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ABSTRACT

We characterize the volume-constrained minimizers of a nonlocal free energy given by the
difference of the t-perimeter and the s-perimeter, with s smaller than ¢. Exploiting the quan-
titative fractional isoperimetric inequality, we show that balls are the unique minimizers if the
volume is sufficiently small, depending on ¢ —s, while the existence vs. nonexistence of minimizers
for large volumes remains open. We also consider the corresponding isoperimetric problem and
prove existence and regularity of minimizers for all s, t. When s = 0 this problem reduces to the
fractional isoperimetric problem, for which it is well known that balls are the only minimizers.

1. INTRODUCTION

In this paper we deal with two nonlocal isoperimetric problems, which are closely related
one with the other. To introduce them, we recall the definition and some properties of the
fractional perimeter. Given a number « € (0,1), for a measurable set E C R, the fractional
perimeter P,(FE) is defined as the (squared) H*/?-seminorm of the characteristic function of E,

that is,
IXE(z // dx dy
P.(E w2 = d dy =
(B) = el = /RN/RN Ix— |N+“ v e [z —y[Ne

The notion of fractional perimeter has been introduced in [36, 9] and it has been extensively

studied in several recent papers (see for instance [24, 33, 34, 11, 18, 15] and references therein).
In particular, according [10, Theorem 1] (see also [7, 14, 3]), we have that the fractional perime-
ter P,, if suitably renormalized, approaches the classical perimeter P as o / 1. More precisely,
if OF is of class C7 for some v > 0, we have
(1.1) lim (1 — «a)P,(F) = NwyP(E),

a—1—

where wy denotes the volume of the N-dimensional ball of radius 1. On the other hand, the

fractional perimeter P, approaches the Lebesgue measure |- | as o\, 0, that is,
(1.2) lim+ aP,(F) = Nwy|E]|,
a—0

if P5(F) < 400 for some & > 0 (see [31] and [17, Corollary 2.6]).

In the first part of the paper we investigate the minimum problem:

(1.3) |H\lin Fsi(E) m € (0,400),

where
(1—-t)P(F)—sPs(E) if0<s<t<l

NwyP(E) —sPy(E)  if0<s<t=1

(1-t)P(E) — Nuy|E| if0=s<t<1

NwyP(E)— Nwy|E| ifs=0andt=1.
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Notice that thanks to (1.2) and (1.1), for all s,¢ € (0,1) we have

(14)  FoulB) = Foa(B) = Foa(B) and  Fou(E) = Fou(E) = Fou(E),

that is, Fs; depends continuously on s,t¢ € [0, 1], with s < ¢t.
Problem (1.3) is reminiscent of recent results about isoperimetric problems with nonlocal
competing term arising in mathematical physics, where the functionals take the form

F=P+NL

being P the perimeter and N L the nonlocal term, see for instance [28, 29, 13, 26, 22, 18, 5, 27].
We mention in particular the works by Kniipfer and Muratov [28, 29] where the authors consider
the case where the nonlocal term is given by a Coulombic potential.

In our framework, the energy in (1.4) presents a competing effect between the term P, which
has the tendency to “aggregate” the sets into balls, and Ps, which acts in the opposite way. We
will see that, at small scales, the aggregating effect is predominant, but this does not occur at
large scales.

More precisely, as a first result we show that minimizers exist and are regular at least for
small volumes.

Theorem 1.1. For any 0 < s < t < 1, there exists mg = mo(N,t — s) > 0 such that for all
m € (0,myg), problem (1.3) has a minimizer F C RN. Moreover F is bounded with boundary of
class CYB, for some 3 = B(N,t—s) € (0,1), outside a closed singular set of Hausdorff dimension
at most N — 2 (respectively N — 8 if t =1).

Thanks to the fractional isoperimetric inequality in a quantitative form, we also show that
the the minimizer found in Theorem 1.1 is necessarily a ball, if the volume m is sufficiently
small.

Theorem 1.2. For any 0 < s <t <1 and mg as in Theorem 1.1, there exists mi = mi(N,t —
s) € (0,mg] such that for all m € (0,m1), the only minimizer of problem (1.3) is given by the
ball of measure m.

We stress that our estimates, similarly to those in [18], depend only on a lower bound on the
difference ¢t — s, and pass to the limit as s — 0 and ¢ — 1 (as a matter of fact, the normalizing
constants appearing in (1.4) has exactly the purpose of making our estimates stable as s — 0
and t — 1).

Moreover, as far as we know, our results are new even in the case t = 1.

We also point out that we do not know if a minimizer exists for any volume m. However,
we show that a minimizer cannot be a ball if m is large enough (see Theorem 6.3), so the
minimization problem can be in general quite rich.

The second problem we consider is the following generalized isoperimetric problem:

(1.5) EIE%KHN Fsi(E) 0<s<t<1,



where
(1=t P(E)N*

(sPo(E)™

Ho<s<it<l1

(NwyP(E))N=*

- (sP(E))N‘l fo<s<t=1

(1—t)R(E)N

]\7(,01\7{;3('#),N1 ifs=0andt=1.
Again, thanks to (1.2) and (1.1) we see that
FealB) = Faa(B) = Fou(B) and  Foy(B) = FoulE) = Foa(E).

Since, for s = 0 and ¢ = 1, problem (1.5) reduces to the classical isoperimetric one, we can think
to it as a generalized isoperimetric problem for fractional perimeters.
We now state our main result about problem (1.5).

Theorem 1.3. For any 0 < s <t < 1, there exists a nontrivial minimizer Eq of problem (1.5).
Moreover Es; is bounded and has boundary of class CYB, for some 3 = B(N,t —s) € (0,1),
outside a closed singular set of Hausdorff dimension at most N —2 (respectively N —8 if t =1).

We point out that, for s = 0, the problem reduces to the fractional isoperimetric problem,
for which it is known that the ball is the unique minimizer [20] (see also [24] for a quantitative
version of this result). However, we do not know if the ball is still a minimizer of problem (1.5)
for s > 0.

The paper is organized as follows: in Section 2 we recall some general properties of the
fractional perimeters and, more generally, of the fractional Sobolev seminorms. In Sections 3-6
we deal with problem (1.3). Section 3 contains the main tools exploited later to prove Theorems
1.1 and 1.2. The cornerstone of the section is an optimality criterion (see Proposition 3.8) which
entails density estimates for minimizers (see Proposition 3.10) and the fact that minimizers
must be close to a ball, if the volume is small enough (see Lemma 3.12). An elementary,
but important result is then provided by Proposition 3.11, stating that any minimum must be
necessary bounded and, if ¢t = 1 (that is, F51 = NwnyP—sP;), also essentially connected. Section
4 contains Theorem 4.2, which solves the existence part of Theorem 1.1, while in Section 5 we
prove that any minimizer has smooth boundary, out of a closed singular set. Then, in Section
6 we show that, if the volume m is below a certain threshold m; > 0, the ball is the unique
minimizer for problem (1.3). Eventually, in Section 7, we deal with problem (1.5). The main
result here is given by Theorem 1.3, where we show the existence and regularity of minimizers.

2. GENERAL PROPERTIES OF FRACTIONAL PERIMETERS

Before starting to prove some properties of fractional perimeters it is convenient to fix some
notation which will be used throughout the rest of the paper. Firstly, notice that we will denote
by ¢y a general positive constant depending only on the dimension N and by ¢y a positive
constant depending on N and §p a fixed quantity such that 0 < 6y < t — s, which will not
necessarily be the same at different occurrences and which can also change from line to line;
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special constants will be denoted by ci, co,.... Relevant dependences on parameters will be
emphasized by using parentheses.

As customary, we denote by B(xg, R) := {x € RY : |x — 29| < R} the open ball centered in
xo € RN with radius R > 0. We shall use the shorter notation B = B(0, 1), with |B(0,1)| = wy.
Moreover, when not important and clear from the context, we shall denote by B,, the ball of
volume m, that is of radius R = (m/|B(0,1)|)"/N.

Finally, as usual, given two sets E and F of RY, we denote the symmetric difference between
E and F as EAF = (E\F)N(F\E).

We begin by a simple observation, whose elementary proof is omitted:

Lemma 2.1. Let E = Ey U Ey a subset of RV with |Ey N Es| = 0. Then

dx dy
2.1 P,(E) = Py(Ey) + Pu(E2) — / /
(21) (B) = Pa(By) ] e
In particular
(2.2) P,(E) < Py(E1) + Po(E2).

For further use, we also prove the following interpolation estimate (by reasoning as in |8,
Proposition 4.2 and Corollary 4.4]):

Lemma 2.2. For any E CRY and 0 < s <t < 1 there holds
1 s\ 1 1—8 E s
(2.3) Py(E) < ey - (1 - Z) IE'=i(1 - t)iP(B)i.
s

Proof. We reason as in [8, Prop. 4.2]. Letting u = xg, we can write

u(z + h) — u(x)|
P,(F) =
(E) /RN/RN [R[NFs dxdh
u(x + h) —u(x)|
= dxdh
/h<1 /]RN |h|N+s

fu(z + h) — u(z)
dxdh =: [ Io.
/h|>1 /RN e 1T

We recall that, by [8, Lemma A.1] (see also [31]), there exists a constant ¢y such that

(2.4) [ e =l < ey ope).

for all |h| > 0. We then estimate

u(z + h) — u(zx)]
L = / / dxdh
' |h|<1 JRN ‘h|N+S

1
2.5 < ey(1—-t)P(E / —dh
( ) N( ) t( ) h|<1 |h|N—(t—s)

1-t¢
Ny =

= CN Pt(E>




and
u(z + h) — u(x)]
L, = / / dxdh

h|>1 JRN |h|VFs
2.6 < 2E/ 7dh
(2.6) |E| |>1|h|N+s

2NwN

= |E].

