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Abstract

Linear bounds are obtained for the displacement of a random walk in a dynamic random
environment given by a one-dimensional simple symmetric exclusion process in equilibrium. The
proof uses an adaptation of multiscale renormalization methods of Kesten and Sidoravicius [11].

1 Introduction, results and motivation

1.1 Setup

In this note, we discuss linear scaling properties of a random walk in a dynamic random environment
(RWDRE), where the role of the random environment is taken by a one-dimensional simple symmetric
exclusion process (SSEP). The latter is the càdlàg Markov process ξ = (ξt)t≥0 with state space
E := {0, 1}Z whose infinitesimal generator L acts on bounded local functions f in the following
manner:

(Lf) (η) :=
∑
x∈Z

f(ηx,x+1)− f(η) (1.1)

where η ∈ {0, 1}Z and ηx,y is defined by

ηx,y(z) =


η(x) if z = y;
η(y) if z = x;
η(z) otherwise.

(1.2)

For a detailed description, we refer the reader to Liggett [14], Chapter VIII. We say that the site x
is occupied by a particle at time t if ξt(x) = 1 and is vacant (alternatively, occupied by a hole) if
ξt(0) = 0.

For a fixed realization of ξ, the random walk in dynamic random environment W = (Wt)t≥0 is the
time-inhomogeneous Markov process that starts at 0 and, given that Wt = x, jumps to

x+ 1 with rate α1ξt(x) + α0 [1− ξt(x)] ,
x− 1 with rate β1ξt(x) + β0 [1− ξt(x)] ,

(1.3)

where αi, βi ∈ (0,∞), i ∈ {0, 1}. We will assume that

α0 + β0 = α1 + β1 =: γ (1.4)

and
v1 > v0 with v0 := α0 − β0 and v1 := α1 − β1, (1.5)

i.e., the total jump rate is constant and equal to γ, and the local drift is larger on particles than on holes.
The latter is made without loss of generality, since the SSEP is invariant under reflection through the
origin. We will denote by Pη the joint law of W and ξ when ξ0 = η. We will draw ξ0 from a Bernoulli
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product measure νρ with ρ ∈ (0, 1); these are known to be the only non-trivial extremal invariant
measures for the SSEP.

While many results for RWDRE have been obtained in the past few years for random environments
exhibiting uniform and fast enough mixing (see e.g. Avena [1], and dos Santos [10]), very little is known
when the random environment mixes in a non-uniform way, as happens in the SSEP. For example,
there are still no general laws of large numbers available for such cases. In particular, for the model
described here, the law of large numbers has only been proven under the restriction that v1 > v0 > 1
(see Avena, dos Santos and Völlering [3]) and, very recently, in regimes corresponding to γ � 1 and
γ � 1 (see Huveneers and Simenhaus [9]). Other recent results are the paper by Avena, Franco, Jara
and Völlering [2] where hydrodynamic limits are proven for the “environment as seen by particle” in a
speeded-up SSEP, the paper by den Hollander, Kesten and Sidoravicius [7], where an approximate
law of large numbers is proven when the random environment is a high-density Poissonian field of
independent random walks, and the paper by Hilário, den Hollander, dos Santos, Sidoravicius and
Teixeira [6] where a strong law of large numbers and a central limit theorem are proven for the same
model in a regime of high, but fixed, density.

1.2 Main result

It is easy to see, with a coupling argument, thatW lies between two homogeneous random walks with
drifts v0 and v1. In particular, any subsequential limit of t−1Wt as t → ∞ lies in the interval [v0, v1].
But would it be possible, even along a subsequence, for W to travel at one of the extremal speeds?
For the case of the SSEP, the following theorem answers this question in the negative.

Theorem 1.1. For any ρ ∈ (0, 1), there exist v−, v+ ∈ (v0, v1) such that

v− ≤ lim inf
t→∞

t−1Wt ≤ lim sup
t→∞

t−1Wt ≤ v+ Pνρ-a.s. (1.6)

While this result is “intuitively obvious”, it does not seem a trivial fact to prove. For dynamic random
environments consisting of single-site spin-flips with bounded flip rates, there is a simple proof strategy
since particles and holes can be found locally “around” the random walk. For the supercritical contact
process, the proof by den Hollander and dos Santos [8] that W cannot travel with speed v0 is already
non-trivial and relies on model-specific features. The proof of Theorem 1.1 given here is based on the
multiscale analysis scheme put forth by Kesten in Sidoravicius [11], and seems exceedingly heavy for
such a simple fact. It has however the advantage of being easier to generalize; while several technical
facts are verified here specifically for the SSEP, the overall proof strategy should work in much greater
generality. For example, the analogous result for the supercritical contact process can be reobtained
with this approach.

1.3 Essential enhancements

Our question can also be formulated in terms of essential enhancements, in analogy with percolation
theory (see e.g. Grimmett [5], Chapter 3). From this point of view, W is seen as a perturbation of a
homogeneous random walk with drift v0, and ρ is the intensity of the perturbation. The question then
becomes: is this perturbation, for any ρ > 0, an “essential enhancement” in the sense that it changes
the linear scaling of W?

Let us look at what can happen for random walks in static one-dimensional random environments.
For these models, there are criteria for recurrence/transience as well as laws of large numbers proven
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under very general assumptions (see e.g. Zeitouni [16]). If v0 = 0 < v1, then the random walk is
always transient to the right in any ergodic random environment with a positive density of particles.
But random walks in static random environments can exhibit slow-down phenomena; for example,
there are regimes where the random walk can be transient to the right with zero speed. In the case
of i.i.d. static random environments, the latter can only happen when v0 < 0 < v1. Therefore, if
v0 = 0 < v1, then the perturbation given by a static i.i.d. random environment is always an essential
enhancement, as long as the density of 1’s is positive.

