover, if we define &5 € L2(R2)
by &ose = 0 if (Pse) or (Ps) is concerned (see Theorems 2.3 and 2.4), and by &5 =
eAxose + L(uc — uose) otherwise (see Theorems 2.5 and 2.6), and if we define x—, € L*(Q2)
by

Xo0ée — X-1

) 7

with hy 1= |Z|, then (2.85)-(2.37) hold for m = 0, and there are positive constants Cy, Cs,
and Cs, such that

— eAxose + €ose = L(ug — ugse) a.e. in £, (4.2)

a a 1 .
“u066||H1(Q) <0G, <L upe <b+ -, Bose = a.e. in §}, (43)
2 2 Uose
€ ”Xo«k”ip(n) + “Xoa:s”%rl(g) + llesel” < Co, (4.4)
€ose € B(Xose) a.e. in €, (4.5)
2
X0se — X-1
|1Z|

with the constants a, b being specified in (2.29). In the situation of Theorems 2.4 and 2.6,
there is a positive constant Cy, such that

HX056 - X.zz”2 + ”eOJe - 63”2 S 504- (47)

Proof. First we examine the situation of Theorem 2.3. Owing to (2.45), Gse, Uose, and
Xose are uniquely determined as ;, u,, and -x,. Using the assertions (2.26), (2.28), (2.29),
and (2.43) for the initial data as well as (2.33), (4.2) and (4.1), we obtain the assertions of
the lemma.

In the framework of Theorems 2.4 to 2.6, 65 = %68 follows from (2.29) and (2.55), resp.
(2.45), resp. (2.66). For the remaining assertions, except (4.4) and (4.7), we refer to [CS94,
Lemma 3.2]. From the estimates in the proof of [CS94, Lemma 3.2} we obtain (see [CS94,
(3.11) resp. (3.15)]) a uniform bound for ||Vxosl|® + €||Axos|’. From (4.5) we obtain
0 < xo05e <1 a.e. on Q. Therefore, we have a uniform bound for ”XOJE”fql(Q) and, by (2.57)

and Lemma A.3, also one for a]]xmlliﬁm). From (2.33), (4.3), and (4.5), it follows that

|leose||” < (22 + L) |Q2|. Therefore (4.4) holds.
In the situation of Theorem 2.4, using (2.33), (2.26), (2.56), (2.55), and (4.4), we get

Ix0se = XslI” + llease — esll* = (1 + L?)e? | AxoeeI” < (1 + L?)eCo.

Finally, we examine the situation in Theorem 2.6. Testing (2.66) with uose —us and Xose — X,
we see that

2 ‘a
N zz‘ ||u065 - us”2 - / (Xoﬂe - Xs) (UOJE - us) dz = § ”XO&E - X.s“2 . (48)
Q

Using (2.65), (2.67), the monotonicity of 8, Green’s formula, (2.57), and Young’s inequality,
we obtain

1 1
0. L | (aose =) (s — x02) 05 +¢ (5 IVl = 5 1V x0se )
Q

14



Therefore, we conclude by (4.8), (2.28), (2.33), (2.26), (2.29), and (4.3), that (4.7) holds.
O

Since (4.3) and (2.57) yield that s, uose, Xose are in L*(Q), it follows from Theorem 2.2
that (D zs.) has a unique solution 6y, ug, X0, 61, u1, X1, &1, . - 0k, uk, Xk, €k . We are go-
ing to derive some uniform estimates for this solution. The generic constants will also be
independent of the solution.

Remark 4.1 a) In the framework of Theorem 2.3 and Theorem 2.5, we obtain from
(2.45), (2.26), and (2.33) that xos: = Xxs and egsz = e, hold. Since € tends to 0 and
(4.7) holds in the situation of Theorem 2.4 and Theorem 2.6, we conclude that for the
limits considered in one of the Theorems 2.3 to 2.6, we have

HXOJ& - Xs”z + ”6065 - 63“2 — 0. (49)
b) We obtain from (2.39), (2.36), (2.41), (4.3), and (4.5) that

1
0<Umy On=—, 0<xn<1l aein Q, VO<m<K. (4.10)

m

The following seven lemmas correspond to Lemmas 3.3 to 3.10 in [CS94], except for the
estimate for the L*°(Q2)~Norm of &, in (4.12). First we work on (2.35).

Lemma 4.2 For all 1 < k < K it holds

4 Xk — Xk—1 2 L ” (Xm - Xm—l) 2
5 ! P + 6";1 B ||V -
f :
1€kl < [ L(uc — ua)ll » ”fk”Lw(Q) < || L(uc — Uk)“Lw(n)a (4.12)
g 2 £ 2 Cy u
o S N L / LVt o Vmde,  (413)
m=1 m=1

where the constants Cs, Cs are characterized in Lemma 4.1.