Putting together (2.5) and (2.6) we then get

1—1 2NwN

27) P,(B) < exy—P(E) + — X |
If we evaluate (2.7) on the set AE, with A > 0, we obtain
AN=sP(E) < chf_z)\N*tPt(E) awENeN gy
that is,
(2.8) A=spy () — a2 “’;V Bl ¢ CNt(l__S DpE).

The expression at the left-hand side of (2.8) reaches its maximum at
\_ (st=s)P(B) s
N QNWNt|E| .
Substituting this value of A into (2.8) we get (2.3). O

Remark 2.3. If we let t — 17 in (2.3), we recover the estimate in [8, Cor. 4.4]:

CN

s(1—s)

Indeed the proof of Lemma 2.2 extends to the case ¢t = 1, by substituting (1 — ¢)P;(E) with
P(E) in the right hand side of (2.4).

(2.9) Py(E) < |E|'*P(E)*.

We show now a version of the local fractional isoperimetric inequality. For this, we recall that
the fractional perimeter of a set E in a bounded set {2 is defined by

dx dy dx dy
2.10 Pu(E,Q ::/ / / / .
(2.10) (&) gno Jene [z —yNre T o g Jpa o — yN T

With this setting, we have a variant of Lemma 2.1 as follows:

Lemma 2.4. Let 1 and Q9 be disjoint bounded sets. Then

(2.11) Pa(E,Ql)+Pa(E,Qg)gPa(E,91UQQ)+2// | d””cf}é+ .
Qo r—y a



Proof. We use (2.10) (omitting the integrands for simplicity) to compute

(E Qlugg) P, (E Ql) (E Qg)

B /Eﬂ QlLJQQ /RN\E /QlLJQQ \ /E\ QlUQ2
/Eﬁﬂ1 w/RN\E /frh\E wé\ﬁl /Eﬁﬂg w/RN\E /;ZQ\E wé\ﬂl
o T S A B N SR
ENQy RN\E ENQ2 RN\E Ql\E E\(QlUQQ) QQ\E E\(Qluﬂg)
- /E]ﬁﬂl /RN\E - Al\E /E'\Ql - /ETTQQ /RN\E B /f;g\E /E‘\Ql
“ e Jeaiin™ b Jovasns e Joo = e
M\E JE\(1UQ2) Q\E JE\((1UQ2)  JU\E JE\D Q2\E JE\(y
- /5'21\E [E\Qﬂﬂﬂg - /QQ\E [E\Qg)ﬁgl '

This implies (2.11). O

Then, we have the following local fractional isoperimetric inequality:

Lemma 2.5. Let Q be a open bounded set with Lipschitz boundary and let E C RY such that
|[ENQ| < |Q|/2. Then there exists a constant C = C(|Q], N, «) such that

(2.12) Po(E,Q) > C|ENQ|"~"

Proof. The case t = 1 is classical. For its proof we refer to [30, Section I1.1.6]. We begin by
recalling the Poincaré-type inequality for fractional Sobolev spaces (see for instance [7, Equations
(2) and (3)]: for any p > 1 and « € (0,1), given a function f € LP(€2) we have that

_ p
(213) [P SOE S cv.ap o) 1 - folo,

where

S

and

(2.14)

| =
=
=l



By applying (2.13) with p =1, a € (0,1) and f = xg, and by the very definition of P,(E) we
get that

Ixe(r) — xE(Y)]
2P, (E,Q >/
( ) ala |z—yNte

> canfo ([ ete) - Z02f a0) "

=C(N,,19)) [|EQQ| <1_ Eﬂﬂ|>q+|Q\E (ymsﬂ)q]l/q

€] 1€2]
ENQ
> oW ajapienae (1- EE2)
Since, by (2.14), ¢ = N/(N — «), the proof is concluded. O

Beside the local fractional isoperimetric inequality (2.12), we recall from [19] the standard (frac-
tional) one: if 0 < ¢p < o < 1 then it holds (if |E] < +00)

(2.15) (1= a)Pa(B) > o(N.t)|EI"F",  where o(N,to) = =7,
0

We now recall some basic facts on hypersingular Riesz operators on the sphere, following
[18, pp. 4-5] (see also [32, pp. 159-160]). We denote by Sy the space of spherical harmonics of
degree k, and by d(k) the dimension of S;. For o € (0,1) we also let 7, be the operator defined
as

u(z) — u(y) -
Tou(z) = 2p.v. /8 TR ) forue C2(0B),

and we let A\ be the Eth eigenvalue of J,, that is,
JoY =AY for any Y € S;.
We then have Ay — +o00 as k — +o0, and
Ag =0 Aiy1 > A Vk e NU{0}.

If we let {Ykl}?ikl) be an orthonormal basis of S in L?(9B), and denote by

al (u) :—/ wYidHN
oB

the Fourier coefficients of u € L?(0B) corresponding to V!, we have

)2
2 y)l N-1 N-1
[U]HHTQ(E)B) : /E)B /BB 7= y‘N_m dHY " (x) dH™ " (y)

= / u TqudHN 1
0B

oo d(k)

(2.16) = > > Nap(w)?

k=0 =0
Proposition 2.6. ([18, Proposition 2.3]) We have
P,(B) < 1
P(B) ~ en(l—a)’

Ay =2 A =a(N —a)
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Proposition 2.7. Let u € H ) (83) and 0 < s <t <1 then the following estimate holds

. - 2 s < - 2 t .
(2.17) (1 s)[u]H%(aB) en(1 t)[u]H%(aB)

Proof. By (2.16) and using the estimate for A\, established in Proposition 2.6 we get

oo d(k) oo d(k)
(1—-9)[u ]2#(83) = (1-y9) ZZ)\kak (1—235) ZZ)\S AL
k=0 =0 k=0 i=0
oo d(k)
< lfsAStZZ)\kak
k=0 i=0
oo d(k)
< (1T=9)Aen(1—1) ZZAkak
k=0 i=0
P(B
= (]_—S)S(N—S) P((B))CN( —t)[’LL}2 1“(33)
< ex (=00 e,

0

Remark 2.8. We note that the result established in the previous proposition remains true also
in the case t = 1. Indeed, since

lim (1 —¢)[u }

it [ ]%{1(63)
t—1— 2 (0B)

as established in [6, Cor. 2], we can pass to the limit ¢t — 1~ in (2.17).

3. PRELIMINARY ESTIMATES ON THE ENERGY FUNCTIONAL

In the following we shall consider parameters s,t € (0,1) satisfying
(3.1) t—5>0)>0.

All the constants in this work, unless differently specified, will depend only on N and g, so that
it will be possible to pass to the limits in a straightforward way as s — 0T or ¢t — 1~.

Proposition 3.1. There exists co = co(N, o) such that, for any E C RN and 0 <s<t<1
satisfying (3.1), it holds

(1 —t)FR(E)

(3'2) JTs,t(E) 2 2

—Co|E|.

Proof. Set m := |E|. We apply Young inequality with exponents ﬁ and % to the right hand
side of (2.3) that

v (1) B - niRm)E = [ﬁ (1—5)‘1m1—?} 27l (1 - nAE))

T A-yRh(E)
5 :

N
_ 1
)
2
‘ \)
|
S
—
|
| @
~—r
L
3»—A
[
o




Thus (2.3) gives that

For(E) = (1—1t)P(E)—sPy(E) > (1-t)P(E) —cy (1—§>7I\E|1_f(1—t)?Pt(E)?

= (1= t)P(E)
- g

o

> (1-t)P(E) - {zicN (1 - %)_1 ml-

t

1-t)P(FE s t —s
_ U9RE) [, ],
2 t—s
and this concludes the proof. O

Corollary 3.2. Let |E| = m. Then both P,(E) and Ps(E) are bounded above by quantities only
depending on m and F,(E). More explicitly

(3.3) (1= t)P(E) < 2(Fs4(E) + com)
(3.4) and sPy(E) < céf%ml_%(FS,t(E) + com) 1,

with ¢y as in Proposition 8.1.
Proof. We obtain (3.3) easily from Proposition 3.1. Then (3.4) follows from (2.3) and (3.3). O
Now we define the isovolumetric function ¢ : (0, +00) — R as
p(m) = lEilnzfmJ’:s,t(E) m € (0,+00).
A general estimate on ¢(m) goes as follows:

Lemma 3.3. We have

(3.5) —com < ¢p(m) < cam N <1 - CthJ_VS) ,
C1
with ¢y as i Proposition 3.1 and
1—-t)P(B P,(B
(3.6) €= % and cg = > SI(\_S).
|B|"~ |B| "~

Proof. Let us begin by proving the estimate from above of ¢(m). For this, we take the unit ball B

we set p := (m/|B|)"/"N and we consider the ball B(0, p) of radius p. Notice that |B(0,p)| =
N

p|B| =m,

PUB0,p) = p"Ru(B) = TUD)
|B| "~
and
Py(B(0,p)) = pV*Py(B) = |1;5|(1§)5 N_s

By minimality, we get, with ¢; and ¢y as in (3.6),
N_t Co  t-s
6(m) < Faa(B(0, p) = (1 — )PUB(0,p) — sPy(B(0,p)) = cym ¥ (1 - 2 ) ,

that proves (3.5).
The first inequality in (3.5) follows from Proposition 3.1. O
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Remark 3.4. We recall the fractional isoperimetric inequality, which holds true for any mea-
surable set E such that |E| < +oo:

(3.7) |E|'S" < ent(1—t)P(E).
For the optimal constant cy we refer to [20] (see in particular Equations (1.10) and (4.2) there).

