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Abstract. We introduce a new Neumann problem for the fractional Laplacian aris-
ing from a simple probabilistic consideration, and we discuss the basic properties of this
model. We can consider both elliptic and parabolic equations in any domain. In addition,
we formulate problems with nonhomogeneous Neumann conditions, and also with mixed
Dirichlet and Neumann conditions, all of them having a clear probabilistic interpretation.

We prove that solutions to the fractional heat equation with homogeneous Neumann
conditions have the following natural properties: conservation of mass inside Ω, decreasing
energy, and convergence to a constant as t → ∞. Moreover, for the elliptic case we give
the variational formulation of the problem, and establish existence of solutions.

We also study the limit properties and the boundary behavior induced by this nonlocal
Neumann condition.

For concreteness, one may think that our nonlocal analogue of the classical Neumann
condition ∂νu = 0 on ∂Ω consists in the nonlocal prescription

∫

Ω

u(x)− u(y)
|x− y|n+2s

dy = 0 for x ∈ Rn \ Ω.

1. Introduction and results

The aim of this paper is to introduce the following Neumann problem for the fractional
Laplacian {

(−∆)su = f in Ω
Nsu = 0 in Rn \ Ω. (1.1)

Here, Ns is a new “nonlocal normal derivative”, given by

Nsu(x) := cn,s

∫

Ω

u(x)− u(y)
|x− y|n+2s

dy, x ∈ Rn \ Ω. (1.2)

The normalization constant cn,s is the one appearing in the definition the fractional Lapla-
cian

(−∆)su(x) = cn,s PV
∫

Rn
u(x)− u(y)
|x− y|n+2s

dy. (1.3)

See [12, 20] for the basic properties of this operator (and for further details on the nor-
malization constant cn,s, whose explicit value only plays a minor role in this paper).

As we will see below, the corresponding heat equation with homogeneous Neumann
conditions 




ut + (−∆)su = 0 in Ω, t > 0
Nsu = 0 in Rn \ Ω, t > 0

u(x, 0) = u0(x) in Ω, t = 0
(1.4)

possesses natural properties like conservation of mass inside Ω or convergence to a constant
as t→ +∞ (see Section 4).

The probabilistic interpretation of the Neumann problem (1.4) may be summarized as
follows:

(1) u(x, t) is the probability distribution of the position of a particle moving randomly
inside Ω.

(2) When the particle exits Ω, it immediately comes back into Ω.
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(3) The way in which it comes back inside Ω is the following: If the particle has gone
to x ∈ Rn \ Ω, it may come back to any point y ∈ Ω, the probability of jumping
from x to y being proportional to |x− y|−n−2s.

These three properties lead to the equation (1.4), being u0 the initial probability distri-
bution of the position of the particle.

A variation of formula (1.2) consists in renormalizing Nsu according to the underlying
probability law induced by the Lévy process. This leads to the definition

Ñsu(x) :=
Nsu(x)

cn,s
∫

Ω
dy

|x−y|n+2s

. (1.5)

Other Neumann problems for the fractional Laplacian (or other nonlocal operators)
were introduced in [4, 8], [1, 3], [9, 10, 11], and [15]. All these different Neumann problems
for nonlocal operators recover the classical Neumann problem as a limit case, and most of
them has clear probabilistic interpretations as well. We postpone to Section 7 a comparison
between these different models and ours.

An advantage of our approach is that the problem has a variational structure. In
particular, we show that the classical integration by parts formulae

∫

Ω
∆u =

∫

∂Ω
∂νu

and
∫

Ω
∇u · ∇v =

∫

Ω
v (−∆)u+

∫

∂Ω
v∂νu

are replaced in our setting by
∫

Ω
(−∆)su dx = −

∫

Rn\Ω
Nsu dx

and

cn,s
2

∫

R2n\(CΩ)2

(
u(x)− u(y)

)(
v(x)− v(y)

)

|x− y|n+2s
dx dy =

∫

Ω
v (−∆)su+

∫

Rn\Ω
vNsu.

Also, the classical Neumann problem
{
−∆u = f in Ω
∂νu = g on ∂Ω (1.6)

comes from critical points of the energy functional

1
2

∫

Ω
|∇u|2 −

∫

Ω
fu−

∫

∂Ω
g u,

without trace conditions. In analogy with this, we show that our nonlocal Neumann
condition {

(−∆)su = f in Ω
Nsu = g in Rn \ Ω (1.7)

follows from free critical points of the energy functional

cn,s
4

∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy −
∫

Ω
f u−

∫

Rn\Ω
g u,
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see Proposition 3.7. Moreover, as well known, the theory of existence and uniqueness of
solutions for the classical Neumann problem (1.6) relies on the compatibility condition

∫

Ω
f = −

∫

∂Ω
g.

We provide the analogue of this compatibility condition in our framework, that is∫

Ω
f = −

∫

Rn\Ω
g,

see Theorem 3.9. Also, we give a description of the spectral properties of our nonlocal
problem, which are in analogy with the classical case.

The paper is organized in this way. In Section 2 we give a probabilistic interpretation of
our Neumann condition, as a random reflection of a particle inside the domain, according
to a Lévy flight. This also allows us to consider mixed Dirichlet and Neumann conditions
and to get a suitable heat equation from the stochastic process.

In Section 3 we consider the variational structure of the associated nonlocal elliptic
problem, we show an existence and uniqueness result (namely Theorem 3.9), as follows:

Let Ω ⊂ Rn be a bounded Lipschitz domain, f ∈ L2(Ω), and g ∈ L1(Rn \Ω). Suppose that
there exists a C2 function ψ such that Nsψ = g in Rn \ Ω.

Then, problem (3.9) admits a weak solution if and only if
∫

Ω
f = −

∫

Rn\Ω
g.

Moreover, if such a compatibility condition holds, the solution is unique up to an additive
constant.

Also, we give a description of the eigenvalues of (−∆)s with zero Neumann boundary
conditions (see Theorem 3.11):

Let Ω ⊂ Rn be a bounded Lipschitz domain, and consider the eigenvalue problem
{

(−∆)su = λu in Ω
Nsu = 0 in Rn \ Ω.

Then, there exists a sequence of nonnegative eigenvalues

0 = λ1 < λ2 ≤ λ3 ≤ · · · ,
and its corresponding eigenfunctions are a complete orthogonal system in L2(Ω).

In Section 4 we discuss the associated heat equation. As it happens in the classical case,
we show that such equation preserves the mass, it has decreasing energy, and the solutions
approach a constant as t → +∞. In particular, by the results in Propositions 4.1, 4.2
and 4.3 we have:

Assume that u(x, t) is a classical solution to




ut + (−∆)su = 0 in Ω, t > 0
Nsu = 0 in Rn \ Ω, t > 0

u(x, 0) = u0(x) in Ω, t = 0.
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Then the total mass is conserved, i.e. for all t > 0
∫

Ω
u(x, t) dx =

∫

Ω
u0(x)dx.

Moreover, the energy

E(t) =
∫

R2n\(CΩ)2

|u(x, t)− u(y, t)|2
|x− y|n+2s

dx dy

is decreasing in time t > 0.
Finally, the solution approaches a constant for large times: more precisely

u −→ 1
|Ω|

∫

Ω
u0 in L2(Ω)

as t→ +∞.

In Section 5 we compute some limits when s → 1, showing that we can recover the
classical case. In particular, we show in Proposition 5.1 that:

Let Ω ⊂ Rn be any bounded Lipschitz domain. Let u and v be C2
0 (Rn) functions. Then,

lim
s→1

∫

Rn\Ω
Nsu v =

∫

∂Ω

∂u

∂ν
v.

Also, we prove that nice functions can be extended continuously outside Ω in order to
satisfy a homogeneous nonlocal Neumann condition, and we characterize the boundary
behavior of the nonlocal Neumann function. More precisely, in Proposition 5.2 we show
that:

Let Ω ⊂ Rn be a domain with C1 boundary. Let u be continuous in Ω, with Nsu = 0
in Rn \ Ω. Then u is continuous in the whole of Rn.

The boundary behavior of the nonolcal Neumann condition is also addressed in Propo-
sition 5.4:

Let Ω ⊂ Rn be a C1 domain, and u ∈ C(Rn). Then, for all s ∈ (0, 1),

lim
x→∂Ω
x∈Rn\Ω

Ñsu(x) = 0,

where Ñ is defined by (1.5).
Also, if s > 1

2 and u ∈ C1,α(Rn) for some α > 0, then

∂νÑsu(x) := lim
ε→0+

Ñsu(x+ εν)
ε

= κ ∂νu for any x ∈ ∂Ω,

for some constant κ > 0.

Later on, in Section 6 we deal with an overdetermined problem and we show that it is
not possible to prescribe both nonlocal Neumann and Dirichlet conditions for a continuous
function.
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Finally, in Section 7 we recall the various nonlocal Neumann conditions already appeared
in the literature, and we compare them with our model.

