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A SEMIDISCRETE SCHEME FOR A PENROSE-FIFE 
SYSTEM AND SOME STEFAN PROBLEMS IN [R3 

OLAF KLEIN 

Abstract 

This paper is concerned with the Penrose-Fife phase-field model and some Stefan 
problems, in which the heat flux is proportional to the gradient bf the inverse absolute 
temperature. Recently, Colli and Sprekels proved that, as some parameters in the 
Penrose-Fife equations tend to zero, the corresponding solutions converge against the 
solutions to these Stefan problems. 

Following their approach, we derive a time-discrete scheme for the Penrose-Fife 
equations, such that analogous convergence properties hold. Furthermore, we show 
some error estimates and prove the existence of solutions to the scheme. 

1 Introduction 
In [CS94], Colli and Sprekels considered an initial boundary value problem for a Penrose-
Fife system with nonconserved order parameter, and proved that solutions to this problem 
for appropriate initial values converge against solutions to some Stefan problems, if the 
parameter 8 or c or both in the equation for the order parameter tend to zero. 
In this paper, we introduce a time-discrete scheme for the Penrose-Fife system. We will 
repeat the a priori estimates derived in [CS94], and, following ideas from Colli, Horn, Lau-
renc;ot, Sprekels, and Zheng (see [CS95, Lau94, HSZ93]), we derive some £ 00 (0)-bounds. 
Using the same techniques as Colli in [ Col95], we get error estimates for our scheme. Thus, 
we can prove convergence against the solution to the Penrose-Fife system, as the time step 
size tends to zero, and against the solution to one of the Stefan problems, as 8 or c or both 
also tend to zero. Moreover, we do not only derive an error estimate for the approximation 
of the relaxed-in-time Stefan problem by Penrose-Fife, similar to the one derived by Colli, 
but also for the other Stefan problems considered here. 
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2 Main results 

2.1 Notations and desired problems 
Before describing our problems, we introduce some auxiliary notations. Let (3 be the maximal 
monotone graph defined by 

{ 

( -oo, OJ, for r = 0 
(3 ( r) = { 0} , for 0 < r < 1 

[O, +oo), for r = 1 
(2.1) 

and let (·, ·) represent either the duality pairing between H 1(n)* and H 1(0.) or the scalar 
product in L 2 (0.). Here, n c !R3 .denotes a bounded domain with smooth boundary r. 
We consider a problem with a Penrose-Fife system (Pde), a relaxed-in-space Stefan problem 
(P e), a relaxed-in-time Stefan problem (Pd), and a Stefan problem (P) as in [CS94]. 

I (Pde): I Find a quadruple (B, u, x, e) fulfilling 

(} E H 1 (0, T; L2 (0.)) 
u E H 1 (0, T; L2(0.)) 

X E W1'00 (0, T;L2(0.)) 
e ~ L00 (0, T; L 2 (0.)), 

(} > 0, 

0 ~ x ~·1, 
(at (Co(} + L x) (., t), v) 

+ (g (., t), v) ' 
8xt - cD..x + e 

ax 
an 

B(·, 0) = Bs, 

n L00 (0, T; H 1(n)) n L 00 (OT), 
n L2(0, T; H2(n)) n L00 (nT), . 
n H 1 (0, T; H 1(n)) n L00 (0, T; H 2(0)), 

1 
U = {j a.e. in 0.T, 

e E f3(X) a.e. in 0.T, 

/'i, J \7u(·, t) • \7v dx + J (ru - ()(·, t)v da 
n r 
V v E H1 (n), for a.e. t E (0, T), 

- L(uc - u) a.e. in nT, 

- 0 a.e. in :E, 

x(·, 0) = Xs a.e. in n. 

I (pd): I Find a quadruple ( (}) u, x, e) fulfilling 

(2.2) 
(2.3) 
(2.4) 
(2.5) 

(2.6) 

(2.7) 

(2.8) 
(2.9) 

(2.10) 

(2.11) 

(} E L00 (0, T; L2(0.)), u E L00 (0, T; H 1(0.)), x E L 00 (nT), (2.12) 
c0B + Lx E W1'00 (0, T; H 1(n)*), (2.13) 

. (coB + Lx)(·, 0) es in H 1 (n)*, (2.14) 
(2.5)-(2.8), and 

X E W1'00 (0, T; L2(0.)), 
8xt + e L(uc - u) a.e. in nT, 
x(·, 0) - Xs a.e. in n. 
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(2.15) 
(2.16) 
(2.17) 



I (P e): I Find a quadruple (B, u, x, e) fulfilling (2.12)-(2.14), (2.5)-(2.8), and 

X E VX)(O, T; H 2(0)), 
-c:.6.x + e - L(uc - u) a.e. in 

Bx 
an 0 a.e. in :E. 

I (P ): I Find a quadruple (B, u, x, e) fulfilling (2.12)-(2.14), (2.5)-(2.8), and 

e = L(uc - u) a.e. in nT. 

(2.18) 
(2.19) 

(2.20) 

(2.21) 

Here, T > 0 stands for a final time, the positive constants c0 , r;,, L, uc represent physical 
constants, and we have set nT := n x (0, T), :E := r x (0, T). 

2.2 Assumptions 
It is required that 

g E L00 (nT)' 
I E L 00 (:E), 
( E Loo(:E), 

9t E L 2 (0, T; L00 (0)), 

1 '?:. Cy a.e. in :E, 
( '?:. c, a.e. in :E, 
~ E L00 (0, T; C1 (r)), 

It E L00 (:E), 
(t E L00 (:E), 

1 ( E L00 (0, T; H2(r)), 

hold for two positive constants ey, c,. We assume that for the initial data Bs, Xs 

es := coBs + Lxs, 
Bs E H 1(0), 
Xs E H 1(0), 
1 . 

Us := Bs E H 1(0), 

hold for two positive constants a, b. 

Bs > 0 a.e. in n, ln(Bs) E L00 (n), 
0 ::::; Xs ::::; 1 a.e. in n, 
a ::::; Us ::::; b a.e. in fJ, 

(2.22) 
(2.23) 
(2.24) 
(2.25) 

(2.26) 
(2.27) 
(2.28) 

(2.29) 

Except for the positive lower bound for (and the regularity assumption (2.25), these are the 
same assumptions as in Colli-Sprekels [CS94, (2.2)-(2.8)]. The lower bound for (is required 
to derive L00 (0)-bounds for the approximation of B, the regularity assumptions for I and 
( are needed to prove the existence of an approximation for u in H 2(n). The regularity 
assumption for gt is necessary for the error estimates. 
From (2.27), we can obtain that (2.29) holds (see [CS94]). 

2.3 The numerical scheme 
Since in a numerical implementation one would like to change the time step size, we consider 
decompositions of [O, T] that do not need to be uniform. 
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Definition 2.1 An admissible decomposition Z is a finite subset Z of [O, T] such that 
Z = {to, t1, ... , t K} with 0 = to < tl < ... < t K = T and 

The width IZI of the decomposition is defined by IZI := max (tm - tm-1). 
l~m~K 

(2.30) 

Remark 2.1 In (2.30), the factor 2 could be replaced by any constant greater than 1. Since 
our decompositions will arise numerically by time step control, (2.30) is an upper bound for 
the new time step size. 

For 8 > 0, c > 0, Bo8c:, u0&, Xo8c: E L2 (0), and an admissible decomposition Z = { t 0 , t1 , ..• , tK }, 

we define, for 1 ::::; m ::::; K, 

tm 

9m(x) := h~ j g(x, t) dt, 
tm-1 

Vx E 0, 

l tm 

(m(a) := hm f ((a, t) dt, 
tm-1 

tm 

'Ym(a) := h~ j 'Y(a, t) dt, 
tm-1 

Va E f, 

as well as 

and consider the problem: 

j (D z,8,c:): j For 1::::; m::::; K find 

Bm E L2 (0), 

such that 

_rXm - Xm-1 _ A + c L( ) · n u hm €.u.Xm s,m Uc - Um a.e. Ill u, 

and 

with 

em E f3(Xm) a.e. in 0, 
axm 0 a.e. in r, an 

9m. a.e. in n, 

a.e. in n, 

a.e. in r, 

uo := uo8c:, Xo := Xo8c:· 
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(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 



Applying Green's formula, we can rewrite (2.38) and (2.40) as 

J ( Bm - ()m-1 Xm - Xm-1) , J 
Co h + L h v dx - K, \J Um • \J v dx 

n m m n 

- j ('YmUmV - (mv) da; = j gmvda;, V v E H 1(1J). (2.42) 
r n 

We prove the following existence result in section 3: 

Theorem 2.2 Assume that {2.22)-(2.25) hold. For all 8 > 0, c > 0, all admissible de-
compositions Z and all initial values Bo8e, uo8e, Xoi5e E L 2 (0) there exists a unique solution to 
( D Z,8,e). 

Remark 2.2 We use the solution to ( D z,8,e) to construct an approximate solution 
('ifZ8e, uZ8e, Xz&, ~Ue) in (£00 (0, T; £ 2(0)))4 to the Penrose-Fife system (P 8e). The function 
'iJUe is defined linear in time on [tm-1, tm], such that 'iJZ8e(tk) = ()k holds for k = 0, ... , K. 
The functions uz& and Xue are defined analogously .. We define ~Ue for t E (tm_1, tm] as 
-Z8e """Z8 1 -Z8e ( 8 ) e . (t) = (m. We want to point out that neither () e = ii'Zoc nor e E /3 xz e hold a.e. 
on fiT. 

2.4 Convergence results and error ·estimates 
We now state the main results of this paper. They are proved in sections 4 and 5. 

