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Abstract

A class of stochastic particle models for the spatially discretized time-dependent Schrö-

dinger equation is constructed. Each particle is characterized by a complex-valued weight

and a position. The particle weights change according to some deterministic rules between

the jumps. The jumps are determined by the creation of offspring. The main result is that

certain functionals of the particle systems satisfy the Schrödinger equation. The proofs are

based on the theory of piecewise deterministic Markov processes.
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1 Introduction

The time-dependent form of the Schrödinger equation for a single electron is

i ~
∂

∂t
Φ(t, x) = −

~
2

2m
∆xΦ(t, x)− q V (x) Φ(t, x) , (1.1)

where ∆ denotes the Laplace operator, m is the electron mass, q is the electron charge, V is
the electric potential, ~ is Planck’s constant divided by 2π , and i denotes the imaginary unit.
Equation (1.1) was established by Erwin Schrödinger in 1926 [14, 15] and is one of the basic
equations in quantum mechanics. It describes the time evolution of the so-called wave-function
Φ , which represents the quantum state of the electron.

Probabilistic models for deterministic partial differential equations have a long history. Con-
nections between random walks and difference equations were found in [3]. The basic equations
for general drift-diffusion processes were established by Kolmogoroff in [10]. A comprehensive
account of stochastic models for elliptic and parabolic equations is provided in [12]. Stochastic
particle models for the Boltzmann equation were studied in [11] and [9] (see [13, Section 2.3.3]
and [16] for more details). The probabilistic approach to quantum mechanics goes back to Feyn-
man ([5], [6]). Developing Feynman’s ideas, Kac introduced integration on the space of trajecto-
ries of the Wiener process [8] (see [17] for further comments).

This paper is concerned with the construction of a class of probabilistic models for the
spatially discretized one-dimensional Schrödinger equation. The models are based on particle
systems with the time evolution of a piecewise deterministic Markov process [4]. Each particle is
characterized by a complex-valued weight and a position. The particle weights change accord-
ing to some deterministic rules between the jumps. The jumps are determined by the creation
of offspring. The main result is that certain functionals of the processes satisfy the Schrödinger
equation. The “random cloud model” introduced in [17] is a special case of the class of models
presented here. In this case the particle weights remain constant so that a pure jump process is
obtained. A significant improvement of the models with variable weights is that the boundedness
assumption on the potential V is avoided.

The paper is organized as follows. The main results are presented in Section 2. Proofs are
given in Section 3. Comments are provided in Section 4.

2 Results

We consider the spatially discretized one-dimensional Schrödinger equation

∂

∂t
Φ(ε)(t, x) =

i ~

2m
∆(ε)

x Φ(ε)(t, x) +
i q

~
V (x) Φ(ε)(t, x) , t > 0 , (2.1)

with initial condition

Φ(ε)(0, x) = Φ
(ε)
0 (x) , x ∈ Rε , (2.2)

where

Rε = {ε j , j = . . . ,−1, 0, 1, . . .} , ε > 0 . (2.3)
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The discrete Laplacian

∆(ε)f(x) =
f(x+ ε)− 2 f(x) + f(x− ε)

ε2
(2.4)

is defined for functions f on R . First we construct a probabilistic solution of equation (2.1), that
is, a family of complex-valued random variables such that their expectations satisfy the equation.
Then the assumption concerning the initial state is discussed. Finally, several modifications of
the basic model are introduced.

2.1 Probabilistic representation

We introduce a piecewise-deterministic Markov process (cf. [4]) of the form

(

wj(t), xj(t)
)

, j = 1, . . . , N(t) , t ≥ 0 , (2.5)

where wj(t) are complex-valued weights, xj(t) ∈ Rε are particle positions, and N(t) is the
number of particles in the system at time t . Particles evolve, independently of each other, ac-
cording to the following rules.

� Starting from a state (w, x) , the particle waits a random time τ , which satisfies

P(τ ≥ s) = exp

(

−
~

mε2
s

)

, s ≥ 0 . (2.6)

� While waiting, the particle position remains the same, but the particle weight changes to
the value

w̃ = w exp

(

i

[

q

~
V (x)−

~

mε2

]

τ

)

. (2.7)

� After time τ , the particle creates an offspring of the form

{

(i w̃, x− ε) , with probability 1
2
,

(i w̃, x+ ε) , with probability 1
2
,

(2.8)

which is added to the system.

The following theorem provides a probabilistic solution of the Schrödinger equation (2.1).

Theorem 2.1 Consider the particle system (2.5) and the index sets

N(t, x) =
{

j = 1, . . . , N(t) : xj(t) = x
}

, t ≥ 0 , x ∈ Rε . (2.9)

Assume that the initial state satisfies

E

(

N(0) max
j=1,...,N(0)

|wj(0)|

)

< ∞ , (2.10)
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where |ζ | =
√

ζ21 + ζ22 denotes the norm of a complex number ζ = ζ1 + i ζ2 . Then the

function

Φ(ε)(t, x) = E





∑

j∈N(t,x)

wj(t)



 , t > 0 , x ∈ Rε , (2.11)

satisfies equation (2.1), with initial condition (2.2) and

Φ
(ε)
0 (x) = E





∑

j∈N(0,x)

wj(0)



 x ∈ Rε . (2.12)

2.2 Initial state

Assumption (2.10) implies that the function (2.12) satisfies

‖Φ
(ε)
0 ‖ :=

∑

x∈Rε

|Φ
(ε)
0 (x)| < ∞ . (2.13)

This follows from the estimate

∑

x∈Rε

|Φ
(ε)
0 (x)| =

∑

x∈Rε

∣

∣

∣

∣

∣

∣

E





N(0)
∑

j=1

1x(xj(0))wj(0)





∣

∣

∣

∣

∣

∣

≤
∑

x∈Rε

E





N(0)
∑

j=1

1x(xj(0)) max
k=1,...,N(0)

|wk(0)|





= E





N(0)
∑

j=1

max
k=1,...,N(0)

|wk(0)|



 = E

(

N(0) max
k=1,...,N(0)

|wk(0)|

)

,

where 1x denotes the indicator function of the set consisting of x .