Consider, however, the following example of a stationary and ergodic static random environment with
positive particle density that does not result in an essential enhancement. Let L be an N-valued
random variable with finite first moment but infinite second moment. Partition Z into intervals in a
translation-invariant way such that the length of each interval is independent and distributed as L. Let
η be obtained by coloring each interval with 1’s or 0’s according to independent fair coin tosses. On
top of this static random environment, put a random walk with β0 = α0 = 1/2, β1 = 0 and α1 = 1.
As discussed above, this random walk is transient to the right; therefore, it eventually reaches a point
where there is an interval full of 1’s to its left (into which it cannot backtrack) and an interval to its right
whose law is still independent of the past. In other words, the times when W crosses the boundary
between an interval full of 1’s and the next interval are regeneration times. This observation allows
us to estimate the speed of W by a constant times the ratio between the expectation of L and the
expected time required by W to cross one interval, given that the interval to the left is occupied. The
latter turns out to be infinite, so that W has speed 0 = v0. Therefore, in this example the random
environment is not an essential enhancement, despite having particle density equal to 1/2.

1.4 Outline

The rest of the paper is organized as follows. In Section 2, we construct particular versions of the SSEP
and of the random walk. In Section 3, we give the proof of Theorem 1.1 with the help of a proposition
(Proposition 3.1 below) concerning rarefied and turbulent regions in the SSEP. In Section 4, we lay
out the basic tools that will be used to prove Proposition 3.1 in Section 5, where all constructions and
estimates specific to the SSEP are carried out.

2 Construction of the model

In Section 2.1 we construct the SSEP and, in Section 2.2, the random walk on top of the SSEP.

2.1 Graphical construction of the SSEP

It will be convenient to have a graphical construction of the SSEP including negative times. Let E
be the set of edges of Z, i.e., all unordered pairs of neighbouring sites, and let A = (Ae)e∈E be a
collection of independent Poisson point processes on R with intensity 1. Draw each event of Ae in
space-time as an arrow between the two sites connected by e. This gives rise to a system of random
paths in Z × R as follows. For each (x, t) ∈ Z × R, there exists a.s. a unique doubly infinite right-
continuous path that goes either vertically in time or (forcibly) across arrows ofA. For s ∈ R, let ζts(x)
denote the position of this path at time s.
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Figure 1: Graphical representation. The arrows represent events ofA. The thick lines mark the path ζts(x).

Given η ∈ {0, 1}Z, we will define the SSEP ξ = (ξt)t∈R by

ξt(x) := η(ζt0(x)), (2.1)

i.e., a space-time point (x, t) is occupied if and only if the path going through it hits an occupied site
at time 0. If we take η to be distributed as νρ, ρ ∈ (0, 1), then we may check that this construction
indeed results in a stationary process with the correct distribution. To verify this, we only need to note
that ξt(x) = ξs(ζ

t
s(x)) for any s, t ∈ R and that, by the product structure and exchangeability of νρ,

ξs is independent ofA.

2.2 The random walk on top of the SSEP

We next give a particular construction of the random walk model described in the introduction. Take
a Poisson process N = (Nt)t≥0 with rate γ and two sequences J1 = (J1

k )k∈N and J0 = (J0
k )k∈N

of i.i.d. {−1,+1}-valued random variables taking the value +1 with probability α1/γ and α0/γ ,
respectively. These random variables are taken such that ξ,N, J1, J0 are jointly independent.

The random walk W is a functional of (ξ,N, J1, J0) obtained as follows. We set W0 := 0. At a time
t > 0, W jumps if and only if N jumps, and the increment is given by Wt − Wt− = J iNt , where
i = ξt(Wt−) is the state of the exclusion process at the position of W just before the jump.

Setting
N1
t := #{s ∈ [0, t] : Ws 6= Ws− and ξs(Ws−) = 1},

N0
t := #{s ∈ [0, t] : Ws 6= Ws− and ξs(Ws−) = 0}, (2.2)

then N0
t +N1

t = Nt and we see that W has the following representation:

Wt = S1
N1
t

+ S0
N0
t

(2.3)

where (Sin)n∈N0 , i ∈ {0, 1}, are discrete-time simple random walks that jump to the right with proba-
bility αi/γ. From this we immediately get

lim inft→∞ t
−1Wt = v0 + (v1 − v0) lim inft→∞(γt)−1N1

t ,
lim supt→∞ t

−1Wt = v1 − (v1 − v0) lim inft→∞(γt)−1N0
t .

(2.4)

3 Proof of Theorem 1.1

Since the holes of a SSEP under Pνρ have the same distribution as the particles of a SSEP under
Pν1−ρ , we may without loss of generality restrict ourselves to proving the statement for the lim inf in
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(1.6).

The main idea in the proof of Theorem 1.1 is that, because the jump rates are positive and bounded,
the random walk can spend time on top of particles whenever it is in a region of the environment
that is not too rough, namely, neither too rarefied nor too turbulent. A rarefied region is one where
the density of the environment is atypically low. A turbulent region is one where the environment is
moving atypically fast. It is of course not possible to control such deviations of the environment in all
space and time simultaneously, but, as we will see in Proposition 3.1 below, it is possible to show that,
in most of the regions accessible to the random walk, the environment cannot deviate too much from
its typical behaviour.

In Section 3.1 we state Proposition 3.1. In Section 3.2, we use this proposition to prove Theorem 1.1.
The proof of Proposition 3.1 is given in Section 5.

3.1 Rarefied and turbulent regions

For r ∈ N, let ωr ≤ ∆r ∈ N and ρr, εr ∈ (0, 1) be given parameters. Let

Br(k, s) := [k, k + ∆r)× [s, s+ ∆r), k, s ∈ ∆rZ, (3.1)

be blocks in R2 with side length ∆r, called r-blocks. For x ∈ Z and t ∈ R, we write

Σx
r (ξt) :=

∑
y∈[x,x+ωr)

ξt(y) (3.2)

to denote the number of particles present in [x, x + ωr) at time t. We call a space-time set A ⊂ R2

r-rarefied if there exists (x, t) ∈ Z2 with [x, x + ωr)× {t} ⊂ A and such that Σx
r (ξt) < ρrωr. We

call A r-turbulent if there exists (x, t) ∈ A ∩ Z2 and s ∈ (0, εr) such that ξt+s(x) 6= ξt(x).