Proof. This proof uses ideas from Colli-Sprekels (see [CS94, Lemma 3.3] and [CS95,
Lemma 3.1]). We define &y, Xxo, ho as in Lemma 4.1. For 1 < m < K we can thus test
the difference of (2.35) for m and m — 1 by *=5X==1. By applying Green’s formula, (2.37),
(2.36), the monotonicity of 3, and Young’s inequality, we obtain that

2

6 Xm — Xm—1 2 ” (Xm - Xm—-l)
2 ” e il N
5 X'm.— — Xm-2 (Xm - Xm—l)
< : / L(u 'u.m_l) o) da. (4.14)
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Summation from m = 1 to m = k and use of (2.41) and (4.6) give the estimate (4.11).
To prove (4.12) and (4.13) rigorously, we use the Yosida approximation of g,

kr , for r<0
Bi(r) = 0 , for 0<r<1, VkeNl (4.15)
k(r—1), for 1<r
Let 1 < m < K be arbitrary. Since s — fs Br(z) dz is a continuous and convex function, it
0

follows from [Bré71, Corollary 13] that for every k& € N there is a unique Xy, ¢ in H2(Q) such
that ‘ ; ’

5Xm,k; Xm-1 _ eAXmk + Be(Xmp) = L(uc — um) ae.in Q, (4.16)
%Z—’k =0 a.e.in T. (4.17)

Since Bk (Xm,k) (Xmk — Xm—-1) = 0, by (4.10) and (4.15), we obtain by testing (4.16) with
Xm,k — Xm—1, applying Green’s formula, (4.17), Holder’s, and Young’s inequalities that

Xmk — Xm-1
hm LI AT
d ” hm

2 ¢ €
2 [Vxmell? < 5 Vel + [ Lo =tm) (X = Xm-t) - (4.18)
Q

Testing (4.16) by —hmAXm,k, resp. (Be(Xmk))” ~! for an even p € N, and using that 8,(7) >0
for all 7 € R, we obtain analogously that

) §
5nvx,n,,cn?+Eh,,.t||AX,,,,kn2 < 5nvxm_1||?.—h,,, / LV U ® Vi dz, (4.19)

Q
18t xmi)ll, < NZ(uc — wm)ll, < /191 1L (ue = tm)l|pmqy - (4:20)

Thus, the sequence (Xm,); is, by (4.17) and Lemma A.3, bounded in H?(f2), and the sequence
(Be(Xm,k)), is bounded in L*=(£2), since (4.20) implies that, if p tends to infinity,

18 (Xmp )| Loy < 1 E(ue = tm)llzeo (@) - (4.21)

Therefore, we have, for some subsequences, Xmx, — Xm weakly in H?(Q) and strongly in
L2(Q), as well as Bx, (Xmk.) = &Em weakly—star in L*°(Q). Thus,

lim /,Bkn (Xm,k,,)Xm,k": dz = /gm)Zm dz
Q Q

n,n'—oco

and therefore, by [Bar76, Prob. 1.1(iv)], £ € B(%). Now, a passage to the limit in (4.16)
and (4.17) yields that (¥, £) is a solution to (2.35)-(2.37). Since this solution is unique by
[Bré71, Corollary 13], we have X = X and &, = &,. Thus, thanks to (4.19), (4.20), (4.21),
and the weak-star lower semicontinuity of norms, we have that

) )
3 VXmlI® + €hm || Axml|? < 3 IV Xm—1]1> = Pom / LVUp @ Vmdz (4.22)
Q

and (4.12) hold. Summation of (4.22) from m = 1 to m = k and use of (2.41), (4.4), and
(4.1) give the estimate (4.13). O
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Lemma 4.3 There are three constants Cs, Cs ,Cy, such that for 1 < k < K,

Co k 2
7 2 hm

+Gs Ilukllin(m

hm \/ UmUm—1

m=1
k
< Gy (1 + Z ham |1um]|H1(g)> + 3 b /LX’” hX"“l Um h“"“l dz, (4.23)
m=1 Q m m
k
Co Z hm “ Vum m
m=1
- .
< (1 + Z hm Zh Al + Z hmilumﬂr) + Z hm/Lme o Vu,dr.(4.24)
m=1 i=1 m=1 Q

Proof. Inserting v = — (¥m — Um—1) in (2.42), applying (4.10), Young’s inequality and

(3.3), we get, after summation from m =1 to m =k,

k 2

Um — Um—1 K 2, Cyq.oq2
-0 h’m Py e — . e
: z= e R = PN
= - -
- ||Vu0H + = Z P / 2 l——%—-’y—da + = /u071d0
+/ o » Cm - C’m+1 < )
| uprdo + Z Am um———E——— do '— [ ug(1do
m=l  p m r
Xm — Xm 1 Upm — Um—1 — Um— 1 '
+LmX=:1h / - E::lh /gm . (4.25)

Using (3.2) as well as the inequalities of Holder and Young, yields, for every a* > 0,

k

—Zh /gm umld <Czh

=1 m=1

um — Um-1

[[wml] -l

m4/ UmUm—1

k
< G2 g wmm_m_ 7o-C: ,,;" (3 Vel + 5 o)

: ,
- . 4.26

+ g5 Gl ( 2 ) (4.26)

Thus, (4.23) follows using (4.25), Lemma A.2, (3.5), (3.2), Young’s inequality, (2.41), (4.3),

(2.30) and (4.26), for a* > 0 chosen sufficiently small.

Next, we multiply (2.38) by hyp. Summing the resulting equation from m = 1 to m = i,

applying (2.41) and (2.33), we find

coli + Lxi + 5 Y AnAtm = €0se + Y hmGm. (4.27)

m=1 m=1
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We test this by h; - Au;, apply (2.39), Green’s formula, (2.40), and take the sum from i = 1
to ¢ = k, to obtain

k 2 k ; k
COZhi/ (Vuz) dz + K,/ (Z h;Au; Z hmAum) dz + %Zh,/@,g do
Q Q m=1 r

i=1 U; i=1 i=1

1 k k
= = > hi / (coi + Lxi (viwi — G)) do + ) hs / LVx; e Vu;dz
: =1 g

i=1

k k i ,
+/ (GOJEZhiAUi> dz +/ (Z h;Au; Z hmgm)' dz. (4.28)
4 i=1 e m=1
Using Lemma A.4, Lemma 3.1, and (4.10), we get

k

co Y b

i=1

2

Vu; +I€
2

U;

2 CoC k
0
+ == hi6:]l

k =1

k
Z h,’ AU,’

i=1

<

K| =
M»

|i
—

k3

1=

k
hs / (coCa+ LCyws) do + 3 / LVx; o Vu; dz
r ' =1 q .

