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Abstract. On bounded domains Ω ⊂ R3, we consider divergence-type operators −∇ · µ∇,
including mixed homogeneous Dirichlet and Neumann boundary conditions on ∂Ω \ Γ and Γ ⊂ ∂Ω,
respectively, and discontinuous coefficient functions µ. We develop a general geometric framework
for Ω, Γ and µ in which it is possible to prove that −∇ · µ∇ + 1 provides an isomorphism from
W 1,q

Γ
(Ω) to W−1,q

Γ
(Ω) for some q > 3. We indicate relevant examples from real-world applications.

1. Introduction. In the modelling of real-world problems, one is often con-
fronted with elliptic and parabolic differential equations which act on nonsmooth
domains Ω, possess discontinuous coefficients and/or are complemented by mixed
boundary conditions. For instance, in simulations of electron transport in semicon-
ductor devices the latter are unavoidable — or the model is meaningless [74]. When
treating — mostly nonlinear — models from different application areas which man-
ifest such phenomena (see e.g. [55], [18] [45], [62], [14], [22], [27], [24], [46], [42]), an
isomorphism theorem of Gröger ([31], see also [32]) turned out to be of great use. It
states that any divergence-type operator −∇ · µ∇ + 1 provides a topological isomor-
phism between W 1,q

Γ (Ω) and W−1,q
Γ (Ω) for some q > 2, provided that µ is bounded

and elliptic, and Ω and the Neumann boundary part Γ ⊂ ∂Ω satisfy some minimal
regularity properties. It is well-known that the upper bound for possible q’s depends
on the domain Ω (see [43]), on the coefficient function µ (see [59]), and on Γ (see [63]).
In general, it exceeds 2 by an arbitrarily small margin only, see [21, Ch. 4] for a striking
example. This is exactly what in fact restricts the applicability of Gröger’s theorem
— in this generality — more or less to two-dimensional problems. In the meanwhile,
the necessity grows to consider not only two-dimensional problems (mostly as cuts of
the original three-dimensional ones) but the three-dimensional models themselves. In
particular, this is true in device modelling (see [26], [56]) and in many of the above
mentioned applications. An analogue of Gröger’s theorem is thus desirable; namely
to find a class of three-dimensional domains Ω, coefficient functions µ and Dirichlet
boundary parts D

def

= ∂Ω \ Γ, so that the operator

(1.1) −∇ · µ∇ + 1 : W 1,q
Γ (Ω) → W−1,q

Γ (Ω)

provides a topological isomorphism for some q > 3. The number 3 here has the
meaning of the underlying space dimension — which is crucial in many aspects. For
instance, Gajewski and Gröger observed already in [23] that the additional knowledge
concerning the gradient of the electrostatic potential to lie in L3+ϵ would lead to
a satisfactory analysis of the 3-dimensional van-Roosbroeck system, which models
electron transport in semiconductors.

In order to cover real-world situations, the special features of such a setting should
be as mentioned at the beginning; but the essential point is that several of these non-
smooth phenomena should be allowed to meet in one point. As far as we know, in
this complexity, the isomorphism property in (1.1) has never been treated before in
the literature (see e.g. [75], [17], [19], [7], [10], [63], [72], [43], [81] and compare also
[11], [15], [50], [52], [57], [60], [66], [67] and [71]). In this article, one of our aims is
to provide the reader with a wide variety of explicit geometric configurations for do-
mains, including mixed Dirichlet and Neumann boundary parts and heterostructures,
for which (1.1) is a topological isomorphism. This makes it possible to decide ‘by
appearance’ for many settings, whether they fall into this class — in this sense, our
approach can serve as a black box for future applications. In the following subsection,
let us discuss in some more detail the motivation for our work coming from real-world
applications. In Subsection 1.2, we then discuss our approach from a mathematical
point of view.
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1.1. Geometric material constellations from science and technology. In
principle, our setting is oriented towards the requirements of modern technology simu-
lations, in particular, for semiconductors. Thus, we primarily have in mind polyhedral
domains and domains which result by (local) C1-deformations of polyhedra. A simple
structure of this type is the three-dimensional L-shape, which may be composed of
two different materials, compare [36]. It is often regarded as a benchmark problem
for numerical simulations, cf. [15, Fig. 2], [67, Fig. 1], and it appears naturally in
device modelling, such as the three-dimensional thermistor or the quantum well laser,
see Figure 1 (left and centre). Similarly, the Fichera cube may be included in our
setting. In general, the constellations we consider are not required to be strong Lips-
chitz domains. For a striking example, we refer to the wood-pile structure of photonic
crystals shown in Figure 1 (right). For details on this specific topic, see [44, p. 100
ff.]; and for a modelling of photonic crystals which includes elliptic operators, see [70].
On the other hand, our setting possibly excludes applications from biology where the
domain itself may vary with time and forms geometries such as cusps, see [3], [2] for
an alternative approach and compare also [49].