Theorem 2.3 Approximation of the Penrose-Fife system: 
Let 8 > 0, c > 0 be fixed. Assume that {2.22)-(2.29 ), 

Xs E H 2(0), Bxs= 0 
an 

a.e. in r, (2.43) 

9t E L 00 (OT) , (2.44) 
Bo8e = Bs, Uo8e =Us, X08e = Xs, (2.45) 

hold. Let ( (), u, x, e) be the solution to ( P 8e). Then there is a positive constant C, independent 
of Z, such that 

ll --Z8e II + lluZ8e - ull + ll'iJZ8e - ()II < C /fZt X - X L=(o,T;L2(n)) n L2(0,T;H1(n)) L2(o,T;L2(n)) L2(o,T;L2(n)) - V 1 LJ '' 

and, as I Z I tends to 0, it holds 

xZ8e ---t x weakly in H 1 (0, T; H 1(0)), 
weakly-star in W 1'00 (0, T; L2(0)) n £ 00 (0, T; H 2(0)), 

~Zde -----* e weakly-star in L 00 (OT)' 
uZ8e ---tu weakly in H1 (0, T; L2(0)), 
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(2.46) 

(2.47) 
(2.48) 

(2.49) 
(2.50) 



weakly-star in L00 (0, T; H 1(0)) n L 00 (nT), 
weakly in · L 2 (t*, T; H2(0)) VO< t* < T, 

ez& -----1- () weakly in H 1(0, T; L2(0)), 
weakly-star in L00 (0, T; H 1(0)) n L 00 (nT). 

(2.51) 
(2.52) 
(2.53) 
(2.54) 

The existence of a unique solution to the Penrose-Fife equations follows from Proposition 
2.6 in [CS94]. The assumption (2.44) is only needed since we use this Proposition. If 
this assumptions did not hold, it would still be possible to prove that the limit of the 
approximations is a solution to (Pae)· 
The following Theorems correspond to the Theorems 2.8 to 2.10 in [CS94]. The existence 
and uniqueness of the solutions to the Stefan problems were proved by Colli and Sprekels in 
[CS94]. 

Theorem 2.4 Approximation of the relaxed-in-time Stefan problem: 
Let 8 > 0 be fixed. Assume that {2.22)-(2.29 ), as well as 

Boae = Bs, Uoae =Us, (2.55) 
Xoae - c:Lixoae - Xs a.e. in n, (2.56) 

Xoae E H 2(n), 8xoae = 0 an a.e. in r, (2.57) 

hold. Let (B, u, x, e) be the solution to the relaxed-in-time Stefan problem ( P.a)· For every 
t > 0 there is a positive constant C, independent of Z, such that for 0 < c: ~ € it holds 

. . . 

llxZOe - xllL=(O,T;L'(!:l)) + 11uz.ie - ullL'{O,T;L'{!:l)) + liOZOe - IJllL'{O,T;L'{!:l)) :=' C ( Vizl + .;e) . 
(2.58) 

As IZI and c: tend to 0, we have the convergences {2.49}, {2.50}, {2.51}, and 

·x_zae -----1- X weakly-star in W1100 (0, T; L2 (0)) n L00 (0, T; H 1 (0)), (2.59) 
weakly-star in L00 (OT) , (2.60) 

ezae -----1- () ·weakly-star in L00 (0, T; L2 (0)). (2.61) 

Theorem 2.5 Approximation of the relaxed-in-space Stefan problem: 
Let c: > 0 be fixed. Assume that {2.22)-(2.29 }, {2.43 ), {2.45 }, and 

-c:Lixs + /3(xs) 3 L (Uc - Us) a. e. in n, (2.62) 

hold. Let (B, u, x, e) be the solution to the relaxed-in-space Stefan problem ( P e). For every 
J > 0 there is a positive constant C, independent of Z, such that for 0 < 8 ~ J it holds 

11 
...... zae - II + lluZae - ull + ll8Zae - BI! < C ( ~ZI + V8) X X L2(0,T;H1(n)) L2(0,T;L2(n)) L2(0,T;L2(n)) - V 1.u I · 

(2.63) 
As IZI and 8 tend to 0, we have the convergences {2.49}, {2.50}, {2.51}, {2.52), {2.53}, 
(2.54), and 

x_Zae -----1- x weakly-star in H 1 (0; T; H 1 (0)) n L 00 (0, T; H 2(0)). (2.64) 

6 



Theorem 2.6 Approximation of the Stefan problem: 
Assume that {2.22)-(2.29), {2.57), 

f3(xs) 3 L (uc - Us) a.e. in n, (2.65) 
a a 1 

uo,fa - 2Xocfo =Us - 2Xs, Boae. = - a.e. in n, (2.66) uode. 
-c ~Xode. + f3 (xode.) 3 L ( uc - UOiSe.) a.e. in n, (2.67) 

hold. Let ( B, u, x, e) be the solution to the Stefan problem ( P). For all 8 > O, e > O there is 
a positive constant C, independent of Z, such that for 0 < 8 :::;; 8 and 0 < c ·:::;; e it holds 

ll~Z& - ellL2 (0,T;L~(n)) + lluZde. - u!IL2(0,T;d(n)) + IWZdc - Bjl£2(0,T;L1(n)) 

< c ( JIZI Hi + ei) . (2.68) 

As IZI, 8, and c tend to 0, we have the convergences {2.60), (2.61), and 

weakly-star in L 00 (0, T; L 2 (0)), 
weakly-star in H 1 (0, T; L~ (0)) n L 00 (0, T; H 1(0)). 

(2.69) 
(2.70) 

Remark 2.3 If the assumption 9t E L2 (0, T; L00 (0)) in (2.25) is not fulfilled, the error 
e~timates do not hold, but one can prove the convergences in the Theorems 2.3 to 2.6 using 
compactness arguments as in [CS94, Section 4]. · 

Passing the error estimates for the approximation to the limit, we get an error estimate for the 
solution to the Penrose-Fife system with respect to the Stefan problems under consideration. 

Corollary· 2. 7 Assume that {2.22)-(2.29) and {2.44) hold. 

a) If Bode., u0de.' and Xode. are defined as in one of the Theorems 2.4 to 2. 6, the problem ( P &) 
with B s and Xs replaced by Bode. and XOde.' has a unique solution ( Bdc' Ude' xdc' ee.) . 

b) Let 8 > 0, € > 0 be fixed and let (B, u, x, e) be the solution to the relaxed-in-time Stefan 
problem (Pd). If Bo&, uode., and Xode. are defined as in Theorem 2.4, then there exists a 
positive constant C, such that, for 0 < c :::;; _e, 

llxdc - xl1L00 (0,T;L2(n)) + lludc - ull£2(0,T;L2(n)) + llBdc - BllL2(0,T;L1(n)) :::;; Cy1c. (2·71) 

c) Let 8 > 0, c > 0 be fixed and let (B, u, x, e) be the solution to the relaxed-in-space 
Stefan problem ( P e.). If Booe., uode., and Xoae. are defined as in Theorem 2. 5, then there 
exists a positive constant C, such that, for 0 < 8 :::;; 8, 

II de - II + lludc - ull + llB0c - Bll < c-/8 X X £2(0,T;Hl(f2)) L2(0,T;£2(f2)) L2(0,T;L2(n)) - . (2.72) 
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d) Let J > 0, t > 0 be fixed and let (B, u, x, e) be the solution to the Stefan problem ( P). If 
Boae, u0,Se, and Xoae are defined as in Theorem 2. 6, then there exists a positive constant 
C, such that, for 0 < 8 :::; J and 0 < c :::; t, 

11et: - ~11L2 (0,T;d(n)) + llui>t: - ullL2(0,T;d(n)) + ll()ae - ()llL2(0,T;L1(n)) :::; C (8i +et). 
(2.73) 

Proof. Assertion a) follows from [CS94, Proposition 2.6] and Lemma 4.1. For K E tN 
we define the admissible decomposition Z = {t0, t 1, ... , tK} with tk ,:= T ~· Theorem 2.3, 
Lemma 4.1, and a) yield, as K tends to oo, that 

x_Zae ----t X8t: 
~Uc ----t et: 

UZ8t: ----t u<>t: 'fjZ8t: ----t e<>c 
' 

strongly in L 00 (0, T; L 2 (0)) n L2(0, T; H 1(0)), 

weakly-star in L 00 
( nT) ' 

strongly in L2(0, T; L2 (0)), 

hold. Therefore, thanks to the weak-star lower semicontinuity of norms, (2.71), (2.72), resp. 
(2.73), follow from (2.58), (2.63), resp. (2.68). D 

Remark 2.4 The error-estimate (2.71) is similar to. the one derived by Colli in [Col95, 
Theorem 3], except for the norm for ()8t: - B. Colli estimates the C0 ([0, T], H 1(0)*)-norm of 
this error. 

3 Proof of Theorem 2.2 
In this section, we will prove Theorem 2.2. Fir~t, we will have a close loo!\ at the approxi-
mation of the data. Next, we consider the equations for Um and Bm and finally the complete 
system (2.34)-(2.40). 
In the sequel, we use the notation 11·11 for the L 2 (0)-norm and ll·llP for the V(n)-norm, for 
all p E [1, oo ). IOI will denote the Lebesgue measure of the domain n. 

3~1 Approximation of the data 
Now we estimate the approximation of the data. 