+

D

k k k-1 i
((%&- + Z higi) Z h,-Au,) dz — Z hiy1 / Ji+1 Z hmAu,, dz .
Q

=1 =1 .=l m=1

Now, (4.24) follows by applying Lemma 3.1, Young’s inequality, (4.4), and (2.30).

O
Lemma 4.4 There ezists a constant Cg such that
K 2 K | 2
S ) R et
mz=:1 hm mz=:1 ™ P /UmUm—1
Xm — Xm-1 2 6m - em—l Xm — Xm—1 2
4+ max 6”— + ileo +L
1<m<K hm hm Pon ()"
2 2
+ gmax (Il + € Ixellin @ + lualingg) < Ce. (4.29)
Proof. Applying the discrete version of Gronwall’s Lemma to the sum of (4.11) and
(4.23), we obtain (4.29) after recalling (2.42), (3.2), (4.10), (2.41), and Lemma 4.1. . O
Lemma 4.5 There is a constant Cq such that
03 [lnl] + 3% leXimla(ey < Co. (4:30)

Proof. Using (4.12), we obtain from (4.29) a uniform bound for ||{y||. Comparing the
terms in (2.35), we have, owing to (4.29) and (4.1), a uniform bound for ||eAxm,||. Therefore,
owing to the boundary condition (2.37) and the uniform bound for ||eXm || g1(q) in (4.29), we
can control {eXm || g2(qy, using Lemma A.3. From (2.41), (4.4), and (4.1), we get a uniform
bound for [[exol| gr2(g)- O
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Lemma 4.6 There ezists a constant Cyy such that

2

02}%3% <5 ”Xk“Hl(Q) + {6kl ) + Zax Z P A,
f 2 Vum
+e Z B ”Xm“HZ(Q) + Z P “ < Cho- (4.31)
m=0 m=0
Proof. Summation of the inequalities (4.13) and (4.24), use of (4.29), the discrete
Gronwall inequality, Lemma 4.1, Lemma A.2, Lemma A.3, (2.37), (2.41), and (4 4) gives the
estimate (4.31), since, by (4.27), (4.29), (4.4), and (3.2), the boundedness of Z h Auml
m=1
implies the boundedness of ||6]|. I:l ,
Lemma 4.7 There is a constant Cyy, such that
m— 2 X em - 0m— 2
Em—Omod D 4 S 2 ml <oy (4.32)
hm L%(Q) m=1 hm LY(Q)
Proof. Using Hélder’s inequality, we obtain
2
Um — Um-1 um—l
Z hm H ot Ogr}caggllukllmm) Z hem h __umum_ (4.33)
We have, by (4.10) and Schwarz’s inequality,
K 6. —0 1 2 Um — U Um —Um—1 2
R || ———— max ||0c]]> > A || s (4.34)
,;1 hm L1(Q) 0<’°<K Z hm\/m
Thus, (4.32) follows by (4.33), (4.34), (A.1), (4.29), and (4.31). 0
Lemma 4.8 There is a constant Cyp such that
e Z hom “Zﬂ—-x—"‘—l < Cha. (4.35)
‘ HY(Q)
Proof. Picking v = 1 in (2.42) and squaring the result, we arrive by Hélder’s and
Schwarz’s inequality at
2
9m - gm—l 2

Xm — Xm—
L2 /—h_l dz] < 403 +4 H'Ym”i2(1‘) ”um“frﬂ(r)
m

hm LY(Q)
+ 4Gz ey + 4 llgmll” [

Multiplying by A, summing the result from m = 1 to m = k, and applying (4.32), (3.2),
(4.29), and Poincaré’s inequality, (see [Zei90b, 53a]), yields (4.35). O
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In the sequel, L*(Q)-bounds for u,, and 8, are derived, which are needed to improve the
error estimates and the convergence results.

Lemma 4.9 There is a constant C13 such that

K

5 1 5 Um — Um-1 2
(6% +¢?) (Omax [ 1r<r}cas>§{||§k||m(m) + (6% +¢) mz=1 b | 5| < O

(4.36)

Proof. The L*(2)-bound is derived using Moser’s technique as in [Lau93, Lau94,
HSZ793, SZ93, HS]. From (4.10), we obtain, using an idea from [HS, Lemma 2.4],

em - em—l Um — Um—1 Um — Um—1 1 1 Um — Um—1
- _ )< Im T Umot 4.37
B hmu2, T Ump—1 Um /) — hmu2, (4.37)

For every p € N, we have w2 in H*(), since u,, € H?(Q) by (2.34). Taking v = —uZ}!
in (2.42), and applymg (4. 37) Lemma 3.1, and the inequalities of Schwarz and Young, we
reahze that

p_ p +2 +2
£ (g fnal) + o+ 1) [ + / (evi” = P Seet?) 0o
1 -
< / fmU’,’n+1 2 (p+1) [ litf(r) / l1do ) (4.38)
with B |
Fn = L% — G (4.39)

| Multiplying by ph., and taking the sum from m = 1 to m = k, we derive from (3.2), Holder’s
inequality, (2.41), and (4.3) that

