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Abstract

We present results of a simulation study regarding the finite-sample type I error be-
havior of the self-concordant profile empirical likelihood ratio (ELR) test for the population
correlation coefficient. Three different families of bivariate elliptical distributions are taken
into account. Uniformly over all considered models and parameter configurations, the self-
concordant profile ELR test does not keep the significance level for finite sample sizes,
albeit the level exceedance monotonously decreases to zero as the sample size increases.
We discuss some potential modifications to address this problem.

1 Introduction

Empirical likelihood ratio (ELR) tests for multivariate means were introduced by Owen (1990).
Although ELR tests are nonparametric tests for statistical functionals, they share an impor-
tant property with parametric likelihood ratio tests. Namely, under regularity assumptions, the
asymptotic distribution of twice the negative logarithmic (empirical) likelihood ratio statistic is
chi-squared under the null, with degrees of freedom determined by the dimensionality of the pa-
rameter (functional) of interest. This result is commonly referred to as the "Wilks phenomenon",
see Wilks (1938).

ELR tests for the population correlation coefficient ρ of a bivariate distribution constitute a partic-
ularly challenging application example, because the evaluation of the ELR in this case requires
a nested optimization. In the inner level, optimization has to be performed with respect to a
five-dimensional Lagrange multiplier, and in the outer level four nuisance parameters have to be
profiled out. We will provide more details in Section 2.

As reported for instance in Table 1 of Hall and La Scala (1990), the original ELR test for ρ often
does not keep the significance level accurately for finite sample sizes. Recently, several novel
strategies have been proposed to address this problem. In particular, Tsao (2013), Tsao and
Wu (2013, 2014), Wu and Tsao (2014) and Owen (2013) proposed to extend the parameter
space over which the ELR is maximized beyond the convex hull of the observations. While
Tsao and Wu (2013) assess the accuracy of their “extended empirical likelihood“ method for
multivariate means rather systematically in their Section 4, the work of Owen (2013) does not
contain numerical results.

In this work, we assess the type I error accuracy of the self-concordant profile ELR test for
ρ according to Owen (2013) by means of computer simulations. We consider three families
of multivariate elliptical distributions (see Gupta et al. (2013) for a comprehensive overview of
such distributions). The choice of elliptical models is motivated by the fact that ρ is a meaningful
measure of dependency only in such models. Elliptical models play an important role in many
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applications from the life sciences (cf., e. g., Part II of Dickhaus (2014)) and in portfolio theory
in finance (see Part IV of Gupta et al. (2013)). ELR methods are particularly attractive in such a
context, because the type of elliptical distribution can often not be specified exactly. For example,
there may be lacking information about the degrees of freedom of a multivariate Student’s t
distribution, see Section 3 for a definition.

The rest of the paper is structured as follows. In Section 2.1, we briefly summarize the statisti-
cal methodology of ELR tests for ρ. Section 2.2 contains some remarks on the computational
strategies employed. Our main contribution is Section 3, where simulation results under three
different elliptical models are presented. We conclude with a discussion in Section 4.

2 Statistical methodology and implementation

2.1 Statistical methodology

Let (X1, Y1), . . . , (Xn, Yn) denote an independent and identically distributed (i.i.d.) sample
from a bivariate distribution, where (X1, Y1) is in distribution equal to (X, Y ). Assume that
the second moment of the joint distribution of (X, Y ) (denoted by L(X, Y )) exists. Let Z =
(X, Y,X2, Y 2, XY )> denote a random vector with values in R5. For the expectation of Z, it
holds that

E[Z] = (µX , µY , µ
2
X + σ2

X , µ
2
Y + σ2

Y , ρσXσY + µXµY )>. (1)

In (1) and throughout the remainder, µW (σ2
W ) denotes the mean (variance) of the random

variable W , and ρ = ρ(X, Y ) is Pearson’s product-moment correlation coefficient of X and
Y . We denote by θ = (µX , µY , σ

2
X , σ

2
Y , ρ)> ∈ Θ ⊂ R5 the five-dimensional vector of the first

two population moments of interest and define h : Θ→ R5 as the function which maps θ onto
E[Z]. Obviously, h possesses (partial) derivatives of any order.