Lemma 3.5. There exist mg = mo(N,do) and my = my(N,dy) such that:

(3.8) if m > mq, then ¢(m) < 0;

(3.9) if m € (0,mq), then ¢(m) > Xm’~ >0,
Moreover

(3.10) lim_¢(m) =0.

Proof. We have that (3.8) and (3.10) plainly follow from (3.5).
Now we prove (3.9). For this, we use Proposition 3.1 and the fractional isoperimetric
inequality in the form (3.7) to obtain that, if |E| = m,

(1—t)P(E) N =
- m N mN *
For(E) > ft —com = vt com = Yo (1 — QCchtmN) )

In particular, if m is small enough, we have that
N—t
m N
4dent
and this implies (3.9). O

-;Es,t(E) 2

Lemma 3.6. Let m1 be as in Lemma 3.5, and let F' be a minimizer of Fs; among sets of
measure m > my. We have

(3.11) CTNm¥ <(1—-t)P(F) <com and CTNm% < sPy(F) < com,

for some ¢o > 0.

Proof. By Lemma 3.5 we know that (1 — ¢)P;(F) < sPs(F'), hence from (2.3) and from the
fractional isoperimetric inequality (3.7) we get

N—t

m N

S

< (1 8)P(F) < sPy(F) < ¢y 27 im! i [(1 - ) B(F)]i

cyt

with ¢ given in Proposition 3.1. Then (1 —¢)P(F) < ¢ 277 m. This and (2.3) also implies

the desired bound on sPs(F). O
Remark 3.7. By inspecting the proof of the Lemma 3.5 we obtain explicit estimates for mg
and mq:
e\ T o
N g2/t
mg = [40001\/15]_JtV = |4 (C]\tf ) eyt
—s

N N

o (2) - [
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Moreover, the first inequality in the second formula in (3.11)
TIPS < sPy(F)

entails that |F| — oo as t — 0 (and thus 6y — 0). Indeed, letting ¢t = s + dy, and using the fact
that sPs(F) — Nwn|F| as s — 0, after an elementary computation we get that

N
CN s+3¢g
m1>|F|><S+50> .

which gives also a lower bound on m; in terms of s and dp. Notice that if ¢ — 0, then also s and

dg converge to 0 and so m; — oco. Also it is not a direct consequence of our investigation, we
stress that it is natural to expect that also if only s converges to 0, then m; diverges to +oo.

Proposition 3.8 (Non-optimality criterion). There exists € = €(N,dg) such that, if F C RN
can be written as F = Fy U Fy, with |Fy N F3| =0,

(3.12) || < emin(1, |F1]),
Fsi(Fy)

(3.13) and (1= PAR) + P(Fy) = P(F)) < =22,

then there exists a set G with |G| = |F| and Fs4+(G) < Fs+(F) (i.e., F is not a minimizer).
In addition, we have that the set G is either a ball of volume m, or a dilation of the set F1,
according to the following formula:

Fy|
3.14 G = N1/1+|—F

Proof. Let m := |F|, my := |Fy| and mg := |F|. We may suppose that Fs.(F) is less than
or equal than Fy; of the ball of volume m, B,,, otherwise we can take G' equal to such ball,
decrease the energy and finish our proof. That is, we may suppose that

(3.15) FotlF) < For(Br) < (1— )P(Bn) < “"Bj{fwm%

Let G = AFy, with A := /T +~ and v = my/m Notice that this is in agreement with (3.14),
and also |G| = m. Moreover, by (3.12) we have that
o emin(1,my) <

7\7\67
my

so that v € (0,1) can be taken as small as we like.
From Bernoulli’s inequality we get

(1477 > 1+ NN %y,
and we also have
(1—}—7)% < 1—|—N_87.
N
Therefore, we obtain that
N —

(W= 1) (1= )R(F) = AV = 1) sPy(F) < =7 [(1 = OB (F) = sPy(F)]
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As a consequence, letting 7 := N]\?Sfy, we get

Fsi(G) = (1 =) P(GQ) — sP(G)
=\ 1 — ) P(Fy) — AV %5 Py(Fy)
= For(F1) + [N = 1) (1 = ) P(Fy) — (A5 — 1)sPy(Fy)]

< (14552 0) Rl = G+ D).
Thus we have, by (2.2) and (3.13),

Fsi(G) — Fou(F) (1+3)Fsi(F1) — (1 = t)Pi(F) + sPs(F)
(I4+3)Fsi(F1) — (1 = t)P(F) + sPs(F1) + sPs(F3)
(1+3)Fot(F1) + sPu(F1) + sPo(F)

5 FaalF2) = (1= OR(F) - (1~ )P(Fy)

NN N

) 1
(3.16) = AFs(F1) — §~7:s,t(F2)‘

Furthermore by (3.9), since ma can be chosen in (0,mg), mg as in Lemma 3.5 (up to decreasing
the value of €), we have

CcN N-—t
(317) f&t(FQ) 2 ¢(m2) 2 7m2N .

Also, using again (2.2) and (3.13), we have that
.;ESJ(Fl) = [(1 - t)Pt(Fl) + (1 — t)Pt(Fg) - SPS(Fl) - SPS(FQ)] - ]:s,t(FQ)
S Far(F) + [T =) P(F1) + (1 = 1) P(F) — (1 = ) R(F) — Fiu(F2)]

1
g Fs,t(F) - ifs,t(F2) < Fs,t(F)‘

This, (3.16) and (3.17) give that

. 1 i o N
fs,t(G) - fs,t(F) < 'st,t(F) — 5 s,t(FQ) < st,t(F) _ 27];]77121\]
Accordingly, recalling (3.15) we conclude that
1-t)P(B) _ s ow  Net
FoalG) = FsrlF) < (’|)Ntt()7(ml +mg) N — %mzN
N
Nt l(L=t)P(B) - (-4 N ey
= N 1 &N
i |B|"F 7(7 * ) 21
5 [(L=HP(B) o 1\ %t ey
< 2 ¥ _ CN
" . |BI'Y 77 2t

r N—t
s [P0 -0nB) e
ERaE

which is negative if 4 is small enough, i. e.

*[z

N—t
. cN |B| '~
262N (1 - t)P(B)
The proof is concluded. O
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When (3.13) does not hold, one obtains for free some interesting density bounds.
Given a measurable set F we denote by 0""E the measure theoretic boundary of £ defined
as
O"E = {x c¢RY : |ENB.(x)| >0 and |E\ B.(x)| > 0 for all > 0}.

Lemma 3.9. Let F be a set of finite t-perimeter and volume m, and let xo € RYN. Assume

(3.18) either Fy :== F \ B(xo,r) and Fy := F N B(xg,r),
(3.19) or Fy := F\ B(xg,r) and Fy := F N B(xo,r),
and suppose that |Fs| < mg, with mg be as in Lemma 8.5, and
Fosr(F

(3.20) (1 —t)[P(Fy) + Pi(Fy) — Pi(F)] > %
Then

dx dy CN N—t
3.21 / / P 2
321 oI g
If zg € O™F and (3.20) holds for any r < ro, we also have the estimate
(3.22) |F N B(zo,7)| > cor for all r € (0,ro],

where the constant cg > 0 depend only on N and 6.

Proof. Without loss of generality we can assume xo = 0. Also, using either (3.18) or (3.19), (3.20)
and (2.1), we have that

dx dy 1-—-t Fsi(F2) o(|F2|)
= P/(Fy) + Pi(F > > .
/Fl e = R R RO AP > T >
This and (3.9) (which can be used here thanks to the fact that we are assuming |Fs| < my)
imply (3.21).
Now we prove (3.22). For this, we take F} and F» as in (3.18) and we define u(r) := |B(0,7)N

F| = |F3|. Note that by the co-area formula

w(r) =HN"YOB(0,r)NF), fora. e. r.
Then, by (3.21) and the fact that Fy := F'\ B(0,7) C (B(0,r)

CN / / dx dy / / dx dy
(1 - t) Fy JFy |5U - |N+t = Fy J(B(0,r))e |‘/1j - y|N+t‘
For any = € F N B(0,r), we have
dy dy NwN
Lo i< e
(B [T =Yl (Blzr—|a)e [T — Yl

that leads to

dedy ey / , »
< — w(z)(r—2z)""dz.
/F2 /B(Or))‘ [z —y[NFE St o () =2)

Finally we arrive at the following integro-differential inequality

,u(T)NN < 1—t)/ (r—z)tdz.

We may integrate the last inequality in the r variable on the interval (0, p) and get

/Opu(r)NN_t dr <en(1—-1) /Op /OT W (2)(r —2)"tdzdr,
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interchanging the order of integration,

/Op /0” W(2)(r—2)"tdzdr = /OP w(z) /Zp(r —2) tdrdz,

P Nt 1—t
; p(r) = dr < cenp " p(p).