On the other hand, if some function Φ
(ε)
0 satisfies (2.13), then the initial state

(

wj(0), xj(0)
)

, j = 1, . . . , N(0) , (2.14)

can be chosen in such a way that conditions (2.10) and (2.12) hold.

� The simplest choice isN(0) = 1 ,where x1(0) is generated according to any distribution
π such that

π(x) > 0 ∀ x ∈ Rε : |Φ
(ε)
0 (x)| > 0 (2.15)

and, under the condition x1(0) = x ,

w1(0) =
Φ

(ε)
0 (x)

π(x)
. (2.16)
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Indeed, (2.10) follows from

E |w1(0)| =
∑

x∈Rε

E(|w1(0)| | x1(0) = x)P(x1(0) = x) =
∑

x∈Rε

|Φ
(ε)
0 (x)| , (2.17)

while (2.12) is a consequence of

E

(

w1(0) 1x(x1(0))
)

= E(w1(0) | x1(0) = x)P(x1(0) = x) = Φ
(ε)
0 (x) . (2.18)

A particular distribution satisfying (2.15) is

π(x) =
|Φ

(ε)
0 (x)|

‖Φ
(ε)
0 ‖

, x ∈ Rε ,

In this case, (2.16) takes the form

w1(0) = ‖Φ
(ε)
0 ‖

Φ
(ε)
0 (x)

|Φ
(ε)
0 (x)|

.

� A slightly more general choice uses independent particles (2.14). Consider N(0) = n ,

for some n = 1, 2, . . . . Let xj(0) be distributed according to some π satisfying (2.15)
and, under the condition xj(0) = x ,

wj(0) =
Φ

(ε)
0 (x)

nπ(x)
.

In this case, (2.10) follows from

E

(

max
j=1,...,n

|wj(0)|

)

≤ E

(

n
∑

j=1

|wj(0)|

)

= nE |w1(0)|

and (2.17), while (2.12) is a consequence of

E

(

n
∑

j=1

1x(xj(0))wj(0)

)

= nE
(

1x(x1(0))w1(0)
)

and (2.16), (2.18).

� Consider N(0) = 2n + 2 , for some n = 1, 2, . . . . Let xj(0) , j = 1, . . . , 2n + 1 ,
be the elements of the set Rε ∩ [−ε n, ε n] and

wj(0) = Φ
(ε)
0 (xj(0)) .

Define (w2n+2(0), x2n+2(0)) as in the first example, withΦ
(ε)
0 replaced by the restriction

of Φ
(ε)
0 to the set Rε \ [−ε n, ε n] . Particles with zero weights are redundant and can be

skipped. Conditions (2.10) and (2.12) are fulfilled. Thus, if the function Φ
(ε)
0 has compact

support, then a deterministic choice of the initial state (2.14) is possible.
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2.3 Modifications

We introduce several other models of the form (2.5), for which Theorem 2.1 holds. First the off-
spring creation events (2.8) are modified. Then the weight change formula (2.7) is generalized.
Denote (cf. (2.6), (2.7))

c1(ε) =
~

2mε2
, c2(x) =

q

~
V (x) . (2.19)

model with particle cancellation

All particles at the same location are combined by summing up their weights. Otherwise, the
evolution (2.6)-(2.8) is applied.

double-offspring model

Particles evolve, independently of each other, according to the following rules.

� Starting from a state (w, x) , the particle waits a random time τ , which is exponentially
distributed with parameter

λ = c1(ε) . (2.20)

� While waiting, the particle position remains the same, but the particle weight changes to
the value

w̃ = w exp
(

i
[

c2(x)− 2 c1(ε)
]

τ
)

. (2.21)

� After time τ , the particle creates the pair of offspring

(i w̃, x− ε) , (i w̃, x+ ε) , (2.22)

which is added to the system.

This evolution can be combined with particle cancellation.

multi-offspring model

Many combinations of offspring are possible. We provide only one extremal example, where
particles evolve dependent on each other. Namely, the waiting time parameter for the system
is (2.20). The weights change according to (2.21). At jump time, pairs of offspring (2.22) are
created for all particles simultaneously.

This evolution can be combined with particle cancellation.
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single-offspring models with parameter dependent weight change

The time evolution depends on parameters α, β ∈ [0, 1] that determine the level of weight
change between the jumps. Particles evolve, independently of each other, according to the
following rules.

� Starting from a state (w, x) , the particle waits a random time τ , which is exponentially
distributed with parameter

λ = 2 (2− α) c1(ε) + (1− β) |c2(x)| . (2.23)

� While waiting, the particle position remains the same, but the particle weight changes to
the value

w̃ = w exp
(

i
[

β c2(x)− 2α c1(ε)
]

τ
)

. (2.24)

� After time τ , the particle creates an offspring of the form


















(i w̃, x− ε) , with probability c1(ε)
λ
,

(i w̃, x+ ε) , with probability c1(ε)
λ
,

(−i w̃, x) , with probability 2 (1−α) c1(ε)
λ

,

(i w̃ signV (x), x) , with probability (1−β) |c2(x)|
λ

,

(2.25)

which is added to the system.

Theorem 2.1 holds under the additional assumption

(1− β) |V (x)| ≤ Vmax ∀ x ∈ Rε , for some Vmax > 0 . (2.26)

In the special case α = β = 1 , the waiting time parameter (2.23) corresponds to (2.6), the
weight transformation (2.24) corresponds to (2.7) and the offspring creation procedure (2.25)
corresponds to (2.8). In this case, the generation of offspring at the same position is completely
included into the variable weight. This corresponds to a minimal number of jumps (creation
events) and maximal weight change.

In the special case α = β = 0 , there is no weight change so that the process is a pure
jump process with constant weights. This corresponds a maximal number of creation events. If
the weights are restricted to the values 1,−1, i and −i , then the model reduces to the original
“random cloud model” introduced in [17].