2

4P(P+1) Zh ‘

+
; m
D+ 2)2 v

“ +2

CoH“kHﬁ*"ﬁ 4'07

10-}-2m_1

m=1

< CO( ) lﬂl+p2h / fmu P+1dx+T;I:_——2—c;(P+I)C§+2 / 1do. (4.40)
r

Since the p-fractions on the left-hand side can be uniformly bounded from below by a
positive constant, we have, by Lemma A.2,

2112

k
o [[uslE + C1a 3 b |um CPF? 4 p z him / frt? de . (4.41)
m=1

HI(Q)

First, we will estimate this analogously to Laurencot [Lau94, Lemma 2.3], using the fact
that, by (4.39), (4.35), (A.1), (3.2), and (4.1),

K
€Y hm ”fm”z < Cis. : (4.42)

m=1
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Using Holder’s inequality, (A.1), and Young’s inequality, we obtain

5

3 ¢ sl f | ex2
p[fmitiids < plifal, (/ UmUm“’“dw) < pllfalls k| Jur
Q 1 6

2 Ca || 22)?
< 017P2Hfm||61|um||%p+‘2— Ut .

Therefore we have, by (4.41) and (4.42),

D

For pp = 6, Pn41 = 5Pn now holds, by (4.1),

c 2 C1
14 < CP C'15-|‘C'17P "—6 Hax, H me

p
co [lusllf + .

4
_ 3
5l < Ot {085, (g i)

and, by (4.29) and (A.1),

Po
11<I}cax Hukl < 020 (443)
Thus, we have, by Lemma A.5,
‘ : _ L
g2 12)’;&3)%{ ||uk||Lm(Q) S 021. , (444)

Next, we will use an estimation similar to Horn-Sprekels—Zheng [HSZ93]. We define p, = 6,
Pnt1 = 2pn — 2. Recalling (4.41) with p = pn,, Schwarz’s inequality, (4.39), (4.29), (3.2), and
(4.1), we see that

k k
1
Co “’U,kniz -+ 014 Z hm ||up I|H1(Q) Cpn+2 +pn022% Z hm ”Uﬁ’:+1 “ . (445)
m=1 m=1
Setting g, = ;’;L“_Lll, we have
1 11
=2 =2), . 4.
g —e =2) (4.46)

and applying Holder’s and Nirenberg-Gagliardo’s (see [Zei90b, Chapter 54 a]) inequalities,
we can conclude that

: 27
] = ([srma) < (0 (fuzroae) )
Q Q

2=4qn 4n.
< QI gy <023”“p"1“31(9) lufe =l ey - (4.47)

Hence, by Young’s inequality,

20
1 71+1 gqﬂ gqn n— 20 - gqn ]- 20—9q" pn_ 202_.; n
e B e L

(4.48)
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where we choose €, > 0 such that

9, & Cu . (106’14) 2
—€ —_, le. g, =
9,

©
R

20 2
Recalling (4.46) and (4.1), we find that

U S
20— 9g, — 20— 9g, —

—20

20 9gn
1 \ 20-%n 20 18 K-qg_:
(pn022023%) <plCyé™® |, el < (01410) ) < Cs.

Therefore, by (4.48),
C
PCo2 f[|upn+1|( % st @y + P Casd~*Cos max {1, llufz Gy } - (4.49)

Thus, recalling (4.45), we have

1 Pot2 | - 105-507 e\ 2]
13}33%” g7 C pn ) 024025T1r_<-r}%>§{max{1, (Huklp"_l) } (4.50) |
Recalling (4.43), we can now use Lemma A.5 to obtain
5 ' :
01 IISI}%}%{ “uk”z,co(g) < Css. (4.51)

Since we have the L*°(2)-bounds for u,, in (4.44) and (4.51), to verify (4.36) it suffices to
use (4.12) and a calculation analogous to the first one in the proof of Lemma 4.7. O

ﬂemma 4.10 There is a positive constant Cor such that

€3 max (Hekllim(g) + ||9k||H1(9))

0<k<K
2
em - 0m—1

K
+s32hm( 7

m=1

K
+ Hum“frﬂ(n)) +e* )] “0m“2H1(Q) < Cy.  (4.52)
m=0

Proof.

Since the calculation for the L°(Q2)-bounds are quite similar to the estimates analogous to
Laurencot [Lau94] used in the last lemma, we will only give a sketch of the proof.

After inserting v = 6%, in (2.42), we get for p = p, + 1, with pp = 2, Pry1 = 5Pn,

Cos A\3
11333%!1%1 < —pnmaX{ng, (@agg{lwklﬁli) }
Now we have by (4.31), Lemma A.5, (2.41), (4.3), and (4.1) that

3
€2 Ogr}cas,}.{r{ Hekan(Q) < Cjp. (4.53)
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Recalling (4.10) and (4.29), we see by Hélder’s inequality that

=0
3 Ym — Um-1 Um 1
Zh 5 <éel ,ax |0 HMQ Zh hmm gcgocn. (4.54)

K
Therefore, thanks to (2.38), (4.29), (4.1), and (3.2), we have €® 3 hy, ||Aun||® < Cy. Using
m=1
Lemma A.3, (4.29), (3.4), and (3.2), we obtain

e Z hm ”um”HZ(Q) < Cas. (4.55)

m=1

Moreover, we have by (4.53), (4.29), and (4.31)

E omaX ||V9mH + 53 Z hm HVG ” < 03008 + 030010 (4.56)
m=1

Thus, (4.52) follows from (4.53)—(4.56), (4.31), and (4.1).