Lemma 3.1 Assume that {2.22)-(2.25) hold. There exist positive constants Ca, Cb, C~, in-
dependent of c and 8, such that for all admissible decompositions Z = { t 0 , t1, ... , t K} it 
holds: 
The functions gm, {m, and (m defined in {2.31) and {2.32) fulfill, for 1 :::; m:::; K, 

Im E C1(r), (m E H~(r), 
llgmllL=(n) + 1l1mllc1(r) + ll(mllL=(r) + ll(mllH~(r) :=:; Ca, 

Im 2:: ey, (m 2:: cc a.e. in I', 
1 

1l1mvllH~(r):::; Cb llvllH~(r), Vv E H2(I'), 
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(3.2) 

(3.3) 
(3.4) 



and, for 1 ::; m < K, 

11 

'f'm+l - 'f'm II + (m+l - (m 
hm L=(r) hm (3.5) 

where the positive constants ey and cc are specified in (2.28)-(2.24). 

Proof. From (2.22)-(2.24) and (2.30) one can derive (3.2) elementary with Ca .-
llBllL=(nT) + ll1'llL=(o,T;c1(r)) + llCllL=(E) + llCllL=(O,T;H!(r))' the lower bounds in (3.3), and 
(3.5) with cb := 3 ll1'tllL=(E) + 3 llCtllL=(E)" Since (2.25) yields that (3.1) holds, v r-+ 'f'mV 

is a linear continuous mapping from both L2(I') and H 1(r) into itself, with norm less than 
vl3 !11'mllc1(r)· Since Ht(r) is an interpolation space of L 2 (I') and H 1(r) (see [Ama93, (5.2), 
(5.3), (5.19)]) it follows from (3.2) that (3.4) holds. 

D 

3.2 The temperature equation 
First we consider the equations (2.38) and (2.40) for Um. 

Lemma 3.2 Suppose that {2.22)-(2.25) hold. For all admissible decompositions 
Z = {to, t1, ... ", tK }, all m E {1, ... , K}, and all f E L2(0), there exists a unique solu-
tion u E H 2(0) to 

1 -Co-· - ri,flU = f, U > 0 a.e. in 0, 
hmu 

au 
'f'mU + ri, an = (m a.e. in I'. 

(3.6) 

(3.7) 

To prove this Lemma, we will interpret (3.6), (3. 7) as an operator equation and show that 
the corresponding operator is maximal monotone and surjective. 

Lemma 3.3 The operator A: D(A) c L2 (0)-+ L2 (0) defined by 

Au Co A • f"'\ --h - ri,uU a.e. in Hi, 
mU 

D(A) - { u E H 2(0) : u fulfills {3. 7) and u > 0 

is maximal monotone. 

a.e. in n} 
(3.8) 

(3.9) 

Proof. Even if we cannot apply [Bre71, Corollary 13] directly, since 1'm and (m are not 
constant in r, the prpof of this corollary can be translated to our situation. Thus we will 
give only a sketch of the proof. 
Using (3.3), we can, similarly to [Bre71, Theorem 12], derive a convex and lower semicon-
tinuous mapping cp : L2 (0) -+ (-oo, oo], such that its subdifferential acp fulfills 

acp(u) = -ri,flu a.e. in 0, D(acp) = {u E H 2(0): u fulfills (3.7)}. (3.10) 
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To prove that the operator defined in (3.10) is the subdifferential, we use that (3.1) and 
[Ama93, Theorem 9.2], for every f E L2(0), yield the existence of a unique solution to 

U - K,flU = f a.e. in 0, 

We define k : !R ---t (-oo, oo] by 

au 
-K,- = {mU - (m a.e. in f. an 

k(x) = { -i! ln(x) for x > 0 
+oo otherwise (3.11) 

This function is convex and lower semicontinuous. As in [Bre71, p. 115], we can derive a 
convex and lower semicontinuous mapping 'lj; : L2 (0) ---t (-oo, oo], whose subdifferential 
fulfills D(a'lj;) = {u E L2 (0): u > O a.e. inn} and v E a'lj;(u) if and only if v = ;;~~ a.e. in 
n. Analogously to [Bre71, Corollary 13], we obtain, using (3.3), (3.2) and [Bre71, Theorem 
9], that acp + a'lj; = A is maximal monotone. D 

Lemma 3.4 The operator A defined in Lemma 3.3 is coercive in L2 (0), i.e. 

lim (Au, u) = oo. 
llull-700 llull (3.12) 

:f>roof. Let u in D(A) be arbitrary. Applying qreen's formula,- the definition of A, 
Young's inequality, and Lemma 3.1, we see that 

Recalling Lemma A.2, we infer that there are two positive constants C, C', such that 
(Au, u) 2:: C llull~1(n) - C' for all u in D(A). Therefore (3.12) holds. D 

Now we are going to prove Lemma 3.2. Let f E L2(0) be arbitrary. By Lemma 3.3 and 
Lemma 3.4, the operator A is maximal monotone and coercive. Therefore, recalling [Tib90, 
Chapter I, Theorem 2.4], we see that A is surjective. Thus we have u E D(A) with Au= f. 
Thanks to Lemma 3.3, u is a solution to (3.6) and (3.7). 
Suppose we have another solution v. Rewriting (3.6) and (3.7) in terms of the differences, 
testing it by u - v, applying Green's formula and (3.3), we obtain 

( ) 2 
~ u-v 2 

0 = hm j uv dx + K llV(u -v)[[ + j c.y(u - v)2 da. 
n r 

Since UV > 0 a.e. in n, this yields u = v. This finishes the proof. D 
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3.3 Existence of a solution to the system 
Theorem 2.2 follows by induction and the following Lemma. 

Lemma 3.5 Assume that {2.22)-(2.25) are satisfied. Moreover, let any admissible decom-
position Z == {to,ti, ... ,tK}, any m E {1, ... ,K}, and any functions 8m-i,Xm-i E L2 (0), 
be given. Then there exists a unique solution to {2.34)-(2.40). 

Proof. We will prove the existence of a solution to (2.34)-(2.40) via Schauder's fixed 
point theorem. It follows from [Bre71, Corollary 13] and Lemma 3.2 that for every ( u, x) E 
L2 (0) x L2 (0) there exists a unique solution (u, x) ==: w(u, x) in H 2 (0) x H 2 (0) to 

5 h: - e~X + f3(X) 3 L(uc - u) + 5X;~1 

-co-
1
- - "'~u == -g + L x- Xm-i em-i -Co--h - m hm hm mU 

O<u 
ax == 0 an ' 

_ au ( 
/mU+/'l,an== m 

This defines a mapping '11: L2 (0) x L2 (0)-+ L2 (0) x L2 (0).· 
We define 

a.e. in o, (3.13) 

a.e. in o, (3.14) 

a.e. in o, (3.15) 

a.e. in r. (3.16) 

Mi:== { (u, x) E Hi(n) x Hi(n): o $ x:::; 1 a.e. in n}. (3.17) 

Let (u, x) E Mi be arbitrary and define (u, x) :== w(u, x). There are~' BE L2 (0), such that 

.rX-Xm-i A- E L( ) 
u hm - c:ux + ':, == Uc - u 

- - 1 e E f3(x), e == -= 
u 

. . 

a.e. in 0, 

a.e. in n. 

(3.18) 

(3.19) 

Obviously, by (3.14)-(3.16), any fixed point (u, x) of '11 yields a solution (8, u, x, ~) to 
(2.34)-(2.40), and vice versa. Therefore, it is sufficient to prove that W has a unique fixed 
point. . 
We obtain from (3.13) that X is in D({3) == [O, 1] a.e. inn. Thus we have (u, x) E Mi. 
We test (3.14) by hmu, integrate, apply Green's formula, (3.16), (3.3) and Young's inequality, 
to obtain 

-Co 101 + hm,,, 11vu11 2 + hm I ( i u2 
- 2~ (!) da 

:::; I (-hm9m + L(x - Xm-i) - coem-i) u dx. 
n 

We conclude, using Lemma A.2, Schwarz's inequality, (3.2), and (3.17), that there is some 
constant Ci > 0, such that 
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This yields, by Young's inequality, that hmC1 ~ llull~1(n) ~ C2, with 

C2 :=co IOI+ ~jc~du + -1 
((hmCa + L)yfni +L llXm-111 +co llBm-111)

2
. 

2c, r 2C1hm 

For 03 := hm
2C1 62, we have (u, x) in M2 with 

(3.20) 

In the sequel, we will assume (u, x) E M 2 . Now, testing (3.18) with hmx, applying Young's 
inequality, Green's formula, (3.16) and Schwarz's inequality, leads to 

~ llXll2 
- ~ llXm-11!2 + hmc llV'Xll2 + hm j tXdx :S hmL lluc - ull llXll · 

n 

Since we have x in [O, 1] and tx 2:: 0 a.e. inn by (3.19) and the definition of (3, this yields, 
by (3.20), 

~ llXll2 + hmc JJXJJ~1(n) :S ~ llXm-1112 + hmc Jn[+ hmLvfnluc + hmL/Cayfnl =: 64. 

Thus, (u, x) is in M 3 with 

M3 := { (u, x) E M2: hmc: llxll~1(n) ~ 04} · 
Since (3.21), (3.20), and (3.17)' yield 

(3.21) 

. M3 = { (u, x) E H1 (0) x H1(0) : hmc: llxll~1(n) ~ 04, llull~1(n) ~ C3, 0 ~ x ~ 1 a.e. n}' 
we obtain (see [Zei90b, (79c)]) that M 3 is a nonempty, convex, compact set in L2 (0) x £ 2 (0) 
and, by construction, that W maps M 3 into itself. Since we obtain from Lemma 3.6 that W 
is (L2 (0) x L2 (0))-continuous, the Schauder fixed point theorem yields the existence of a 
fixed point of W in M 3 . 

Lemma 3.6 W is an (L2 (0) x L2 (0))-continuous mapping. 