The ELR for a given parameter value θ∗ is given by

R(θ∗) = max

{
n∏
i=1

npi | 0 ≤ pi ≤ 1,
n∑
i=1

pi = 1,
n∑
i=1

piZi = h(θ∗)

}
, (2)

where Zi is calculated from (Xi, Yi) as Z from (X, Y ), for 1 ≤ i ≤ n. The (asymptotic)
ELR test for the null hypothesis H ′0 : θ = θ∗ rejects H ′0 at significance level α ∈ (0, 1), if
`(θ∗) = −2 log(R(θ∗)) exceeds χ2

5;1−α, where χ2
ν;1−α denotes the (1 − α)-quantile of the

central chi-square distribution with ν degrees of freedom.

In this work, we are concerned with the more general hypothesis H0 : {ρ = ρ∗} for a given
value ρ∗ ∈ [−1, 1]. For testing H0, we profile out the nuisance parameters µX , µY , σ2

X , and
σ2
Y . More specifically, let Θ(ρ∗) = {θ ∈ Θ : ρ = ρ∗}. The test for H0 can then be described

by the following algorithm.

Algorithm 2.1.

1. MaximizeR over θ∗ ∈ Θ(ρ∗). Denote the maximizer by θ(ρ∗).
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2. Reject H0 at significance level α, if `(ρ∗) = −2 log(R(θ(ρ∗))) > χ2
1;1−α.

Remark 2.1. The testing method based on Z has been outlined in Section 3.4 of Owen (2001).
It appears more convenient than the method originally proposed in Section 6.2 of Owen (1990),
because it avoids iterated re-centering of the observations when step 1 of Algorithm 2.1 is
performed.

2.2 Implementation

Notice that Algorithm 2.1 involves a nested double optimization. Namely, the inner optimization
is given by the maximization in (2) for given θ∗, and the outer optimization is given by the
maximization over the nuisance parameters µX , µY , σ2

X , σ2
Y as described in the first step of

Algorithm 2.1.

For the outer optimization, a general-purpose (constrained) optimizer can be employed. For the
simulations in Section 3, we utilized the optim function in R with method "L-BFGS-B". This
routine implements the box-constrained optimization algorithm by Byrd et al. (1995). Constraints
are required in our context, because σ2

X and σ2
Y are necessarily non-negative.

More crucial is the inner optimization problem (2). To this end, Owen (2013) introduced an
algorithm based on self-concordance. In a nutshell, the negative empirical log-likelihood ratio
is approximated by a quartic polynomial, leading to a convex constrained optimization problem
which can be solved by the method of Lagrange multipliers. Owen (2013) also contributed the
R program scel.R on which our simulations in Section 3 rely.

3 Simulation results

In this section, we present simulation results under three different elliptical models for L(X, Y ).
In general, the probability density function (pdf) of an elliptically contoured distribution on Rd is
of the form

f(t) = Cd|det Σ|−1/2g(t>Σ−1t), t ∈ Rd,

where Cd is a normalizing constant which depends on d. The positive definite matrix Σ ∈ Rd×d

is called the dispersion matrix. It captures the (elliptical) dependencies among the components
of a random vector with pdf f . The scalar function g is called the density generator of the
elliptical distribution. Three well-known families of elliptical distributions are

(a) normal distributions on Rd with g(u) = exp(−u/2),

(b) Student’s t distributions on Rd with g(u) = (1 + u/ν)−(d+ν)/2, ν ∈ N,

(c) double-exponential (Laplace) distributions on Rd with g(u) = exp(−|u|).

We will consider these three distributional families in the remainder of this section.
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3.1 Bivariate normal distribution

We assume that L(X, Y ) = N2(0,Σ), where σ2
X = σ2

Y = 1 without loss of generality. The
off-diagonal element of Σ ∈ [−1, 1]2×2 is the parameter ρ of interest. Pseudo-random samples
were generated by utilizing the routine rmvnorm from the R package mvtnorm, cf. Genz
and Bretz (2009). Table 1 summarizes our simulation results under this Gaussian model for
L(X, Y ).

Table 1: Relative rejection frequencies of the self-concordant profile empirical likelihood ratio
test for the population correlation coefficient in case of bivariate Gaussian data. The nominal
significance level was set to α = 5% in all simulations. Results are based on 10,000 Monte
Carlo repetitions for each parameter configuration (ρ: true underlying correlation coefficient, n:
sample size).