The material discontinuities (heterostructures) we allow for are of a layered type,
where this term is to be understood in a very broad sense, cf. Assumption 4.2. In
particular, the meeting of three (or more) materials is not allowed to happen within
the domain, but may occur on the boundary in special cases, cf. Figure 4. Moreover,
the domains of continuity of the coefficient function may not admit vertices or edges
within the domain. On the other hand, we allow e.g. for smoothly bounded material
inclusions in a different host material. An example is given in Figure 2 by spherical
Ag nanoparticles embedded in an ZnO:Al environment in Thin-Film Solar Cells, see
[68, Figure 5.2].

Fig. 1. Left: Micropelt Thinfilm Peltier Cooler MPC-D403, Courtesy Micropelt. — Centre:
Scheme of a ridge waveguide quantum well laser (detail 3.2µm×1.5µm×4µm). A material interface
(darkly shaded) and a boundary part (lightly shaded) carrying Neumann boundary conditions meet at
an edge of the device domain. At the bottom and the top of the structure are contacts giving rise to
Dirichlet boundary conditions for the electrostatic potential in the electronic simulation of the laser,
while other parts of the device are insulated (Neumann boundary conditions). A triple quantum well
structure is indicated where the light beam forms in the symmetry plane of the domain. — Right:
3D photonic crystal. Courtesy Sandia National Laboratories.

1.2. A mathematical point of view on our approach. Our treatment of
settings which include discontinuous coefficient functions heavily rests on previous
results on model constellations, provided in [20], [21] [35], [36], [33], [47]. All these
insights are based on [59] and, in essence, a detailed investigation of the occurring
edge singularities. However, our intention was to avoid the explicit study of elliptic
singularities in this work. Our program is rather ambitious nevertheless: while for
the proof of the isomorphy property (1.1) for q close to 2, intelligent perturbation
arguments for the case q = 2 are sufficient (see [31], compare also [9] and [34]), one is
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Fig. 2. Spherical Ag nanoparticles embedded in ZnO:Al in Thin-Film Solar Cells, [68,
Figure 5.2], http: // darwin. bth. rwth-aachen. de/ opus3/ volltexte/ 2013/ 4602/ pdf/ 4602. pdf .
Courtesy Ulrich Wilhelm Paetzold and Forschungszentrum Jülich GmbH.

confronted with difficulties of a different quality when aiming at q > 3. The overall
strategy will be to collect a set of suitable model constellations for which one can
show the isomorphism property (1.1) for some q > 3 and then generalize by adequate
permanence principles. The first and perhaps most essential one of these principles is
localization, already used in [31].

In short, the study of our model constellations is based on the following previous
insights:

(i) Maz’ya’s pioneering theorem [59, Thm. 2.3], which states that for polyhedral
domains and coefficient functions which are constant on polyhedral subdomains, the
isomorphism property

−∇ · µ∇ : W 1,q
0 (Ω) → W−1,q(Ω)

is implied for some q > 3, if all occurring elliptic edge singularity exponents are larger
than 1

3 ,
(ii) the (nontrivial) fact that bimaterial outer edges satisfy this condition, if the

surrounding boundary carries a pure Dirichlet or a pure Neumann condition, see [20,
Thm. 2.1] or [35, Appendix],

(iii) a highly nontrivial deformation argument [33, Ch. 3], deduced by means of
piecewise linear geometric topology,