Proof. Let ( u<1), x<1)), ( u<2), x<2)) E L2 (0) x L2(0) be arbitrary, and 

( u(i), x(i)) := w ( u(i)' x(i)) for i = 1, 2, 

u := u(l) - u(2)' x := x(l) - x{2)' u := u(l) - u(2)' x := x(l) - x(2). 

It follows from (3.13)-(3.16) that there are t<1), e<2) E L2 (0), such that 

x - -(1) -(2) a.e. in n, (3.22) 8--c:~x+e -e =-Lu hm 
u<1) > o ' u<2) > o 

' 
t(l) E f3(X(1)), t<2) E f3 (X(2)) a.e. in n~ (3.23) 

u ~- L X 
Co h -(1) -(2) - K, U = h mU U m 

a.e. in n, (3.24) 

ax =O _ au 
a.e. in r. (3.25) 

an ' /mU +"'an= 0 
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Testing (3.22) with x, applying Green's formula, (3.25), and the inequality (~( 1 ) -e(2))x 2: o 
(by (3.23) and the monotonicity of (3), we get 

h: llXll 2 + c llVXll 2 
:::: -L J uX dx. (3.26) 

n 

Testing (3.24) with hmu, using Green's formula, (3.25), (3.3), and Schwarz's inequality, we 
find 

-2 

Co J ft(l~ft(2) dx + hmc.., 11u11~'(r) + hmK. 11vu112 
:::: L J xft dx. 

n n 
Using Lemma A.2, (3.23) and Young's inequality, we get for some 05 > 0, 

hmCs llull~1(n) 5: L j xu dx. (3.27) 
n 

Adding (3.26) and (3.27), and applying Young's inequality, we find 

Thus, we have proved· that '11 is Lipschitz-continuous. on L2 (0) x £ 2 (0) . D 

It remains to show the uniqueness of the fixed point. Suppose ( u(l), x(1)), ( u(2), x(2)) are two 
fixed points of '11. Thus we can repeat the estimates in the proof of Lemma (3.6) with u = u 
and x = X· Hence, (3.28) yields u(l) = u(2) and x(i) = x(2) in H 1(0). 

D 

4 Uniform Estimates 
In the sequel, we will assume that there are two positive upper bounds 8 and e for 8 and e, 
i.e. 

0 < 8 5: 8, O < e 5: e. (4.1) 

We will consider initial values BocSc:, u0,5e, Xoc5e and assumptions corresponding to one of the 
Theorems 2.3 to 2.6, 8 > 0, e > 0 with (4.1), and an admissible decomposition Z = 
{to, ti, ... , t K}. 
In the sequel, Ci, for i E N, will always denote positive generic constants, independent of e 
and the decomposition Z. They may depend on 8, if (P cSc:) or (P cS) is considered as limit 
problem, but they are independent of 8, if we consider (Pc:) or (P) as limit problem. Thus 
the constants only depend on 8 if 8 is fixed. · 
We start by deriving some properties of the initial values. The first Lemma modifies Lemma 
3.2 in [CS94]. 
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Lemma 4.1 The initial values Boai::, uoai::, and Xoai:: considered in the statements of Theorems 
2.3 to 2.6 are uniquely determined and satisfy {2.57). Moreover, if we define ~o& E L2 (0) 
by eoai:: = 0 if (Pai::) or (Pa) is concerned {see Theorems 2.3 and 2.4), and by eoai:: = 
c~Xoai:: + L(uc - Uoai::) otherwise {see Theorems 2.5 and 2.6), and if we define X-i E L 2 (0) 
by 

i-Xoai:: - X-1 A c L( ) · n (4 2) u ho - cuXoai:: + ~Oai:: = Uc - Uoai:: a.e. in Hi, • . 

with ho := IZI, then {2.35)-(2.37) hold form= 0, and there are positive constants Ci, C2 , 

and C3 , such that 
a a 

lluoai::llH1(n) ~ Ci, 2 ~ Uo& ~ b + 2' 
c llxoa-i::ll~2(n) + llxoai::ll~1(n) + lleo&ll 2 

eoai:: E f3(Xoai::) 
2 

8 Xoai:: - X-1 
IZI 

< 

< 

1 n, (4.3) Boa-i:: = - a.e. in 
uoai:: 

C2, (4.4) 
a.e. in n, (4.5) 

C3, (4.6) 

with the constants a, b being specified in {2.29 ). In the situation of Theorems 2.4 and 2. 6, 
there is a positive constant C4 , such that 

(4.7) 

Proof. First we examine the situation of Theore·m 2.3. Owing to (2.45), Boai::, Uoai::, and 
Xoai:: are uniquely determined as Bs, Us, and 'Xs· Using the assertions (2.26), (2.28), (2.29), 
and (2.43) for the initial data as well as (2.33), ( 4.2) and·( 4.1), we obtain the assertions of 
the lemma. 
In the framework of Theorems 2.4 to 2.6, Bo& = - 1- follows from (2.29) and (2.55), resp. uo.se 
(2.45), resp. (2.66). For the remaining assertions, except (4.4) and (4.7), we refer to [CS94, 
Lemma 3.2]. From the estimates in the proof of [CS94, Lemma 3.2] we obtain (see [CS94, 
(3.11) resp. (3.15)]) a uniform bound for ll"Vxoai::ll 2 + c ll~Xoai::ll 2 . From (4.5) we obtain 
0 ~ Xoai:: ~ 1 a.e. on n. Therefore, we have a uniform bound for llxoai:: ll~1(n) and, by (2.57) 
and Lemma A.3, also one for c llxmll~2(n)· From (2.33), (~.3), and (4.5), it follows that 
lleoai::ll 2 ~ (~ + L) IOI. Therefore (4.4) holds. 
In the situation of Theorem 2.4, using (2.33), (2.26), (2.56), (2.55), and (4.4), we get 

llxoai:: - Xsll 2 + lleoai:: - esll 2 = (1 + L 2)c2 ll~Xoai::ll 2 ~ (1 + L 2)cC2. 

Finally, we examine the situation in Theorem 2.6. Testing (2.66) with uoa-i::-Us and Xoai:: -xs, 
we see that 

2 2 I ·a 
1

2 . ~ lluoai:: - usll = (Xoai:: - Xs) (uoai:: - Us) dx = 2 llxoai:: - Xs I · (4.8) 
n 

Using (2.65), (2.67), the monotonicity of {3, Green's formula, (2.57), and Young's inequality, 
we obtain 

I (l 2 1 2) 0 ~ L (uoai:: - us) (Xs - Xoai::) dx + c 2 ll"Vxsll - 2 ll"Vxoai::ll · 
n 
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Therefore, we conclude by ( 4.8), (2.28), (2.33), (2.26), (2.29), and ( 4.3), that ( 4.7) holds. 
D 

Since (4.3) and (2.57) yield that eo&:,UOac,XOoc are in L2(0), it follows from Theorem 2.2 
that (D Z,o,c) has a unique solution eo, Uo, Xo, ei, U1, X1, 6, ... 'eK, UK, XK, eK . We are go-
ing to derive some uniform estimates for this solution. The generic constants will also be 
independent of the solution. 

Remark 4.1 a) In the framework of Theorem 2.3 and Theorem 2.5, we obtain from 
(2.45), (2.26), and (2.33) that Xoac = Xs and eoac = es hold. Since c tends to 0 and 
( 4.7) holds in the situation of Theorem 2.4 and Theorem 2.6, we conclude that for the 
limits considered in one of the Theorems 2.3 to 2.6, we have 

(4.9) 

b) We obtain from (2.39), (2.36), (2.41), ( 4.3), and ( 4.5) that 

1 
0 <Um, em=-, 0:::; Xm:::; 1 a.e. in n, VO:::; m:::; K. (4.10) Um 

The following seven lemmas correspond to Lemmas 3.3 to 3.10 in [CS94], except for the 
estimate for the L 00 (0)-Norm of em in ( 4.12). First v:re work on (2.35) .. 

Lemma 4. 2 For all 1 :::; k :::; K it holds 

where the constants C2 , C3 are characterized in Lemma 4.1. 

(4.12) 

(4.13) 

Proof. This proof uses ideas from Colli-Sprekels (see [CS94, Lemma 3.3] and [CS95, 
Lemma 3.1]). We define e0 , xo, h0 as in Lemma 4.1. For 1 :::; m :::; K we can thus test 
the difference of (2.35) form and m - 1 by Xm~~-1 . By applying Green's formula, (2.37), 
(2.36), the monotonicity of (3, and Young's inequality, we obtain that 

H Xm ~:m-111
2 

+ohm 11\7 (Xm ~m-1) 112 

< HXm-~:-~m-2112 -[ L(um - Um-1) (Xm ~:m-1) dx. (4.14) 
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Summation from m = 1 tom= k and use of (2.41) and (4.6) give the estimate (4.11). 
To prove ( 4.12) and ( 4.13) rigorously, we use the Yosida approximation of /3, 

{ 

kr , for r < 0 
f3k(r) = 0 , for 0:::; r:::; 1 , V k E rN. 

k(r - 1), for 1 < r 
( 4.15) 

8 

Let 1 :::; m :::; K be arbitrary. Since s r-+ J f3k ( x) dx is a continuous and convex function, it 
0 

follows from [Bre71, Corollary 13] that for every k E rN there is a unique Xm,k in H 2 (0) such 
that 

rXm,k - Xm-1 A /3 ( ) L( ) u hm - cilXm,k + k Xm,k = Uc - Um a.e. in n, ( 4.16) 

axm,k = 0 r a.e. m . an ( 4.17) 