For ` ∈ (0,∞), let

W` := {all paths in R2 starting at 0 which are continuous,

piecewise C1, and have length at most `}, (3.3)

and put
Φr
r(`) := supw∈W`

#{r-rarefied r-blocks intersected by w},
Φt
r(`) := supw∈W`

#{r-turbulent r-blocks intersected by w}. (3.4)

The key ingredient in the proof of Theorem 1.1 is the following proposition.

Proposition 3.1. For any ρ ∈ (0, 1), there exist (∆r, ωr, ρr, εr)r∈N as above such that, Pνρ-a.s.,

(a) limr→∞ lim sup`→∞ `
−1∆2

rΦ
r
r(`) = 0,

(b) limr→∞ lim sup`→∞ `
−1∆2

rΦ
t
r(`) = 0.

(3.5)

Part (a) will be proved using a multiscale renormalization scheme developed by Kesten and Sidoravi-
cius (see [11]; we also borrow some ideas from [12]). The adaptation is straightforward, and some
simplifications are possible in our setting. Nevertheless, for completeness, we include all the details.
The main new ingredient is a comparison between the SSEP and a system of independent random
walks, which is due to Liggett. The proof of part (b) uses a similar strategy, but is much simpler.

To simplify the exposition, we present the proof in dimension one only, but there are no technical issues
to extend it to higher dimensions.
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3.2 Proof of Theorem 1.1

Proof. Fix ρ ∈ (0, 1) and recall the definition of N1 in (2.2). By (2.4), it is enough to prove the
existence of a δ0 > 0 such that

lim inf
t→∞

t−1N1
t ≥ δ0 Pνρ-a.s. (3.6)

Regard (Ws)s∈[0,t] as a path in R2 and denote its length by `t = t + Nt. Recall that N is a Poisson
process with rate γ > 0, independent of ξ. Using Proposition 3.1, fix `∗ ∈ (1,∞) and r∗ ∈ N such
that

∆2
r∗

{
Φr
r∗(`) + Φt

r∗(`)
}
≤ `

2(1 + γ)
Pνρ-a.s. ∀ ` ≥ `∗. (3.7)

Let B∗t (W ) be the unique r∗-block containing the space-time point (Wt, t). We call B∗t (W ) rough if
it is either r∗-rarified or turbulent, and call it smooth otherwise. For t ≥ 0, let

Θ∗t (W ) :=

btc∑
s=0

1{B∗s (W ) is rough} (3.8)

denote the total number of integer times between 0 and t at which W is inside a rough block. Since
W can spend at most ∆r∗ time units in each rough block, if t ≥ `∗, then by (3.7) we have

Θ∗t (W ) ≤ ∆r∗

{
Φr
r∗(`t) + Φt

r∗(`t)
}

≤ 1

∆r∗

`t
2(1 + γ)

≤ `t
2(1 + γ)

Pνρ-a.s. (3.9)

For s ∈ N0, let
Ys+1 := 1{N1

s+1>N
1
s }. (3.10)

Note thatN1
s+1 > N1

s if and only ifW jumps at least once from a particle in the time interval (s, s+1].
Since W has uniformly positive jump rates, for any s ≥ 0, r ∈ N, ε > 0 and j ∈ [Ws − r,Ws + r],

Pνρ
(
W jumps once from j in the time interval (s, s+ ε) | (Wu)u∈[0,s], ξ

)
≥ δ (3.11)

for some δ = δ(r, ε) > 0. Therefore, if B∗s (W ) is smooth, then

Pνρ
(
Ys+1 = 1 | (Wu)u∈[0,s], ξ

)
≥ δ∗ := δ(r∗, εr∗) (3.12)

since there is at time s at least one particle in [Ws − r∗,Ws + r∗] that does not move before time
s+ εr∗ . Therefore we can couple Y with an i.i.d. sequence (Ỹs)s∈N of Bernoulli(δ∗) random variables
such that Ys+1 ≥ Ỹs+1 if B∗s (W ) is smooth.

Using these observations, we can write, for t ≥ `∗,

t−1N1
t ≥ t−1

btc∑
s=1

Ys ≥ t−1
∑

s∈[1,t]∩N :

B∗s−1(W ) is smooth

Ỹs

≥
(
btc −Θ∗t (W )

t

)
#

{
s∈[1,t]∩N :

B∗s−1(W ) is smooth

}−1 ∑
s∈[1,t]∩N :

B∗s−1(W ) is smooth

Ỹs. (3.13)

By (3.9), the lim inf as t → ∞ of the term in parentheses in the right-hand side of (3.13) is at
least 1/2. The remaining term converges to δ∗, since the number of integer times s in [1, t] for which
B∗s−1(W ) is smooth is unbounded. Thus (3.6) holds with δ0 = δ∗/2.
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4 Block percolation and partitioned systems

In this section we present a percolation result, Proposition 4.3 below, which will play an important role
in the proof of Proposition 3.1 in Section 5.

4.1 Percolative systems

Fix d ∈ N \ {1} and ∆ ∈ (0,∞). For k = (k1, . . . , kd) ∈ ∆Zd, let

B∆(k) :=
d∏
i=1

[ki, ki + ∆) (4.1)

be the block in Rd of side length ∆ with lower-left corner at k. A collection of random variables

Υ = (Υ(k))k∈∆Zd , Υ(k) ∈ {0, 1} for each k ∈ ∆Zd, (4.2)

is called call a percolative system (PS) with scale ∆. We interpret Υ by saying that a block B∆(k) is
open if Υ(k) = 1, and closed otherwise. See Figure 2.

We aim to bound the number of open blocks that intersect paths of a certain fixed length in Rd. For
` ∈ (0,∞), let, analogously to (3.3),

W` := {all paths in Rd starting at 0 which are continuous,

piecewise C1, and have length at most `}. (4.3)

R2

∆{

Figure 2: Block percolation in R2. Gray blocks are open. The curve represents a path inW`.