5 Error estimates and convergence

In this chapter, we will derive error estimates for our scheme and prove the convergence of
the approximations. We will use ideas from an error estimate for the relaxed—in—time Stefan
problem by Colli in [Col95].

In the sequel, we suppose that the assumptions corresponding to one of the Theorems 2.3
to 2.6 are satisfied, and define (6, u, X, £) as in the respective theorem.

We consider § > 0, ¢ > 0 with (4.1), and admissible decompositions Z. By Lemma 4.1
and Theorem 2.2, there exists a unique solution to (D ;) that defines a corresponding

v . ~ ~ ~ —+Zde . +Z8e _
approximation (6255,11,”5, xZ% € ), as in Remark 2.2. We define 6", @%%, and x%%

analogously to g2%,
For the functions gm,Ym;Gm, deﬁned in (2.31) and (2.32), we define g? € L* (Q7), vZ,

¢% € L*(%), analogously to § Then, we have by the definition of the approximations,
(2.34)—(2.37), (2.39), (2.42), and (2 57) (see Lemma 4.1),

%% e HY(0,T; LA(Q)), %2%, %% € L™(0,T; HA(Q)), €% € L=(0,T; I*()), (5.1)
9”5 a?* € H'(0, T; Lz(ﬂ)) e € L*(0,T; H(Q), a%% € L*(|2|, T; H*(Q)), (5.2)
SRZ% — eAXZ% + Zr=r (uc - uZJe) a.e.in Qr, (5.3)

/ (c09Z6€(t) + Litz‘k(t)) vdz — n/Vﬂ‘ZJE(t) e Vudz (5.4)

—/ Z(t)_z’se(t)-—cz(t))vda =/gz(t vdz, Vve HY(Q), for a.e.té(O,T),
Q

-z — 1
f E /6 (—)ZZJE) y 0 < EZJS, 9265 = E—Z‘S—E " a.e. in QT, (55)
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aAZJE Zde
X" _g X
on on

0%%(.,0) = Ouse,  T2%(-,0) = upse, X2%(-,0) = Xose a.e.in Q. (5.7)

=0 a.e. in X, (5.6)

In the sequel, C} will always denote positive generic constants, independent of the approxi-
mation, and the decomposition Z, as well as independent of § (resp. €), if § (resp. €) is not
a fixed parameter.

We find from Lemma 4.4 to Lemma 4.10 that

“—265 Leo(ar) T ”AZ&E Lo@r) T (”_ZJE L oriE2 @) T X" ZZ(O,T;H2(Q))>

+e [z o) + e, oz *If [ — (538)

8 (|77 ooy + 7 Loy I i) < O
£, 1= P CEE ] 2 W Cz (5.9)
e TN S M il —

+ (6 +) (o™ mariy * 17 Loy * 15 o)

+e (“AZ"E Lz(,z,THzm>)+||"“E Lz@mm») G, (5.10)
i F——— Lm(ommﬁ o

42 (107 o + 1 Loy * 17 [omiamy)

S (i PR [ I, Bt (511
| o7 + L7 im(o,T;Hlm),) < cr. (5.12)

The difference between the piecewise linear and the piecewise constant approximations can
be estimated using Lemmas 4.4 and 4.6 to 4.10,

,

< |z]Pcy,  (5.13)

) v _7265 sy TN X ppzmay <
”AZ&E -7, LZ(OTL’Z(Q)) (5 +6) “AZ&E e 1232(0,T;L2(9)) < lgfc, 1y
“92&6 -05?56 L2(0TL1(9))+€ HHZ&—— 7 ;(O,T;Lz(ﬂ)) = IZIZ G (513)
[coB?% + Lg% — (08" + L—Z"E) morm@y S 127G (516)

For the data, we have the following estimates.

Lemma 5.1

LoTize@) “’Y B 72”1:&(2) + HC CZ“L&(E) < Culal, (5.17)
Y 2e, (P2c aein I - (5.18)

|lg - o*
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Proof. From (2.22)-(2.25), (2.31), and (2.32), one can derlve elementary (5.17). The
lower bound (5.18) follows immediately from (3.3). a

Remark 5.1 If in (2.25) the assumption g; € L2(0,T; L*°(2)) is omitted, then the estimate
for g7 in (5.17) is lost But, using the p-mean value theorem (see [Ze190a Prob. 23. 9])
still could prove g — g strongly in L?(0, T; L=(Q)).

Now, we estimate the difference between the approximation and the exact solution. First,

we work on the equation for § and u. We obtain from (2.2), (2.3), (2.11) and (2.26), resp.
© (2.12) and (2.14),

0 € L0, T; L*(Q)), u€ L0, T;H(Q)), (cf+Lx)(0)=es€ H(Q).  (5.19)

Integration in time of the difference between (5.4) and (2.8) yields, by (5.7) and (2.33), for
a.e. t € (0,T) and for all v € H(R),

/ (coézsf (8) + LR75(2) — (cob(t) + Lx(t))) vd — / (eose — €5) vda

= fs/t/V(ﬂZ‘ss('r) -u('r)> e Vudz dr +// (gZ(T) —g(f))vdm dr
0 o : "0 0

+ [ [ () = ¢7(0) - (r(r)ulr) - () vdo dr. (5.20)
or '