Since f3k(Xm,k) (Xm,k - Xm-1) 2: 0, by (4.10) and (4.15), we obtain by testing (4.16) with 
Xm,k - Xm-1' applying Green's formula, ( 4.17), Holder's, and Young's inequalities that 

Testing (4.16) by -hm~Xm,k, resp. (f3k(Xm,k)y-1 for an even p E rN, and using that /3~(r) ~ 0 
for all r E !R, we obtain analogously that 

o 2 2 o 2 I 2 ll\7xm,kll +chm ll~Xm,kll < 2 llV7Xm-1ll· -:- hm L\7um • \7xm,k dx, ( 4.19) 
n 

llf3k(Xm,k) lip < llL( Uc - Um) llP :::; m llL( Uc - Um) llL=(n) · ( 4.20) 

Thus, the sequence (Xm,k)k is, by ( 4.17) and Lemma A.3, bounded in H2 (0), and the sequence 
(f3k(Xm,k))k is bounded in L00 (0), since (4.20) implies that, if p tends to infinity, 

llf3k(Xm,k) llL=(n) :::; llL( Uc - Um) llL=(n) · ( 4.21) 

Therefore, we have, for some subsequences, Xm,kn -+ Xm weakly in H 2(0) and strongly in 
L2 (0), as well as f3k" (Xm,kJ -+em weakly-star in L00 (n). Thus, 

lim I !3kn (xm kJ Xm k I dx = I emxm dx n n1 -+oo ' ' n ' n n 
and therefore, by [Bar76, Prob. l.l(iv)], e E /3(x). Now, a passage to the limit in ( 4.16) 
and ( 4.17) yields that (x, e) is a solution to (2.35)-(2.37). Since this solution is unique by 
[Bre71, Corollary 13], we have Xm = X and em =em· Thus, thanks to ( 4.19), ( 4.20), ( 4.21), 
and the weak-star lower semicontinuity of norms, we have that 

( 4.22) 

and ( 4.12) hold. Summation of ( 4.22) from m = 1 to m = k and use of (2.41), ( 4.4), and 
(4.1) give the estimate (4.13). D 
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Lemma 4.3 There are three constants C5 , C6 ,C7, such that for 1 ::; k ::; K, 

k 2 
Co L hm Um - Um-1 +Cs lluk ll~1(n) 
2 m=l hmy'UmUm-1 

< C (i+~h llu 112 )+~h jLXm-Xm-1Um-Um-ld 6 ~ m m Hl(n) ~ m h h X, 
m=l m=l n m m 

( 4.23) 

Proof. Inserting v = - (um - Um-1) in (2.42), applying (4.10), Young's inequality and 
(3.3), VJ.€ get, after summation from m = 1 tom= k, 

k 2 "°" h Um - Um-l K, II" 11 2 Cy II 11 2 
.Co~ m h + -2 VUk + -2 Uk r 

m=l my'UmUm-1 

K, II 112 1 ~ I 2 'Ym+l - /m 1 I 2 < 2 \l Uo + 2 ~ hm um h da + 2 Uo/1 da 
m=l r m r 

k-1 ( ( 
+. j Uk(k da + L hm j Um m ~ m+l da ·_ j ·uo(1 da 

r m=l r m r 
k k 

L "°" h I Xm - Xm-1 Um - Um-1 d _ "°" h I Um - Um..,...1 d (4.25) + ~ m h h X ~ m 9m h X • 
m=l n m m m=l n m 

Using (3.2) as well as the inequalities of Holder and Young, yields; for every a* > 0, 

k k "°" I Um - Um-1 "°" Um - Um-1 . /II 1111 II - ~ hm 9m h dx ::; Ca ~ hm h y Um Um-1 
m=l n m m=l m\f'Um Um-1 . 

< Co t hm I Um - Um-l 11

2 

+ 2-c~ i: hm (~ llumll2 + ~ llum-111 2) 
2 m=l hmy'UmUm-1 2co m=l 2 2 

1 2 (a* 2 1 · 2) + 2co Cahk 2 llukll + 2a* l!uk-11! · ( 4.26) 

Thus, (4.23) follows using (4.25), Lemma A.2, (3.5), (3.2), Young's inequality, (2.41), (4.3), 
(2.30) and ( 4.26), for a* > 0 chosen sufficiently small. 
Next, we multiply (2.38) by hm· Summing the resulting equation from m = 1 to m = i, 
applying (2.41) and (2.33), we find 

i i 

coei + Lxi + K, L hmfiUm = eoae + L hmBm· ( 4.27) 
m=l m=l 
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We test this by hi· b..ui, apply (2.39), Green's formula, (2.40), and take the sum from i = 1 
to i = k, to obtain 

(4.28) 

Using Lemma A.4, Lemma 3.1, and (4.10), we get 

+ [ ( ( eoo. + ~ h;g;) ~ h;Au;) dx ~ ~ h;+l [ 9i+l j;
1 

hmAUm dx · 

Now, (4.24) follows by applying Lemma 3.1, Young's inequality, (4.4), and (2.30). 
D 

Lemma 4.4 There exists a constant Cs such that 
K 2 K 2 

c L hm 11\J (Xm - Xm-1) II + L hm Um - Um-1 
m=l hm m=l hm.JUmUm-1 

+ 1~~K ( 0 II Xm ~m-1112 + lleo em ~~m-1 + L Xm ~:m-1 i:•(n)') 
+ 0~~~ (llxkllLoo(n) + c llxkll~1(n) + llukll~1(n)) ~Cs. (4.29) 

Proof. Applying the discrete version of Gronwall's Lemma to the sum of (4.11) and 
(4.23), we obtain (4.29) after recalling (2.42), (3.2), (4.10), (2.41), and Lemma 4.1. D 

Lemma 4.5 There is a constant C9 such that 

( 4.30) 

Proof. Using ( 4.12), we obtain from ( 4.29) a uniform bound for llemll · Comparing the 
terms in (2.35), we have, owing to ( 4.29) and ( 4.1), a uniform bound for llc:b..xmll · Therefore, 
owing to the boundary condition (2.37) and the uniform bound for llcXm llH1(n) in ( 4.29), we 
can control llc:xmllH2(n)' using Lemma A.3. From (2.41), (4.4), and (4.1), we get a uniform 
bound for llc:xollH2(n)· D 

18 



Lemma 4.6 There exists a constant 0 10 such that 

k 2 

max ( 8 llXk ll~1(n) + II Bk 11
2

) + max I: hmb..Um 
OS.kS.K 19S.K m=l 

+ c: f;o hm llxmll~2(n) +to hm II:~ r ~ C10. ( 4.31) 

Proof. Summation of the inequalities ( 4.13) and ( 4.24), use of ( 4.29), the discrete 
Gronwall inequality, Lemma 4.1, Lemma A.2, Lemma A.3, (2.37), (2.41), and ( 4.4) gives the 

estimate (4.31), since, by (4.27), .(4.29), (4.4), and (3.2), the boundedness of II E hmb..uJl
2 

m=1 I 
implies the boundedness of 11Bkll 2• D 

Lemma 4. 7 There is a constant 0 11 , such that 

L h Um - Um-1 L h m - m-1 C K 2 K II {} {} 12 
m=l m II hm lld(n) + m=l m hm L1(!l) .~ ll· 

( 4.32) 

Proof. Using Holder's inequality, we obtain 

f;l hm II Um ~:m-1 11: ! {!l) ::; oTi,~K iiuk [i~•(n) f;l hm h:~~::~~ 1 2 ( 4.33) 

We have, by ( 4.10) and Schwarz's inequality, 

Thus, (4.32) follows by (4.33), (4.34), (A.l), (4.29), and (4.31). D 

Lemma 4.8 There is a constant 0 12 such that 

( 4.35) 

Proof. Picking v = 1 in (2.42) and squaring the result, we arrive by Holder's and 
Schwarz's inequality at 

£2 I Xm ~ Xm-1 dx 
n m 

2 2 
2 Bm - Bm-1 II 112 II 112 < 4c0 h + 4 'Ym L2(r) Um L2(r) 

m L1(n) 

+ 4 ll(mllii(r) + 4 llBmll2 IOI. 
Multiplying by hm, summing the result from m = 1 to m = k, and applying (4.32), (3.2), 
{4.29), and Poincare's inequality, (see [Zei90b, 53a]), yields (4.35). D 
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In the sequel, L00 (0)-bounds for Um and Bm are derived, which are needed to improve the 
error estimates and the convergence results. 

Lemma 4.9 There is a constant C13 such that 

(ot +ck) c~~Kllu•llL=(!l) + l~~K llML=(n)) + (o~ + c) f;l hm II Um ~:m-1112::; C13. 

( 4.36) 

Proof. The L00 (0)-bound is derived using Moser's technique as in [Lau93, Lau94, 
HSZ93, SZ93, HS]. From ( 4.10), we obtain, using an idea from [HS, Lemma 2.4], 

Bm - Bm-1 =_Um - Um-1 _Um - Um-1 (-1- _ 2-) <_Um - Um-1 (4.37) 
hm hmu~ hmUm Um-1 Um - hmu~ . 