For w ∈ W`, put

ψ(w) := #{k ∈ ∆Zd : w intersects B∆(k) and Υ(k) = 1} (4.4)

and let
Ψ(`) := sup

w∈W`

ψ(w). (4.5)

In order to control Ψ(`), we need to restrict the class of allowed percolative systems. We will call a PS
Υ homogeneous with parameter p ∈ (0, 1) if Υ(k) has distribution Bernoulli(p) for each k ∈ ∆Zd.
We call it (finitely) partitioned if there exists a finite partition P of ∆Zd such that, for each I ∈ P ,

(Υ(k))k∈I are jointly independent. (4.6)

In other words, Υ is partitioned if its dependence graph has a finite chromatic number. In that case,
we let |P| := #P . In the following, we use the abbreviation p-PPS for “homogeneous partitioned
percolative system with parameter p”.
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4.2 Key lemma

The following lemma is the key to the proof of Proposition 4.3 below.

Lemma 4.1. There exist constants c1, c2 ∈ (0,∞) depending on d only such that, for any percolative
system Υ with scale ∆ that is stochastically dominated by a p-PPS with partition P and p ∈ (0, 1),

P

(
Ψ(`) > |P|c1

θ`

∆

)
≤ |P|e−c2(

θ`
∆
−1) for any θ ∈ [p

1
d , 1] and ` ∈ (0,∞). (4.7)

Our proof of Lemma 4.1 is an adaptation of the proof of Lemma 8 in [11]. It is based on geometric
constraints of Rd and an application of Bernstein’s inequality, which we recall for the case of i.i.d.
bounded random variables.

Lemma 4.2. (Bernstein’s inequality) Suppose that (Xi)i∈N is an i.i.d. sequence of a.s. bounded ran-
dom variables with joint law P . Then

P

(
n∑
i=1

Xi − EXi > x

)
≤ e

−x
2

“
‖X1‖∞+

nV ar(X1)
x

”−1

. (4.8)

For a proof of Lemma 4.2, see e.g. Chow and Teicher [4], Exercise 4.3.14.

Proof of Lemma 4.1. There existK1, K2 ∈ N, depending on d only, with the following properties. For
any ` and ∆, the total number of ∆-blocks intersecting any given path inW` is at mostK1d`/∆e and,
for any n and ∆, the number of connected subsets of Rd that are unions of exactly n ∆-blocks and
contain the origin is at most eK2n. We will show that (4.7) holds with c2 := 2dK1K2 and c1 := 16c2.

Since Ψ(`) does not decrease if additional ∆-blocks are opened, we may suppose that Υ is a p-PPS
with partition P . Let

L := dθ−1e, N := K1d`/(L∆)e. (4.9)

The reason for choosing L as above is to reduce an entropic term, as we will see below. As discussed
in the first paragraph, N is an upper bound for the number of L∆-blocks intersected by any path
in W`. If `/(L∆) < 1

2
, then θ`/∆ < 1 and (4.7) holds trivially. Therefore, we may assume that

`/(L∆) ≥ 1
2
, in which case N ≤ 3K1`/(L∆). Letting

C N
L := {connected subsets of Rd containing the origin

that are the union of N distinct L∆-blocks}, (4.10)

we can estimate, for x > 0,

P (∃ w ∈ W` : ψ(w) > x) ≤
∑
C∈CNL

P (∃ w ∈ W`, w ⊂ C : ψ(w) > x)

≤
∑
C∈CNL

P (#{open ∆-blocks in C} > x) . (4.11)

To estimate for a fixed C ∈ C N
L the corresponding term in (4.11), we use the partition.

P (#{open ∆-blocks in C} > x) ≤
∑
I∈P

P

(
#{open ∆-blocks in C ∩ I} > x

|P|

)
≤ |P|P

(
Bin(NLd, p) >

x

|P|

)
, (4.12)
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where Bin(NLd, p) is a Binomial random variable and (4.12) is justified by (4.6) and the fact that
each C ∈ C N

L is the union of exactly NLd ∆-blocks. By the definition of L and our choice of c1, we
can check that pNLd < 1

2
c1θ`/∆. Therefore, substituting x in (4.12) by |P|c1θ`/∆ and applying

Bernstein’s inequality (4.8), we obtain

P

(
#{open ∆-blocks in C} > |P|c1

θ`

∆

)
≤ |P| exp

(
−c1θ`

8∆

)
. (4.13)

Since N ≤ 3K1`/(L∆) ≤ 3K1`θ/∆, we have K2N < c2θ`/∆. Hence, combining (4.11) and
(4.13), we get

P

(
Ψ(`) > |P|c1

θ`

∆

)
≤ |P|eK2N−2c2

θ`
∆ ≤ |P|e−c2

θ`
∆ . (4.14)

4.3 Sequences of percolative systems

The following proposition concerns sequences of percolative systems, and will be used in Section 5 in
the proof of Proposition 3.1.

Proposition 4.3. Let (Υr)r∈N be a sequence of percolative systems in Rd with with scales ∆r,
defined jointly in the same probability space through an arbitrary coupling. Suppose that, for each
r ∈ N, Υr is stochastically dominated by a pr-PPS with partition Pr such that the following properties
hold:

(i) lim supr→∞ |Pr| <∞.
(ii) m := lim supr→∞ r

−1 log(∆r) <∞.
(iii) M := − lim supr→∞ r

−1 log(pr) > md.
(4.15)

Then, for any κ ∈ (0, (md)−1),

lim
n→∞

lim sup
`→∞

1

`

bκ log(`)c∑
r=n

∆d
rΨr(`) = 0 a.s. (4.16)

where Ψr(`) is defined for Υr as in (4.4)–(4.5).