(iv) the fact that edge singularities are invariant under continuous, piecewise
linear transformations, see [33, Thm. 4.15],

(v) interpolation properties (see [28]) of the scales

{W 1,p
Γ (Ω)}p∈]1,∞[ and {W−1,p

Γ (Ω)}p∈]1,∞[,

(vi) some subtle reflection arguments [35, Prop. 17 and Lemma 22],
(vii) Elschner’s theorem on the isomorphism property

−∇ · µ∇ + 1 : W 1,q(Rd) → W−1,q(Rd), q ∈]1,∞[,

if the coefficient function µ is constant on one half space and also on its complement,
see [21, Thm 3.11] and compare also [5, Ch. 4.5].

Let us next discuss the question why spaces of W−1,q-type are adequate for el-
liptic and parabolic problems. Of course, if the right hand side of the equation has a
Lebesgue density in the volume of the underlying domain, and if the boundary condi-
tion is either homogeneous or purely Dirichlet, then Lq-spaces are adequate. However,
if one has to treat inhomogeneous Neumann conditions and/or one is confronted with
distributions on the right hand side, Lq-spaces are no longer suitable, compare [54,
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Ch. 3.2]. It is our belief that then spaces of W−1,q-type are adequate, since they in-
deed contain distributional objects such as surface charge densities (concerning their
relevance in the theory of electricity consult [78, Ch. 1]). In particular, for some
1 < q′ < 3/2, our result yields q′-integrability of the gradient of solutions even if the
right hand side is given by an arbitrary Radon measure, cf. Remark 4.9. However, we
note that in this work, we aim at the abstract isomorphism property (1.1) only and
do not find explicit or quantitative estimates. We refer to e.g. [13] for recent results
on this topic. In addition, we note that the isomorphism property (1.1) for q > 3
trivially implies Hölder continuity of the solution by embedding. However, Hölder
regularity for elliptic mixed boundary value problems is a much weaker property than
(1.1) and can thus be obtained in more general geometric settings, cf. e.g. [29], [37].

In addition to concerning the elliptic equations themselves, the isomorphism prop-
erty (1.1) provides a good perspective on the investigation of — even quasilinear —
parabolic equations, based on the following observations:

(i) Second order divergence operators satisfy maximal parabolic regularity in
the spaces W−1,q

Γ ; in particular, they generate analytic semigroups, see [38] or [39].
(ii) The following multiplier law holds: if (1.1) is a topological isomorphism for

some q ∈ [2, 6], then this property is maintained if µ is replaced by a coefficient func-
tion ϑµ, where ϑ is a strictly positive, uniformly continuous function on Ω. Moreover,
the operators ∇ ·ϑµ∇ behave well concerning their dependence on such ϑ, see Section
6 below for details.

(iii) For q > 3, W 1,q is a well-suited multiplier space for a great variety of
function/distribution spaces, see [38] for applications of this fact.

(iv) if q is larger than the space dimension, then Lq/2 ↪→ W−1,q. Thus, the
isomorphism (1.1) allows for the treatment of equations with quadratic gradient terms,
see [40], [38] and compare also the investigation of the thermistor problem in [4] or
[42].

(v) the possibility of including surface densities makes W−1,q a particularly
useful space for treating both dynamic boundary conditions and for solving parabolic
optimal control problems, see e.g. [41].

The outline of this paper is as follows: First we fix some notation and state
general assumptions. In Section 3 we introduce our local model constellations. In
Section 4, detailed assumptions on our setting are presented, specifying how the local
constituents establish the global framework. Afterwards, the main result is stated
as Theorem 4.8. The proof is given in Section 5, along with some auxiliary results.
The multiplier law described above is established in Section 6. A discussion of the
limitations of our concept is provided in Section 7. Finally, Section 8 contains some
concluding remarks.

2. Notations and a general assumption. If P1, P2 are points in one of the
Euclidean spaces R2 or R3, then P1P2 denotes the open segment between P1 and P2.
If Λ ⊂ R3 is a bounded domain, then we denote by W 1,q(Λ) the (complex) Sobolev
space on Λ. If Υ is an open subset of ∂Λ, we use the symbol W 1,q

Υ (Λ) for the closure
of

{
v|Λ : v ∈ C∞

0 (R3), supp v ∩ (∂Λ \ Υ) = ∅
}

in W 1,q(Λ). We write W 1,q
0 (Λ) instead of W 1,q

∅ (Λ) and W 1,q(Λ) instead of W 1,q
∂Λ (Λ).