For every p E rN, we have u~t1 in H 1(0), since Um E H 2(0) by (2.34). Taking v = -u~t1 

in (2.42), and applying (4.37), Lemma 3.1, and the inequalities of Schwarz and Young, we 
realize that 

P~m (llumll: - llum-111:) + ~(P + 1) [ju! Y'um[[2 + j ( c.yu~+2 - : : ~c.yu~2) da 
r 

< j fmu~1 dx + ~ 2c;{p+i) ll(mll~!.2(r) j 1 da (4.38) 
n . p . r 

with 
fm := LXm -;:.m-l - Ym· (4.39) 

Multiplying by phm and taking the sum from m = 1 tom= k, we derive from (3.2), Holder's 
inequality, (2.4i), and ( 4.3) that 

eollu•ll:+~ 4[(p~);) 't hm[[V'u:f-[[2 
+c.y~ 't k.n[[u:![[ 2 

p+ m=l p+ m=l r 

< co(b+~rl!1l+pthmjfmu~+Idx+T : 2 c;(p+ilc~+2 j1da. (4.40) 
m=l n p r 

Since the p-fractions on the left-hand side can be uniformly bounded from below by a 
positive constant, we have, by Lemma A.2, 

First, we will estimate this analogously to Laurern;ot [Lau94, Lemma 2.3], using the fact 
that, by ( 4.39), ( 4.35), (A.l), (3.2), and ( 4.1), 

K 

e L hm llfmll~::; C15. ( 4.42) 
m=l 
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Using Holder's inequality, (A.1), and Young's inequality, we obtain 

P [ fmu~+l dx < P llfmll6 U u;f ui(p+2
) dx) ~ ~ P llfmll6 lluJ'll! llu,l 

< C11P
2 llfmll~ llumll~P + C2

14 llu!f ll
2 

· 
4 Hl(O) 

Therefore we have, by ( 4.41) and ( 4.42), 

Co llukll~ + 02
14 t hm llu!f 11

2 

::; CfsCfs + C11P2 C
16 

max llumll~ . 
m=l Hl(O) c l~m~k 4P 

For Po = 6, Pn+l = ~Pn now holds, by ( 4.1), 

and, by ( 4.29) and (A.I), 
max llu llPo < C l~k~K k Po - 20· ( 4.43) 

Thus, we have, by Lemma A.5, 

(4.44) 

Next, we will use an estimation similar to Horn-Sprekels-Zheng [HSZ93]. We define p0 = 6, 
Pn+l = 2pn - 2. Recalling ( 4.41) with p = Pn, Schwarz's inequality, ( 4.39), ( 4.29), (3.2), q,nd 
( 4.1), we se~ that · 

k 1 k 
Co lluk 11:: + C14 f

1 
hm 1iu!;-1 ll~1(n) ~ Cf5+2 + PnC22 vf"8 f

1 
hm jju:;+i jj . ( 4.45) 

Setting qn := pn+l, we have 
Pn-1 1 [11 ) qn = 2 - -- E -, 2 , 

Pn-1 6 
(4.46) 

and applying Holder's and Nirenberg-Gagliardo's (see [Zei90b, Chapter 54 a]) inequalities, 
we can conclude that 

2-qn ~ !1.!l. 

< IOI 4 llu~- 1 ll:n ::; C2a llu~- 1 ll.J~(n) llu~- 1 llJJ(n) · ( 4.47) 

Hence, by Young's inequality, 
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where we choose c* > 0 such that 

9qn c 9!~ _ C14 
20 * - 2 ' 

Recalling ( 4.46) and ( 4.1), we find that 

qn < 2 
20 - 9qn - 20 - 9qn 

< 1, 

(PnC22C23 ~) 20~g,. ::0 p~°C24t5-5 

Therefore, by (4.48), 

C 1 II Pn+lll < C14 II Pn-1112 + rnc .r-5c {1 II Pn-1112 } Pn 22 ../8 um - 2 um Hl(O) Pn 24u 25 max ' um Ll(O) . ( 4.49) 

Thus, recalling ( 4.45), we have 

max llukll;" < ~Cf5+2 + ~p~08-5C24C2sT max max {1, (llu~IJ;•- 1 ) 2 }·. 
1:5k:5K " - Co Co 1:5k:5K n-1 ( 4.50) . 

Recalling ( 4.43), we can now use Lemma A.5 to obtain 

( 4.51) 

Since we have the L 00 (0)-bounds for Um in (4.44) and (4.51), to verify (4.36) it suffices to 
us~ (4.12) and a calculation analogous to the first one in the proof of Lemma 4.7. D 

Lemma 4.10 There is a positive constant C21 such that 

c3 0~c;1< (llBklli=(n) + llBkllH1(n)) 

+ c3 j;
1 

hm ( Om ~~m-l 
2 

+ [[um[[~,(!l}) + c3 j;
0 

[[Omf [~1(!l) ::0 C27. ( 4.52) 

Proof. 
Since the calculation for the L00 (0)-bounds are quite similar to the estimates analogous to 
Lauren~ot [Lau94] used in the last lemma, we will only give a sketch of the proof. 
After inserting v· = B~ in (2.42), we get for p = Pn + 1, with Po= 2, Pn+l = iPn, 

Now we have by (4.31), Lemma A.5, (2.41), (4.3), and (4.1) that 

(4.53) 
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Recalling ( 4.10) and ( 4.29), we see by Holder's inequality that 

( 4.54) 

K 
Therefore, thanks to (2.38), ( 4.29), ( 4.1), and (3.2), we have c-3 2::: hm ll~umll 2 :::; C31 . Using 

m=l 
Lemma A.3, (4.29), (3.4), and (3.2), we obtain 

K 

c3 L hm llumll~2(n) :::; C32. ( 4.55) 
m=l 

Moreover, we have by ( 4.53), ( 4.29), and ( 4.31) 

( 4.56) 

Thus, (4.52) follows from (4.53)-(4.56), (4.31), and (4.1). 
D 

5 Error estimates and convergence 
In this chapter, we will derive error estimates for our scheme and prove the convergence of 
the approximations. We will use ideas from an error ~stimate for the relaxed-in-time Stefan 
problem by Colli in [ Col95]. 
In the sequel, we suppose that the assumptions corresponding to one of the Theorems 2.3 
to 2.6 are satisfied, and define (e, u, x, e) as in the respective theorem. 
We consider 8 > 0, c > 0 with (4.1), and admissible decompositions Z. By Lemma 4.1 
and Theorem 2.2, there exists a unique solutioil' to (D z,8,e:) that defines a corresponding 
approximation ("iJz8e:, f],Zde:, x_z8e:, ~Zde:), as in Remark 2.2. We define 7/"e:, v;Ue:, and xz"e: 

-Z8e: · analogously to e . 
For the functions gm, {m, (m, defined in (2.31) and (2.32), we define gz E £ 00 (OT), ,z, 
(z E £00 (~), analogously to ~z8e:. Then, we have by the definition ·of the approximations, 
(2.34)-(2.37), (2.39), (2.42), and (2.57) (see Lemma 4.1), 

x_Ue: E H1 (0, T; £ 2 (0)), x_Zde:, x_Zde:" E £ 00 (0, T; H2(0)), ~Zde: E £ 00 (0, T; £ 2(0)), 
'ifZ8e:, flue: E H 1 (0, T; £ 2(0)), v;Z8e: E £ 2 (0, T; H 2(0)), uz8e: E L2(IZI, T; H 2(0)), 
8X.f de: - c~XZde: + ~Zde: = L (Uc - v;Zde:) a.e. in nT, 

j (coBf8e:(t) + Lxf"e:(t)) vdx - K, j '7uz8e:(t) • \lvdx 
n n 

(5.1) 
(5.2) 

(5.3) 

(5.4) 

- j ( ,z (t)uz8e:(t) - (z (t)) v da = j gz(t)v dx, V v E H 1 (0), for a.e. t E (0, T), 
r n 

-8z8e: = _1_ . . n 
Z~ a.e. Ill HT, U ue: 

(5.5) 
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a.e. in n. 
(5.6) 

(5.7) 

In the sequel, c; will always denote positive generic constants, independent of the approxi-
mation, and the decomposition Z, as well as independent of 8 ( resp. c), if 8 ( resp. c) is not 
a fixed parameter. 
We find from Lemma 4.4 to Lemma 4.10 that 

llxz"'llL=(nT) + llxz•t=(nT) + c (llxz•t=(o,T;H'(n)) + llxz°'ll:2(0,T;H'(nn) 
+ c (llxz•t=(o,T;H'(n)) + llxz°'ll:,(o,T;H'(n)) + llxz"'ll:•(o,T;H•(n))) 
+ 8 (llxz°'ll~··=(o,T;L'(nJJ + llxz"'ll:=(o,T;H'(n)J + llxz°'ll:=(o,T;H'(nJJ) :Sc;, 

ll -z:Zc5e 112 (8§. 1) 11-z:Zde II < C* 
':. £oo(O,T;L2(f2)) + 4 + €2 ':. £oo(f2T) - 2' 

II uz•e II:. (O,T;d (ll)) + II uz•e II:= (O,T;H' (ll)) + lluz•e II:= (O,T;H1 (n)) 

+ (8~ + c) (lluZdc:ll2 + lluuc:ll2 + lluZdc:ll2 ) 
H 1 (0,T;L2(n)) L00 (f2T) L00 (nT) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

The difference between the piecewise linear and the piecewise constant approximations can 
be estimated using Lemmas 4.4 and 4.6 to 4.10, 

511--Zdc: -Zdc: 11
2 11--Zde -Zde 11 2 

X - X L00 (0,T;L2(n)) + € X - X L2(0,T;H1 (f2)) < 1z12c;, 

ll uZdc: v,Zdc:ll 2 + (8 ~ + c) lluZdc: v,Zoc:,, 2 

- L2(0,T;L~(n)) - L2(0,T;L2(n)) < 1z12c;, 

11 .-..Zd -Zdell 2 311--zd -Zdc:ll2 
(} e - (}. L2(0,T;Ll(f2)) + € (} e - (} L2(0,T;L2(f2)) < 1z12c;, 

li
e §Zoe: + Lx--Zdc: _ (c 0z& + L-xZdc:) 11

2 
. 