Now we arrive at the desired result, indeed, following [12] (see the end of p. 9), it is possible to
prove that

we get

==

(3.23) p(r) = g(r) = [QCN(Nl—i-l—t)] rV

I/N where g satisfies

g Nt _
/ g(r)"~ dr = 2cn p' g(p),
0

for any r < ro = (mo/wn)

with the same constant ¢y as in (3.23). O
The combination of Proposition 3.8 and Lemma 3.9 yield the following density estimate:

Proposition 3.10. There exist ro = ro(m, N, dy) > 0 such that, if F' is a minimizer for ¢(m)
and xg € O"F, there holds
|B(zo,7) N F| > cor™
for any r < ro, where cq is as in (3.22).
Proof. Let Fy and Fy be as in (3.18). Up to choosing 7y small enough, that is,
wnrd < e(N,8) min(1,m),

we can suppose that F; and Fy satisfy the hypotheses of Proposition 3.8. Thus, since F' is
a minimum, we obtain that (3.13) cannot hold true. Hence (3.20) is satisfied, and so we can
apply (3.22) in Lemma 3.9 and obtain the desired result. d

Proposition 3.11. Let F be a minimum for ¢(m). Then F is essentially bounded. Moreover,
ift =1, for any s < t, s € (0,1), F is also essentially connected in the sense of [2], that
18, it cannot be decomposed into two disjoint sets Fy and Fy of positive measure such that

P(F) = P(Fy) + P(Fy).

Proof. Let F' be a minimum. First we prove that it is bounded. By contradiction, if not, there
exists a sequence xp € 0" F such that |zx| — oo as k — oo. In particular, up to a subsequence,
we may suppose that all the balls B(zy, 1) are disjoint, hence so are the balls B(xzy,r) when r €
(0,1). Hence

m=|F| > |B(xg,r)NF|.
k

On the other hand, by Proposition 3.10, we know that |B(zy, )N F| > cor® if 7 is small enough,
hence we obtain that

m = ZCOTN = +00,
k

which is clearly not possible.
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This proves that F' is bounded. Now we show that, if t = 1, F' is also essentially connected.
Suppose, by contradiction, that F' can be decomposed into two disjoint sets F; and Fy of positive
measure such that

(3.24) P(F)= P(F))+ P(Fy).

Since F' is bounded, so are F; and Fy, say Fy, F» C B(0, R), for some R > 0. Hence, we consider

the translation F; j, := F»+(k,0,...,0) and we observe that if x € F; and y € F5 j, we have that
k

o=yl >yl = |2 > k—2R > 7

if k£ is large enough. Accordingly, we have that

/ / dx dy / / dedy enR2N
e, [T — o=y = Jpo.r) JB0.R) (0, 0) (R/2)NFs kN

and so
dx dy

(3.25) lim / /
k—too Jpy Fy ‘:L' - y‘N—H

Notice also that, if Gy, := F1 U Fy;, we have that |G| = |Fi| + |Fai| = |Fi| + |F2| = |F|, for k
large, and so, by the minimality of F', (2.1), (2.2) and (3.24) we have that

dx d
NenP(F) + N P(F) = sP(F) =P 420 [ 200
1T —

— NwyP(F) — sP,(F)
= ,7:571(F)
< Fs,l(Gk>
= NwnyP(Gy) — sPs(Gy)

dxd
< NwnP(Fy) + NwyP(Fy)) — sPy(Fy) —SPS(F2,k)+25/ / E |]?<7+s
Fop IV

dx dy

= NwyP(F))+ NonyP(Fy) — sPs(Fy) — sPs(F) —1—23/ / |l,_y|N+s

Fo

Therefore, taking the limit as k — +oo and using (3.25), we obtain that

dx d
28/ / - %Jrs\o
P JER |z — |

This says that either F; or F» must have zero measure, against our assumptions. O

We conclude the section with the following estimate on the fractional isoperimetric deficit,
which will be important to localize minimizing sequences.

Lemma 3.12. There exists mo = ma(N, o) such that for any m € (0,mq) the following state-
ment holds true.

Let F C R be a set of finite perimeter. Assume that Fs(F) < Fs1(By). Then there exists
co > 0 such that
P(F) — Py(Bn) <com'F |

P(Bn,)

In addition, there exists a translation of F (still denoted by F for simplicity) such that

(3.26) Dy(F) =

(3.27) |F A Bp| < com't v
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Proof. First recall that

B —t
(3.28) Pi(B) = ( ) mN.
||+
Also, by our assumptions,
(3.29) (1 =t)Py(F) — sPs(F) = Fs1(F) < Fst(Bm) < (1 —t)P(Bp).

Using (3.4) we have that

sPy(F) < c(l) %ml_%[(lft)Pt(Bm)Jrcomﬁ

_s s | (1=8)P(B - k
< cé flT %m% +com
|B| ™~
1-t)P(B ‘ —s
7( )Ntt( )—I—CO mNN ,
|B| v
for small m. From this and (3.29), we have that
T N—t
P,(F) — P,(Bpn,) <d (1-— t)f_tt(B) |B|"~ A ¢ om
Py(Bm) |B| '~ (1-t)F(B)

This proves (3.26).
To prove (3.27) it is sufficient to use (3.26) and the estimate
|F A By,|?
|Bm|*
which was proved in [18, Theorem 1.1] for any ¢ > dp > 0. Together with (3.26) and possibly
increasing the constant cp, this implies (3.27). O

co Dy(F) >

4. EXISTENCE OF MINIMIZERS

In order to prove the first statement in Theorem 1.1, and for further use as well, we prove
a general result on integro-differential equations:

Lemma 4.1. Let m,t € (0,1). Let ¢,p > 0 be such that
(4.1) c>(1-t)mw

and let pi: [0, +00) — [0,m] be a non-increasing function such that

(o]
3 _
(4.2) / 1 ( ) dz > 5 _ctu(p)% forall p>p
p
Then, there holds
t
2m)~N N
(4.3) u<ﬁ+ (mC)tN> —0.

Proof. Integrating (4.2) between R > p and +o0, we obtain

(1.4 - (/poou'<z><z—p>t i) do= 1 [~ i) iy
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Also, if z € [R, R + 1] we have that z — R < 1 and so, since y/ < 0 a. e., we get that
R+1 R+1
- [ HEE-R <= [ ds = (R - R+ 1),

Therefore, interchanging the order of integration in (4.4), integrating by parts and using that
w € [0,m] and (4.1), we see that

(o=t a = = [T [ i o) a

1 o0

- wi(z)(z — R)lft dz

11—t/

p(R) — p(R+1) 1 /OO / 1—t
< _ _
< MR [T - Ry
= 'LL(R)—F/ wz)(z — R) " dz

L=t Jrn
< /“L(R)+/ p(z) dz

L=t Jrn
< 'M(R)_Fmﬁr/ N(Z)%dz

1—t &

< 1it<u<R>+c/:u<szz>.

Recalling (4.4), this gives the integro-differential inequality

(4.5) wip) = QC/OO M(Z)%dz for all p = p.
p
Let now
)t - So-n] " itpe [pps (2u(ﬁc)t)NN}
9(p) :=
0 1fp>ﬁ+(“(’?t>NN

Notice that g is continuous and it satisfies

t
o0 _ 5))~ N
(4.6) 20/ 025 dz = 29(p)  forall pe |55+ ¢ ’“‘('O)t)N }
C
p
We now claim that
t
2u(p)) N N
(4.7) 9(p) =2 u(p)  forallpe |p,p+ (u(,oc)t)} :

Indeed, we consider the set S := inf{p > p: wu(z) > g(z) for all z > p}. By construction,
S C [p,+00). Furthermore, if = > p + [(214(p)) ¥ N]/ct then g(z) = 0 < p(z), therefore p +
[(2;1([)))%]\7]/075 € I. As a consequence, we can define R, := inf I, and we have that

(4.8) R. €[, p+ [(2n(p)¥ N /ct].
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By definition of R, there exists a sequence R,, — R,, with R,, < R,, such that g(R,) > pu(Ry).
Then, recalling (4.5) and (4.6), we have

9(Rn) > p(Ry)

o0
>2e [ o) d:
Rn
4:9 R* _ [e.o] _
(4.9) > 20/ u(z)NNtdz—l—Qc/ g(z)%dz

R N—t
= 2c/ w(z) ¥ dz + 2g(Ry).

Passing to the limit in (4.9) as n — 400 we get g(R«) > 2g(R,), which means g(R.) = 0. This
implies that R, > p+ [(2u(p ))NN]/ct
This information, combined with (4.8), gives that R, = p + [(2#(,5))%]\7]/015, and this in
turn implies (4.7).
Then, we evaluate (4.7) at p = p + [(2u(ﬁ))%N]/ct and we obtain (4.3).
U

With the above result, we are in the position to prove the first statement in Theorem 1.1,
concerning the existence of minimizers for small volumes.

Theorem 4.2. For any 0 < s <t < 1,t—s > 09 > 0, there exists mo = mo(N,dy) > 0 such
that for all m € (0,7mqg), problem (1.3) has a minimizer F C RV.

Proof. Suppose 0 < s <t < 1. We use the direct method of the calculus of variations. Let us
consider a minimizing sequence {Fy} C RY, that is a sequence of sets of finite ¢t-perimeter Fj,
with |F;| = m such that

(4.10) kh_{& Foit(Fi) = ¢(m).
Let also set 7, := (m/wy)YN > 0, so that |B(0,7,)| = m. Our goal is to show that we can

reduce ourselves to the case in which Fj lies in a large ball, independent of k. More precisely,
we claim that there exist p, > 0 and sets Gy, with |G| = m, such that

(411) G C B(O ,0*) and Fst(Gk) st(Fk)

To prove it, we take p > r,, and we set

(4.12) X! :=F,NB(0,p) and Y := F; \ B(0, p).
We distinguish two cases:
. p p ‘7:5 t(Ykp)
(4.13) either for any p > 7, we have (1 —t)[P(X}) + P,(Y)) — P,(F})] > — 5
. Fs t(Ykp)
(4.14) or there exists p > 1y, such that (1 —¢t)[P(X]) + P(Y) — P(Fy)] < — 5

Let us first deal with (4.13). Then, thanks to (4.13), we can apply Lemma 3.9 using the setting
in (3.19): accordingly, from (3.21) we see that

/ / dwd% S CN ‘Yp’NT
xe Jyp le—y[NH T (1 =1)
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Let us define the non-increasing function 7(p) := |Fy; \ B(0, p)| = |Y}?]. Note that by the co-area
formula

7' (p) = —HN"YHOB(0,p) N F), fora. e p>0.