Proof. Let 0 < ε < 1
2
(1/κ−md) and put θr := d

√
pr ∨ e−br with b = m(d− 1) + ε. By (i), there

exists K1 ∈ (0,∞) such that supr |Pr| ≤ K1 and, by (ii), there exist K2 ∈ (0,∞) and r0 ∈ N
such that ∆r ≤ K2e

(m+ε)r whenever r ≥ r0. Hence, by Lemma 4.1,

P

(
∃ r0 ≤ r ≤ bκ log(`)c : Ψr(`) > K1c1`

θr
∆r

)
≤ K1κ log(`)ec2 exp

(
−c2`

`−κb

K2`κ(m+ε)

)
= K1κ log(`)ec2 exp

(
−c2`

a

K2

)
, (4.17)

where a := 1 − κ(m + ε + b) > 0 by our choice of ε and b. Thus, (4.17) is summable in `. By the
Borel-Cantelli lemma, a.s. for n ≥ r0 and ` large enough we may estimate

1

`

bκ log(`)c∑
r=n

∆d
rΨr(`) ≤ K1c1

bκ log(`)c∑
r=n

∆d−1
r θr. (4.18)

By (ii)-(iii) and the definition of θr, ∆d−1
r θr is summable in r. Therefore (4.16) follows by first letting

`→∞ and then n→∞.
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5 Proof of Proposition 3.1

Section 5.1 contains the proof of Proposition 3.1(a), Section 5.2 the proof of Proposition 3.1(b).

Most of the work is concentrated in Section 5.1, where the renormalization scheme for rarefied blocks
is defined and analyzed using the results from Section 4. Central to this work are estimates for systems
of independent simple random walks, stated in Lemma 5.3 below, which are used for comparison with
the system of holes of the SSEP via a result due to Liggett. These estimates are used to control a
recursive formula that, roughly speaking, transfers properties from larger to smaller scales, allowing
us to deduce microscopic properties from mesoscopic and macroscopic properties.

In Section 5.2, a similar approach is used to analyze turbulent blocks from the point of view of Sec-
tion 4. There the construction and estimates are much simpler.

5.1 Proof of Proposition 3.1(a)

5.1.1 Bad blocks

Fix ρ− ∈ (0, ρ), let N0 ∈ N be large enough such that

ρ̄∞ :=
∞∏
r=1

(1−N−r/40 ) ≥ 1− ρ− =: ρ̄+ (5.1)

and put

ρ̄r :=
r∏

k=1

(1−N−k/40 ). (5.2)

Set
ωr := N r

0 , ∆r := N6r
0 and ρr := 1− ρ̄r. (5.3)

Note that ωr+1 = N0ωr, ∆r+1 = N6
0 ∆r and that ρr increases monotonically to ρ∞ := 1− ρ̄∞. The

parameters εr will be defined in Section 5.2. Set also ρ̄ := 1− ρ and, for η ∈ {0, 1}Z, define η̄ by

η̄(x) := 1− η(x). (5.4)

In the following, we will also need r-superblocks, defined as

Br(k, s) := [k − 5∆r, k + 6∆r)× [s− 2∆r, s+ ∆r), k, s ∈ ∆rZ. (5.5)

We call the r-block Br(k, s) bad if Br(k, s) is r-rarefied. Thus, any r-rarefied r-block is bad. We call
r-dense any set in R2 that is not r-rarefied.

Lemma 5.1. For any κ > 0, Pνρ-a.s. there exists a (random) `0 ∈ (0,∞) such that, if ` ≥ `0, no
bad r-blocks with r ≥ bκ log(`)c intersect [−`, `]2.

Proof. Since the product Bernoulli measure νρ is a translation-invariant equilibrium, for any r ∈ N,
x ∈ Z and t ∈ R, we have

Pνρ (Σx
r (ξt) < ρrωr) ≤ Pνρ (Σx

r (ξt) < ρ−ωr)

= P (Bin(ωr, ρ)− ρωr < −(ρ− ρ−)ωr) ≤ e−εωr , (5.6)
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where Bin(ωr, ρ) is a Binomial random variable and ε > 0. The last step can be justified e.g. by using
Bernstein’s inequality (4.2). Therefore, for any (k, s) ∈ ∆rZ2,

Pνρ (Br(k, s) is bad) ≤
∑

(x,t)∈Br(k,s)∩Z2

Pνρ (Σx
r (ξt) < ρrωr)

≤ 33∆2
re
−εωr ≤ Ce−

ε
2
Nr

0 (5.7)

for some C ∈ (0,∞). Since at most (2`+ 1)2 r-blocks intersect [−`, `]2, we can estimate

Pνρ
(
∃ r > κ log(`) and a bad r-block intersecting [−`, `]2

)
≤ C(2`+ 1)2

∞∑
r=bk log(`)c

e−
ε
2
Nr

0 (5.8)

which is summable in `, and so the claim follows by the Borel-Cantelli lemma.

5.1.2 Locally spoiled blocks

For (k, s) ∈ ∆rZ2, let

Br(k, s) := [k −∆r, k + 2∆r)× [s−∆r, s+ ∆r) (5.9)

be the neighbourhood of the r-block Br(k, s), and let

Λr(k, s) := [k − 5∆r, k + 6∆r)× {s− 2∆r} (5.10)

be the base of the r-superblock Br(k, s). Define also Vk
r := [k − 5∆r, k + 6∆r) ⊂ Z, so that

Λr(k, s) = Vk
r × {s − 2∆r}. See Figure 3. Note that the neighborhood Br(k, s) contains the

(r − 1)-superblock of any (r − 1)-block that is contained in Br(k, s).

?

-

6

�

s

k

∆r{

Br(k, s)

Br(k, s)

Br(k, s)

Λr(k, s)

time

space

Figure 3: Relative position of Br(k, s), Br(k, s), Br(k, s) and Λr(k, s).

We call an r-block Br(k, s) spoiled if Λr(k, s) is r-dense but its neighborhood Br(k, s) is (r − 1)-
rarefied. This means that, in the scale r, the block has “good conditions”, meaning that the base of its
superblock is r-dense, but in the finer scale r − 1 its neighborhood fails to be (r − 1)-dense (which
would in turn guarantee that Br(k, s) contained no bad (r − 1)-blocks).