All the arguments presented are of elementary nature. Moreover, all our considerations
work for any general Lévy measure ν satisfying

∫

Rn
min(1, |y|2)dν(y) < +∞.

However, for sake of clarity of presentation, we have done everything for the most canonical
case of the fractional Laplacian.

2. Heuristic probabilistic interpretation

Let us consider the Lévy process in Rn whose infinitesimal generator is the fractional
Laplacian (−∆)s. Heuristically, we may think that this process represents the (random)
movement of a particle along time t > 0. As it is well known, the probability density
u(x, t) of the position of the particle solves the fractional heat equation ut + (−∆)su = 0
in Rn; see [21] for a simple illustration of this fact.

Recall that when the particle is situated at x ∈ Rn, it may jump to any other point
y ∈ Rn, the probability of jumping to y being proportional to |x− y|−n−2s.

Similarly, one may consider the random movement of a particle inside a bounded domain
Ω ⊂ Rn, but in this case one has to decide what happens when the particle leaves Ω.

In the classical case s = 1 (when the Lévy process is the Brownian motion), we have
the following:

(1) If the particle is killed when it reaches the boundary ∂Ω, then the probability
distribution solves the heat equation with homogeneous Dirichlet conditions.

(2) If, instead, when the particle reaches the boundary ∂Ω it immediately comes back
into Ω (i.e., it bounces on ∂Ω), then the probability distribution solves the heat
equation with homogeneous Neumann conditions.

In the nonlocal case s ∈ (0, 1), in which the process has jumps, case (1) corresponds to
the following: The particle is killed when it exits Ω. In this case, the probability distribu-
tion u of the process solves the heat equation with homogeneous Dirichlet conditions u = 0
in Rn\Ω, and solutions to this problem are well understood; see for example [18, 14, 13, 2].

The analogue of case (2) is the following: When the particle exits Ω, it immediately
comes back into Ω. Of course, one has to decide how the particle comes back into the
domain.

In [1, 3] the idea was to find a deterministic “reflection” or “projection” which describes
the way in which the particle comes back into Ω.

The alternative that we propose here is the following: If the particle has gone to x ∈
Rn \ Ω, then it may come back to any point y ∈ Ω, the probability of jumping from x to
y being proportional to |x− y|−n−2s.

Notice that this is exactly the (random) way as the particle is moving all the time, here
we just add the restriction that it has to immediately come back into Ω every time it goes
outside.

Let us finally illustrate how this random process leads to problems (1.1) or (1.4). In fact,
to make the exposition easier, we will explain the case of mixed Neumann and Dirichlet
conditions, which, we think, is very natural.
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2.1. Mixed Dirichlet and Neumann conditions. Assume that we have some domain
Ω ⊂ Rn, and that its complement Rn \ Ω is splitted into two parts: N (with Neumann
conditions), and D (with Dirichlet conditions).

Consider a particle moving randomly, starting inside Ω. When the particle reaches D,
it obtains a payoff φ(x), which depends on the point x ∈ D where the particle arrived.
Instead, when the particle reaches N it immediately comes back to Ω as described before.

If we denote u(x) the expected payoff, then we clearly have

(−∆)su = 0 in Ω

and

u = φ in D,

where φ : D −→ R is a given function.
Moreover, recall that when the particle is in x ∈ N then it goes back to some point

y ∈ Ω, with probability proportional to |x− y|−n−2s. Hence, we have that

u(x) = κ

∫

Ω

u(y)
|x− y|n+2s

dy for x ∈ N,

for some constant κ, possibly depending on the point x ∈ N , that has been fixed. In order
to normalize the probability measure, the value of the constant κ is so that

κ

∫

Ω

dy

|x− y|n+2s
= 1.

Finally, the previous identity can be written as

Nsu(x) = cn,s

∫

Ω

u(x)− u(y)
|x− y|n+2s

dy = 0 for x ∈ N,

and therefore u solves 



(−∆)su = 0 in Ω
Nsu = 0 in N
u = φ in D,

which is a nonlocal problem with mixed Neumann and Dirichlet conditions.
Note that the previous problem is the nonlocal analogue of




−∆u = 0 in Ω
∂νu = 0 in ΓN
u = φ in ΓD,

being ΓD and ΓN two disjoint subsets of ∂Ω, in which classical Dirichlet and Neumann
boundary conditions are prescribed.

More generally, the classical Robin condition a∂νu+ bu = c on some ΓR ⊆ ∂Ω may be
replaced in our nonlocal framework by aNsu + bu = c on some R ⊆ Rn \ Ω. Nonlinear
boundary conditions may be considered in a similar way.
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2.2. Fractional heat equation, nonhomogeneous Neumann conditions. Let us
consider now the random movement of the particle inside Ω, with our new Neumann
conditions in Rn \ Ω.

Denoting u(x, t) the probability density of the position of the particle at time t > 0,
with a similar discretization argument as in [21], one can see that u solves the fractional
heat equation

ut + (−∆)su = 0 in Ω for t > 0,
with

Nsu = 0 in Rn \ Ω for t > 0.
Thus, if u0 is the initial probability density, then u solves problem (1.4).

Of course, one can now see that with this probabilistic interpretation there is no problem
in considering a right hand side f or nonhomogeneous Neumann conditions

{
ut + (−∆)su = f(x, t, u) in Ω

Nsu = g(x, t) in Rn \ Ω.

In this case, g represents a “nonlocal flux” of new particles coming from outside Ω, and f
would represent a reaction term.

3. The elliptic problem

Given g ∈ L1(Rn \ Ω) and measurable functions u, v : Rn → R, we set

‖u‖Hs
Ω

:=

√
‖u‖2

L2(Ω)
+ ‖|g|1/2 u‖2

L2(Rn\Ω)
+
∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy (3.1)

and

(u, v)Hs
Ω

:=
∫

Ω
u v dx+

∫

Rn\Ω
|g|u v dx

+
∫

R2n\(CΩ)2

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy.

(3.2)

Then, we define the space

Hs
Ω :=

{
u : Rn → R measurable : ‖u‖Hs

Ω
< +∞

}
.

Notice that Hs
Ω and its norm depend on g, but we omit this dependence in the notation

for the sake of simplicity.

Proposition 3.1. Hs
Ω is a Hilbert space with the scalar product defined in (3.2).

Proof. We point out that (3.2) is a bilinear form and ‖u‖Hs
Ω

=
√

(u, u)Hs
Ω

. Also, if ‖u‖Hs
Ω

=

0, it follows that ‖u‖L2(Ω) = 0, hence u = 0 a.e. in Ω, and that
∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy = 0,

which in turn implies that |u(x) − u(y)| = 0 for any (x, y) ∈ R2n \ (CΩ)2. In particular,
a.e. x ∈ CΩ and y ∈ Ω we have that

u(x) = u(x)− u(y) = 0.
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This shows that u = 0 a.e. in Rn, so it remains to prove that Hs
Ω is complete. For this,

we take a Cauchy sequence uk with respect to the norm in (3.1).
In particular, uk is a Cauchy sequence in L2(Ω) and therefore, up to a subsequence,

we suppose that uk converges to some u in L2(Ω) and a.e. in Ω. More explicitly, there
exists Z1 ⊂ Rn such that

|Z1| = 0 and uk(x)→ u(x) for every x ∈ Ω \ Z1. (3.3)

Also, given any U : Rn → R, for any (x, y) ∈ R2n we define

EU (x, y) :=

(
U(x)− U(y)

)
χR2n\(CΩ)2(x, y)

|x− y|n+2s
2

. (3.4)

Notice that

Euk(x, y)− Euh(x, y) =

(
uk(x)− uh(x)− uk(y) + uh(y)

)
χR2n\(CΩ)2(x, y)

|x− y|n+2s
2

.

Accordingly, since uk is a Cauchy sequence in Hs
Ω, for any ε > 0 there exists Nε ∈ N such

that if h, k ≥ Nε then

ε2 ≥
∫

R2n\(CΩ)2

|(uk − uh)(x)− (uk − uh)(y)|2
|x− y|n+2s

dx dy = ‖Euk − Euh‖2L2(R2n).

That is, Euk is a Cauchy sequence in L2(R2n) and thus, up to a subsequence, we assume
that Euk converges to some E in L2(R2n) and a.e. in R2n. More explicitly, there exists Z2 ⊂
R2n such that

|Z2| = 0 and Euk(x, y)→ E(x, y) for every (x, y) ∈ R2n \ Z2. (3.5)

Now, for any x ∈ Ω, we set

Sx := {y ∈ Rn : (x, y) ∈ R2n \ Z2},
W := {(x, y) ∈ R2n : x ∈ Ω and y ∈ Rn \ Sx}

and V := {x ∈ Ω : |Rn \ Sx| = 0}.
We remark that

W ⊆ Z2. (3.6)
Indeed, if (x, y) ∈W we have that y ∈ Rn \Sx, that is (x, y) 6∈ R2n \Z2, and so (x, y) ∈ Z2,
which gives (3.6).