Proceeding in a similar way to the Lemma 3.9, we have

/ / dx dy / / dx dy
vy /XY |z — y\NH Yy JB(0,p) |z — y’NH
dx
< v | W
/Y,f </<B<y,y|—p>>c |z — y|N+t>

N oo
< —wN/ i (2)(z = p) " dz,
P

t

whence

A R Ok

which is (4.2). We now apply Lemma 4.1 with 4 = n, ¢ = ¢y/3 and p = r,,. Notice that,
possibly reducing mg, we can ensure that condition (4.1) is satisfied. From (4.3) we conclude

that
t
3(2m)~¥N
n <7"m + (2m) ) =0,
CNt
that is,
t
2m)N¥ N
F.CB (o,rm+ 32m)~ ) .
CNt
This proves (4.11) for such
3(2m)~ N
Px =Ty +
cnyt

in case (4.13) (here one can take Gy := Fy,).
So, we now deal with case (4.14). In this case, we use (3.27) and we obtain (up to a
translation of F}, that is still denoted by Fj) that

|Fi\ B(O,7)| + |B(0,7) \ Fi| = [Fi, A B(0,70)] < com'* 5%,
¢o as in Lemma 3.12. In particular, if p > ry, is the one given by (4.14) we have that

|[F. N B(0,p)] > [FiNB(0,7)|
= [B(0,7m)| = |B(0, 1) \ Fj|

> m—cy mHt{T’S
m
> -
2
if m is small enough, i. e.
2N
4.15) <L
( ’ s 200

and moreover
|F. \ B(0, p)| < |Fi \ B(0,7,)] < co mltEw |
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Therefore, for small m, recalling (4.12) we see that

2com 3N min (1,1X2]) = 2co MY min (1,|F N B0, p)|) = 2co mw %

t—s
=com'T2W > |F\ B(0,p)| = |Y/].

Thanks to this and (4.14), we can apply Proposition 3.8, with £ := 2¢ mg;Ns, F o= X,g and
F2 = Ykp.

Hence, from Proposition 3.8, we find G}, such that Fs.(Gi) < Fs+(F); notice also that,
in light of (3.14), we know that Gy is either a ball or a dilation of X/, which is contained
in B(0,2p). Thus also Gy, is contained in a ball of universal radius, and this establishes (4.11)
also in case (4.14).

Thus, by (4.11), we have constructed a minimizing sequence Gy, that is uniformly contained
in a fixed ball. By Proposition 3.1, we also obtain that

(1 — )P (Gr) < 2[Fs(Gr) + com] < 2[Fs+(B(0, 7)) + com/,

hence the t-perimeter of Gy, is bounded uniformly in k.
t S
By the compact embedding of H2 into H2 (see [16, Section 7]), up to extracting a subse-
quence, the sets G, converge in W*! (hence also in L') to a limit set G, and it holds

Jim Py(Gy) = P(0).

The lower semicontinuity of the t-perimeter yields that

jmiat PG > PA@

Hence, by (4.10) and (4.11),
FulG) = (L= 1P(G) ~ sP(G) < lminf[(1 ~ ) P(GY) ~ 5Py (G

= liminf F,+(Gy) < iminf F,;(F;) < ¢(m),
k—+o0 k—+o00
hence F,+(G) = ¢(m) and so F := G is the desired minimizer.

In the case 0 = s < t < 1, our problem reduces to the (fractional) isoperimetric problem,
hence it is well known that there exists a minimizer F' for (1.3) and it is a ball of volume m, for
any m > 0.

When 0 < s <t = 1 the previous arguments can be easily adapted, including the analog
of Lemma 4.1 which becomes an ordinary differential inequality, and the only difference is that
one needs to use the compact embedding of BV into Hz for 0 < s < 1. O

5. REGULARITY OF MINIMIZERS

The aim of this section is to prove the regularity and rigidity theory necessary to prove the
second statement in Theorem 1.1 and Theorem 1.2. We begin with a simple observation.

Lemma 5.1. Let ¢ be the function describing problem (1.3). Then F is a minimizer of ¢(m)
if and only if F/ml/N 18 a minimazer of problem

min{(1 — )P(U) = m'~ sP,(U) : [U| = 1}.
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Proof. Let F C RY such that |F| = m and let U = F/m'/N. Then
(1 —)P(F) —sPy(F) = (1—t)P,(m'"NU) - sP,(m'/"U)
N—t t—s
= m'% [(1 —HPU) — m'F sPy(U)]
which gives the desired result. O
The previous lemma allow us to consider, in what follows, the functional
]:36715 = (1—t)Pt—€SPS,

where we set ¢ = m{~9)/N Indeed, the behavior of a minimizer of ¢(m) is the same, up to a
rescaling, to that of

(5.1) min {F,(E) : |E| =wn} .

Indeed
F'is a minimizer for problem (5.1) if and only if

(5.2) 1 =
(ﬁ) F' is a minimizer for problem (1.3) with ¢ = (ﬁ) .

The next lemma allows us to say that if F' is a set of RY such that ||F| — wy| is small enough
than the volume constraint can be dropped. Let us consider the following problem:

(5.3) min {G. A(E) : ||E| —wn| < A7},
for some A > 0, where
Gen(E) = (1 —t)Py(E) —esPs(E) + A||E| — wn|.

Letting

t—s

(5.4) £0 = (:Zs) "

with mg as in Theorem 4.2, we have the following result:

Lemma 5.2. There exists Ao = Ao(N, ) > 0 such that F is a volume constrained minimizer
of problem (5.1), with € < €g, if and only if F. is a minimizer of problem (5.3), for any
A> Ao(l + Eo).

Proof. First, let F. be a minimizer of problem (5.3) with |F;| = wy. Then, for any set G
with |G| = wy, we have that

sE,t(G) = gs,A(G) > gaA(Fs) = sft(Fa)a

which shows that F. is a minimizer of problem (5.1).

Viceversa, we prove that a volume constrained minimizer F of problem (5.1), with € < &g,
is also a minimizer of (5.3) for any A sufficiently large. For this, we argue by contradiction
and we assume that there exist a sequence A,, — +o0o, and sets E,, C R"Y such that, letting

Gn := Gc A, we have

(5.5) Gn(En) < Gn(Fe) = Foy(Fe).
Notice that for all n € N there holds

(5.6) on = ||En| —wn| > 0.
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Indeed, if by contradiction we suppose that o, = 0 for some n € N, we would have that
|Eyn| = wn, thus

gn(En) = Fsﬁt(En) 2 sft(FE)a
due to the minimality of F.. This would be in contradiction with (5.5), and so (5.6) is proved.
We also claim that there exists a constant ¢y > 0 independent of n, such that

(5.7) (1—=t)P(En) < co and sPs(Ey,) < ¢ for all n € N.

t

To show this, proceeding as in Proposition 3.1 and (5.5), we see that, for A,, > c¢pe[™°, we have

r b
A-OR(E) < 2[Fa(ED + el 5]

t t

< 2| Fi(Bn) +cogy " || Enl — wN| +wneogy”®

_t ]

< 2 gn(En>+WNCOE(§75

t

< 2 f;t(FE)—i-wNCQE(t)S]

o

< 2| F5(B)+wneoel

r .
< 2|(1—=t)P(B)+wneo a(’js} ,

recalling that B denotes the ball centered in 0 and radius 1, with |B(0,1)| = wx. This gives the
bound for (1 —¢)P;(E,), and then the bound on sPs(E,,) follows from (2.3). This proves (5.7).
From (5.5) and (5.7) it follows that A, 0, is also uniformly bounded, that is,
UnQX—OHO as n — +o0.
Moreover, for o, < 1/2 we have, supposing o, = |E,| —wy > 0 (the other case can be treated
in a similar way),

|E | _ N-—s _N-—s N
n N On N — S Op
5.8 — >(14+ 2 >1-— -
(58) ( wN > ( + wN> N wy
and similarly
B _N=t _N—t Nt

5.9 — <(1—-— =14+ ——
(5:9) ( WN ) ( wN> * N wn
We now define )

. E I\~

E, = <| n) Ey,

WN
and we use (5.7), (5.8) and (5.9) to obtain
N-—s
~ En N N — n
sPy(Ey,) = <WN|> sPy(Ep) > (1 -5 SZN> sPy(E,) = sPy(Ey) — coon,
(1B
and (1—-t)P(E,) = () (1 -t)P(E,) < (1 —t)P(Ey) + coon,
wN

where the constant ¢y may differ from line to line.
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Therefore, since |En| = wy, the minimality of F. gives

Fs{ft(F€)

N

FE(E,) = (1—t)Py(E,) — esPy(Ey)
(1 —t)P(E,) —esPs(Ey) + co(1 + 9oy
st(En) 4 co(1 +0)on.