With v = — (22%(t) - u(t)), this yields

- J (coB*® + LR%* — (b + Lx)) (375 - u) d + f[ (e0se — &) (7 — ) da
n//tv a?e(r) —u(r)) dr o V (7% —u) do
(Y(r)a™(r) = ¢*(r) = (y(rYulr) = () dr (@ — ) do
(g%(r) — g(r)) dr (3% —u) do =1 —A1 — A — As. (5.21)

We have

(5.22)
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Moreover, using (5.21), Schwarz’s inequality, (5.17), the trace theorem for H* (Q)—functlons
(5.10), and (5.19), we obtain ,

/j — (7)) % (r) dr (7% — u) do
+ //t’Y(T) (UZJE(T) — U(T)) dr (EZJE - fj ¢E(r) - 7')) dr ( u2% —u) do
> [2a ( J0) @5) - utr) df) do - 12, (5.29)

Finally, using (5.21), Hélder’s inequality, (5.17), (5.10), (5.19), and Young’s inequality, it
follows that

t
—A; < / g(T) ”-ﬂzas_ @)
0 =)
Co Z5 — U 2
< VTG, w2yl < CL, |2 +5 == (5.24)
vu“tu
Recalling (2.6) and (5.5), we see that
- / (0?5 + L7 — (o + LX) (72 — u) da
7% _ u)z . ‘
— 28 _ )\ (2% _
= —A4+co/—?—3—%———dx —L/(X ¢ x) (u u) dz (5.25)
Q Q
with .
Ay = / (0B + Lg% — (coB ™ + Lx%*) ) (7% — ) ds. (5.26)

Q
Moreover, using (5.16), (5.10), and (5.19), we obtain

Ay < ” c05255 + Lg% (coazas " Lyz‘ys)

= <|zZ|Cch.  (5.27)

HY(Q)* HY(Q)
Hence, we obtain from (5.21), Schwarz’s inequality, (5.22)-(5.24), (5.25), and (5.27) that

t

C ;EZGE €
EO uZ&e + at ./ w” (T) U(T)) a7
0
2
o (/7 sy o) 4 e
T
< L[ (%% - x) (3% - u) do + lleose — e,| |7 - u|| +121 (Cty + Cs) + Cro 2
Q
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Thus, integrating over ¢ and by parts, we find from Holder’s inequality and (2.23) that

2

S =28 __ 2 s
2290 L—Eﬁg dt +g VO/ (EZJE(T) - u('r)) dr
8 2
ok ( /Vm )t or ) o
< L// _ZJE — _Z'SE - u) dz dt + ||eose — es]| \/T”?ZZ‘;E = Ul o o)
2
+1Z|0t + e 0/ / ( / 7(r) (@%%(r) — u(r)) dr ) dodt.  (5.29)

We define & ;€' in the framework of Theorem 2.3 by ¢’ = ¢ and ¢’ = §, in Theorem 2.4 by
¢ =0 and ¢’ = 4, in Theorem 2.5 by ¢’ = € and ¢’ = 0, and in Theorem 2.6 by &' = 0 and
¢' = 0. Then, we have by (2.4), (2.15), or (2.18),

&'y € Whe(0,T; L*(Q)),  e'x € L™(0,T;H*Q)), x€L™(Qr). (5.30)

It follows from (4.1) _ ,
0<d§ <6<, 0<¢ <e<E : (5.31)

Subtractmg (2.9), (2.16), (2.19) or (2.21), from (5.3), we have that a.e. in Qr,

(5’( Z&s__Xt)_aA< ZJE—X)-I—EZJE—&':—L(ﬁZéE— )—I—(5' )AZJE_( )A—Zéa

(5.32)
From (2.10), (2.20), (2.11), and (2.17), we find that always
10X ) ,
g’ e 0 ae. in X%, §(x(,0) —x;) =0 ae.in Q. (5.33)
We multiply (5.32) by %?% — x and integrate in space. Since (EZ - £ (—ZJE X) >0a.e.

in €2, by the monotonicity of 8, (5.5), and (2.7), we find, using Green’s formula, (5.6), (5.33)
and Schwarz’s inequality, that a.e. in (0,T)

= |0 (v & =)

”51 AZJE _ Xt) n “)?Zzie _ -—X—ZJE _ L/ (EZ(SE _ ’LL) ()—6-256 _ X) dz

+(6— 5/) “Azas I—Zde _ X“ _|_ c — s’) “A_zae

2II

2% — xll . (5.34)

We obtain from integration over ¢, applying (5.7), Holder’s inequality, (5.31), (5.33), (5.8),
(5.30), and (5.13) that
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© |7 ) — x| +/llv (2%() - x®))[ @t

& |CY |Cs
D) ”XOJ& - X3||2 +T (5' Tl + “6’Xt||Loo(0’T;L2(Q))) ‘6—6 IZl (5.35)

_ L// —zse _ —zas —X> dz dt +C2 (5\;35' " 5;;') “Xzss —x

In the framework of Theorem 2.4 and Theorem 2.6, we have ¢’ = 0, and in the framework
of Theorem 2.3 and 2.5, we have &' = > 0, x; € L*(0, T; L%(Q)), and xpse = X, Hence,
adding (5.29) and (5.35), applying (5.31), Gronwall’s inequality, and (2.23), we find that

L2(0,T32(Q)) |

2 2

+ max
0<s<T

max V/ (_'U:ZJE(T) —U(T)) dr

0<s<T

/vﬂ % (r) - u(r)) dr

L*(T)