Using (3.5) and (3.6), we obtain that |W | = 0, hence by the Fubini’s Theorem we have
that

0 = |W | =
∫

Ω
|Rn \ Sx| dx,

which implies that |Rn \ Sx| = 0 for a.e. x ∈ Ω.
As a consequence, we conclude that |Ω \ V | = 0. This and (3.3) imply that

|Ω \ (V \ Z1)| = |(Ω \ V ) ∪ Z1| ≤ |Ω \ V |+ |Z1| = 0.

In particular, we have that V \ Z1 6= ∅, so we can fix x0 ∈ V \ Z1.
Since x0 ∈ Ω \ Z1, we know from (3.3) that

lim
k→+∞

uk(x0) = u(x0).
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Furthermore, since x0 ∈ V we have that |Rn \ Sx0 | = 0. That is, a.e. y ∈ Rn (namely, for
every y ∈ Sx0), we have that (x0, y) ∈ R2n \ Z2 and so

lim
k→+∞

Euk(x0, y) = E(x0, y),

thanks to (3.5). Notice also that Ω× (CΩ) ⊆ R2n \ (CΩ)2 and so, recalling (3.4), we have
that

Euk(x0, y) :=
uk(x0)− uk(y)

|x0 − y|
n+2s

2

,

for a.e. y ∈ CΩ. Thus, we obtain

lim
k→+∞

uk(y) = lim
k→+∞

{
uk(x0)− |x0 − y|

n+2s
2 Euk(x0, y)

}

= u(x0)− |x0 − y|
n+2s

2 E(x0, y),

a.e. y ∈ CΩ.
This and (3.3) say that uk converges a.e. in Rn. Up to a change of notation, we will say

that uk converges a.e. in Rn to some u. So, using that uk is a Cauchy sequence in Hs
Ω,

fixed any ε > 0 there exists Nε ∈ N such that, for any h ≥ Nε,

ε2 ≥ lim inf
k→+∞

‖uh − uk‖2Hs
Ω

≥ lim inf
k→+∞

∫

Ω
(uh − uk)2 + lim inf

k→+∞

∫

CΩ
|g|(uh − uk)2

+ lim inf
k→+∞

∫

R2n\(CΩ)2

|(uh − uk)(x)− (uh − uk)(y)|2
|x− y|n+2s

dx dy

≥
∫

Ω
(uh − u)2 +

∫

CΩ
|g|(uh − u)2 +

∫

R2n\(CΩ)2

|(uh − u)(x)− (uh − u)(y)|2
|x− y|n+2s

dx dy

= ‖uh − u‖2Hs
Ω
,

where Fatou’s Lemma was used. This says that uh converges to u in Hs
Ω, showing that Hs

Ω
is complete. �
3.1. Some integration by parts formulas. The following is a nonlocal analogue of the
divergence theorem.

Lemma 3.2. Let u be any bounded C2 function in Rn. Then,∫

Ω
(−∆)su = −

∫

Rn\Ω
Nsu.

Proof. Note that∫

Ω

∫

Ω

u(x)− u(y)
|x− y|n+2s

dx dy =
∫

Ω

∫

Ω

u(y)− u(x)
|x− y|n+2s

dx dy = 0,

since the role of x and y in the integrals above is symmetric. Hence, we have that∫

Ω
(−∆)su dx = cn,s

∫

Ω

∫

Rn
u(x)− u(y)
|x− y|n+2s

dy dx = cn,s

∫

Ω

∫

Rn\Ω

u(x)− u(y)
|x− y|n+2s

dy dx

= cn,s

∫

Rn\Ω

∫

Ω

u(x)− u(y)
|x− y|n+2s

dx dy = −
∫

Rn\Ω
Nsu(y) dy,



10

as desired. �
More generally, we have the following integration by parts formula.

Lemma 3.3. Let u and v be bounded C2 functions in Rn. Then,

cn,s
2

∫

R2n\(CΩ)2

(
u(x)− u(y)

)(
v(x)− v(y)

)

|x− y|n+2s
dx dy =

∫

Ω
v (−∆)su+

∫

Rn\Ω
vNsu ,

where cn,s is the constant in (1.3).

Proof. Notice that

1
2

∫

R2n\(CΩ)2

(
u(x)− u(y)

)(
v(x)− v(y)

)

|x− y|n+2s
dx dy

=
∫

Ω

∫

Rn
v(x)

u(x)− u(y)
|x− y|n+2s

dy dx+
∫

Rn\Ω

∫

Ω
v(x)

u(x)− u(y)
|x− y|n+2s

dy dx.

Thus, using (1.3) and (1.2), the identity follows. �
Remark 3.4. We recall that if one takes ∂νu = 1, then one can obtain the perimeter of Ω
by integrating this Neumann condition over ∂Ω. Indeed,

|∂Ω| =
∫

∂Ω
dx =

∫

∂Ω
∂νu dx. (3.7)

Analogously, we can define Ñsu, by renormalizing Nsu by a factor

ws,Ω(x) := cn,s

∫

Ω

dy

|x− y|n+2s
,

that is

Ñsu(x) :=
Nsu(x)
ws,Ω(x)

for x ∈ Rn \ Ω. (3.8)

Now, we observe that if Ñsu(x) = 1 for any x ∈ Rn\Ω, then we find the fractional perimeter
(see [6] where this object was introduced) by integrating such nonlocal Neumann condition
over Rn \ Ω, that is:

Pers(Ω) := cn,s

∫

Ω

∫

Rn\Ω

dx dy

|x− y|n+2s

=
∫

Rn\Ω
ws,Ω(x) dx

=
∫

Rn\Ω
ws,Ω(x) Ñsu(x) dx

=
∫

Rn\Ω
Nsu(x) dx,

that can be seen as the nonlocal counterpart of (3.7).

Remark 3.5. The renormalized Neumann condition in (3.8) can also be framed into the
probabilistic interpretation of Section 2.

Indeed suppose that CΩ is partitioned into a Dirichlet part D and a Neumann part N
and that:



11

• our Lévy process receives a final payoff φ(x) when it leaves the domain Ω by landing
at the point x in D,
• if the Lévy process leaves Ω by landing at the point x in N , then it receives

an additional payoff ψ(x) and is forced to come back to Ω and keep running by
following the same probability law (the case discussed in Section 2 is the model
situation in which ψ ≡ 0).

In this setting, the expected payoff u(x) obtained by starting the process at the point x ∈ Ω
satisfies (−∆)su = 0 in Ω and u = φ in D. Also, for any x ∈ N , the expected payoff landing
at x must be equal to the additional payoff ψ(x) plus the average payoff u(y) obtained by
jumping from x to y ∈ Ω, that is:

for any x ∈ N , u(x) = ψ(x) +

∫

Ω

u(y)
|x− y|n+2s

dy
∫

Ω

dy

|x− y|n+2s

,

which corresponds to Ñsu(x) = ψ(x).

3.2. Weak solutions with Neumann conditions. The integration by parts formula
from Lemma 3.3 leads to the following:

Definition 3.6. Let f ∈ L2(Ω) and g ∈ L1(Rn \Ω). Let u ∈ Hs
Ω. We say that u is a weak

solution of {
(−∆)su = f in Ω
Nsu = g in Rn \ Ω (3.9)

whenever

cn,s
2

∫

R2n\(CΩ)2

(
u(x)− u(y)

)(
v(x)− v(y)

)

|x− y|n+2s
dx dy =

∫

Ω
f v +

∫

Rn\Ω
g v (3.10)

for all test functions v ∈ Hs
Ω.

With this definition, we can prove the following.

Proposition 3.7. Let f ∈ L2(Ω) and g ∈ L1(Rn \ Ω). Let I : Hs
Ω → R be the functional

defined as

I[u] :=
cn,s
4

∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy −
∫

Ω
f u−

∫

Rn\Ω
g u

for every u ∈ Hs
Ω.

Then any critical point of I is a weak solution of (3.9).

Proof. First of all, we observe that the functional I is well defined onHs
Ω. Indeed, if u ∈ Hs

Ω
then ∣∣∣∣

∫

Ω
f u

∣∣∣∣ ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ C ‖u‖Hs
Ω
,

and ∣∣∣∣∣

∫

Rn\Ω
g u

∣∣∣∣∣ ≤
∫

Rn\Ω
|g|1/2 |g|1/2 |u| ≤ ‖g‖1/2

L1(Rn\Ω)
‖|g|1/2u‖L2(Rn\Ω) ≤ C ‖u‖Hs

Ω
.
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Therefore, if u ∈ Hs
Ω we have that

|I[u]| ≤ C‖u‖Hs
Ω
< +∞.