N

By plugging this into (5.5) we find that
Ge(En) < Fou(F:) < Foy(En) +co(1+e0)on
= gs(En) —AnO'n—l—Co(l—l—Eo)O'n.

We simplify the term G.(E,) and we divide by o,,, which is possible thanks to (5.6), we conclude
that

0 < —Ay,+ co(l+ep).

This gives a contradiction for A, large enough, and proves that F. is a minimizer for prob-
lem (5.3). O

Lemma 5.3. Let F. be a minimizer of problem (5.3) with e < ey and A > Ay, €9 and Ay as in
Lemma 5.2, and let E. be a set of finite perimeter with ||E:| — wy| < 1/A. Then,

1-OP(F) < (1—t)P(E) +ecy (1 - ;)71 |FLAE3[(1 - t)P(F.AE,)]
(5.10) +A||Ec| — wn]-

Proof. Notice that, denoting by fU = fU f for a non-negative function f, the following compu-
tation holds

Jod™ b ] +//+// e e
€ 5 E\EE ( EUEE)C E\EE E\FE eNEe EUEE)C :NE: E\FE

By interchanging the roles of F; and E., and setting f(z,y) = y[ (5+N) we get

( 6 S\Eg FSUEE)(' E\FE EUES)L £ Es E\FE = FE E\ES
S\EE lsUEe)c 5\}5 5 Es

Therefore, by the minimality of F. we get

(5.11)

(1 —-t)P(F.) < (1 —t)P(E.) + ¢ [sPs(F.) — sPs(E.)] + A<]|E€| —wy| — ||Fe| - wN])
< (1 = t)Py(E:) + esPy(F:AE:) + A||E.| — wy]|.
Hence the desired result follows from (2.3). O

We point out that from Lemma 5.3 it follows that F. is a multiplicative w-minimizer for the
t-perimeter. In the sequel, as customary, the fractional perimeter of a set E in a ball B(z, R)
will be denoted by P,(F, B(x, R)).

Corollary 5.4. Let ey and Ay be as in Lemma 5.2. Let F. be a minimizer of (5.1) with € < &g,
let x € OMF;, and let E. be a set of finite t-perimeter with

(5.12) F.AE, C B(z,R).
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There holds

1 —|—CQRt_S
(513) Pt(FE,B(:L',R)) < WPt(EE,B(:E,R))

for some ¢y > 0 and for any R < Ry = Ry(N, dp).

Proof. We observe that, by direct calculations, from (5.12), follows

(5 14) Pt(FE) - B(E€> = Pt(Fé‘v B(xv R)) - Rf(E&B(x7R))
' and P,(F.AE.) < P(F.,B(z,R)) + P,(E., B(z, R)).

Furthermore, thanks to Lemma 5.2 we know that F. is also a minimizer of (5.3), with A = Ag.
From (5.10) and the fractional isoperimetric inequality (3.7), we then get

(1 - t)Pt(F67 B(va)> < (1 - t)Pt(E67 B($, R))
—1 s t—s
teo e (1 . ;) e 1)1 ELAE) T (1 — t) P(F.AE.)
(5.15) +Ao|| Ec| — wy|.

Moreover, again from the fractional isoperimetric inequality and using (5.12),

Ao||E:| — wy| Ao

1B = wn| = [1Fe] = ]|
Aol FLAE.| N |[F.AE| %
en Aot (1 — ) P(F-AE,) |F-AE|~
en Mot (1 —t)P(F.AE.)R".
From this, (5.14) and (5.15) we arrive at
(1-t)P(F, B(z,R)) < (1-t)P(E:, B(z, R))

NN N

—1 s
+eoen <1 - ;) len ]R3 (1 — £) P (F.AEL)
+Agen tR (1 — t)P(F-AE.)
< (1-t)R(E., B(x,R))
+coR"™*(1 — t) [P(F., B(z, R)) + P:(E., B(z, R))]
_1
which gives (5.13), if R < min{1,1/¢j™°} =: Ry, with

-1 R
Co = EQCN (1—%) [CNt]l_? +Apent.

O

Lemma 5.5. There exists © = O(N,dy) > 0 and Ry = Ro(N,dy) > 0 such that, for any
x € OMF,. and R < Ry, there holds

(5.16) (1—t)P,(F.,B(z,R)) < © RN

Proof. Let E. = F. \ B(z, R), and observe that P(E., B(z,R)) < P/(B(z,R)). From (5.13),
possibly reducing Ry, we then get

(1 —t)P(F.,B(z,R)) < (1+ ¢ R"™*)(1 — t)P.(B(x,R)) < © RN,

From Lemma 5.5 it follows that F. is also an additive w-minimizer for the ¢-perimeter.
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Corollary 5.6. Let g be as in Lemma 5.2. Let F. be a minimizer of (5.1) with ¢ < €9, let
x € OMFy, and let E; be a set of finite t-perimeter with

(5.17) F.AE. C B(z,R).

There holds

(5.18) (1—t)P(F.,B(z,R)) < (1 —t)Py(E., B(z,R)) + ¢g RN ~*

for any R < Ry, with Ry, cy depending only on N, dg.

Proof. By (5.13) and (5.16), possibly increasing the constant ¢y we have

(1—t)P(E.,B(z,R)) > (1 — coRt_s) (1—t)Pi(F., B(z,R)) > (1—t)P,(F., B(z, R)) — co© RN ~*

for any R < Ry. O
The following result can be proved exactly as in [18, Theorem 3.4].

Proposition 5.7. Let tg € (0,1), there exist T,6,q € (0,1), depending only on N,to, such that
if F is an additive w-minimizer of P; for any t € [ty, 1], with 0 € ™F and

amFﬂB(O,l)C{yERN: (y—x)-e| <7},
for some e € SN71, then there exists eg € SN~ such that
OmF N B(0,n) C {yeRY: ((y — ) - eo| < qoT} .

From Corollary 5.6 and Proposition 5.7 we derive the C'# regularity minimizer of (5.1)
following standard arguments that can be found in [12, Theorem 1] (see also [18, Corollary 3.5]).

Corollary 5.8. There exists f = B(N,d9) < 1 such that any minimizer F. of (5.1), with
£ < €9, as in Lemma 5.2, has boundary of class CYP outside of a closed singular set of Hausdorff
dimension at most N — 2.

Remark 5.9. If £ = 1, by the general regularity theory for w-minimizers of the classical perime-
ter developed in [4, 35] we have that F. has boundary of class C1# outside of a closed singular
set of Hausdorff dimension at most N — 8.

We are in the position of completing the proof of Theorem 1.1.
Proof of Theorem 1.1. The existence follows from Theorem 4.2. The regularity of OF follows
from Corollary 5.4 and Corollary 5.8. g
6. RIGIDITY OF MINIMIZERS FOR SMALL VOLUMES

We now develop the rigidity theory needed to prove Theorem 1.2.

Theorem 6.1. For any n > 0 there exists € = &(n, N,d0) > 0 such that any minimizer F. of
(5.1), with € < &, can be written as

(6.1) OF, = {(1 +uc(x))zx : x € OB},
where B is the ball of radius 1 having the same barycenter of F., and u. : 0B — R satisfies

uellcromy < n-
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Proof. From Lemma 3.12, putting m = a%wN there, it follows that |F.AB| — 0 as ¢ — 0.
From the density lower bound proved in Proposition 3.10 it then follows that OF. — 0B in the
Hausdorff topology. The result now follows via a standard argument based on the w-minimality
of F. and on the regularity of the limit set B (see [18, Corollary 3.6] and, for t = 1, [35, Theorem
1] and [30, Theorem 26.6]). O

Theorem 6.2. There exist 1y, c1,co > 0 depending only on N, with c1 < ca, with the following
property. Suppose that E; is such that, for T € [0,7], OF; takes the form

OE; ={(1+ tu(z))x : x € 0B},
where u : 0B — R satisfies
lullcromy < 1/2.

Suppose moreover that the barycenter of E; is the same of that of B, say 0, and that |E;| = |B|.
Then, for all o € (0,1) it holds true that

2 2 2 27,12
02 ar (W, +oPa@lulgn ) < PalB) = PolB) < rll e

Proof. The first inequality in (6.2) has been proved in [18, Theorem 2.1]. It remains to prove
the second inequality.
As in [18, Formula (2.20)], after some calculations we get that

T2 P.,(B
g (B)

(63) Pa(ET> =

where we set

W)= [ ru() Y an a),

. N-1 N-1
and g(T) : /83/63 (/(y) /(y) Jia—y (L + 77, 1+Tp)drdp> dH™ 7 () dHY " (y),

being
aN—l bN_ 1

(6.4) fola,b) :=
(la — b|> + ab

We observe that r and p in the definition of g range in [—||ul|L(sB), [[ullL=@r)] € [-1,1],

since ||u(|z~(9p) < 1. Hence, comparing with the definition of g, we notice that a and b in (6.4)
range in [1 — 7,1 + 7], and therefore they are bounded and bounded away from zero. As a
consequence, we get

1 1 Cy
< Nta N )
( (Cs92) 2% 0%

for suitable constants C1,...,Cy > 0. Therefore, up to renaming the constants, we have

u(z)  pu(z) CN
drdp | dHN"Y(z)dHN ! =cn [u]? 1ha .
/BB /BB </u(y) / |z —y[N+e p) (@) W) =enl ]H%(aB)

Thus, since h(0) = P(B), by (6.3) we get

f@(av b) <

(6.5) P, (E;) — Po(B) < cNT[u]QHTQ(aB)
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Now we want to estimate h(7) — h(0). Since |E;| = | B|, using polar coordinates, we get
(6.6) / (1+7u)N dHN~' = N|E,| = N|B| = P(B).