0 0 Loo(O,T;Hl(f2)*) < 1z12c;. 
For the data., -we have the following estimates. 

Lemma 5.1 

Ilg - gz11L2(0,T;Loo(n)) +II')' - 'YZllLOO(~) + "' - (ZllLOO(~) < c;o IZI' 
'Yz 2:: c-y, (z 2:: cc a. e. in :E. 

24 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 



Proof. From (2.22)-(2.25), (2.31), and (2.32), one can derive elementary (5.17). The 
lower bound (5.18) follows immediately from (3.3). D 

Remark 5.1 If in (2.25) the assumption 9t E L2 (0, T; L 00 (0)) is omitted, then the estimate 
for gz in (5.17) is lost. But, using the p-mean value theorem (see [Zei90a, Prob. 23.9]), we 
still could prove gz--+ g strongly in L2 (0, T; L00 (0)). 

Now, we estimate the difference between the approximation and the exact solution. First, 
we work on the equation for () and u. We obtain from (2.2), (2.3), (2.11) and (2.26), resp. 
(2.12) and (2.14), · 

() E L00 (0, T; L2 (0)), u E L00 (0, T; Hi(O)), (co()+ Lx)(O) = es E Hi(n)*. (5.19) 

Integration in time of the difference between (5.4) and (2.8) yields, by (5.7) and (2.33), for 
a.e. t E (0, T) and for all v E Hi(n), 

j ( c0[fZ&(t) + LXz&(t) - (eoO(t) + Lx(t))) v dx - j (eo& - e.) v dx 
n · n 

t t 

- "'j j \1 (uzo"(T) - u(T)) • \Tvdx dT + j j (gz(T) - g(T)) vdx dT 
o n · o n 

t 

+ j j (1 z(7 )uz8c:(r)-(z(;)-(!(r)u(r)-((r)))vda dr. (5.20) 
o r · 

With v = - (uZ8c:(t) - u(t)), this yields· 

J ( eoezoe + LXZOe - (coO + Lx)) (uz•e - u) dx + J (ea& - e,) (uZ5e - u) dx 
n n 

t 

_ -"1 j j \7 (uZdc:(r) - u(r)) dr • \7 (uZ<>c: - u) dx 

We have 

n o 
t - j j ( 1 z(r)uZ8c:(r) - (z(r) - (!(r)u(r) - ((r))) dr (uuc: - u) da 

r o 
t - j j (gz(r) - g(r)) dr (uzi5c: - u) dx =:-Ai -A2 -A3. 

n o 

t 2 

Ai - ~at \7 j (uz8c:(r) - u(r)) dr 
0 
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Moreover, using (5.21), Schwarz's inequality, (5.17), the trace theorem for H1 (0)-functions, 
(5.10), and (5.19), we obtain 

t 

A2 = j j (1'z(r) -1'(r)) u;Zos(r) dr (uzos - u) da 
r o 

t t 

+ j j 1'(r) (uz0s(r) - u(r)) dr (uzas - u) do- - j j ((z(r) -((r)) dr (uzos - u) da 
r o r o 

> I 21 
81 (i 'Y(r) (uz&(r) - u(r)) dr) 

2 
da - c;l [Z[. 

r 1' o 
(5.23) 

Finally, using (5.21), Holder's inequality, (5.17), (5.10), (5.19), and Young's inequality, it 
follows that 

t 

-A3 < j ( gz ( r) - g ( r)) d T jjuzos - ujl 
L1(n) 

0 L 00 (f!) 
u;Zos _ u u;Zos _ u 2 

< v'Tc;o IZI ..Ju;z<>su 11..Juz<>sull ~ c;21z12 + ~ ..Ju;Zosu (5.24) 

Recalling (2.6) and (5.5), we see that 

- j ( coffZos + Lx_Zos -·(coB + Lx)) (uz~s - u) dx 
n 

= -A4 +Co I (u::.~uu )2 

dx - LI (xZde - x) (uz•e - u) dx {5.25) 

with . 

n n 

A4 := j ( coffZos + Lx_Zos - (call as + Lx_Zos)) ( u;Zos - u) dx. 
n 

Moreover, using (5.16), (5.10), and (5.19), we obtain 

A < lie ezos + Lx--Zos - (c 7pos + L-xZos) II lluZos - ull < IZI C*. 4 - 0 0 Hl(Q)* Hl(Q) - 13 

(5.26) 

(5.27) 

Hence, we obtain from (5.21), Schwarz's inequality, (5.22)-(5.24), (5.25), and (5.27) that 

2 

(5.28) 
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Thus, integrating over t and by parts, we find from Holder's inequality and (2.23) that 

s 

< L j j (XZ5• - x) (uz5, - u) dx dt + [[eo5, - e,[[ v'TlluZ5• - ullL'(o,T;P(n)) 
o n 

+ IZI c;4 + 11 'Yt II j Jz1 (J 1'( r) ( uu• ( r) - u( r)) dr) 
2 

dcr dt. (5.29) 
'Y L=(:E) O r 'Y O 

We define 81
, €1 in the framework of Theorem 2.3 by c' = c and 8' = 8, in Theorem 2.4 by 

€1 = 0 and 8' = 8, in Theorem 2.5 by c1 = c and 8' = 0, and in Theorem 2.6 by c' = 0 and 
81 = 0. Then, we have by (2.4), (2.15), or (2.18), 

c'x E L00 (0, T; H 2(0)), (5.30) 

It follows from ( 4.1) 
0 ~ 8' ~ 8. ~ 8, 0 ~ € 1 ~ c ~ €. (5.31) 

Subtracting (2.9), (2.16), (2.19) or (2.21), from (5.3), we have that a.e. in OT, 

8' (xf0e - Xt) - c'll (xZoe: - x) +~Zoe: -e = -L (uZoe: - u) + (8' -8)xf0e - (c' -€)6.xZoe:. 
(5.32) 

From (2.10), (2.20), (2.11), and (2.17), we find tha:t always 

,a.x o . ~ c an = a.e. m L.J, 8'(x(·, 0) - Xs) = 0 a.e. in 0. (5.33) 

We multiply (5.32) by XZOe: - x and integrate in space. Since (~Zoe: - e) (xZoe: - x) ~ 0 a.e. 
in 0, by the monotonicity of /3, (5.5), and, (2.7), we find, using Green's formula, (5.6), (5.33) 
and Schwarz's inequality, that a.e. in (0, T) 

8• ~ llxz5
• - xll

2 
+ llv ( # (xu· - x)) 11

2 

< 118' (xfoe: - Xt) 11 llxzoe: - xzoe:ll - L j (uzoe: - u) (xzoe: - x) dx 
n 

+ (8 - 8') llxf0e:ll llxzoe: - xii + (c: - c') 116.xzoe:ll llxzoe: - xii · (5·34) 

We obtain from integration over t, applying (5.7), Holder's inequality, (5.31), (5.33), (5.8), 
(5.30), and (5.13) that 
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8 

~ llxzo"(s) - x(s) 112 + J llV' ( R (xzo.(t) - x(t))) 112 dt 
0 

< ~ llxooe - x.11 2 + T ( 8' ff+ IWxtllL=(O,T;L'(!l))) ff IZI (5.35) 

L Js J (uzae - u) (xzae - x) dx dt + C* (8 - 8' + c -c') llxzae - xii . 
15 J8 J""i , L2(0,T;L2(0)) 

o o 

In the framework of Theorem 2.4 and Theorem 2.6, we have 8' = 0, and in the framework 
of Theorem 2.3 and 2.5, we have 8' = 8 > 0, Xt E L00 (0, T; L 2(0)), and Xoae = Xs· Hence, 
adding (5.29) and (5.35), applying (5.31), Gronwall's inequality, and (2.23), we find that 

2 

L2(r) 

+ II~ 11
2 

2 2 
+ ~ llxzo. - xll~=(o,r;L2 (11Ji + llV' ( R (xzo. - x))ll~2 co,r;L2 (11)) 

L (O,T;L (0)) 

< c;6 (1z1 + ( 
8 --;!' + e ;;;') llxzo. - xllL'(o,r;L'(n)J 

+ lleooe - e,!! lluz•e - ullL'(O,T;L2(!l),). (5.36) 

Next, we use calculations analogous to those useµ in Lemma 4.7 and Lemma 4.8 to improve 
the above estimate. Using Holder's inequality, we obtain for t E (0, T) 

u,ZOe(t) - u(t) 
.Ju,Zaeu 

2 

jju,Zc>e ( t) llL6{0) llu( t) 11£6(0) · 

Therefore, by (A.l), (5.10), and (5.19), 

II 11

2 u,Zae u < C* 
- £ 2 (0,T;d (0)) - 17 

-Zoe 12 u -u 
-Zoe · ~ £2(0,T;L2(0)) 

We have, by (5.5), (2.6), and Holder's inquality, fort E (0, T) 

(5.37) 

(5.38) 

11

-()Zae(t) - ()(t)ll - J luzae(t) - u(t)I dx < u,Zae(t) - u(t) i (ll(Jzae(t)ll 11()(t)ll) 2
• 

L1(0) - o u,Zae(t)u(t) - Ju,zoe(t)u(t) 

Thus, (5.11) and (5.19) yield 

0zae _ () < C* u u . 2 11-Zae _ 112 
II llL'(O,T;L1{!l)) - 18 ~ L'{O,T;L2(!l)) (5.39) 
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Inserting v = 1 in (5.20), squaring, and using Schwarz's and Young's inequalities, we arrive 
for a.e. t E (0, T) at 

2 

L J (xz<;c(t) - x(t)) dx 
n 

t 2 

< c;g (1iez0e(t) - 11(t)ii:,(!l) +Ilea.re - e,JJ2 + J 'Y(T) (uZde(T) - u( T)) dT 
o L2(r) 