Now, we compute the first variation of I. For this, we take |ε| < 1 and v ∈ Hs
Ω. Then

the function u+ εv ∈ Hs
Ω, and so we can compute

I[u+ εv] =
cn,s
4

∫

R2n\(CΩ)2

|(u+ εv)(x)− (u+ εv)(y)|2
|x− y|n+2s

dx dy

−
∫

Ω
f(u+ εv)−

∫

Rn\Ω
g(u+ εv)

= I(u) + ε

(
cn,s
2

∫

R2n\(CΩ)2

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy −
∫

Ω
f v −

∫

Rn\Ω
g v

)

+
cn,s
4
ε2
∫

R2n\(CΩ)2

|v(x)− v(y)|2
|x− y|n+2s

dx dy.

Hence,

lim
ε→0

I[u+ εv]− I[u]
ε

=
cn,s
2

∫

R2n\(CΩ)2

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy −
∫

Ω
f v −

∫

Rn\Ω
g v,

which means that

I ′[u](v) =
cn,s
2

∫

R2n\(CΩ)2

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy −
∫

Ω
f v −

∫

Rn\Ω
g v.

Therefore, if u is a critical point of I, then u is a weak solution to (3.9), according to
Definition 3.6. �

Next result is a sort of maximum principle and it is auxiliary towards the existence and
uniqueness theory provided in the subsequent Theorem 3.9.

Lemma 3.8. Let f ∈ L2(Ω) and g ∈ L1(Rn \ Ω). Let u be any Hs
Ω function satisfying in

the weak sense {
(−∆)su = f in Ω
Nsu = g in Rn \ Ω,

with f ≥ 0 and g ≥ 0.
Then, u is constant.

Proof. First, we observe that the function v ≡ 1 belongs to Hs
Ω, and therefore we can use

it as a test function in (3.10), obtaining that

0 ≤
∫

Ω
f = −

∫

Rn\Ω
g ≤ 0.

This implies that

f = 0 a.e. in Ω and g = 0 a.e. in Rn \ Ω.
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Therefore, taking v = u as a test function in (3.10), we deduce that
∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy = 0,

and hence u must be constant. �
We can now give the following existence and uniqueness result (we observe that its

statement is in complete analogy1 with the classical case, see e.g. page 294 in [16]).

Theorem 3.9. Let Ω ⊂ Rn be a bounded Lipschitz domain, f ∈ L2(Ω), and g ∈ L1(Rn\Ω).
Suppose that there exists a C2 function ψ such that Nsψ = g in Rn \ Ω.

Then, problem (3.9) admits a solution in Hs
Ω if and only if

∫

Ω
f = −

∫

Rn\Ω
g. (3.11)

Moreover, in case that (3.11) holds, the solution is unique up to an additive constant.

Proof. Case 1. We do first the case g ≡ 0, i.e., with homogeneous nonlocal Neumann
conditions. We also assume that f 6≡ 0, otherwise there is nothing to prove.

Given h ∈ L2(Ω), we look for a solution v ∈ Hs
Ω of the problem

∫

Ω
v ϕ+

∫

R2n\(CΩ)2

(v(x)− v(y))(ϕ(x)− ϕ(y))
|x− y|n+2s

dx dy =
∫

Ω
hϕ, (3.12)

for any ϕ ∈ Hs
Ω, with homogeneous Neumann conditions Nsv = 0 in Rn \ Ω.

We consider the functional F : Hs
Ω → R defined as

F(ϕ) :=
∫

Ω
hϕ for any ϕ ∈ Hs

Ω.

It is easy to see that F is linear. Moreover, it is continuous on Hs
Ω:

|F(ϕ)| ≤
∫

Ω
|h| |ϕ| ≤ ‖h‖L2(Ω) ‖ϕ‖L2(Ω) ≤ ‖h‖L2(Ω) ‖ϕ‖Hs

Ω
.

Therefore, from the Riesz representation theorem it follows that problem (3.12) admits a
unique solution v ∈ Hs

Ω for any given h ∈ L2(Ω).
Furthermore, taking ϕ := v in (3.12), one obtain that

‖v‖Hs(Ω) ≤ C‖h‖L2(Ω). (3.13)

Now, we define he operator T : L2(Ω) −→ L2(Ω) as Th = v. We have that T is compact.
Indeed, we take a sequence {hk}k∈N bounded in L2(Ω). Hence, from (3.13) we deduce that
the sequence of vk := Thk is bounded in Hs(Ω), which is compactly embedded in L2(Ω)
(see e.g. [12]). Therefore, there exists a subsequence that converges in L2(Ω).

Now, we show that T is self-adjoint. For this, we take h1, h2 ∈ C∞0 (Ω) and we use the
weak formulation in (3.12) to say that, for every ϕ, φ ∈ Hs

Ω, we have
∫

Ω
Th1 ϕ+

∫

R2n\(CΩ)2

(Th1(x)− Th1(y))(ϕ(x)− ϕ(y))
|x− y|n+2s

dx dy =
∫

Ω
h1 ϕ, (3.14)

1The only difference with the classical case is that in Theorem 3.9 it is not necessary to suppose that
the domain is connected in order to obtain the uniqueness result.
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and ∫

Ω
Th2 φ+

∫

R2n\(CΩ)2

(Th2(x)− Th2(y))(φ(x)− φ(y))
|x− y|n+2s

dx dy =
∫

Ω
h2 φ, (3.15)

Now we take ϕ := Th2 and φ := Th1 in (3.14) and (3.15) respectively and we obtain that
∫

Ω
h1 Th2 =

∫

Ω
Th1 h2 (3.16)

for any h1, h2 ∈ C∞0 (Ω). If h1, h2 ∈ L2(Ω), there exist sequences of functions in C∞0 (Ω),
say h1,k and h2,k, such that h1,k → h1 and h2,k → h2 in L2(Ω) as k → +∞. From (3.16)
we have that ∫

Ω
h1,k Th2,k =

∫

Ω
Th1,k h2,k. (3.17)

Moreover, from (3.13) we deduce that Th1,k → Th1 and Th2,k → Th2 in Hs(Ω) as k →
+∞, and so ∫

Ω
h1,k Th2,k →

∫

Ω
h1 Th2 as k → +∞

and ∫

Ω
Th1,k h2,k →

∫

Ω
Th1 h2 as k → +∞.

The last two formulas and (3.17) imply that
∫

Ω
h1 Th2 =

∫

Ω
Th1 h2 for any h1, h2 ∈ L2(Ω),

which says that T is self-adjoint.
Let us now come back to the equation (−∆)su = f in Ω, Nsu = 0 in Rn \ Ω. This

equation can be written in terms of the operator T as follows

(Id− T )−1f = w,

with w = f + u. Therefore, by the Fredholm Alternative, the equation admits a solution
if and only if f ∈ Ker(I − T )⊥. But

Ker(I − T ) =
{
u ∈ Hs

Ω : (−∆)su = 0 in Ω, Nsu = 0 in Rn \ Ω
}
,

which by Lemma 3.8 consists only of constant functions.
Thus, it follows that the equation admits a solution if and only if

∫
Ω f = 0.

Case 2. Let us now consider the nonhomogeneous case (3.9). By the hypotheses, there
exists a C2 function ψ satisfying Nsψ = g in Rn \ Ω.

Let ū = u− ψ. Then, ū solves
{

(−∆)sū = f̄ in Ω
Nsu = 0 in Rn \ Ω,

with
f̄ = f − (−∆)sψ.

Then, as we already proved, this problem admits a solution if and only if
∫

Ω f̄ = 0, i.e., if

0 =
∫

Ω
f̄ =

∫

Ω
f −

∫

Ω
(−∆)sψ. (3.18)



15

But, by Lemma 3.2, we have that∫

Ω
(−∆)sψ = −

∫

Rn\Ω
Nsψ = −

∫

Rn\Ω
g.

From this and (3.18) we conclude that a solution exists if and only if (3.11) holds.
Finally, the solution is unique up to an additive constant thanks to Lemma 3.8. �

3.3. Eigenvalues and eigenfunctions. Here we discuss the spectral properties of prob-
lem (1.1). For it, we will need the following classical tool.

Lemma 3.10 (Poincaré inequality). Let Ω ⊂ Rn be any bounded Lipschitz domain, and
let s ∈ (0, 1). Then, for all functions u ∈ Hs(Ω), we have

∫

Ω

∣∣∣∣u−
∫

Ω
u

∣∣∣∣
2

dx ≤ CΩ

∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|n+2s

dx dy,

where the constant CΩ > 0 depends only on Ω and s.