This notation is justified, since we will assume that Λ is a Lipschitz domain. It
follows that the set of restrictions to Λ of functions in C∞

0 (R3) is dense in W 1,q(Λ),
cp. [30, Thm. 1.4.2.1]. W−1,q′

(Λ) denotes the space of continuous antilinear forms
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on W 1,q
0 (Λ), and W−1,q′

Υ (Λ) denotes the anti-dual to W 1,q
Υ (Λ), if 1

q + 1
q′ = 1 holds.

Finally, W 1,∞(Λ) denotes the space of Lipschitz functions on Λ and W 1,∞
0 (Λ) denotes

the subspace of functions which vanish on ∂Λ.
Definition 2.1. A function µ, defined on some open subset O of R3, which is

bounded, measurable and takes its values in the set of real, symmetric 3× 3 matrices
will be called a coefficient function on O. If µ additionally satisfies the condition

(2.1) ess inf
x∈O

inf
∥ξ∥

R3=1
µ(x)ξ · ξ > 0,

then it will be called elliptic. As usual, we define

−∇ · µ∇ : W 1,2
Υ (Λ) → W−1,2

Υ (Λ)

by

(2.2) ⟨−∇ · µ∇v, w⟩ :=

∫

Λ
µ∇v ·∇w dx v, w ∈ W 1,2

Υ (Λ),

where ⟨·, ·⟩ denotes the corresponding (anti-) dual pairing.
The maximal restriction of −∇ · µ∇ to any of the spaces W−1,q

Υ (Λ) (q > 2) will be
denoted by the same symbol.

Remark 2.2. The maximal restriction of −∇ · µ∇ to L2(Λ) leads to a homo-
geneous Dirichlet condition on ∂Λ \ Υ and a (generalized) homogeneous Neumann
condition for the elements of its domain on Υ (cf. [12, Ch. 1.2] or [25, Ch. II.2],
compare also [16]). For simplicity, we will call Υ the Neumann boundary part of Λ
in any case.

For two Banach spaces X and Y , we denote the space of linear, bounded operators
from X into Y by L(X;Y ). If X = Y , then we abbreviate by L(X). The symbol
LH(X;Y ) denotes the set of linear homeomorphisms between the Banach spaces X
and Y . The norm in a Banach space X will be denoted by ∥ · ∥X .

Let us introduce the following general assumption on our three-dimensional do-
main Ω and the corresponding Neumann boundary part Γ:

Assumption 2.3. We suppose that all domains under consideration are bounded,
in particular, Ω is a bounded Lipschitz domain (cf. [30, Def.1.2.1.2] or [58, Ch. 1.1.9
Def. 3]) and Γ is an (relatively) open part of the boundary ∂Ω. Moreover, we assume
that the boundary of Γ within ∂Ω is locally bi-Lipschitz diffeomorphic to the unit
interval ]0, 1[, and ∂Ω \ Γ is the closure of its interior (in ∂Ω).

In general, if a three-dimensional domain Λ and an open part of its boundary Υ
satisfy these conditions, we will say that the pair (Λ,Υ) satisfies Assumption 2.3.

Remark 2.4. If the pair (Λ,Υ) satisfies Assumption 2.3, it follows that the
interpolation results proved in [28] apply to the spaces W 1,p

Υ (Λ), cf. Proposition 5.2
below. In particular, by [37, Ch. 5], in space dimension 3, Assumption 2.3 guarantees
that Λ∪Υ is regular in the sense of Gröger [31, Defn. 2], which is the requirement of
[28].

Remark 2.5. Note that we do not assume Ω to be a strong or, equivalently, a
graph Lipschitz domain, cf. [58, Ch. 1.1.9 ].