3 Proofs

The proof of Theorem 2.1 and its modifications is based on the theory of piecewise deterministic
Markov processes as presented in [4]. First some results from the abstract theory are recalled.
Then these results are applied to a particle system under general, but rather implicit, assump-
tions on the model parameters. Finally the assumptions are checked for various specifications
of the parameters.
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3.1 General theory

Consider a particle system

Z̄(t) =
(

zj(t) , j = 1, . . . , N(t)
)

, t ≥ 0 , (3.1)

with the state space

Z = ∪∞
N=1Z

N , (3.2)

where Z = R
d is the state space of a single particle. Considering a state space with no

boundary simplifies the theory of piecewise deterministic Markov processes considerably.

The time evolution of the system is determined by a flow F̄ and a jump kernel Q̄ . Starting
at state z̄ ∈ Z , the system (3.1) performs a deterministic motion according to F̄ . The random
waiting time τ until the next jump satisfies

P(τ ≥ t) = exp

(

−

∫ t

0

λ̄(F̄ (s, z̄)) ds

)

, t ≥ 0 , (3.3)

where

λ̄(z̄) = Q̄(z̄,Z) . (3.4)

Then the system jumps into a new state κ̄ ∈ Z distributed according to

1

λ̄(F̄ (τ, z̄))
Q̄(F̄ (τ, z̄), dκ̄) . (3.5)

The flow

F̄ : [0,∞)×Z → Z

is supposed to satisfy

F̄ (t,ZN) ⊂ Z
N ∀ t ≥ 0 , N = 1, 2, . . . .

It is defined as the unique solution of the equation

d

dt
F̄ (t, z̄) = ḡ(F̄ (t, z̄)) , t > 0 , (3.6)

with initial condition

F̄ (0, z̄) = z̄ , z̄ ∈ Z ,

where ḡ is a sufficiently smooth mapping.

Assume that, for any z̄ ∈ Z , the “standard” conditions are satisfied:

� the intensity (3.4) is measurable and such that

t→ λ̄(F̄ (t, z̄)) is integrable on finite intervals; (3.7)
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� the jump kernel is measurable and such that

Q̄(z̄, {z̄}) = 0 ; (3.8)

� the process is regular, i.e.,

Ez̄ #{k : Tk ≤ t} <∞ ∀ t > 0 , (3.9)

where (Tk) is the sequence of jump times, #B denotes the number of elements in a set
B , and Ez̄ is the conditional expectation with respect to the initial state.

Then, according to [4, Theorem 26.14], the domain D(A) of the extended generator of the
process consists of all measurable functions Ψ such that, for any z̄ ∈ Z ,

t→ Ψ(F̄ (t, z̄)) is absolutely continuous (3.10)

and

Ez̄

(

∑

k:Tk≤σl

∣

∣

∣
Ψ(Z̄(Tk))−Ψ(Z̄(Tk−))

∣

∣

∣

)

<∞ ∀ l = 1, 2, . . . , (3.11)

for some sequence of stopping times σl ր ∞ (e.g., σl = Tl or σl = l). The extended
generator has the form

(AΨ)(z̄) = (D̄Ψ)(z̄) +

∫

Z

[Ψ(κ̄)−Ψ(z̄)] Q̄(z̄, dκ̄) , (3.12)

where (cf. (3.6))

(D̄Ψ)(z̄) =

N
∑

j=1

d
∑

k=1

ḡj,k(z̄)
∂

∂zj,k
Ψ(z̄) (3.13)

and

z̄ = (z1, . . . , zN) ∈ Z , zj = (zj,1, . . . , zj,d) ∈ Z , j = 1, . . . , N .

For any Ψ ∈ D(A) , the process

Mt(Ψ) = Ψ(Z̄t)−Ψ(z̄)−

∫ t

0

(AΨ)(Z̄s) ds , t ≥ 0 , (3.14)

is a local martingale.

If

Ez̄ sup
s∈[0,t]

|Ψ(Z̄(s))| <∞ ∀ t > 0 , z̄ ∈ Z , (3.15)

and

Ez̄ sup
s∈[0,t]

|(AΨ)(Z̄(s))| <∞ ∀ t > 0 , z̄ ∈ Z , (3.16)
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then the process (3.14) is a martingale and one obtains the Dynkin formula

Ez̄ Ψ(Z̄(t)) = Ψ(z̄) + Ez̄

∫ t

0

(AΨ)(Z̄(s)) ds . (3.17)

If

E |Ψ(Z̄(t))| <∞ ∀ t ≥ 0 , (3.18)

then (3.17) implies

EΨ(Z̄(t)) = EΨ(Z̄(0)) + E

∫ t

0

(AΨ)(Z̄(s)) ds . (3.19)

3.2 Application

Consider a particle system of the form (3.1),

Z̄(t) =
(

zj(t) = (w1,j(t), w2,j(t), xj(t)) , j = 1, . . . , N(t)
)

, t ≥ 0 , (3.20)

with the state space (3.2). The single particle state space is

Z = R
2 × X , (3.21)

where the first two components represent scalar weights and X = R is the position space. We
introduce the corresponding empirical measures

µ(t, dz) =

N(t)
∑

j=1

δzj(t)(dz) =

N(t)
∑

j=1

δw1,j(t)(dw1) δw2,j(t)(dw2) δxj(t)(dx) (3.22)

and define

f1(t, dx) =

∫

R

w1 ν(t, dw1,R, dx) , f2(t, dx) =

∫

R

w2 ν(t,R, dw2, dx) , (3.23)

where

ν(t, dz) = Eµ(t, dz) , t ≥ 0 , z = (w1, w2, x) ∈ Z . (3.24)

First we derive an equation satisfied by the functions (3.23).

Lemma 3.1 Let ϕ1, ϕ2 denote arbitrary functions on X , which are measurable, bounded and

have bounded support. Assume that

(i) Z̄(0) , F̄ and Q̄ are such that conditions (3.7)-(3.11), (3.15), (3.16) and (3.18) are satis-

fied for all functions of the form

Ψ(z̄) = ψ(z1) + . . .+ ψ(zN ) , (3.25)

where

ψ(z) = w1 ϕ1(x) + w2 ϕ2(x) , z = (w1, w2, x) ∈ Z ; (3.26)
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(ii) F̄ and Q̄ are such that the extended generator (3.12) satisfies (cf. (2.19))

(AΨ)(z̄) =

N
∑

j=1

[

c2(xj)ψ(−w2,j, w1,j, xj)+ (3.27)

c1(ε)
(

ψ(−w2,j , w1,j, xj − ε) + ψ(−w2,j, w1,j, xj + ε) + 2ψ(w2,j,−w1,j, xj)
)]

,

for any

z̄ =
(

zj = (w1,j, w2,j, xj) , j = 1, . . . , N
)

∈ Z (3.28)

and Ψ of the form (3.25), (3.26).