Proof. We give the details for the facility of the reader. We argue by contradiction and
we assume that the inequality does not hold. Then, there exists a sequence of functions
uk ∈ Hs(Ω) satisfying ∫

Ω
uk = 0, ‖uk‖L2(Ω) = 1, (3.19)

and ∫

Ω

∫

Ω

|uk(x)− uk(y)|2
|x− y|n+2s

dx dy <
1
k
. (3.20)

In particular, the functions {uk}k≥1 are bounded in Hs(Ω).
Using now that the embedding Hs(Ω) ⊂ L2(Ω) is compact (see e.g. [12]), it follows that

a subsequence {ukj}j≥1 converges to a function ū ∈ L2(Ω), i.e.,

ukj −→ ū in L2(Ω).

Moreover, we deduce from (3.19) that
∫

Ω
ū = 0, and ‖ū‖L2(Ω) = 1. (3.21)

On the other hand, (3.20) implies that
∫

Ω

∫

Ω

|ū(x)− ū(y)|2
|x− y|n+2s

dx dy = 0.

Thus, ū is constant in Ω, and this contradicts (3.21). �
We finally give the description of the eigenvalues of (−∆)s with zero Neumann boundary

conditions.

Theorem 3.11. Let Ω ⊂ Rn be a bounded Lipschitz domain, and consider the eigenvalue
problem {

(−∆)su = λu in Ω
Nsu = 0 in Rn \ Ω.

Then, there exists a sequence of nonnegative eigenvalues

0 = λ1 < λ2 ≤ λ3 ≤ · · · ,
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and its corresponding eigenfunctions are a complete orthogonal system in L2(Ω).

Proof. We define

L2
0(Ω) :=

{
u ∈ L2(Ω) :

∫

Ω
u = 0

}
.

Let T : L2
0(Ω) −→ L2

0(Ω) be defined by Tf = u, where u is the unique solution of
{

(−∆)su = f in Ω
Nsu = 0 in Rn \ Ω

according to Definition 3.6.
We remark that the existence and uniqueness of such solution is a consequence of the

fact that f ∈ L2
0(Ω) and Theorem 3.9.

Also, we claim that the operator T is compact and self-adjoint.
We first show that T is compact. Indeed, taking v = u in the weak formulation of the

problem (3.10), we obtain

cn,s
2

∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy ≤ ‖f‖L2(Ω)‖u‖L2(Ω). (3.22)

Now, using the Poincaré inequality in Lemma 3.10 (recall that
∫

Ω u = 0), we deduce that

‖u‖L2(Ω) ≤ C
(∫

Ω×Ω

|u(x)− u(y)|2
|x− y|n+2s

dx dy

)1/2

. (3.23)

This and (3.22) give that
(∫

Ω×Ω

|u(x)− u(y)|2
|x− y|n+2s

dx dy

)1/2

≤ C‖f‖L2(Ω). (3.24)

Now, we take a sequence {fk}k∈N bounded in L2(Ω). From (3.23) and (3.24) we obtain
that uk = Tfk is bounded in Hs(Ω). Hence, since the embedding Hs(Ω) ⊂ L2(Ω) is
compact, there exists a subsequence that converges in L2(Ω). Therefore, T is compact.

Now we show that T is self-adjoint in L2
0(Ω). For this, we take f1 and f2 in C∞0 (Ω),

with
∫

Ω f1 =
∫

Ω f2 = 0. Then from the weak formulation in (3.10) we have that, for
every v, w ∈ Hs

Ω,

cn,s
2

∫

R2n\(CΩ)2

(Tf1(x)− Tf1(y))(v(x)− v(y))
|x− y|n+2s

dx dy =
∫

Ω
f1 v (3.25)

and
cn,s
2

∫

R2n\(CΩ)2

(Tf2(x)− Tf2(y))(w(x)− w(y))
|x− y|n+2s

dx dy =
∫

Ω
f2w. (3.26)

We observe that we can take v := Tf2 in (3.25) and w := Tf1 in (3.26), obtaining that
∫

Ω
f1 Tf2 =

∫

Ω
f2 Tf1, for any f1, f2 ∈ C∞0 (Ω). (3.27)

Now, if f1, f2 ∈ L2
0(Ω) we can find sequences of functions f1,k, f2,k ∈ C∞0 (Ω) such that f1,k →

f1 and f2,k → f2 in L2(Ω) as k → +∞. Therefore, from (3.27), we have
∫

Ω
f1,k Tf2,k =

∫

Ω
f2,k Tf1,k. (3.28)
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We notice that, thanks to (3.23) and (3.24), Tf1,k → Tf1 and Tf2,k → Tf2 in L2(Ω)
as k → +∞, and therefore, from (3.28), we obtain that

∫

Ω
f1 Tf2 =

∫

Ω
f2 Tf1,

thus proving that T is self-adjoint in L2
0(Ω).

Thus, by the spectral theorem there exists a sequence of eigenvalues −∞ < λ2 ≤ λ3 ≤
· · · , and its corresponding eigenfunctions are a complete orthogonal system in L2

0(Ω).
We notice that λ2 > 0. Indeed, its corresponding eigenfunction u2 solves

{
(−∆)su2 = λ2u2 in Ω
Nsu2 = 0 in Rn \ Ω, (3.29)

Then, if we take u2 as a test function in the weak formulation of (3.29), we obtain that

cn,s
2

∫

R2n\(CΩ)2

|u2(x)− u2(y)|2
|x− y|n+2s

dx dy = λ2

∫

Ω
u2

2,

which implies that λ2 ≥ 0. Now, suppose by contradiction that λ2 = 0. Then, from
Lemma 3.8 we have that u2 is constant. On the other hand, we know that u2 ∈ L2

0(Ω),
and this implies that u2 = 0, which is a contradiction since u2 is an eigenfunction.

Now, we notice that λ1 = 0 is an eigenvalue (its eigenfunction is a constant), thanks to
Lemma 3.8. Therefore, we have a sequence of eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ · · · , and its
corresponding eigenfunctions are a complete orthogonal system in L2(Ω). This concludes
the proof. �

In the following proposition we deal with the behavior of the solution of (1.1) at infinity.

Proposition 3.12. Let Ω ⊂ Rn be a bounded domain and let u ∈ Hs
Ω be a weak solution

(according to Definition 3.6) of
{

(−∆)su = f in Ω
Nsu = 0 in Rn \ Ω.

Then

lim
|x|→∞

u(x) =
1
|Ω|

∫

Ω
u uniformly in x.

Proof. First we observe that, since Ω is bounded, there exists R > 0 such that Ω ⊂ BR.
Hence, if y ∈ Ω, we have that

|x| −R ≤ |x− y| ≤ |x|+R,

and so

1− R

|x| ≤
|x− y|
|x| ≤ 1 +

R

|x| .

Therefore, given ε > 0, there exists R̄ > R such that, for any |x| ≥ R̄, we have

|x|n+2s

|x− y|n+2s
= 1 + γ(x, y),

where |γ(x, y)| ≤ ε.
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Recalling the definition of Nsu given in (1.2) and using the fact that Nsu = 0 in Rn \Ω,
we have that for any x ∈ Rn \ Ω

u(x) =

∫

Ω

u(y)
|x− y|n+2s

dy
∫

Ω

dy

|x− y|n+2s

=

∫

Ω

|x|n+2su(y)
|x− y|n+2s

dy

∫

Ω

|x|n+2s

|x− y|n+2s
dy

=

∫

Ω
(1 + γ(x, y))u(y) dy
∫

Ω
(1 + γ(x, y)) dy

=

∫

Ω
u(y) dy +

∫

Ω
γ(x, y)u(y) dy

|Ω|+
∫

Ω
γ(x, y) dy

.

We set

γ1(x) :=
∫

Ω
γ(x, y)u(y) dy and γ2(x) :=

∫

Ω
γ(x, y) dy,

and we notice that |γ1(x)| ≤ Cε and |γ2(x)| ≤ ε, for some C > 0.
Hence, we have that for any x ∈ Rn \ Ω

∣∣∣∣u(x)−
∫

Ω
u(y) dy

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∫

Ω
u(y) dy + γ1(x)

1 + γ2(x)
−
∫

Ω
u(y) dy

∣∣∣∣∣∣∣∣

=

∣∣∣∣γ1(x)− γ2(x)
∫

Ω
u(y) dy

∣∣∣∣
1 + γ2(x)

≤ C ε

1− ε .

Therefore, sending ε→ 0 (that is, |x| → +∞), we obtain the desired result. �

Remark 3.13 (Interior regularity of solutions). We notice that, in particular, Proposi-
tion 3.12 implies that u is bounded at infinity. Thus, if solutions are locally bounded,
then one could apply interior regularity results for solutions to (−∆)su = f in Ω (see e.g.
[17, 20, 7, 19]).

4. The heat equation

Here we show that solutions of the nonlocal heat equation with zero Neumann datum
preserve their mass and have energy that decreases in time.