+ ll 7z - 7 ll:•(a,T;L2(r)) lluz.re(t)ll:.(r) + ll(z - (11:.(a,T;L2(r)} + llgz - g11:,(a,T;L2(!l}}) · 

Thus, by integration over t, Lemma 5.1, Schwarz's inequality, (5.10), (5.31), (5.13), and 
(5.15), we get 

T 2 

€ J J (xz•e(t) - x(t)) dx dt < c;a (1z1 2 +11ez•e -1111:,(a,T;L'(!l)} +Ilea.re - e.112 
o n 

t 2 

+ max j1(r) (uz8e(r) - ~(r)) dr ) . (5.40) 
O<t<T 

- - o £2(r) 

Recalling (5.36), (5.38), (5.39), (5.40), and Poincare's inequality, we see that 

-Z8e 2 · · 
U - U + lluZ8e - ull2 3 + ll7l8e - e112 
Jv;Ueu 2 ( • 2 ( )) L2(0,T;L~(n)) L2(o,T;L1(n)) L O,T,L n 

8' 2 2 
+ 2 llxZde - xllL00 (0,T;L2(f2)) + llW (xZde - x) 11£2(0,T;Hl(f2)) 

< c;1 (1z1 + ( 
8 -;!' + c ~t) llxz•e - xllL•(a,T;L'(n}) 

+Ilea.re - e,11 lluz.re - ullL2(a,T;L'(!l}} +Ilea.re - e,JJ2). (5.41) 

By (5.41), (5.8), (5.10), (5.19), and (5.30), we obtain 

lluz•e - ull:2 (a,T;d (!l)} + llez•e - 11ll:2 (a,T;L'(n)) 
* ( 8 - 8' c -=-- €

1 2) 
. :::; C22 y'8 + y1e + lleoae - esll + lleo8e - esll · (5.42) 

We consider the convergences for 8-+ 8', c-+ c1
, and IZI-+ 0. Thus, (5.42) and (4.9) yield 

strongly in £ 2 (0, T; L~(O)), 
strongly in £ 2 (0, T; £ 1(0)). 

(5.43) 
(5.44) 

It follows from (5.10) that (v;Ue) and ( uZ8e) are uniformly bounded in £ 00 (0, T; H1(0)), that 
'( uz8e) is uniformly bounded in H 1(0, T; L~(O)), and (5.11) yields that (ez8e) and (ez&) are 
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uniformly bounded in VX)(O, T; L2 (0)). Using compactness (see [Zei90a, Prob. 23.12]), (5.43), 
(5.14), (5.44), and (5.15), we see that the convergences (2.70) and (2.61) hold; moreover, 
recalling (5.20), (4.9), and Lemma 5.1, we have for all v E L2 (0, T; H 1(0)) 

T 

L j j (xzae(t) - x(t)) v(t) dx dt -+ o, (5.45) 
o n 

since "fzV -+ "fV strongly in L2 (0, T; L2 (r)). Thus, we obtain (2.60) from (5.8) and com-
pactness. 

In the situation in Theorem 2.6, we have s' = 8' = 0. Since we have, by (5.32) and (5.8), 

lleZoe - ellL2(0,T;d(n)) :::; L lluZoe - ullL2(0,T;d(n)) + c;2 ( V8 + v'c) ' 
(2.68) follows using (5.42), (5.14), and (5.15). Moreover, (5.9) and compactness, yield that 

. (2.69) hold. Since the convergences (2.60), (2.61), and (2.70) have already been shown, 
Theorem 2.6 is proved. 
It remains to examine the passage to the limit in the Theorems 2.3, 2.4 and 2.5. We have 
min{s', 8'} > 0. Therefore, it follows from (5.10) that (uz0e) and (uz0e) are uniformly 
bounded in L 00 (OT), and that (uz0e) is uniformly bounded in H 1(0,T;L2(0)). Using com-
pactness, (2.70), and (5.14), we see that the convergences (2.50) and (2.51) hold. Thus, 
u E L 00 (OT), and therefore, by (5.10) and (5.14), 

lluzoe - ullL2(0,T;L2(n)) + lluzoe - ullL2 (o,T;L2(n)). · 

< lluzo; u;Zoell + 2 (lluzai::ll !lull ) ~ u;Zoe - ul 
- L2(0,T;L2(n)) L=(n) L=(n) y'u;Zoeu L2(0,T;L2(n)) . 

< c;3 (
1z 1 + ll~llL'(O,T;L2{!lJ. (5.46) 

Hence, we obtain by applying (5.41), Young's inequality, (5.13), and (5.15), that 

II 
u;Zoe - u 112 + lluzoe u\j2 + [[ezoe elj2 

· ~ 2( 
2 

- L2(0,T;L2(Q)) - L2(0,T;L1(n)) v u~~~u L O,T;L (n)) 

8' 2 1 2 
+ 4 llxzoe - xllL=(o,T;L2(n)) + 2 /1# (xzoe - x) llL2(0,T;H1 (n)) 

* ( ( ( 8 - 8')2 ( s - s')2) · 1 2) < C24 IZI + 8 + 6 max{8', s'} + lleooe - esll · (5.47) 

In the situation of Theorem 2.4, we have 8' = 8 > 0, and s -+ s' = 0. Applying (5.47), 
(4.7), (2.60), (5.8), (5.13), and compactness, we obtain that (2.58), (2.59), and 

(5.48) 

hold. Therefore, comparing the terms in (5.32), applying (2.59), (2.50), and (5.14), we have 

ezoe --+ e weakly in L2 (0, T; L2(0)). (5.49) 

Thus, (5.9) and compactness lead to (2.49). Since we have already shown that (2.50), (2.51), 
(2.60), and (2.61) hold, Theorem 2.4 is proved. 
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It remains the passage to the limit in Theorems 2.3 and 2.5. We have c' > O. Therefore, 
(5.11) leads to a uniform VX) (OT) n L00 (0, T; H1(0))-bound for (azae) and (ezae) and to a 
uniform H 1 (0, T; L2 (0))-bound for 'iJZOe. Thus, we have by compactness, (~.15), and (2.61), 
that B E L00 (OT), the convergences (2.53) and (2.54) hold, and that 

IWZ& 8llL2(0,T;L2(n)) 

< ll'iJZd"e BZd"ell (llBZdell llBll ) ~ - L2(0,T;L2(n)) + L00 (n) L=(n) 
71Zd"e - U 

J71z&u L2(o,T;L2(n)) 

< c;s (1z1 + ~ ) · 
U U L2(0,T;L2(n)) 

(5.50) 

For a given t* E (0, T) and admissible decompositions Z with IZI ::; t*, we have, by (5.10), 
a uniform L2 (t*, T; H 2(0))-bound for uZae. Thus, compactness and (2.50) yield (2.52). 
Using (2.60), (5.8), (5.13), and compactness arguments, we obtain that (2.64) and 

XZae -----1- X weakly in L2 (0, T; H2(0)) 

hold. From 8 ---t- 8' and (2.64) it follows that 

8X.f8e ---t- 8'xt weakly in L2 (0, T; L2 (0)). 

(5.51) 

· Therefore, a comparison of the terms in (5.32) yields, by (5.51}, (2.50), and (5.14), that 
(5.49) holds. Thus, compactness and (5.9) lead to (2.49). . . 
By remark 4.1, we have eoae = e8 • Thus we obtain (2.46), resp. (2.63), from (5.47) and (5.50). 
Since we have already proved that (2.49)-(2.54), (2.60) and (2.64) are satisfied, Theorem 2.5 
is proved. · 
In the framework of Theorem 2.3, we have 8 = 8' > 0. Hence (2.64), (5.8), and compactness 
lead to the additional convergence x_zae --+ x weakly-star in W1'00 (0, T; L2(0)), and thus, 
by (2.64), the convergences (2.47) and (2.48) hold. Since (2.49)-(2.54) have already been 
shown, Theorem 2.3 is verified. 

This finally ends the proof of the Theorems 2.3 to 2.6 D 

A Appendix 
Since 0 is a subset of !R3 , we obtain from Sobolev's embedding theorem: 

Lemma A.1 There is a positive constant C, such that 

(A.l) 

The following result is well-known. 

Lemma A.2 There are two positive constants C, C', such that, for all v E H 1 (0), 

(A.2) 
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The following classical elliptic estimate can be found in [Ama93, Remark 9.3 d]. 

Lemma A.3 There is a positive constant C, such that for all v E H 2 (0) 

In particular, for all v E H2 (0) with g~ = O a.e. on r, it holds 

Elementary calculations lead to: 

Lemma A.4 For n E IN, ai, ... , an, b1 , ... , bn E IR, it holds 

n i 

:Lai:Lbj 
i=l j=l 

( 
n ) ( n ) n-1 j 
~a; ~b; - Ei bi+1 ~a;, 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

By having a close look at the proof in [Lau93], one can extend the Lemma A. l in [Lau93, 
Lau94] to the following result. 

Lemma A.5 Let a> 1, b 2:: 0,. c E IR, andp0 be given numbers such that p0 + a~l > 0. We 
consider the sequence (Pn) of positive real numbers defined by Pn+l = apn + c for all n E !No. 
Then, lim Pn = oo holds and there is a positive constant C, such that, for every C0 2:: 1, 

n-roo 
every C1 2:: 1, and every sequence (an) of real positive numbers, satisfying 

(A.7) 

it holds 
1 1 2 Po(a-l)+lcl 

1. p; < CC (a-l)Po+c C Po(a-l)+c imsupan _ 0 1 · (A.8) 
n-roo 
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