Then the measure-valued functions (3.23) satisfy the equation

2
∑

y=1

∫

X

ϕy(x) fy(t, dx) =

2
∑

y=1

∫

X

ϕy(x) fy(0, dx)−

∫ t

0

ds

2
∑

y=1

∫

X

ϕ̃y(x) fy(s, dx) , (3.29)

where

ϕ̃y(x) = s̃(y)
[

c2(x)ϕỹ(y)(x) + c1(ε)
(

ϕỹ(y)(x− ε) + ϕỹ(y)(x+ ε)− 2ϕỹ(y)(x)
)]

(3.30)

and

s̃(y) =

{

−1 , if y = 1 ,
1 , if y = 2 ,

ỹ(y) =

{

2 , if y = 1 ,
1 , if y = 2 .

(3.31)

Proof. It follows from (3.22), (3.25) and (3.26) that

Ψ(Z̄(t)) =

∫

Z

ψ(z)µ(t, dz) =

N(t)
∑

j=1

[

w1,j(t)ϕ1(xj(t)) + w2,j(t)ϕ2(xj(t))
]

(3.32)

and (cf. (3.23), (3.24))

EΨ(Z̄(t)) =

∫

Z

ψ(z) ν(t, dz) =

∫

X

ϕ1(x) f1(t, dx) +

∫

X

ϕ2(x) f2(t, dx) . (3.33)

According to assumption (ii), one obtains

(AΨ)(Z̄(t)) =

∫

Z

µ(t, dz)
[

c2(x)ψ(−w2, w1, x)+

c1(ε)
(

ψ(−w2, w1, x− ε) + ψ(−w2, w1, x+ ε) + 2ψ(w2,−w1, x)
)]

and

E (AΨ)(Z̄(t)) =

∫

Z

ν(t, dz)
[

c2(x)
(

− w2 ϕ1(x) + w1 ϕ2(x)
)

+

11



c1(ε)
(

− w2 ϕ1(x− ε) + w1 ϕ2(x− ε)− w2 ϕ1(x+ ε) + w1 ϕ2(x+ ε) +

2w2 ϕ1(x)− 2w1 ϕ2(x)
)]

=

∫

X

f2(t, dx)
[

− c2(x)ϕ1(x)− c1(ε)
(

ϕ1(x− ε) + ϕ1(x+ ε)− 2ϕ1(x)
)]

+
∫

X

f1(t, dx)
[

c2(x)ϕ2(x) + c1(ε)
(

ϕ2(x− ε) + ϕ2(x+ ε)− 2ϕ2(x)
)]

= −
2
∑

y=1

∫

X

fy(t, dx) s̃(y)
[

c2(x)ϕỹ(y)(x) + (3.34)

c1(ε)
(

ϕỹ(y)(x− ε) + ϕỹ(y)(x+ ε)− 2ϕỹ(y)(x)
)]

.

According to assumption (i), equation (3.19) holds so that (3.29) is a consequence of (3.33) and
(3.34). �

Next we establish equation (2.1).

Corollary 3.2 Consider the particle system (3.20) and denote

wj(t) = w1,j(t) + i w2,j(t) , j = 1, . . . , N(t) , t ≥ 0 . (3.35)

Let the assumptions (i) and (ii) of Lemma 3.1 be fulfilled. Furthermore, assume that

(iii) Z̄(0) , F̄ and Q̄ are such that the particle positions are concentrated on Rε (cf. (2.3)).

Then the corresponding function (2.11) satisfies equation (2.1).

Proof. According to assumption (iii), the measures (3.23) are concentrated on Rε . The corre-
sponding densities are denoted by the same symbols f1, f2 . As a consequence of Lemma 3.1
and equation (3.29), the function

2
∑

y=1

∑

x∈Rε

ϕy(x) fy(t, x) , t ≥ 0 , (3.36)

is continuous, for any functions ϕ1, ϕ2 with bounded support. Since the functions ϕ̃1, ϕ̃2 (cf.
(3.30)) have bounded support, it follows from (3.29) that the function (3.36) is differentiable and
satisfies the equation

d

dt

2
∑

y=1

∑

x∈Rε

ϕy(x) fy(t, x) = −
2
∑

y=1

∑

x∈Rε

ϕ̃y(x) fy(t, x) .

Thus, using the property (cf. (3.31))

ỹ(ỹ(y)) = y , s̃(ỹ(y)) = −s̃(y) , y = 1, 2 ,
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one obtains

d

dt

2
∑

y=1

∑

x∈Rε

ϕy(x) fy(t, x) = (3.37)

−
2
∑

y=1

∑

x∈Rε

ϕ̃y(x) fy(t, x) = −
2
∑

y=1

∑

x∈Rε

ϕ̃ỹ(y)(x) fỹ(y)(t, x)

=
2
∑

y=1

∑

x∈Rε

s̃(y)
[

c2(x)ϕy(x) + c1(ε)
(

ϕy(x− ε) + ϕy(x+ ε)− 2ϕy(x)
)]

fỹ(y)(t, x) .