: EZ&E —u 2 N 9
.+ Nz oo T2 ” . X”Lw(OTLZ(n))“LHV( & (2 =) |2z
< Ci ([ZI + ( W \;‘ ) ”_Z& - X”L?(O,T;LZ(Q))
+ [leose — €| [ T~ , 0T Q))). (5.36)

Next, we use calculations analogous to those used in Lemma 4.7 and Lemma 4.8 to 1mprove
the above estimate. Using Holder’s inequality, we obtain for ¢ € (0,T)

T (t) — ult)

oo - e L

i = ILG(Q) (@)l 2oy - (5.37)

Therefore, by (A.1), (5.10), and (5.19),

Z&E ﬂZJ&' —u 2
T <Cl|l—— . 5.38
= L%ommn = T VR o ey o)
We have, by (5.5), (2.6), and Hélder’s inquality, for ¢ € (0,T)
57 lua—wﬂ 4%% 57 3
Thus, (5.11) and (5.19) yield
= Ze 2
—Zé’s u —u
- < CK || — ) 5.39
” L2 @I @) = T VaZ%u || L2002 (0)) 539
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Inserting v = 1 in (5.20), squaring, and using Schwarz’s and Young’s inequalities, we arrive
for a.e. t € (0,7) at

L [ (%) - x(t)) da

—rt

+ ”6055 - 63“2 +

= Ofg('lgzas(t)—"(t 2 / v(r) (@ (r) - u(r)) dr

L)

LA(T)
”—Z5E

+? =l

L2(r) + ”Cz - C

2
L?(o,T;m(n))) '

Thus, by integration over ¢, Lemma 5.1, Schwarz’s inequality, (5.10), (5.31), (5.13), and
(5.15), we get

L2(0,T;L2(T)) L2(0,T;L2(T)) + Hg

2

T
— 26 zée
50/ h/(x (1) —X(t)) dz| dt < Cy (IZI + HB L2(0TL1 @) + ||eose — esl|2
¢ ‘ 2
25
+01£%}7{" /’Y(T) (uz (1) - u(T)) dr ).(5.40) '
| 0 12(T)
Recalling (5.36), (5.38), (5.39), (5.40), and Poincaré’s inequality, we see that
=78 __ 2 2 T8
U\I/_%s_u + ”—_ZJE T Ueersi@y T “9265 IR PO A
Uu LZ(OTLz(Q)) (’ ¥ ( )) (0: ) ( ))
<Zée _ 7P K
3k Xilmwm» Ve (2 = )| oo
* — —Zde __
s Oz (‘Zl + ( \/‘ \/’ ) ” Xl z2(0,1522(0))
+[leose — | l T~ L2(0,T5L2(Q)) * lleose = 63”2)' (541
By (5.41), (5.8), (5.10), (5.19), and (5.30), we obtain
—Z8e _ Zée 112
N L’z(o:r'L%(Q)) + “0 L@(D,T;Ll(n))
L (00 L g 2
< Cs \/_ 7 + {lease — esl| + |lecse — esl|” ] - (5.42)
We consider the convergences for § — ¢, e — €', and |Z| — 0. Thus, (5.42) and (4.9) yield
%% —u  strongly in  L2(0,T; L2(Q)), (5.43)
9% 50 stronglyin L2(0,T; L)) | (5.44)

It follows from (5.10) that (‘Z"E) and ( ZJE) are uniformly bounded in L™ (0 T; HY(Q)), that
(uzas) is uniformly bounded in H(0,T; L3(R)), and (5.11) yields that (9 ) and (9255) are
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uniformly bounded in L*°(0, T'; L*(f2)). Using compactness (see [Zei90a, Prob. 23.12]), (5.43),
(5.14), (5.44), and (5.15), we see that the convergences (2.70) and (2.61) hold; moreover,
recalling (5.20), (4.9), and Lemma 5.1, we have for all v € L?(0, T; H'(f))

L / / (27%%(t) - x(t)) v(t) dz dt —> 0, (5.45)

since yZv — ~yv strongly in Lz(O, T; L*(T")). Thus, we obtain (2.60) from (5.8) and com-
pactness. ‘

In the situation in Theorem 2.6, we have ¢’ = ¢’ = 0. Since we have, by (5.32) and (5.8),
Z e * -
”f - E“Lz(OTLf(Q)) = 12(0,7;L3 () + 0 (\/S T \/g) !

(2.68) follows using (5.42), (5.14), and (5.15). Moreover, (5.9) and compactness, yield that
- (2.69) hold. Since the convergences (2.60), (2.61), and (2.70) have already been shown,

Theorem 2.6 is proved. ‘
It remains to examine the passage to the limit in the Theorems 2.3, 2.4 and 2.5. We have
min{e’,§'} > 0. Therefore, it follows from (5.10) that (HZ"E) and ( Z'SE) are uniformly

bounded in L* (Qr), and that ("Z‘SE) is uniformly bounded in H*(0,T; L%(Q2)). Using com-
pactness, (2.70), and (5.14), we see that the convergences (2.50) and (2 51) hold. Thus,
u € L*® (Q7), and therefore, by (5.10) and (5.14),