Finally, we use the term polyhedral Lipschitz domain for a Lipschitz domain the
closure of which is a polyhedron (see [64, Introduction]).
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3. Model constellations. Before arriving at the details of the main result in
Section 4, our intention is to give the reader an impression of which geometric settings
can be expected in view of the isomorphism property (1.1) as soon as possible. Thus,
already in this section, we collect a list of local constituents for which this is true. The
examples presented are polyhedral Lipschitz domains which may, in particular, not be
strong Lipschitz domains, see Figure 3 (right). Moreover, the coefficients are allowed
to jump across surfaces, and the boundary conditions may be mixed. The essential
point for us is that only these constituents cover a sufficiently rich class of three-
dimensional real-world applications, including the examples from Subsection 1.1. In
order to provide clear impressions of the model configurations, we include a series of
sketches.

Definition 3.1. We call a bounded subset M of R3 a polyhedral 3-manifold
with boundary if

(i) M is a 3-manifold with boundary
(ii) M is a polyhedron, cf. [64, Introduction].

Remark 3.2. The interior of a polyhedral 3-manifold with boundary is a Lipschitz
domain, cf. [33, Thm. 3.10].

Remark 3.3. A pair of pincers (Figure 3 left) or domains with cracks such as
an open ball minus half of its equatorial plane are not Lipschitz domains and are thus
excluded by Assumption 2.3.

a

Fig. 3. Left: A pair of pincers is not a Lipschitz domain. — Right: The double beam, see also
Figure 1 (right), can serve as a prototypical example of the situation in Proposition 3.4 i) or ii), if
we assume that ρ is constant on each beam. One of the crucial points a is highlighted here.

The first model constellations we consider are those of pure homogeneous Dirichlet
or Neumann boundary conditions.

Proposition 3.4. Let M be a polyhedral 3-manifold with boundary and let Λ
be its interior. Suppose that there is a plane H, intersecting Λ, such that the elliptic
coefficient function ρ is constant on each of the (finitely many) connected components
of Λ\H. Moreover, every edge on the boundary of M which is induced by the interface
H has to be adjacent to exactly two connected components, and the angles between H
and adjacent boundary faces, measured on the inside of M , shall not exceed π.

(i) (Homogeneous Dirichlet boundary conditions) Then there is a pD > 3 such
that the operator

(3.1) −∇ · ρ∇ : W 1,q
0 (Λ) → W−1,q(Λ)

is a topological isomorphism for all q ∈ [2, pD[.
(ii) (Homogenous Neumann boundary conditions) Let a ∈ ∂M ∩H be a vertex of

M . Then, for every ball around a, there is an open neighbourhood W of a, contained
in this ball, with the following property: Setting Π := Λ ∩W and Σ := ∂Λ ∩W, the
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pair (Π,Σ) satisfies Assumption 2.3, and there exists a pN > 3 such that the operator

(3.2) −∇ · µ|Π∇ : W 1,q
Σ (Π) → W−1,q

Σ (Π)

is a topological isomorphism for all q ∈ [2, pN [.
Proof. By Remark 3.2, Λ is a Lipschitz domain. Moreover, the edges induced by

H are bi-material ones, and the angles between H and the neighbouring boundary
faces do not exceed π. Thus, (i) follows from [20, Thm. 2.1].

ii) The isomorphism property is proved for some q > 3 in [33, Thm. 5.1], see also
Example 5.4.1 there. In particular, W is constructed such that Π is the bi-Lipschitz
image of a cube, and Γ is the bi-Lipschitz image of one of the sides of this cube.
Hence, Π is a Lipschitz domain and the pair (Π,Σ) satisfies Assumption 2.3. Thus,
Corollary 5.4 and Lemma 5.5 below apply by Remark 2.4.

Fig. 4. An example of a domain which is divided into three components by the plane H. If the
coefficient function is constant on each of these components, this configuration is admissible in both
Proposition 3.4 i) and ii).

Remark 3.5. Geometries as in Figure 3 (right) and Figure 4 — not constituting
a strong Lipschitz domain, but only a Lipschitz domain — are quite common: they
not only appear in photonic crystals (Figure 1 right), but e.g. in the combination of
a railroad track and the underlying railroad tie. This can be of relevance in view of a
corresponding heat conduction problem. In view of future applications, we note that
the geometry around vertices in Proposition 3.4 may be nearly arbitrarily wild, as far
as polyhedra go, and refer to [8, Ch. XIV] for a number of examples.