By choosing appropriate test functions, it follows from (3.37) that

∂

∂t
fy(t, x) =

s̃(y)
{

c1(ε)
[

fỹ(y)(t, x+ ε)− 2 fỹ(y)(t, x) + fỹ(y)(t, x− ε)
]

+ c2(x) fỹ(y)(t, x)
}

,

which implies

∂

∂t
f1(t, x) = −c1(ε)

[

f2(t, x+ ε)− 2 f2(t, x) + f2(t, x− ε)
]

− c2(x) f2(t, x) (3.38)

and

∂

∂t
f2(t, x) = c1(ε)

[

f1(t, x+ ε)− 2 f1(t, x) + f1(t, x− ε)
]

+ c2(x) f1(t, x) . (3.39)

Since, according to (3.32) and (3.33),

EΨ(Z̄(t)) = E

N(t)
∑

j=1

[

w1,j(t)ϕ1(xj(t)) + w2,j(t)ϕ2(xj(t))
]

=
2
∑

y=1

∑

x∈Rε

ϕy(x) fy(t, x) ,

one obtains (cf. (2.9))

fy(t, x) = E

N(t)
∑

j=1

wy,j(t) δx(xj(t)) = E

∑

j∈N(t,x)

wy,j(t) , y = 1, 2 . (3.40)

With the notations (3.35), it follows from (3.38)–(3.40) that the corresponding function (2.11)
satisfies

∂

∂t
Φ(ε)(t, x) = i c1(ε)

[

Φ(ε)(t, x+ ε)− 2Φ(ε)(t, x) + Φ(ε)(t, x− ε)
]

+ i c2(x) Φ
(ε)(t, x) ,

which is (2.1) (cf. (2.4), (2.19)). �
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3.3 Specifications

According to Corollary 3.2, it remains to provide sufficient conditions for assumptions (i)–(iii) in
terms of the initial state Z̄(0) , the flow F̄ and the jump kernel Q̄ . Note that

� assumption (i) combines the technical conditions (3.7)-(3.9) (related to the existence of
the process), (3.10), (3.11) (related to the domain of the extended generator) and (3.15),
(3.16), (3.18) (related to the validity of the Dynkin formula);

� assumption (ii) assures the desired form of the equation;

� assumption (iii) restricts the position space to the spatial grid.

specification of the flow

We consider flows of the form (cf. (3.28))

F̄ (t, z̄) =
(

F (t, z1), . . . , F (t, zN)
)

t ≥ 0 (3.41)

so that particles move independently of each other. The single particle flow F is defined via

d

dt
F (t, z) = g(F (t, z)) , F (0, z) = z , (3.42)

where (cf. (3.21))

z = (w1, w2, x) ∈ Z (3.43)

and g is a globally Lipschitz continuous vector function on Z . One obtains (cf. (3.6))

ḡ(z̄) =
(

g(z1), . . . , g(zN)
)

. (3.44)

According to (3.25) and (3.44), the differential operator (3.13) takes the form

(D̄Ψ)(z̄) =
N
∑

j=1

3
∑

k=1

gk(zj)
∂

∂zj,k
Ψ(z̄) =

N
∑

j=1

(Dψ)(zj) , (3.45)

where

(Dψ)(z) =

[

g1(z)
∂

∂w1
+ g2(z)

∂

∂w2
+ g3(z)

∂

∂x

]

ψ(z) . (3.46)

Consider the single particle flow

F (t, z) =
(

w̃1(t, z), w̃2(t, z), x̃(t, z)
)

, t ≥ 0 , z ∈ Z , (3.47)

where

w̃1(t, z) = w1 cos(cα,β(ε, x) t)− w2 sin(cα,β(ε, x) t)

w̃2(t, z) = w2 cos(cα,β(ε, x) t) + w1 sin(cα,β(ε, x) t) (3.48)

x̃(t, z) = x
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and (cf. (2.19))

cα,β(ε, x) = β c2(x)− 2α c1(ε) , α, β ∈ [0, 1] . (3.49)

The weight transformation in (3.48) can be represented in the form

w̃1(t, z) + i w̃2(t, z) = (w1 + i w2) exp(i cα,β(ε, x) t) . (3.50)

One obtains

d

dt
F (t, z) =

(

− cα,β(ε, x̃(t, z)) w̃2(t, z) , cα,β(ε, x̃(t, z)) w̃1(t, z) , 0
)

so that (cf. (3.42))

g(w1, w2, x) =
(

− cα,β(ε, x)w2 , cα,β(ε, x)w1 , 0
)

and the corresponding differential operator (3.46) is

(Dψ)(z) = cα,β(ε, x)

[

−w2
∂

∂w1

+ w1
∂

∂w2

]

ψ(z) .

If ψ has the form (3.26), then

(Dψ)(z) = cα,β(ε, x) [−w2 ϕ1(x) + w1 ϕ2(x)] = cα,β(ε, x)ψ(−w2, w1, x) . (3.51)

specification of the jump kernel

We consider jump kernels of the form

Q̄(z̄, dκ̄) =

∫

Z

δJ(z̄;z̄′)(dκ̄)Q(z̄, dz̄
′) , (3.52)

where the “offspring” creation kernel Q generates some z̄′ ∈ Z and the mapping

J : Z × Z → Z (3.53)

transforms z̄ and z̄′ into the new state κ̄ . The standard example of a jump transformation is

J(z̄; z̄′) = (z1, . . . , zN , z
′
1, . . . , z

′
N ′) , (3.54)

which simply adds the offspring to the system. According to (3.45), (3.52) and the property

Ψ(J(z̄; z̄′)) = Ψ(z̄) + Ψ(z̄′) , (3.55)

the extended generator (3.12) takes the form

(AΨ)(z̄) =

N
∑

j=1

(Dψ)(zj) +

∫

Z

Ψ(z̄′)Q(z̄, dz̄′) . (3.56)
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Consider offspring creation kernels Q of the form (cf. (2.19))

Q(z̄, dz̄′) = (1− β)
N
∑

j=1

|c2(xj)| δ(−w2,j signV (xj),w1,j signV (xj),xj)(dz̄
′) +Q1(z̄, dz̄

′) ,(3.57)

where z̄ ∈ Z (cf. (3.28)) and the kernel Q1 generates some z̄′ ∈ Z . Since functions of the
form (3.26) satisfy

ψ(c w1, c w2, x) = c ψ(w1, w2, x) ∀ c ∈ R , (3.58)

it follows from (3.49), (3.51) and (3.56) that

(AΨ)(z̄) =
N
∑

j=1

[

β c2(xj)− 2α c1(ε)
]

ψ(−w2,j , w1,j, xj)+

(1− β)