In fact, it will be convenient for us to use a less strict notion of a spoiled block. For that, we need first
to define the interior of Vr(k, s),

V̊r(k, s) := [k − 5∆r + 1, k + 6∆r − 1), (5.11)
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and, for (x, t) ∈ Br(k, s),

Σ̂k,s
r−1(x, t) := #{particles of the SSEP in [x, x+ ωr−1)× {t} that stay

in V̊r(k, s) during the time interval [s− 2∆r, t]}. (5.12)

An r-block Br(k, s) is called locally spoiled if Λr(k, s) is r-dense but there is a point (x, t) such that
[x, x + ωr−1) × {t} ⊂ Br(k, s) and Σ̂k,s

r−1(x, t) < ρr−1ωr−1. In other words, an r-block is locally
spoiled if the base of its superblock is r-dense, but if we only count the particles that stayed so far in
the interior of its superblock then its neighborhood is (r − 1)-rarefied. In particular, any spoiled block
is also locally spoiled.

We will see below that, with our choice of parameters, being locally spoiled is an extremely unlikely
event. Moreover, the event of being locally spoiled has good independence properties, as it only de-
pends on the graphical representation inside the superblock and on the configuration of the SSEP at
its base.

Define a percolative system Υr with scale ∆r by

Υr(k, s) := 1{Br(k,s) is locally spoiled}, (5.13)

and, for each a = (a1, a2) ∈ Br(0, 2∆r) ∩∆rZ2, let

Ia := {(z1, z2) ∈ ∆rZ2 : z1 ≡ a1 (mod 11) and z2 ≡ a2 (mod 3)}. (5.14)

Then
Pr := {Ia : a ∈ Br(0, 2∆r) ∩∆rZ2} (5.15)

is a partition of ∆rZ2 with |Pr| = 33.

Lemma 5.2. For all large enough r ∈ N, Υr is stochastically dominated by a pr-PPS with partition
Pr, where pr tends to 0 super-exponentially fast as r →∞.

The proof of Lemma 5.2 requires quite a bit of work, including estimates for systems of simple random
walks for comparison with the SSEP. Therefore, we postpone it to Section 5.1.5, and show first how it
is used to prove Proposition 3.1(a).

5.1.3 Proof of Proposition 3.1(a)

Proof. Let
Φb
r (`) := supw∈W`

#{bad r-blocks that intersect w},
Ψls
r (`) := supw∈W`

#{locally spoiled r-blocks that intersect w}. (5.16)

Since Φr
r(`) ≤ Φb

r (`), it is enough to prove that

lim
r→∞

lim sup
`→∞

`−1∆2
rΦ

b
r (`) = 0. (5.17)

We claim that, for all r ∈ N,

Φb
r (`) ≤ N12

0 Φb
r+1(`) +N12

0 Ψls
r+1(`). (5.18)

Indeed, if an r-block Br is bad, then the unique (r + 1)-block B̃r+1 containing it is either bad or
spoiled (thus locally spoiled in the latter case); this can be easily seen by observing that Br ⊂ B̃r+1.
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Since the number of r-blocks inside any given (r+ 1)-block is equal to N12
0 , we get by induction that,

for R ≥ r + 1,

∆2
rΦ

b
r (`) ≤ ∆2

RΦb
R(`) +

R∑
n=r+1

∆2
nΨls

n(`). (5.19)

For κ ∈ (0, (12 log(N0))−1), take `0 as in Lemma 5.1 and R = bκ log(`)c. Then, for ` ≥ `0, we
may estimate

1

`
∆2
rΦ

b
r (`) ≤

1

`

bκ log(`)c∑
n=r+1

∆2
nΨls

n(`), (5.20)

and so (5.17) follows from Lemma 5.2 and Proposition 4.3.

The rest of this section is dedicated to the proof of Lemma 5.2. In Section 5.1.4 we derive some
estimates for systems of independent simple random walks. These are used in Lemma 5.4 below for
comparison with the system of holes of the SSEP. The latter lemma is used in Section 5.1.5 to prove
Lemma 5.2.

5.1.4 Estimates for systems of independent random walks

It will be useful to compare the system ξ̄ of the holes of the exclusion process with a system of
independent simple random walks, which we define next.

Let (Sz)z∈Z be a collection of independent simple random walks on Z, with Sz0 = z for each z ∈ Z.
For η ∈ {0, 1}Z, define the process ξ◦ = (ξ◦t )t≥0 by

ξ◦t (x) :=
∑
z∈Z

η(z)1{Szt =x}, (x, t) ∈ Z× [0,∞). (5.21)

The interpretation is that, if we launch from each site z with η(z) = 1 an independent simple random
walk, then ξ◦t (x) is the number of random walks present at the site x at time t.

The following lemma states two estimates for Σx
r (ξ
◦
t ), where [x, x + ωr) × {t} ⊂ Br+1(0, 2∆r+1).

The first gives a bound on its exponential moments in terms of its first moment, while the second
gives a bound on the first moment in terms of density properties of the initial configuration in the
(r + 1)-scale.

Lemma 5.3. Let η ∈ {0, 1}Z and ξ◦ = (ξ◦t )t≥0 be a system of independent SRWs, as discussed
above, starting from η̄ (recall (5.4)). Then the following hold:

(i) For any λ > 0, x ∈ Z and t ≥ 0,

Eη̄ [exp(λΣx
r (ξ
◦
t ))] ≤ exp

{
(eλ − 1)Eη̄ [Σx

r (ξ
◦
t )]
}
. (5.22)

(ii) For large enough r ∈ N and any (x, t) ∈ Br+1(0, 2∆r+1),

Eη̄ [Σx
r (ξ
◦
t )] ≤ 1 + ρ̄r+1ωr if Λr+1(0, 2∆r+1) is (r + 1)-dense, (5.23)

i.e.,
∑

y∈[x,x+ωr+1) η(y) ≥ ρr+1ωr+1 for any x ∈ Z such that [x, x + ωr+1) × {0} ⊂
Λr+1(0, 2∆r+1).
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Proof. (i) Using (5.21), we may write