To avoid technicalities, we assume that u is a classical solution of problem (1.4), so that
we can differentiate under the integral sign.
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Proposition 4.1. Assume that u(x, t) is a classical solution to (1.4), in the sense that u
is bounded and |ut|+ |(−∆)su| ≤ K for all t > 0. Then, for all t > 0,

∫

Ω
u(x, t) dx =

∫

Ω
u0(x)dx.

In other words, the total mass is conserved.

Proof. By the dominated convergence theorem, and using Lemma 3.2, we have
d

dt

∫

Ω
u =

∫

Ω
ut = −

∫

Ω
(−∆)su =

∫

Rn\Ω
Nsu = 0.

Thus, the quantity
∫

Ω u does not depend on t, and the result follows. �

Proposition 4.2. Assume that u(x, t) is a classical solution to (1.4), in the sense that u
is bounded and |ut|+ |(−∆)su| ≤ K for all t > 0. Then, the energy

E(t) =
∫

R2n\(CΩ)2

|u(x, t)− u(y, t)|2
|x− y|n+2s

dx dy

is decreasing in time t > 0.

Proof. Let us compute E′(t), and we will see that it is negative. Indeed, using Lemma
3.3,

E′(t) =
d

dt

∫

R2n\(CΩ)2

|u(x, t)− u(y, t)|2
|x− y|n+2s

dx dy

=
∫

R2n\(CΩ)2

2
(
u(x, t)− u(y, t)

)(
ut(x, t)− ut(y, t)

)

|x− y|n+2s
dx dy

=
4
cn,s

∫

Ω
ut (−∆)su dx,

where we have used that Nsu = 0 in Rn \ Ω.
Thus, using now the equation ut + (−∆)su = 0 in Ω, we find

E′(t) = − 4
cn,s

∫

Ω
|(−∆)su|2dx ≤ 0,

with strict inequality unless u is constant. �

Next we prove that solutions of the nonlocal heat equation with Neumann condition
approach a constant as t→ +∞:

Proposition 4.3. Assume that u(x, t) is a classical solution to (1.4), in the sense that u
is bounded and |ut|+ |(−∆)su| ≤ K for all t > 0. Then,

u −→ 1
|Ω|

∫

Ω
u0 in L2(Ω)

as t→ +∞.

Proof. Let

m :=
1
|Ω|

∫

Ω
u0
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be the total mass of u. Define also

A(t) :=
∫

Ω
|u−m|2 dx.

Notice that, by Proposition 4.1, we have

A(t) =
∫

Ω

(
u2 − 2mu+m2

)
dx =

∫

Ω
u2 dx− |Ω|m2.

Then, by Lemma 3.3,

A′(t) = 2
∫

Ω
utu dx = −2

∫

Ω
u(−∆)su dx = −cn,s

∫

R2n\(CΩ)2

|u(x, t)− u(y, t)|2
|x− y|n+2s

dx dy.

Hence, A is decreasing.
Moreover, using the Poincaré inequality in Lemma 3.10 and again Proposition 4.1, we

deduce that
A′(t) ≤ −c

∫

Ω
|u−m|2 dx = −cA(t),

for some c > 0. Thus, it follows that

A(t) ≤ e−ctA(0),

and thus
lim

t→+∞

∫

Ω
|u(x, t)−m|2dx = 0,

i.e., u converges to m in L2(Ω).
Notice that, in fact, we have proved that the convergence is exponentially fast. �

5. Limits

In this section we study the limits as s → 1 and the continuity properties induced by
the fractional Neumann condition.

5.1. Limit as s→ 1.

Proposition 5.1. Let Ω ⊂ Rn be any bounded Lipschitz domain. Let u and v be C2
0 (Rn)

functions. Then,

lim
s→1

∫

Rn\Ω
Nsu v =

∫

∂Ω

∂u

∂ν
v.

Proof. By Lemma 3.3, we have that
∫

Rn\Ω
Nsu v =

cn,s
2

∫

R2n\(CΩ)2

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy −
∫

Ω
v(−∆)su. (5.1)

Now, we claim that

lim
s→1

cn,s
2

∫

R2n\(CΩ)2

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy =
∫

Ω
∇u · ∇v. (5.2)

We observe that to show (5.2), it is enough to prove that, for any u ∈ C2
0 (Rn),

lim
s→1

cn,s
2

∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy =
∫

Ω
|∇u|2. (5.3)
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Indeed, ∫

R2n\(CΩ)2

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s

dx dy

=
1
2

∫

R2n\(CΩ)2

|(u+ v)(x)− (u+ v)(y)|2
|x− y|n+2s

dx dy

−1
2

∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy

−1
2

∫

R2n\(CΩ)2

|v(x)− v(y)|2
|x− y|n+2s

dx dy.

Now, we recall that

lim
s→1

cn,s
1− s =

4n
ωn−1

,

(see Corollary 4.2 in [12]), and so we have to show that

lim
s→1

(1− s)
∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy =
ωn−1

2n

∫

Ω
|∇u|2. (5.4)

For this, we first show that

lim
s→1

(1− s)
∫

Ω×(CΩ)

|u(x)− u(y)|2
|x− y|n+2s

dx dy = 0. (5.5)

Without loss of generality, we can suppose that Br ⊂ Ω ⊂ BR, for some 0 < r < R.
Since u ∈ C2

0 (Rn), then
∫

Ω×(CΩ)

|u(x)− u(y)|2
|x− y|n+2s

dx dy ≤ 4‖u‖2L∞(Rn)

∫

Ω×(CΩ)

1
|x− y|n+2s

dx dy

≤ 4‖u‖2L∞(Rn)

∫

BR×(CBr)

1
|x− y|n+2s

dx dy

≤ 4‖u‖2L∞(Rn) ωn−1

∫

BR

dx

∫ +∞

r
ρn−1ρ−n−2s dρ

= 4‖u‖2L∞(Rn) ωn−1

∫

BR

dx

∫ +∞

r
ρ−1−2s dρ

= 4‖u‖2L∞(Rn)

ωn−1 r
−2s

2s

∫

BR

dx

= 4‖u‖2L∞(Rn)

ω2
n−1R

n r−2s

2s
,

which implies (5.5). Hence,

lim
s→1

(1− s)
∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy

= lim
s→1

(1− s)
∫

Ω×Ω

|u(x)− u(y)|2
|x− y|n+2s

dx dy = Cn

∫

Ω
|∇u|2,

(5.6)

where Cn > 0 depends only on the dimension, see [5].
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In order to determine the constant Cn, we take a C2-function u supported in Ω. In this
case, we have ∫

Ω
|∇u|2 dx =

∫

Rn
|∇u|2 dx =

∫

Rn
|ξ|2 |û(ξ)|2 dξ, (5.7)

where û is the Fourier transform of u. Moreover,
∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy =
∫

R2n

|u(x)− u(y)|2
|x− y|n+2s

dx dy

= 2 c−1
n,s

∫

Rn
|ξ|2s |û(ξ)|2 dx,

thanks to Proposition 3.4 in [12]. Therefore, using Corollary 4.2 in [12] and (5.7), we have

lim
s→1

(1− s)
∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy

= lim
s→1

2(1− s)
cn,s

∫

Rn
|ξ|2s |û(ξ)|2 dx

=
ωn−1

2n

∫

Rn
|ξ|2 |û(ξ)|2 dx

=
ωn−1

2n

∫

Ω
|∇u|2 dx.

Hence, the constant in (5.6) is Cn = ωn−1

2n . This concludes the proof of (5.4), and in turn
of (5.2).

On the other hand,

−(−∆)su→ ∆u uniformly in Rn,

(see Proposition 4.4 in [12]). This, (5.1) and (5.2) give

lim
s→1

∫

Rn\Ω
Nsu v =

∫

Ω
∇u · ∇v +

∫

Ω
v∆u =

∫

∂Ω

∂u

∂ν
v,

as desired. �
5.2. Continuity properties. Following is a continuity result for functions satisfying the
nonlocal Neumann condition:

Proposition 5.2. Let Ω ⊂ Rn be a domain with C1 boundary. Let u be continuous in Ω,
with Nsu = 0 in Rn \ Ω. Then u is continuous in the whole of Rn.

Proof. First, let us fix x0 ∈ Rn \ Ω. Since the latter is an open set, there exists ρ > 0
such that |x0 − y| ≥ ρ for any y ∈ Ω. Thus, if x ∈ Bρ/2(x0), we have that |x − y| ≥
|x0 − y| − |x0 − x| ≥ ρ/2.