N
∑

j=1

c2(xj)ψ(−w2,j, w1,j, xj) +

∫

Z

Ψ(z̄′)Q1(z̄, dz̄
′)

=

N
∑

j=1

[

c2(xj)− 2α c1(ε)
]

ψ(−w2,j, w1,j, xj) +

∫

Z

Ψ(z̄′)Q1(z̄, dz̄
′) . (3.59)

Lemma 3.3 Consider the flow F̄ defined in (3.41), (3.47)-(3.49) and jump kernels Q̄ of the form

(3.52), with the jump transformation (3.54) and offspring creation kernels (3.57). Assume that

� V satisfies (2.26);

� Z̄(0) satisfies (2.10) and

P(Z̄(0) ∈ Zε) = 1 , where Zε = ∪∞
N=1

(

R
2 × Rε

)N
; (3.60)

� Q1 is such that

Q1(z̄,Z) = Q1(z̄,Zε) ∀ z̄ ∈ Zε (3.61)

and the following conditions are fulfilled, for any z̄ ∈ Z (cf. (3.28)):

(1)

∫

Z

Ψ(z̄′)Q1(z̄, dz̄
′) = c1(ε)

N
∑

j=1

(

ψ(−w2,j , w1,j, xj − ε)+ (3.62)

ψ(−w2,j , w1,j, xj + ε) + 2 (1− α)ψ(w2,j,−w1,j , xj)
)

,

for any Ψ of the form (3.25), (3.26);

(2)

Q1(F̄ (t, z̄),Z) = Q1(z̄,Z) ∀ t ≥ 0 ; (3.63)
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(3)

(1− β)

N
∑

j=1

|c2(xj)|+Q1(z̄,Z) ≤ H(z̄) , (3.64)

for some function H such that

Pz̄

(

H(ζl) ≤ H(ζl−1) +K ∀ l ≥ 1
)

= 1 , for some K > 0 , (3.65)

where ζ1 , ζ2 , . . . is the embedded Markov chain for the pure jump process with the

jump kernel Q̄ and the initial state ζ0 = z̄ ;

(4)

∫

Z

N ′Q1(z̄, dz̄
′) ≤ C1N , for some C1 > 0 ; (3.66)

(5)

Q1(z̄,Z) = Q1(z̄,Z(z̄)) , (3.67)

where

Z(z̄) =

{

z̄′ ∈ Z : max
k=1,...,N ′

|w′
k| ≤ max

j=1,...,N
|wj|

}

(3.68)

and

w′
k = w′

1,k + i w′
2,k , wj = w1,j + i w2,j . (3.69)

Then the assumptions (i)–(iii) of Corollary 3.2 are fulfilled.

Proof. Assumption (iii) is a consequence of (3.60) and (3.61). Assumption (ii) follows from
(3.58), (3.59) and (3.62). Thus, it remains to check conditions (3.7)-(3.11), (3.15), (3.16) and
(3.18).

According to (3.52) and (3.57), the intensity (3.4) takes the form

λ̄(z̄) = (1− β)

N
∑

j=1

|c2(xj)|+Q1(z̄,Z) . (3.70)

It follows from (3.63) and (3.70) that

λ̄(F̄ (t, z̄)) = λ̄(z̄) ∀ t ≥ 0 . (3.71)

Thus, condition (3.7) is fulfilled. According to (3.52), condition (3.8) takes the form

Q(z̄, {z̄′ ∈ Z : J(z̄; z̄′) = z̄}) = 0
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and is fulfilled for any Q (cf. (3.2) and (3.54)). Condition (3.9) is a consequence of the regularity
of the corresponding pure jump process (with zero flow). Indeed, according to (3.71), the dis-
tribution (3.3) of the waiting time until the next jump, and thus the distribution of the number of
jumps, do not depend on the flow. According to (3.64), (3.65) and (3.70), one obtains

Pz̄

(

λ̄(ζl) ≤ H(z̄) + l K ∀ l = 0, 1, 2, . . .
)

= 1 ∀ z̄ ∈ Z .

Thus, regularity of the pure jump process follows from the criterion (cf., e.g., [2, p.337])

Pz̄

(

∞
∑

l=0

1

λ̄(ζl)
= ∞

)

= 1 ∀ z̄ ∈ Z . (3.72)

In the following, let Ψ be any function of the form (3.25), (3.26). Condition (3.10) is satisfied,
since (cf. (3.41), (3.47), (3.48))

t→ w̃1(t, z)ϕ1(x) + w̃2(t, z)ϕ2(x) is absolutely continuous. (3.73)

Conditions (3.11), (3.15), (3.16) and (3.18) will be treated simultaneously. The proof is divided
into three steps. First some sufficient conditions in terms of the total particle weight in the system
are derived. Then an upper bound for the number of particles in the system is found. Finally, the
various estimates are appropriately combined.

Step 1: Note that

|Ψ(z̄)| ≤ W (z̄)
(

‖ϕ1‖∞ + ‖ϕ2‖∞
)

∀ z̄ ∈ Z , (3.74)

where ‖.‖∞ denotes the sup-norm and (cf. (3.28), (3.69))

W (z̄) =
N
∑

j=1

|wj| . (3.75)

It follows from (3.5) and (3.52) that

Z̄(Tk)) = J(Z̄(Tk−); z̄′(k)) ∀ k = 1, 2, . . . , (3.76)

where z̄′(k) denotes the offspring created at jump time Tk . According to (3.55), (3.74) and
(3.76), one obtains
∑

k:Tk≤t

∣

∣

∣
Ψ(Z̄(Tk))−Ψ(Z̄(Tk−))

∣

∣

∣
=
∑

k:Tk≤t

∣

∣

∣
Ψ(z̄′(k))

∣

∣

∣
≤ (3.77)

(

‖ϕ1‖∞ + ‖ϕ2‖∞
)

∑

k:Tk≤t

W (z̄′(k)) ≤
(

‖ϕ1‖∞ + ‖ϕ2‖∞
)

W (Z̄(t)) ∀ t > 0 .