ρ n Relative rejection frequency ρ n Relative rejection frequency
−0.9 10 0.1669 0.25 10 0.1612
−0.9 20 0.1030 0.25 20 0.1085
−0.9 50 0.0681 0.25 50 0.0716
−0.9 100 0.0593 0.25 100 0.0558
−0.75 10 0.1668 0.5 10 0.1705
−0.75 20 0.1069 0.5 20 0.1066
−0.75 50 0.0758 0.5 50 0.0743
−0.75 100 0.0588 0.5 100 0.0586
−0.5 10 0.1645 0.75 10 0.1649
−0.5 20 0.1089 0.75 20 0.1077
−0.5 50 0.0688 0.75 50 0.0737
−0.5 100 0.0624 0.75 100 0.0605
−0.25 10 0.1655 0.9 10 0.1662
−0.25 20 0.1102 0.9 20 0.1015
−0.25 50 0.0737 0.9 50 0.0716
−0.25 100 0.0593 0.9 100 0.0625

0 10 0.1669
0 20 0.1106
0 50 0.0697
0 100 0.0623

3.2 Bivariate Student’s t distribution

In this section, we assume that L(X, Y ) is a centered bivariate Student’s t distribution with
ν > 2 degrees of freedom and dispersion matrix Σ ∈ R2×2, denoted as t2(ν,Σ). In analogy to
Section 3.1, we may without loss of generality assume that Σ11 = Σ22 = 1. In this case, Σ is
the correlation matrix of (X, Y ) (see Section 1.7 of Kotz and Nadarajah (2004)); hence, its off-
diagonal element equals again the parameter ρ. Pseudo-random samples were generated by
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utilizing the routine rmvt from the R package mvtnorm. Since it is well-known that t2(ν,Σ)
converges weakly to N2(0,Σ) with increasing degrees of freedom ν, we restrict our attention
to small values ν ∈ {5, 10} in Table 2.

3.3 Bivariate double-exponential distribution

Here, we consider centered bivariate double-exponential (Laplace) distributions for L(X, Y ).
To this end, it is convenient to notice that in this case (X, Y ) possesses the stochastic repre-
sentation (

X
Y

)
d
=
√
EG, (3)

where E follows a univariate exponential distribution with intensity parameter λ > 0, and G
denotes a centered bivariate Gaussian random vector with covariance matrix Σ; see, e. g.,
equation (6) in Eltoft (2006). Letting Σ11 = Σ22 = 1, we again obtain that ρ(X, Y ) = Σ12.
Since the latter property holds regardless of the value of λ, we can restrict our attention to
λ = 1. Based on (3), pseudo-random samples were generated by generating independent real-
izations of E with the R function rexp and independent realizations of G with the rmvnorm
function as described in Section 3.1. Simulation results for this model are presented in Table 3.

4 Concluding remarks

Summarizing our findings we observe that the relative rejection frequencies obtained under joint
normality of (X, Y ) are very close to those reported in Table 1 of Hall and La Scala (1990). The
ELR test does not keep the significance level accurately for finite sample sizes, but the level
exceedance monotonously decreases to zero as the sample size increases. Qualitatively, this
behavior of the ELR test is also reflected in our Tables 2 and 3 which correspond to two other
elliptical models for L(X, Y ).

Thus, if Gaussianity of (X, Y ) can be assumed, it seems recommendable to carry out a para-
metric test as explained, e. g., in Section 4.2 of Anderson (1984). In the nonparametric set-
ting, future research will consider Bartlett-corrected critical values (see DiCiccio et al. (1991))
in order to overcome the reported anti-conservativity of the considered ELR tests. On a more
fundamental level, an interesting and challenging research direction would be to analyze the
finite-sample properties of ELR-based inference by providing concentration inequalities in the
spirit of Spokoiny (2012).

Finally, let us mention that our restriction to point hypotheses of the form Hρ∗ : {ρ = ρ∗}
is not a severe limitation. Namely, by duality of tests and confidence regions, a composite null
hypothesis Hcomp. (associated with a subset of [−1, 1] 3 ρ) can be tested on the basis of a
family of point hypothesis tests. Following Aitchison (1964), a (1 − α)-confidence region Cα is
constituted by the set of all parameter values ρ∗ for which Hρ∗ is not rejected. Then, Hcomp. can
be rejected at level α if Hcomp. ∩ Cα = ∅. It is clear that the type I error accuracy of this test for
Hcomp. depends on that of the tests for the Hρ∗ .
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Table 2: Relative rejection frequencies of the self-concordant profile empirical likelihood ratio
test for the population correlation coefficient in case of bivariate Student’s t data. The nominal
significance level was set to α = 5% in all simulations. Results are based on 10,000 Monte
Carlo repetitions for each parameter configuration (ρ: true underlying correlation coefficient, ν:
degrees of freedom, n: sample size).