OB
Thus

(6.7) h(r) — h(0) = /63(1 +ru)N-o gHN 1 p(B) = /83(1 + )N (1 4+ 7u)® — 1) aHN L,

By a Taylor expansion, we know that for any = > 0 small enough, it holds

(1+z)~ 1)(1—|—x) )

( az + 2ot 1) 2y aﬂ(az)> (1 + No+ wsﬁ + v(w)) ,

with |B(z)| + |y(z)| < enyx?, so that

(1+2) =11 +2)") < —az + (a(a;—l) — Na) 2 4+ aey ab.

By applying such an inequality to (6.7), and using the fact that ||u|p~@p) < 1, we get

(6.8) h(r) — h(0) < a/

1
[Tu i (N _at ) TQUQ] dHN T+ aen 7|l op)-
oB 2

Also, from (6.6), we have

0= ((1+m)N—1)dHN—1</ (N7u+ N(N = 1)72% + ey 7u3) dHN .
0B OB

Hence, since |u(| - op) < 1, we obtain

N -1
N—
- [ rudn < Sl + o o)

so that (6.8) gives

2
-
h(r) = h(0) < =S a (N = a)ullzom) + aen 7 ||ullizop) <O

for 7 < 79(IN). By inserting this into (6.5) we obtain the second inequality in (6.2). O

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We have to show that there exists e; = €1(N, dp) € (0,e0], €0 as in (5.4),
and so mp = my(N,d) € (0,mg], such that the ball B is the only minimizer of problem (5.1)
for e < 1. Let € < €7 and let F; be a minimum of problem (5.1), which exists by Theorem 1.1.
By the minimality of F. we have

(6.9) (1= )P(F.) — (1 — ) Pi(B) < = (sP,(F.) — sP(B))

where B has the same barycenter of F.. Possibly reducing € we can assume that dF;. can be
written as in (6.1), with [luc|lc19p) < 70/2, where 75 is as in Theorem 6.2. Then, from (6.9)
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and (6.2) it follows

< (1L=DP(F) ~ (1= t)R(B))
< e (sPs(F:) — sPs(B))
: < 2.
(6.10) £8Co [UE]H%(BB)
From (2.17) it then follows
2 s 2
_ < _ = (1_
ci(1 t)[ua]H%(aB) N (1 t)[uE]H#(aB)
which implies u. = 0, that is F. = B, whenever ¢ is sufficiently small. U

We conclude the section with the following counterpart to Theorem 1.2.

Theorem 6.3. For all 0 < s <t < 1, there exists a volume my = ma(N,s,t) = m1 such that,
for m > mg, the ball is not a local minimizer of problem (1.3).

Proof. We have to show that there exists €2 > €1 such that the ball B is not a local minimizer
of problem 5.1 for € > e3. We look for a competitor F, # B which can be written as in (6.1),
with u # 0 and and ||ul|c1(s) < 70/2, where 79 is as in Theorem 6.2. As above, from (6.2) it

follows
(1 =t)P(F) — (1= t)P(B)) < el - t)[u]z%(aB)
2
(6.11) < ecls[u}ngs o)
< e(sPs(F.) — sPs(B)),
as soon as )
1—t
SR R,
€ > €9 = p s[u]2 .
1 H 1;.9 (83)
This shows that F. has lower energy than B, so that the ball cannot be a local minimizer of
problem (1.3). O

Notice that lims_,g ma(N, s,t) = +oo for all ¢ € (0, 1], which is consistent with the fact that
the ball is the unique minimizer of the t-perimeter, with volume constraint.

7. A FRACTIONAL ISOPERIMETRIC PROBLEM

Consider the functional J’?s/t defined by

(A=) P (E)N

RN ifo<s<t<l1

% fo<s<t=1

Foa(B) =
(1-t)P(E)N

]\7<,uz\;|];(‘#)jv1 ifs=0andt=1.
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In this section we consider the generalized isoperimetric problem

7.1 in L. (E), 0<s<t<l.
(7.1) Juin For(EB) 8

Remark 7.1. Notice that the quantity in (7.1) is scale invariant, hence without loss of generality
we can look for minimizers E satisfying a volume constraint |E| = wy.

The main aim of this section is the following existence theorem.
Theorem 7.2. There exists a minimizer of problem (7.1).

To prove it, we need some preliminary results, namely a suitable version of the isoperimet-
ric inequality (Lemma 7.4) and an existence result with uniform estimates for a constrained
minimization problem (Lemma 7.5).

Remark 7.3. In what follows, with a slight abuse of notation, we extend the functionals (1 —
t)P;(+) and sPs(:) to t = 1 and s = 0 respectively, meaning that for ¢ = 1 it equals NwyP(-),
while for s = 0 it equals Nwy| - |.

Lemma 7.4. Let s <t € [0,1] satisfy (3.1). For any E C RY there holds

S

(1= PEN _
GPE)

(7.2)

for some ¢ = ¢(N, dy) > 0.

Proof. Let s <t € [0,1] and let 69 = ¢t — s. Notice that

t S 1
7.3 =1 <14+ —.
(7.3) t—s +t—s +50

Then from (2.15), and since dg < t, it follows

N(t—s)

|E|'™% < C(N,d) (1 —t)P(B)) ™= .

Plugging this estimate into (2.3) (or (2.9) if t = 1) we get

t N—s

(L=t)P(E))N=¢ ,

sPy(E) < C(N,do)

t—s
which, together with (7.3) gives (7.2). O

We notice that, if s = 0, the claim is an immediate consequence of the the fractional isoperimetric
inequality (2.15).

Lemma 7.5. Let s <t € [0,1] satisfy (3.1). For R > 1 let Qr = [~R, R]N. Then, there exists
a minimizer Er of the problem

(L= P(E)

4 i
(7.4) BcQnlElem  (sPE)N
Moreover
(7.5) (1-t)P(Er) < C

where C is independent of R.
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Proof. We recall that, thanks to the notation introduced in Remark 7.3 we can deal at once
with the cases ¢ < 1 and t = 1. By Lemma 7.4 we know that

N-—s
, (L—t)R(E)) N
= pcontoion GPE)
is a strictly positive quantity. Clearly the map R +— C(R) is non-increasing. Let C' = C(1) + 1
and let £, be a minimizing sequence for (7.4), so that for n big enough it holds (1 —¢)P;(E,) <
C(sPy(E,,))N=8/(N=5)  Possibly increasing the constant C, from (2.3) (or (2.9) if t = 1) it
follows

s(N—t)

(1 —t)P(Ey) < O((1 — t)Py(Ey)) V=9

which gives
(7.6) (1-t)P(E,) <C  forall n.

The existence of a minimizer now follows by the direct method the calculus of variations, since
the compact embedding of L!'(Qg) and H*(QRr) into H'(Qg) and the estimate (7.5) directly
follows from (7.6). O

We now prove Theorem 7.2.

Proof of Theorem 7.2. 1f s = 0 then the claim of the theorem is equivalent to that of the isoperi-
metric inequality (the fractional isoperimetric inequality if ¢ < 1). Thus we consider just the
case s > 0. Again, we shall always write (t — 1) P, meaning that such a functional is equivalent
to the classical perimeter if £ = 1 (see Remark 7.3).

Let E, be a minimizer of (7.4) with R = n € N and m = 1/2. We divide Q,, into (2n)" unit
cubes with vertices in Z", and we let {Qm}{;l be the unit cubes with non-negligible intersection
with E,, that is, ¥, , = |[E,N Q| € (0,1/2] for alli € {1,...,1I,}, for some I, € {1,...,(2n)"}.

We remark that, from (2.10) (and omitting the 1ntegrands for simplicity), we have that

S0 =2 [ oot oo oan e e
i=1 anzn RN\ETL Qz n\En En\an ann RN\En n\En n

which implies that

(7'7) Zpt(Ena Qz,n) < 2/ /]R = 2Pt(En)'

N\En

Now, up to reordering the cubes Q); , we can assume that the sequence {mm}fgl is non-increasing
in 4, and we set x;, := 0 for ¢ > I,,. We have that

- 1
and, recalling (2.12), (7.5) and (7.7), and the fact that z;, < |E,| =1/2 = |Qin|/2, we get
X N—t¢ o
(7.9) N2,y <CY (1 )P(En. Qin) <2C (1 t)Pi(E,) < C.
1=1 i=1

up to renaming C. As in [25, Lemma 4.2], from (7.8) and (7.9) it follows that

(o)
(7.10) Sz < CkW

for all k& € N, where C' depends only on (N, s,t).
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Up to extracting a subsequence (using either a diagonal process or Tychonoff Theorem), we
can suppose that z; , — a; € [0,1/2] as n — 400 for every ¢ € N, so that by (7.8) and (7.10)
we have

(7.11) }:%:%

Fix now 2, € Qin. Up to extracting a further subsequence, we can suppose that d(z;,, zjn) —
cij € [0,400], and (recalling (7.5)) that there exists G; C RY such that

(7.12) (Ey — 2in) — Gi  in the Lj -convergence

for every i € N. We say that ¢ ~ j if ¢;; < +00 and we denote by [i] the equivalence class of i.
Notice that G; equals G up to a translation, if i ~ j. Let A := {[ ] : i € N}. We claim that

(7.13) > PG <liminf P(E,)  and ) P(G) < lim inf Py(Ey).
[JeA li]leA

To prove it, we first fix M € N and R > 0. We take different equivalent classes i1,...,737 and
we notice that if iy, # i; then the set z;, n, + Qr is drifting far apart from z;, », + Qg, and so