Note that each particle created at some jump time Tk ≤ t belongs to the system (3.20) at time
t , and the norm of its weight remains constant (cf. (3.50)). According to (3.77), condition (3.11)
(with σl = l) is fulfilled provided that

Ez̄

N(t)
∑

j=1

|wj(t)| < ∞ ∀ t > 0 , z̄ ∈ Z . (3.78)
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It follows from (3.27) that

|(AΨ)(z̄)| ≤ CW (z̄) ∀ z̄ ∈ Z , (3.79)

where

C := sup
x∈Rε

(

|ϕ1(x)|+ |ϕ2(x)|
)(

|c2(x)|+ 4 c1(ε)
)

< ∞ ,

since ϕ1, ϕ2 have bounded support. The expression W (Z̄(t)) is almost surely increasing with
respect to t . Thus, conditions (3.15) and (3.16) are consequences of (3.74) and (3.79), re-
spectively, provided that (3.78) is fulfilled. Finally, condition (3.18) follows from (3.74) provided
that

E

N(t)
∑

j=1

|wj(t)| < ∞ ∀ t > 0 . (3.80)

Step 2: First we prove that the Dynkin formula (3.17) holds for the functions

Gc(z̄) = min(N, c) , c > 0 .

Condition (3.10) is fulfilled, since Gc does not depend on the flow. Condition (3.11) (with σl = l)
follows from the boundedness ofGc and (3.9). Thus,Gc ∈ D(A) and (cf. (3.12), (3.45), (3.52))

(AGc)(z̄) =

∫

Z

[Gc(J(z̄; z̄
′))−Gc(z̄)]Q(z̄, dz̄

′) . (3.81)

Note that

0 ≤ Gc(J(z̄; z̄
′))−Gc(z̄) = min(N +N ′, c)−min(N, c) ≤ N ′ 1[0,c](N) . (3.82)

One obtains (cf. (3.57))

∫

Z

N ′Q(z̄, dz̄′) = (1− β)

N
∑

j=1

|c2(xj)|+

∫

Z

N ′Q1(z̄, dz̄
′) . (3.83)

According to (2.26), (2.19), (3.66) and (3.81)-(3.83), one obtains

0 ≤ (AGc)(z̄) ≤ 1[0,c](N)C2N ≤ C2Gc(z̄) , (3.84)

where C2 = q

~
Vmax + C1 . Condition (3.16) is a consequence of (3.84) and condition (3.15),

which follows from the boundedness of Gc . Thus, (3.17) holds with Ψ = Gc . It follows from
(3.17) and (3.84) that

Ez̄ Gc(Z̄(t)) = Gc(z̄) + Ez̄

∫ t

0

(AGc)(Z̄(s)) ds

≤ Gc(z̄) + C2

∫ t

0

(Ez̄ Gc)(Z̄(s)) ds
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and, according to Gronwall’s inequality,

Ez̄ Gc(Z̄(t)) ≤ Gc(z̄) exp(C2 t) ∀ t ≥ 0 , z̄ ∈ Z . (3.85)

If c→ ∞ , then Gc(z̄) ր G(z̄) = N so that (3.85) implies

Ez̄ N(t) ≤ N exp(C2 t) ∀ t ≥ 0 , z̄ ∈ Z . (3.86)

Step 3: According to (3.41), (3.47)-(3.50) and (3.57), (3.67), (3.68), one obtains

max
j=1,...,N(t)

|wj(t)| ≤ max
j=1,...,N(0)

|wj(0)| ∀ t > 0 . (3.87)

It follows from (3.86) and (3.87) that

Ez̄

N(t)
∑

j=1

|wj(t)| ≤ max
j=1,...,N

|wj| Ez̄N(t) ≤ exp(C2 t)N max
j=1,...,N

|wj| , (3.88)

which implies condition (3.78). Finally, condition (3.80) is a consequence of (3.88) and assump-
tion (2.10). �

Next we consider several examples of kernels (3.57), for which the assumptions of Lemma 3.3
are fulfilled. Let z̄ ∈ Z (cf. (3.28)) be an arbitrary state. Define the offspring sets (cf. (3.43))

Sα(z) =
(

(−w2, w1, x− ε), (−w2, w1, x+ ε), ((1− α)w2,−(1− α)w1, x),

((1− α)w2,−(1− α)w1, x)
)

, α < 1 , (3.89)

S1(z) =
(

(−w2, w1, x− ε), (−w2, w1, x+ ε)
)

,

and

Sall(z̄) =
(

Sα(zj) , j = 1, . . . , N
)

. (3.90)

� According to

Q1(z̄, dz̄
′) = c1(ε)× (3.91)

N
∑

j=1

(

δ(−w2,j ,w1,j ,xj−ε)(dz̄
′) + δ(−w2,j ,w1,j ,xj+ε)(dz̄

′) + 2 (1− α) δ(w2,j ,−w1,j ,xj)(dz̄
′)
)

,

exactly one particle is created. One obtains
∫

Z

N ′Q1(z̄, dz̄
′) = Q1(z̄,Z) = 2 (2− α) c1(ε)N . (3.92)

� According to

Q1(z̄, dz̄
′) = c1(ε)

N
∑

j=1

δSα(zj)(dz̄
′) , (3.93)

up to four particles are created. One obtains
∫

Z

N ′Q1(z̄, dz̄
′) ≤ 4Q1(z̄,Z) = 4 c1(ε)N . (3.94)
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� According to

Q1(z̄, dz̄
′) = c1(ε) δSall(z̄)(dz̄

′) , (3.95)

up to 4N particles are created. One obtains
∫

Z

N ′Q1(z̄, dz̄
′) ≤ 4N Q1(z̄,Z) = 4N c1(ε) . (3.96)

Denote the set of indices of those particles in z̄ , which are located in x , by

Ñ(x, z̄) =
{

j = 1, . . . , N : xj = x
}

, x ∈ Rε ,

and the set of positions occupied by particles in z̄ by

Rε(z̄) =
{

x ∈ Rε : Ñ(x, z̄) 6= ∅
}

.