ρ ν n Relative rejection freq. ρ ν n Relative rejection freq.
−0.9 5 10 0.2069 0 10 10 0.1835
−0.9 5 20 0.1481 0 10 20 0.1327
−0.9 5 50 0.1091 0 10 50 0.0844
−0.9 5 100 0.0974 0 10 100 0.0738
−0.9 10 10 0.1762 0.25 5 10 0.2163
−0.9 10 20 0.1157 0.25 5 20 0.1561
−0.9 10 50 0.0869 0.25 5 50 0.1112
−0.9 10 100 0.0763 0.25 5 100 0.0888
−0.75 5 10 0.2088 0.25 10 10 0.1803
−0.75 5 20 0.1459 0.25 10 20 0.1215
−0.75 5 50 0.1080 0.25 10 50 0.0867
−0.75 5 100 0.0919 0.25 10 100 0.0699
−0.75 10 10 0.1741 0.5 5 10 0.2131
−0.75 10 20 0.1271 0.5 5 20 0.1492
−0.75 10 50 0.0838 0.5 5 50 0.1092
−0.75 10 100 0.0722 0.5 5 100 0.0916
−0.5 5 10 0.2083 0.5 10 10 0.1955
−0.5 5 20 0.1482 0.5 10 20 0.1248
−0.5 5 50 0.1068 0.5 10 50 0.0851
−0.5 5 100 0.0871 0.5 10 100 0.0692
−0.5 10 10 0.1856 0.75 5 10 0.2106
−0.5 10 20 0.1307 0.75 5 20 0.1425
−0.5 10 50 0.0853 0.75 5 50 0.1110
−0.5 10 100 0.0690 0.75 5 100 0.0884
−0.25 5 10 0.2094 0.75 10 10 0.1844
−0.25 5 20 0.1530 0.75 10 20 0.1224
−0.25 5 50 0.1053 0.75 10 50 0.0865
−0.25 5 100 0.0904 0.75 10 100 0.0639
−0.25 10 10 0.1888 0.9 5 10 0.2022
−0.25 10 20 0.1282 0.9 5 20 0.1478
−0.25 10 50 0.0835 0.9 5 50 0.1039
−0.25 10 100 0.0707 0.9 5 100 0.0942

0 5 10 0.2089 0.9 10 10 0.1830
0 5 20 0.1468 0.9 10 20 0.1220
0 5 50 0.1065 0.9 10 50 0.0825
0 5 100 0.0887 0.9 10 100 0.0679
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Table 3: Relative rejection frequencies of the self-concordant profile empirical likelihood ratio
test for the population correlation coefficient in case of bivariate double-exponential data. The
nominal significance level was set to α = 5% in all simulations. Results are based on 10,000
Monte Carlo repetitions for each parameter configuration (ρ: true underlying correlation coeffi-
cient, n: sample size).

ρ n Relative rejection frequency ρ n Relative rejection frequency
−0.9 10 0.2262 0.25 10 0.2363
−0.9 20 0.1585 0.25 20 0.1570
−0.9 50 0.1017 0.25 50 0.1045
−0.9 100 0.0823 0.25 100 0.0833
−0.75 10 0.2273 0.5 10 0.2281
−0.75 20 0.1575 0.5 20 0.1565
−0.75 50 0.1004 0.5 50 0.1067
−0.75 100 0.0840 0.5 100 0.0856
−0.5 10 0.2417 0.75 10 0.2293
−0.5 20 0.1603 0.75 20 0.1578
−0.5 50 0.1059 0.75 50 0.1005
−0.5 100 0.0812 0.75 100 0.0824
−0.25 10 0.2362 0.9 10 0.2279
−0.25 20 0.1632 0.9 20 0.1494
−0.25 50 0.1021 0.9 50 0.1023
−0.25 100 0.0846 0.9 100 0.0822

0 10 0.2351
0 20 0.1644
0 50 0.1022
0 100 0.0848
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