Moreover, if x ∈ Bρ/2(x0), we have that

|x− y| ≥ |y| − |x0| − |x0 − x| ≥
|y|
2

+
( |y|

4
− |x0|

)
+
( |y|

4
− ρ

2

)
≥ |y|

2
,

provided that |y| ≥ R := 4|x0|+ 2ρ. As a consequence, for any x ∈ Bρ/2(x0), we have that

|u(y)|+ 1
|x− y|n+2s

≤ 2n+2s (‖u‖L∞(Ω) + 1)
(
χBR(y)
ρn+2s

+
χRn\BR(y)
|y|n+2s

)
=: ψ(y)
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and the function ψ belongs to L1(Rn). Thus, by the Neumann condition and the Domi-
nated Convergence Theorem, we obtain that

lim
x→x0

u(x) = lim
x→x0

∫

Ω

u(y)
|x− y|n+2s

dy
∫

Ω

dy

|x− y|n+2s

=

∫

Ω

u(y)
|x0 − y|n+2s

dy
∫

Ω

dy

|x0 − y|n+2s

= u(x0).

This proves that u is continuous at any points of Rn \ Ω.
Now we show the continuity at a point p ∈ ∂Ω. We take a sequence pk → p as k → +∞.

We let qk be the projection of pk to Ω. Since p ∈ Ω, we have from the minimizing property
of the projection that

|pk − qk| = inf
ξ∈Ω
|pk − ξ| ≤ |pk − p|,

and so

|qk − p| ≤ |qk − pk|+ |pk − p| ≤ 2|pk − p| → 0

as k → +∞. Therefore, since we already know from the assumptions the continuity of u
at Ω, we obtain that

lim
k→+∞

u(qk) = u(p). (5.8)

Now we claim that

lim
k→+∞

u(pk)− u(qk) = 0. (5.9)

To prove it, it is enough to consider the points of the sequence pk that belong to Rn \ Ω
(since, of course, the points pk belonging to Ω satisfy pk = qk and for them (5.9) is obvious).
We define νk := (pk − qk)/|pk − qk|. Notice that νk is the exterior normal of Ω at qk ∈ ∂Ω.
We consider a rigid motion Rk such that Rkqk = 0 and Rkνk = en = (0, . . . , 0, 1). Let
also hk := |pk − qk|. Notice that

h−1
k Rkpk = h−1

k Rk(pk − qk) = Rkνk = en. (5.10)

Then, the domain

Ωk := h−1
k RkΩ

has vertical exterior normal at 0 and approaches the halfspace Π := {xn < 0} as k → +∞.
Now, we use the Neumann condition at pk and we obtain that

u(pk)− u(qk) =

∫

Ω

u(y)
|pk − y|n+2s

dy
∫

Ω

dy

|pk − y|n+2s

− u(qk)

=

∫

Ω

u(y)− u(qk)
|pk − y|n+2s

dy
∫

Ω

dy

|pk − y|n+2s

= I1 + I2,
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with

I1 :=

∫

Ω∩B√hk (qk)

u(y)− u(qk)
|pk − y|n+2s

dy

∫

Ω

dy

|pk − y|n+2s

and I2 :=

∫

Ω\B√
hk

(qk)

u(y)− u(qk)
|pk − y|n+2s

dy

∫

Ω

dy

|pk − y|n+2s

.

We observe that the uniform continuity of u in Ω gives that

lim
k→+∞

sup
y∈Ω∩B√hk (qk)

|u(y)− u(qk)| = 0.

As a consequence
|I1| ≤ sup

y∈Ω∩B√hk (qk)
|u(y)− u(qk)| → 0 (5.11)

as k → +∞. Moreover, exploiting the change of variable η := h−1
k Rky and recalling (5.10),

we obtain that

|I2| ≤

∫

Ω\B√
hk

(qk)

|u(y)− u(qk)|
|pk − y|n+2s

dy

∫

Ω

dy

|pk − y|n+2s

≤ 2‖u‖L∞(Ω)

∫

Ω\B√hk (qk)

dy

|pk − y|n+2s

∫

Ω

dy

|pk − y|n+2s

= 2‖u‖L∞(Ω)

∫

Ωk\B1/
√
hk

dη

|en − η|n+2s

∫

Ωk

dη

|en − η|n+2s

.

Notice that, if η ∈ Ωk \B1/
√
hk

then

|en − η|n+2s = |en − η|n+s|en − η|s ≥ |en − η|n+s
(
|η| − 1

)s

≥ |en − η|n+s
(
h
−1/2
k − 1

)s
≥ |en − η|n+sh

−s/4
k

for large k. Therefore

|I2| ≤ 2hs/4k ‖u‖L∞(Ω)

∫

Ωk

dη

|en − η|n+s
dy

∫

Ωk

dη

|en − η|n+2s

.
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Since

lim
k→+∞

∫

Ωk

dη

|en − η|n+s
dy

∫

Ωk

dη

|en − η|n+2s

=

∫

Π

dη

|en − η|n+s
dy

∫

Π

dη

|en − η|n+2s

,

we conlude that |I2| → 0 as k → +∞. This and (5.11) imply (5.9).
From (5.8) and (5.9), we conclude that

lim
k→+∞

u(pk) = u(p),

hence u is continuous at p. �

As a direct consequence of Proposition 5.2 we obtain:

Corollary 5.3. Let Ω ⊂ Rn be a domain with C1 boundary. Let v0 ∈ C(Rn). Let

v(x) :=





v0(x) if x ∈ Ω,

∫

Ω

v0(y)
|x− y|n+2s

dy
∫

Ω

dy

|x− y|n+2s

if x ∈ Rn \ Ω.

Then v ∈ C(Rn) and it satisfies v = v0 in Ω and Nsv = 0 in Rn \ Ω.

Proof. By construction, v = v0 in Ω and Nsv = 0 in Rn \ Ω. Then we can use Proposi-
tion 5.2 and obtain that v ∈ C(Rn). �

Now we study the boundary behavior of the nonlocal Neumann function Ñsu.

Proposition 5.4. Let Ω ⊂ Rn be a C1 domain, and u ∈ C(Rn). Then, for all s ∈ (0, 1),

lim
x→∂Ω
x∈Rn\Ω

Ñsu(x) = 0. (5.12)

Also, if s > 1
2 and u ∈ C1,α(Rn) for some α ∈ (0, 2s− 1), then

∂νÑsu(x) := lim
ε→0+

Ñsu(x+ εν)
ε

= κ ∂νu for any x ∈ ∂Ω, (5.13)

for some constant κ > 0.

Proof. Let xk be a sequence in Rn \ Ω such that xk → x∞ ∈ ∂Ω as k → +∞.
By Corollary 5.3 (applied here with v0 := u), there exists v ∈ C(Rn) such that v = u

in Ω and Nsv = 0 in Rn \ Ω. By the continuity of u and v we have that

lim
k→+∞

u(xk)− v(xk) = u(x∞)− v(x∞) = 0. (5.14)
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Moreover

Ñsu(xk) = Ñsu(xk)− Ñsv(xk)

=

∫

Ω

u(xk)− u(y)
|xk − y|n+2s

dy −
∫

Ω

v(xk)− v(y)
|xk − y|n+2s

dy
∫

Ω

dy

|xk − y|n+2s

=

∫

Ω

u(xk)− v(xk)
|xk − y|n+2s

dy
∫

Ω

dy

|xk − y|n+2s

= u(xk)− v(xk).

This and (5.14) imply that

lim
k→+∞

Ñsu(xk) = 0,

that is (5.12).
Now, we prove (5.13). For this, we suppose that s > 1

2 , that 0 ∈ ∂Ω and that the
exterior normal ν coincides with en = (0, . . . , 0, 1); then we use (5.12) and the change of
variable η := ε−1y in the following computation:

ε−1
(
Ñsu(εen)− Ñsu(0)

)
= ε−1Ñsu(εen)

=
ε−1

∫

Ω

u(εen)− u(y)
|εen − y|n+2s

dy
∫

Ω

dy

|εen − y|n+2s

=

ε−1

∫

1
ε
Ω

u(εen)− u(εη)
|en − η|n+2s

dη

∫

1
ε
Ω

dη

|en − η|n+2s

= I1 + I2,

where

I1 :=

∫

1
ε
Ω

∇u(εen) · (en − η)
|en − η|n+2s

dη

∫

1
ε
Ω

dη

|en − η|n+2s

and I2 :=

ε−1

∫

1
ε
Ω

u(εen)− u(εη)− ε∇u(εen) · (en − η)
|en − η|n+2s

dη

∫

1
ε
Ω

dη

|en − η|n+2s

.
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So, if Π := {xn < 0}, we have that

lim
ε→0+

I1 =

∫

Π

∇u(0) · (en − η)
|en − η|n+2s

dη
∫

Π

dη

|en − η|n+2s

=

∫

Π

∂nu(0)(1− ηn)
|en − η|n+2s

dη
∫

Π

dη

|en − η|n+2s

,

where we have used that, for any i ∈ {1, . . . , n− 1} the map η 7→ ∂iu(0)·ηi
|en−η|n+2s is odd and so

its integral averages to zero. So, we can write

lim
ε→0+

I1 = κ ∂nu(0) with κ :=

∫

Π

(1− ηn)
|en − η|n+2s

dη
∫

Π

dη

|en − η|n+2s

. (5.15)

We remark that κ is finite, since s > 1
2 . Moreover

ε−1
∣∣∣u(εen)− u(εη)− ε∇u(εen) · (en − η)

∣∣∣

=
∣∣∣∣
∫ 1

0

(
∇u(tεen + (1− t)εη)−∇u(εen)

)
· (en − η) dt

∣∣∣∣

≤ ‖u‖C1,α(Rn) |en − η|
∫ 1

0
|tεen + (1− t)εη − εen|α dt

≤ ‖u‖C1,α(Rn)εα |en − η|1+α.