Eη̄ [exp(λΣx
r (ξ
◦
t ))] =

∏
z∈Z

E
[
eλη̄(z)1{Szt ∈[x,x+ωr)}

]
=
∏
z∈Z

{
η̄(z)(eλ − 1)P (Szt ∈ [x, x+ ωr)) + 1

}
≤
∏
z∈Z

exp
(
η̄(z)(eλ − 1)P (Szt ∈ [x, x+ ωr))

)
= exp

{
(eλ − 1)Eη̄ [Σx

r (ξ
◦
t )]
}
. (5.24)

(ii) We recall two basic results for one-dimensional simple random walk: there exist K1, K2 ∈ (0,∞)
such that

P
(
|S0
t | > 2

√
t log t

)
≤ K1e

−K2(log t)2

, t ≥ 1, (5.25)

and

|P (Syt = z1)− P (Syt = z2) | ≤ K1
|z1 − z2|

t
, y, z1, z2 ∈ Z, t ≥ 1. (5.26)

The first of these can be verified e.g. with the help of Bernstein’s inequality (4.2); for the second, see
e.g. Lawler and Limic [13], Theorem 2.3.5.

To simplify the notation, in the following we omit the coordinates (0, 2∆r+1) of the sets involved. Let
kt := d2

√
t log(t)/ωr+1e and put Axt := [x− ktωr+1, x+ (kt + 1)ωr+1). Since (x, t) ∈ Br+1, we

have Axt × {0} ⊂ Λr+1. Write

Eη̄ [Σx
r (ξ
◦
t )] =

∑
z∈Z

η̄(z)P (Szt ∈ [x, x+ ωr))

≤
∑
z /∈Axt

P (Szt ∈ [x, x+ ωr)) +
∑
z∈Axt

η̄(z)P (Szt ∈ [x, x+ ωr)) . (5.27)

The first term in the right-hand side of (5.27) can be estimated by∑
y∈[x,x+ωr)

P (Syt /∈ Axt ) ≤ ωrP
(
|St| > 2

√
t log t

)
≤ K1ωre

−K2(log ∆r+1)2 ≤ 1

2
(5.28)

for r large enough, where we use (5.25) and the fact that t ≥ ∆r+1. Decompose Axt into disjoint
intervals I1, . . . , In with length exactly ωr+1, and let zi ∈ Ii be the maximizer of z 7→ P (Szt ∈
[x, x+ ωr)) in Ii. Then the second term in (5.27) is at most

n∑
i=1

∑
z∈Ii

η̄(z)P (Szit ∈ [x, x+ ωr)) ≤ ρ̄r+1ωr+1

n∑
i=1

P (Szit ∈ [x, x+ ωr))

= ρ̄r+1

n∑
i=1

∑
z∈Ii

P (Szit ∈ [x, x+ ωr)) . (5.29)

The last double sum in the right-hand side of (5.29) is bounded by

∑
z∈Axt

P (Szt ∈ [x, x+ ωr)) +
∑

y∈[x,x+ωr)

n∑
i=1

∑
z∈Ii

|P (Szit = y)− P (Szt = y) |. (5.30)
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The first term in (5.30) can be estimated by∑
y∈[x,x+ωr)

P (Syt ∈ Axt ) ≤ ωr, (5.31)

and, via (5.26), the second term in (5.30) by

ωr|Axt |K1
ωr+1

t
≤ 4K1

ωrωr+1 log(t)√
t

+ 3K1

ωrω
2
r+1

t

≤ 4K1

N r−1
0

{
log(3N

6(r+1)
0 ) +

1

N2r−1
0

}
≤ 1

2
(5.32)

for large enough r, where for the second inequality we use that ∆r+1 ≤ t ≤ 3∆r+1. Now (5.23)
follows by combining (5.27)–(5.32) since ρ̄r+1 ≤ 1.

5.1.5 Proof of Lemma 5.2

In this section we give the proof of Lemma 5.2. The first step is to compare ξ̄ with a system of in-
dependent simple random walks and use the estimates of Lemma 5.3 to show that, if Λr+1(k, s) is
(r + 1)-dense, then it is extremely unlikely for Br+1(k, s) to be r-rarefied. This will also imply that
the probability to have a locally spoiled Br+1(k, s) is extremely low, since particles in the SSEP, with
large probability, do not travel very large distances in a short time. This is the content of Lemma 5.4
below.

We will need the following σ-algebras:

F sr := σ
(
ξt : t ∈ (−∞, s− 2∆r]

)
, r ∈ N, s ∈ ∆rZ. (5.33)

Lemma 5.4. There exist C1, C2 ∈ (0,∞) such that, for all r ∈ N large enough, (k, s) ∈ ∆r+1Z2

and (x, t) ∈ Br+1(k, s) ∩ Z2, if Λr+1(k, s) is (r + 1)-dense, then

Pνρ
(

Σ̂k,s
r (x, t) < ρrωr | F sr+1

)
≤ C1e

−C2
√
ωr . (5.34)

Proof. By translation invariance and the Markov property, it is enough to prove (5.34) for (k, s) =
(0, 2∆r+1) and under Pη for an arbitrary η ∈ {0, 1}Z, under the assumption that

Λr+1 := Λr+1(0, 2∆r+1)

is (r + 1)-dense. We will first do this for Σx
r (ξt).