� Consider

Q1(z̄, dz̄
′) = (3.97)

c1(ε)
∑

x∈Rε(z̄)

(

δS−(x,z̄)(dz̄
′) + δS+(x,z̄)(dz̄

′) + 2 (1− α) δS0(x,z̄)(dz̄
′)
)

,

where

S−(x, z̄) =
(

(−w2,j , w1,j, xj − ε) , j ∈ Ñ(x, z̄)
)

,

S+(x, z̄) =
(

(−w2,j , w1,j, xj + ε) , j ∈ Ñ(x, z̄)
)

,

S0(x, z̄) =
(

(w2,j,−w1,j , xj) , j ∈ Ñ(x, z̄)
)

.

One obtains
∫

Z

N ′Q1(z̄, dz̄
′) = 2 (1− α) c1(ε)

∑

x∈Rε(z̄)

# Ñ(x, z̄) = 2 (1− α) c1(ε)N (3.98)

and

Q1(z̄,Z) = 2 (2− α) c1(ε)#Rε(z̄) , (3.99)

where the symbol # denotes the number of elements in a set.

� Consider

Q1(z̄, dz̄
′) = c1(ε)

∑

x∈Rε(z̄)

δSα(x,z̄)(dz̄
′) , (3.100)

where (cf. (3.89))

Sα(x, z̄) =
(

Sα(zj) , j ∈ Ñ(x, z̄)
)

.
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One obtains
∫

Z

N ′Q1(z̄, dz̄
′) ≤ 4 c1(ε)

∑

x∈Rε(z̄)

# Ñ(x, z̄) = 4 c1(ε)N (3.101)

and

Q1(z̄,Z) = c1(ε)#Rε(z̄) . (3.102)

In the above examples, all created particles belong to the set (3.90) so that conditions (3.61)
and (3.67) are fulfilled. Condition (3.62) is easily checked using (3.58). Conditions (3.63) and
(3.66) are consequences of (3.92), (3.94), (3.96), (3.98), (3.99), (3.101) and (3.102). It remains
to check conditions (3.64) and (3.65).

In examples (3.91) and (3.93), the number of created particles is bounded by K = 1 and
K = 4 , respectively. Thus, condition (3.65) is fulfilled with the function H(z̄) = N . Condition
(3.64) is a consequence of (3.92) and (3.94), respectively, provided that assumption (2.26) is
satisfied.

In example (3.95), the number of created particles is unbounded. If β = 1 , then conditions
(3.64) and (3.65) are fulfilled with the function H(z̄) = c1(ε) , according to (3.96). In this case,
(3.90) is the set of all possible offspring of z̄ . Since the jump intensity is bounded, regularity
follows directly from (3.72).

In examples (3.97) and (3.100), both the number of created particles and the jump intensity
are unbounded. If β = 1 , then condition (3.64) is fulfilled with the function

H(z̄) = 4 c1(ε)
(

maxRε(z̄)−minRε(z̄)
)

, (3.103)

according to (3.99) and (3.102), respectively. The function (3.103) satisfies condition (3.65) with
K = 2 .

Finally, Theorem 2.1 and its modifications are consequences of Lemma 3.3 and the exam-
ples considered above. In particular,

� the basic model (2.6)-(2.8)

corresponds to example (3.91) with α = β = 1 .

The model with particle cancellation corresponds to example (3.97) with α = β = 1 .

� the double-offspring model (2.20)-(2.22)

corresponds to example (3.93) with α = β = 1 .

The model with particle cancellation corresponds to example (3.100) with α = β = 1 .

� the multi-offspring model

corresponds to example (3.95) with α = β = 1 .

The model with particle cancellation is equivalent.

� the single-offspring models (2.23)-(2.25)

correspond to example (3.91).
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The waiting time parameters in (2.6), (2.20) and (2.23) as well as the form of the offspring
weights in (2.8), (2.22) and (2.25) are determined by the kernel (3.57) with various Q1 . Note
that −w2 + i w1 = i (w1 + i w2) . The weight transformations (2.7), (2.21) and (2.24) follow
from (3.50).

The modifications with particle cancellation are treated by considering auxiliary models with-
out cancellation, in which all particles at the same position create offspring simultaneously.
These auxiliary models are equivalent to the original models (with particle cancellation) in the
sense that the functionals considered in Theorem 2.1, which just combine the weights in a given
position, are the same in both models.

4 Comments

A class of probabilistic models for the Schrödinger equation has been introduced. This class
generalizes the “random cloud model” from [17]. By using variable particle weights, the assump-
tion concerning the boundedness of the potential V has been avoided. Moreover, the introduc-
tion of variable particle weights considerably reduces the number of jumps in the stochastic
models. This makes the approach more attractive for numerical applications, compared to the
original model with constant particle weights. The models were constructed for the spatially
discretized one-dimensional Schrödinger equation. The generalization to a discrete multidimen-
sional position space is straightforward. An extension to the case with a time dependent potential
V (t, x) should not be too difficult.

The random cloud models provide an approximate solution of the Schrödinger equation
(1.1), when first taking the expectation and then letting the grid size ε go to zero. However, the
issue concerning the behaviour of the stochastic models for vanishing grid size seems to be
rather delicate. These models are, in a certain sense, analogous to the random walk models
for the heat flow equation, which can be obtained from the Schrödinger equation by formally
considering an “imaginary time”. The random walk models converge to the Wiener process
when ε→ 0 . If the corresponding limits of the random cloud models exist, they will be complex-
valued random fields with a rather irregular time evolution.

Extensive comments concerning the physical interpretation of the random cloud models
were given in [17, Sect. 4.3] (from the perspective of a non-specialist in quantum mechanics).
Some of the conceptual problems of quantum mechanics have been discussed recently in [7].
The point of view that “fields” are primary objects compared to “particles” is close in spirit to the
approach via random cloud models, which might be considered as random fields.

The proof of the main result is based on the Dynkin formula for piecewise deterministic
Markov processes. This class of processes has attracted increasing attention in recent years
(see [1] for an overview). The application of the general theory to the class of random cloud
models with variable weights required considerable effort. The main challenge was in the fact
that both the jump intensity and the functional on the state space are unbounded. This issue
needed a careful treatment of various conditions provided by the general theory. In the proof
many different models are treated simultaneously. However, putting the generality in the formu-
lation of Theorem 2.1 would have made the main ideas less transparent.
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