”——ZJE

~Zde __ =20 __
llu L2(0,T5L2(Q)) + ”u ”Lz(o,T;Lz(Q)). :
L | =Zde
< |gzoe _ gzée n ( 8¢ ull )2 u?e —u
< |z L2(0,T3L3(9) ” ey I¥llz= VaZeu || e
';EZJE —u
< CL (lZl + | . (5.46)
T\ Va?%u |2 zizaq)) |
Hence, we obtain by applying (5.41), Young’s inequality, (5.13), and (5.15), that
—Zde __ 1|2 “ 2
u u _}_“ﬁzse_ 22 , +”92&e_9 , .
X /—zs‘;‘u 20TLE) L2(0,T5L3(9)) L2(0,7;L1(Q))
1 2
Zde - 1 (oZde _
4 “ X“Lw(ocz"m(n)) 2 ”\/E-(X X) L2(0,T;H(Q))
(5 5’) (8 1)2 . 1 9
< CullZ —ell” |- 5.47
< aiiz+ (S5 + ) o e (5.47

In the situation of Theorem 2.4, we have §' = § > 0, and ¢ — ¢ = 0. Applying (5.47),
(4.7), (2.60), (5.8), (5.13), and compactness, we obtain that (2.58), (2.59), and

ex?% = 0 strongly in L2(0,T; H*(Q)) (5.48)
hold. Therefore, comparing the terms in (5.32), applying (2.59), (2.50), and (5.14), we have
%% ¢ weaklyin L2(0,T; L*(Q)). (5.49)

Thus, (5.9) and compactness lead to (2.49). Since we have already shown that (2.50), (2.51),
(2.60), and (2.61) hold, Theorem 2.4 is proved. :
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It remains the passage to the limit in Theorems 2.3 and 2.5. We have ¢/ > 0. Therefore,
(5.11) leads to a uniform L* (Qr) N L>(0, T; H*(2))-bound for @ZJE) and (9755) and to a

uniform H*(0, T; L*(Q))-bound for §7%. Thus, we have by compactness, (5. 15), and (2.61),
that 6 € L (QT) the convergences (2.53) and (2.54) hold, and that

“5265 _
L2(0,T;L%(Q))
, 1475

< |gzée _5%% ( 720e le_—U
S S riza@) T 7 s lli=m)) | Tz L2(0,712(@))

—EZJE —u
s<&0m+ : 550

VaZoey L2(0,T;L2()) (550

For a given t, € (0,T) and admissible decompositions Z with |Z| < t,, we have, by (5.10),
a uniform L*(¢,, T; H*(Q))-bound for 2%%. Thus, compactness and (2.50) yield (2.52).
Using (2.60), (5.8), (5.13), and compactness arguments, we obtain that (2.64) and

2% —s x weakly in L2(0,T; HY(Q)) , (5.51)
hold. From § — ¢’ and (2.64) it follows that
6%Z% — §'x;, weakly in L*(0, T; L3(Q)).

" Therefore, a comparison of the terms in (5.32) yields, by (5.51), (2.50), and (5.14), that
(5.49) holds. Thus, compactness and (5.9) lead to (2.49).

By remark 4.1, we have egs. = e,. Thus we obtain (2.46), resp. (2. 63) from (5.47) and (5.50).
Since we have already proved that (2.49)—(2.54), (2.60) and (2.64) are satisfied, Theorem 2.5
is proved.

In the framework of Theorem 2.3, we have § = ¢’ > 0. Hence (2.64), (5.8), and compactness
lead to the additional convergence %% — x weakly-star in W>(0, T; L?(Q)), and thus,
by (2.64), the convergences (2.47) and (2.48) hold. Since (2.49)-(2.54) have already been

shown, Theorem 2.3 is verified.
This finally ends the proof of the Theorems 2.3 to 2.6 : O

A Appendix
Since Q is a subset of R, we obtain from Sobolev’s embedding theorem:
Lemma A.1 There is a positive constant C, such that
”v”LG(Q) <C ”U“HI(Q) Vue HI(Q) (A1)
The following result is well-known.

Lemma A.2 There are two positive constants C,C', such that, for all v € H(Q),

o130y < C (IVOl? + [0lZay) < C 017y - (A.2)
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The following classical elliptic estimate can be found in [Ama93, Remark 9.3 d].

Lemma A.3 There is a positive constant C, such that for all v € H%(Q)

lolxey < © (JA0l + ol gy + 017) . (43)

In particular, for allv € H*(Q) with 3 =0 a.e. on T, it holds
lolZeey < © (A0l + Jlolf?) - (A-4)
Elementary calculations lead to:

Lemma A.4 Forn €N, ay,...,an, by,...,b, €R, it holds

i a; f: bj = (i ai) (i bi) - nil bjt1 i as, (A.5)

i=1l gj=1 i=1 =1 j=1 i=1

n i ’ 1 n 2 1.0 . ‘
ZaiZaj = = }:a,- +—Za,-. (A6)
i=1 j=1 2 \i= 23 ' ‘

By having a close look at the proof in [Lau93|, one can extend the Lemma A.1 in [Lau93, '
Lau94] to the following result.

Lemma A.5 Leta>1,b2>0,c€R, and py be given numbers such that po + %5 > 0. We
consider the sequence (pn) of positive real numbers defined by ppi1 = apn + ¢ for all n € Ny.
Then, r}l—)n;o Pn = 00 holds and there is a positive constant C, such that, for every Cy > 1,

every Cy > 1, and every sequence (o) of real positive numbers, satisfying

ap < CP°, o, < Copl max {C’{’", aﬁ_l} VneN, (A.7)
it holds
1 1 pola—1)+c|
limsupai® < CCyF~VroteCy Pole=be (A.8)
n—>00
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