We claim that, for any η ∈ {0, 1}Z and λ > 0,

Eη [exp(λΣx
r (ξt))] ≤ Eη [exp(λΣx

r (ξ
◦
t ))] , (5.35)

where ξ◦ is a system of independent simple random walks as in Lemma 5.3. This can be justified
using a result due to Liggett [14], Chapter VIII, Proposition 1.7, by noting that, for any n ∈ N, the
function (y1, . . . , yn) 7→ expλ

∑n
i=1 1[x,x+ωr)(yi) is symmetric and positive definite. Liggett’s result

only applies to initial configurations with finitely many particles but, since Σx
r (ξt) is monotone in η,

(5.35) follows by the monotone convergence theorem.
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Since ξ̄ under Pη has the same distribution as ξ under Pη̄, we have, by Markov’s inequality, (5.35) and
Lemma 5.3, that, for any λ > 0 and r large enough,

Pη (Σx
r (ξt) < ρrωr) = Pη̄ (Σx

r (ξt) > ρ̄rωr) (5.36)

≤ exp
{(
eλ − 1

)
(1 + ρ̄r+1ωr)− λρ̄rωr

}
= ee

λ−1 exp ρ̄rωr

{(
eλ − 1

) ρ̄r+1

ρ̄r
− λ
}
. (5.37)

Using eλ− 1 ≤ λeλ and the definition of ρ̄r, we see that the term in brackets in the right-hand side of
(5.36) is at most λeλ(λ− ω−1/4

r ). Choosing λ = 1
2
ω
−1/4
r , we obtain

Pη (Σx
r (ξt) < ρrωr) ≤ e

√
e−1 exp−

ρ̄+

√
e
√
ωr

4
= C̃1e

−C̃2
√
ωr . (5.38)

To obtain (5.38) for Σ̂r(x, t) in place of Σx
r (ξt) (with possibly different constants), we will argue that

the two are equal with a uniformly large probability. To that effect, recall the definition of ζts(y) from
Section 2.1 and note that Σx

r (ξt) = Σ̂r(x, t) on the complement of the event

Ar(x, t) :=
{
∃ (y, s) ∈ [x, x+ ωr)× [0, t] : ζts(y) /∈ V̊r+1

}
. (5.39)

Note that
(
ζtt−s(y)

)
s≥0

is distributed as a simple symmetric random walk starting at y. Using an union
bound, maximal inequalities for martingales (e.g. Corollary 6 of [15]) and standard deviation estimates
for random walks (e.g. Azuma’s inequality), we obtain

Pη (Ar(x, t)) ≤ ωr sup
y∈[x,x+ωr)

Pη
(

sup
0≤s≤t

|ζtt−s(y)− y| ≥ ∆r+1

)
≤ Cωre

−ε
∆2
r+1
t ≤ C ′e−

ε
6

∆r+1 (5.40)

for some positive constants C,C ′, ε independent of η. This completes the proof.

Proof of Lemma 5.2. If Λr+1(k, s) is (r + 1)-dense, then we may use (5.34) to estimate

Pνρ
(
Υr+1(k, s) = 1 | F sr+1

)
≤

∑
(x,t)∈Br+1(k,s)∩Z2

Pνρ
(

Σ̂k,s
r (x, t) < ρrωr | Fk,sr+1

)
≤ C16∆2

r+1e
−C2
√
ωr =: pr+1, (5.41)

which decays super-exponentially fast in r; in particular, pr+1 < 1 for large r. Since Υr+1(k, s) = 0
if Λr+1(k, s) is (r + 1)-rarefied, (5.41) holds Pνρ-a.s..

To conclude, fix a ∈ Br+1(0, 2∆r+1) and note that, by the definition of locally spoiled, Υr+1(k, s)
only depends on ξs−2∆r+1 and on the graphical representation inside Br+1(k, s). Therefore, for fixed
s, the collection (

Υr+1(k, s)
)
k : (k,s)∈Ia

(5.42)

is jointly independent under Pνρ(· | F sr+1). Thus, by ordering any sequence (ki, si) ∈ Ia, i =
1, . . . , n, such that si ≤ sj if i ≤ j, we see that, by (5.41), (Υr+1(ki, si))

n
i=1 can be progressively

coupled in a monotone way to n independent Bernoulli(pr+1) random variables.
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5.2 Proof of Proposition 3.1(b)

In this section, we use the same proof strategy as in Section 5.1, but the arguments will be technically
much simpler.

Set εr := e−∆r . We call a point (x, t) ∈ Z × R r-stuck if both Poissonian clocks in the graphical
representation that lie to the right and to the left of x fail to ring between times t and t + εr. A subset
of Z × R is called r-stuck if all its points with integer coordinates are r-stuck. Note that r-turbulent
blocks are not r-stuck.

Let Υns
r (k, s) := 1{Br(k,s) is not r-stuck}. Set Iodd := {(x, t) ∈ ∆rZ2 : x∆−1

r is odd}, Ieven :=
{(x, t) ∈ ∆rZ2 : x∆−1

r is even} and Pns
r := {Iodd, Ieven}.

Lemma 5.5. Υns
r is stochastically dominated by a p̃r-PPS with partition Pns

r , where p̃r decays super-
exponentially fast in r.

Proof. By the definition of being r-stuck, we have

Pνρ ((x, t) is r-stuck) = e−2εr . (5.43)

Therefore, for any (k, s) ∈ ∆rZ2,

Pνρ (Br(k, s) is not r-stuck) ≤ ∆2
r(1− e−2εr) ≤ 2∆2

re
−∆r , (5.44)

i.e., for each (k, s), Υns
r (k, s) is stochastically dominated by a Bernoulli(p̃r) random variable, where

p̃r := 2∆2
re
−∆r decays super-exponentially fast in r. Note that Υns

r (k, s) only depends on the graph-
ical representation inside Br(k, s) ∪ {y1, y2} × [s− 2∆r, s+ ∆r], where y1 := k − 5∆r − 1 and
y2 := k + 6∆r are the sites on the spatial boundary of Br(k, s). Therefore (Υns

r (k, s))(k,s)∈I are
jointly independent if I ∈ {Iodd, Ieven}, which finishes the proof.

Proof of Proposition 3.1(b). Let

Φns
r (`) := sup

w∈W`

#{r-blocks which intersect w and are not r-stuck}. (5.45)

Since Φt
r(`) ≤ Φns

r (`), it is enough to prove that

lim
r→∞

lim sup
`→∞

`−1∆2
rΦ

ns
r (`) = 0. (5.46)

But, for κ ∈ (0, (6 log(N0))−1) and r ≤ bκ log(`)c,

1

`
∆2
rΦ

ns
r (`) ≤ 1

`

bκ log(`)c∑
k=r

∆2
kΦ

ns
k (`), (5.47)

so (5.46) follows from Lemma 5.5 and Proposition 4.3.
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