. dx dy
lim TN 0.
n—+oo Z’Lk n+QR Z’L n+QR |£E - |

Accordingly, by (2.11), (7.12) and the lower semicontinuity of the perimeter,
M

M
> P(Gi.Qr) < liminfy P(En, (20 + Qr))
i=1 k=1

dx dy
_ |N+t

N

liminf P,  E,, mM+QR>+2 / /
noes ( kLJl 1<sz;M Zip ntQR Y 2i;n+QR |:L’
1k7$7,

< liminf P(E,).

n—-+o0o

By sending first R — +oo and then M — 400, this yields (7.13).
Now we claim that

1
(7.14) > 161 =
€A
Indeed, for every ¢ € N and R > 0 we have
’GZ‘ = ’GZ N QR’ = lim ’(En — Zi,n) N QR’
n—-+00

If j is such that j ~ i and ¢;; < %, possibly enlarging R we have Q;, — z;, C Qg for alln € N,
so that

|(En — Zin )N Qr| = ZKE — Zi,n mQRm(an Zi,n)‘

> Z |(En — zi,n) NQRrRN(Qjn — zin)| = Z [(En = 2in) N (Qjn — Zin)]

. R . R
Jicij <5 Jicij <Y

= Z ‘En N Qj,’fl‘u

. R
Jicij Sy
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and so

Gil > lim (B —2zin) Qe > lm > |[EaNQjnl= ) o
jZCijgg j:cijgg

Letting R — 400 we then have

Gil 2 > = ay,

g el
hence, recalling (7.11),
1
1> =
> 1Gil =3,
[i]eA

thus proving (7.14) (since the other inequality is trivial).
We now claim that

n—-+oo

(7.15) > Py(Gy) > limsup Py(Ey).
[i]leA

Indeed, by (7.14) we have that for any € > 0 there exist R, ¢ such that there exist ¢ distinct
equivalence classes [i1],. .., [i¢] € A such that

l y4
1 .
(716) 5 — €& é kE_ |le N BR| = nl{l}-loo kE_l |(En — Zik,n) N BR| .

—_

For p > 0 we let

L
= En N U (Zik’n + Bp) _E‘p’2 = En \ E’I’L,l .

EP
n
k=1

n,l

For n sufficiently large we have that the balls z;, ,, + Br are disjoint (since the z;, , are drifting
far away from each other, being each iy in a different equivalence class). Therefore (7.16) gives
that

1
(7.17) |EE| > 5~ 2  and |Ef,| < 2

if n is large enough. We claim that

dl’dy CN _ N-s ) B
o S Er f R, R+ (20)"~|,
( ) /Eﬁ,l /Eﬁz |z — y|N+s s(1—s) | ”72| N or some p € +(20)" W~

where the constants ¢y, 6 depend only on N.

Indeed, if this is not the case, we would have that

|Ep 5| >0 and

(7.19) dz dy ex . B
By f R. R+ (20
o Jo Ty gy \tnal T forevery p€ [R R+ (20)7

So we let

1
u(p) = ‘E£,1| = |Ep| — |E£,2| = 9 |E7'[1),2
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and we obtain

CN 1 () N </ / dx dy
sA-s)\2 MY pe, Jee, Jo =y F

/ / dx dy
Ef | JRV\UL, (21 +By) |z — y|N+s

n,l

Nwy / dx
s Ep (P - |$‘ - zik(z),nbs

_ New [P 4G
s /o(p—Z)Sd

(7.20)

N

for all p € {R, R+ (26)7%], where k(z) € N is such that = € z;, ) » + B.

From (7.20) and Lemma 4.1 (used here with m := 1/2 and p := R), we obtain that
u(p) =1/2 (and so |Ef ,| =0) for p= R+ (26)_%, which leads to a contradiction with (7.19).
We thus proved (7.18). Notice that inequality (7.18) holds also with ¢ instead of s. So, by (7.18)
and the fact that |E5’2| < 2¢ (recall (7.17)), we obtain that

dz d . dzd _
(7.21) / / Y <™V and / / Y <oV,
Ef, JEE, |z —y|N+s Ef, JEE, |z —y[VH

for some C' > 0, possibly depending on n, s and t.
From this, (2.1) and (7.5) we obtain

- ~ dx d
P(E} )+ P(E],) = +2/ / - %—O—t
(7.22) ’ ’ Eﬁl ]

Now, by (2.3), we get

El

Py(E},) < C|Epo|' "t Pi(Ep )

up to renaming C. Using this, (7.22) and then (7.17) once more, and possibly renaming C' again,
we conclude that

o

Py(E",)

N

C B} 5|7 (PU(EL ) + P )
C B,
Cel™

NN

o S

Consequently, using (2.1) and (7.21), we conclude that

5 dx dy
A A

> Py(BE,) — Ce' i,

(7.23)

Also, from (7.5), (7.12) and the compact embedding of H? into H3 (see [16, Section 7]), we
see that

(7.24) lim Py ((En — zi,,n) N Bp) = Py(Giy, N Bp).

n—-—+o0o
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Now we recall that if K is a convex set, then P(ENK) < P;(FE) (see for instance [18, Lemma
B.1]). Together with (2.2) and (7.23), this implies

L
ST PG = Y PGy N Bp)
[i]leA

_ HETOO P, ((Ey, — ziy,n) N Bp)
k=1

> hm Ps(Ey, )

> limsup Ps(FE,) — C(N, s,t)et%,

n—-+o00
which gives (7.15) by letting ¢ — 0.
From (7.13) and (7.15) we obtain that
> ijeall =) P(Gi)

N—-t

N—s
(s Zpgea P(G)
Let us now prove that the there exists j such that

(1 -OR(G)) _ 2ijeall =) P(Gi)

N—t

(RGN A (Sz[i]EAPS(Gi)) o

Indeed, if it is not the case, we get

(1-1)P(Gy) =t
Sgeall ~OP(G) e (WG))N> (sP(G)Y

(5 2jileA PS(GZ')) = (5 Dl PS(G,-)) "

R SPS G’L N:s
> S Z[z]EA( ( )) -

(5 iea Pu(G) ™

which is impossible. To get the last estimate we used the elementary inequality (3, ¢;)* < >, ¢t
which holds true for ¢; > 0 and o € (0,1).
Now, let j be the index satisfying (7.26). Then, by (7.25) we get

(L= OPG) o (= OB

(PG R (P (E,) R

< liminf w .
nee (sPs(En))N=s

(7.25)

(7.26) =: S.

S:

=
i

ES

= 5,

o~

(7.27)

Then, given any set E, fixed any € > 0, we intersecate F with a big ball Br_ in such a way that
(I-t)P(EN BRG) < (1 —t)P(E)
N—t
(sPs(E N Bpg, )) = (sPs(E))N—s

Then, by the minimality of F,,,
(1—t)Pt(EﬂBR ) > (1 —t)P( n)

=t

(sP.(ENBR))¥=+  (sPy(En)) N+
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for any n > n.. Thus, by (7.27),
(1 —HAE) _ (1-)P(G)

w-l—e}liminf ~— = .
(sPs(E))N== " (sPs(EBp))N- (SPS(GJ'))N“

By sending € \, 0 we see that G is the desired minimizer, which concludes the proof. O

o+
-

Proposition 7.6. Let F be a minimizer of (7.1). Then F is a multiplicative w-minimizer of
the t-perimeter, that is, for any set E such that FAE C B(x, R), there holds

P,(F,B(z,R)) < (1+ CR"*)P(E,B(z,R))  for any R < Ry,
where Ry, C' depend only on N, dy and |F)|.
Proof. First, if a € (0,1), by graphic the functions, one sees that, for any r > 0,
(7.28) 1—r*<|1—r|
Also, from (5.11), we know that

P,(F) - P,(E) < P,(FAE),

for any sets E' and F', and so, by possibly exchanging the roles of £ and F' we obtain
(7.29) |Ps(E) — Ps(F)| < Ps(FAE)

Now, letting E be such that FAE C B(x, R), using the minimality of F, (7.28) and (7.29) we
see that

P(E) > Ps(E)N_ZPI(D;(,fg_Z
T (iig; - 1) P.(F)
> P(F) - ‘ig; - 1‘Pt(F)
> PJ(F)— ZE?;IPS(E) — Py(F)|
> P(F)- ?E?; Ps(FAE).

Hence, by applying the fractional isoperimetric inequality (2.15) to Ps(F'), we obtain that
Pi(E) > P(F) — C(N,6)|F| "% P,(FAE).
As in (5.15), by means of (2.3) and again the fractional isoperimetric inequality we then get

P(E,B(z,R)) > Pi(F,B(z,R)) —C(N,8)|F|" "~ |FAE|'S P(FAE)

N-—s

= (1—C(N750)|F’7 N Rtis> Pt(FvB($7R))a

which gives

s

P,(F, B(z, R)) < P 5
BN T2 O(N, 6 RS

P.(E,B(z,R)).
O

Reasoning as in Section 5, from Proposition (7.6) we obtain the following regularity result.
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Corollary 7.7. There exists f = B(N,dp) < 1 such that any minimizer F' of (7.1) is bounded
and has boundary of class C'P, outside of a closed singular set of Hausdorff dimension at most
N — 2 (respectively N — 8 if t = 1).

Proof of Theorem 1.3. The existence claim is a consequence of Theorem 7.2 and the regularity

follows from Corollary 7.7. O
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