As a consequence

ε−α|I2| ≤
‖u‖C1,α(Rn)

∫

1
ε
Ω

dη

|en − η|n+2s−1−α dη

∫

1
ε
Ω

dη

|en − η|n+2s

−→
‖u‖C1,α(Rn)

∫

Π

dη

|en − η|n+2s−1−α dη
∫

Π

dη

|en − η|n+2s

as ε→ 0, which is finite, thanks to our assumptions on α. This shows that I2 → 0 as ε→ 0.
Hence, recalling (5.15), we get that

lim
ε→0+

ε−1
(
Ñsu(εen)− Ñsu(0)

)
= κ ∂nu(0),

which establishes (5.13). �

6. An overdetermined problem

In this section we consider an overdetemined problem. For this, we will use the renor-
malized nonlocal Neumann condition that has been introduced in Remark 3.4. Indeed, as
we pointed out in Remark 3.5, this is natural if one considers nonhomogeneous Neumann
conditions.
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Theorem 6.1. Let Ω ⊂ Rn be a bounded and Lipschitz domain. Then there exists no
function u ∈ C(Rn) satisfying

{
u(x) = 0 for any x ∈ Rn \ Ω

Ñsu(x) = 1 for any x ∈ Rn \ Ω.
(6.1)

Remark 6.2. We notice that u = χΩ satisfies (6.1), but it is a discontinuous function.

Proof. Without loss of generality, we can suppose that 0 ∈ ∂Ω. We argue by contradiction
and we assume that there exists a continuous function u that satisfies (6.1). Therefore,
there exists δ > 0 such that

|u| ≤ 1/2 in Bδ. (6.2)
Since Ω is Lipschitz, up to choosing δ small enough, we have that Ω ∩ Bδ = Ω̃ ∩ Bδ,

where
Ω̃ := {x = (x′, xn) ∈ Rn−1 × R s.t. xn < γ(x′)}

for a suitable Lipschitz function γ : Rn−1 → R such that γ(0) = 0 and ∂x′γ(0) = 0.
Now we let x := ε en ∈ Rn \ Ω, for suitable ε > 0 sufficiently small. We observe that

u(ε en) = 0. (6.3)

Moreover we consider the set
1
ε

Ω̃ =
{
y = (y′, yn) ∈ Rn−1 × R s.t. yn <

1
ε
γ(εy′)

}
.

We also define
K :=

{
y = (y′, yn) ∈ Rn−1 × R s.t. yn < −L |y′|

}
,

where L is the Lipschitz constant of γ.
We claim that

K ⊆ ε−1 Ω̃. (6.4)
Indeed, since γ is Lipschitz and 0 ∈ ∂Ω, we have that

−γ(εy′) = −γ(εy′) + γ(0) ≤ L ε |y′|,
and so, if y ∈ K,

yn ≤ −L |y′| ≤
1
ε
γ(εy′),

which implies that y ∈ ε−1Ω̃. This shows (6.4).
Now we define

Σε :=
∫

Bδ∩Ω

dy

|εen − y|n+2s
,

and we observe that ∫

Bδ∩Ω

u(y)− u(ε en)
|εen − y|n+2s

dy ≤ 1
2

Σε, (6.5)

thanks to (6.3) and (6.2). Furthermore, if y ∈ Rn \Bδ and ε ≤ δ/2, we have

|y − εen| ≥ |y| − ε ≥
|y|
2
,

which implies that
∫

Ω\Bδ

u(y)− u(ε en)
|εen − y|n+2s

dy ≤ C
∫

Ω\Bδ

dy

|εen − y|n+2s
≤ C

∫

Rn\Bδ

dy

|y|n+2s
dy = C δ−2s, (6.6)
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up to renaming the constants.
On the othe hand, we have that∫

Ω

dy

|εen − y|n+2s
≥
∫

Bδ∩Ω

dy

|εen − y|n+2s
= Σε. (6.7)

Finally, we observe that

ε2s Σε =ε2s
∫

Bδ∩Ω

dy

|εen − y|n+2s

=
∫

Bδ/ε∩(ε−1Ω)

dz

|en − z|n+2s

≥
∫

Bδ/ε∩K

dz

|en − z|n+2s

=:κ,

(6.8)

where we have used the change of variable y = εz and (6.4).
Hence, using the second condition in (6.1) and putting together (6.5), (6.6), (6.7)

and (6.8), we obtain

0 =
∫

Ω

dy

|εen − y|n+2s
−
∫

Ω

u(εen)− u(x)
|εen − y|n+2s

dy

=
∫

Ω

dy

|εen − y|n+2s
−
∫

Ω∩Bδ

u(εen)− u(x)
|εen − y|n+2s

dy −
∫

Ω\Bδ

u(εen)− u(x)
|εen − y|n+2s

dy

≥ Σε −
1
2

Σε − C δ−2s

=
1
2

Σε − C δ−2s

= ε−2s

(
ε2s

2
Σε − C ε2s δ−2s

)

≥ ε−2s
(κ

2
− C ε2s δ−2s

)
> 0

if ε is sufficiently small. This gives a contradiction and concludes the proof. �

7. Comparison with previous works

In this last section we compare our new Neumann nonlocal conditions with the previous
works in the literature that also deal with Neumann-type conditions for the fractional
Laplacian (−∆)s.

The idea of [4, 8] (and also [9, 10, 11]) is to consider the regional fractional Laplacian,
associated to the Dirichlet form

cn,s

∫

Ω

∫

Ω

(
u(x)− u(y)

)(
v(x)− v(y)

)

|x− y|n+2s
dx dy. (7.1)

This operator corresponds to a censored process, i.e., a process whose jumps are restricted
to be in Ω. The operator can be defined in general domains Ω, and seems to give a natural
analogue of homogeneous Neumann condition. However, no nonhomogeneous Neumann
conditions can be considered with this model, and the operator depends on the domain Ω.
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On the other hand, in [1, 3] the usual diffusion associated to the fractional Laplacian
(1.3) was considered inside Ω, and thus the “particle” can jump outside Ω. When it jumps
outside Ω, then it is “reflected” or “projected” inside Ω in a deterministic way. Of course,
different types of reflections or projections lead to different Neumann conditions. To
appropriately define these reflections, some assumptions on the domain Ω (like smoothness
or convexity) need to be done. In contrast with the regional fractional Laplacian, this
problem does not have a variational formulation and everything is done in the context of
viscosity solutions.

Finally, in [15] a different Neumann problem for the fractional Laplacian was considered.
Solutions to this type of Neumann problems are “large solutions”, in the sense that they
are not bounded in a neighborhood of ∂Ω. More precisely, it is proved in [15] that the
following problem is well-posed




(−∆)su = f in Ω
u = 0 in Rn \ Ω

∂ν
(
u/ds−1

)
= g on ∂Ω,

where d(x) is the distance to ∂Ω.
With respect to the existing literature, the new Neumann problems (1.1) and (1.4) that

we present here have the following advantages:
• The equation satisfied inside Ω does not depend on anything (domain, right hand

side, etc). Notice that the operator in (1.3) does not depend on the domain Ω,
while for instance the regional fractional Laplacian defined in (7.1) depends on Ω.
• The problem can be formulated in general domains, including nonsmooth or even

unbounded ones.
• The problem has a variational structure. For instance, solutions to the elliptic

problem (1.1) can be found as critical points of the functional

E(u) =
cn,s
4

∫

R2n\(CΩ)2

|u(x)− u(y)|2
|x− y|n+2s

dx dy −
∫

Ω
fu.

We notice that the variational formulation of the problem is the analogue of the
case s = 1. Also, this allows us to easily prove existence of solutions (whenever
the compatibility condition

∫
Ω f = 0 is satisfied).

• Solutions to the fractional heat equation (1.4) possess natural properties like con-
servation of mass inside Ω or convergence to a constant as t→ +∞.
• Our probabilistic interpretation allows us to formulate problems with nonhomo-

geneous Neumann conditions Nsu = g in Rn \ Ω, or with mixed Dirichlet and
Neumann conditions.
• The formulation of nonlinear equations like (−∆)su = f(u) in Ω with Neumann

conditions is also clear.
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