Remark 3.6. The condition on H in Proposition 3.4 is clearly satisfied if Λ is
convex.

The following four Propositions concern different model constellations with mixed
Neumann and Dirichlet boundary conditions.

Proposition 3.7. [47, Thm. 1.1] Let △1,△2 ⊂ R2 be two open triangles which
share one side with endpoints P,Q. Let P1, Q1 be the other vertices of △1,△2 ⊂ R2

which share a side with P . Define Λ0 :=
(
△1 ∪△2 ∪ PQ

)
× ]−1, 0[ and the boundary

part Υ0 as
(
Q1P ∪P1P ∪{P}

)
×]−1, 0[. Let further H be a plane which intersects Λ0

but does not touch its ground plate or its cover plate and let ρ be any elliptic coefficient
function which is constant on both components of Λ0 \H. Then there is a p > 3 such
that

(3.3) −∇ · ρ∇ : W 1,q
Υ0

(Λ0) → W−1,q
Υ0

(Λ0)

is a topological isomorphism for all q ∈ [2, p[.
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Fig. 5. Model constellation of Proposition 3.7 (left) Proposition 3.8 (center) and Proposi-
tion 3.9 (right).

Proposition 3.8. [47, Thm. 1.2] Let △1,△2,Λ0 and the boundary part Υ0 as
in Proposition 3.7. If the coefficient function ρ is elliptic and constant on both prisms
△1×] − 1, 0[ and △2×] − 1, 0[, then there is a p > 3 such that

(3.4) −∇ · ρ∇ : W 1,q
Υ0

(Λ0) → W−1,q
Υ0

(Λ0)

is a topological isomorphism for all q ∈ [2, p[.
Proposition 3.9. [47, Thm. 1.2] Let △1 ⊂ R2 be an open triangle with vertices

P0, P1, P2 and △2 another open triangle, disjoint to △1, with vertices P0, Q1, Q2,
such that P1 ̸= Q1 is contained in the segment joining P0 and Q1. Furthermore,
let Λ1 ⊆ R3 be the open right prism (△1 ∪ △2 ∪ P0P1)×] − 1, 0[, and let Υ1 :=(
P1P2 ∪ {P1}∪P1Q1

)
×]− 1, 0[. Let ϱ be any elliptic coefficient function on Λ1, which

is constant on the prisms △1×] − 1, 0[ and △2×] − 1, 0[. Then there is a p > 3, such
that

−∇ · ϱ∇ : W 1,q
Υ1

(Λ1) → W−1,q
Υ1

(Λ1)

provides a topological isomorphism for all q ∈ [2, p[.

Fig. 6. Model constellations of Proposition 3.10.

Proposition 3.10. Let △ ⊂ R2 be an open triangle with vertices P1, P2, P3.
Define Λ := △× ]−1, 0[.

(i) Let the boundary part Υ2 be P1P2×]− 1, 0[. Suppose H to be a plane within
R3 that intersects Λ, but avoids the top and bottom sides of Λ, see Figure 6 (left). Let
ρ be any elliptic coefficient function which is constant on both components of Λ \ H.
Then there is a p > 3 such that

(3.5) −∇ · ρ∇ : W 1,q
Υ2

(Λ) → W−1,q
Υ2

(Λ)
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is a topological isomorphism for all q ∈ [2, p[.
(ii) Let further P denote the midpoint of P1P2, and let the boundary part Υ2 this

time be P1P×] − 1, 0[, see Figure 6 (right). Suppose H to be a plane within R3 that
intersects Λ, but avoids the top and bottom sides and let ρ be any elliptic coefficient
function which is constant on both components of Λ \ H. Then there is a p > 3 such
that

(3.6) −∇ · ρ∇ : W 1,q
Υ2

(Λ) → W−1,q
Υ2

(Λ)

is a topological isomorphism for all q ∈ [2, p[.
(iii) Let, in the notation from above, this time Υ2 be given by

(3.7) Υ2 := (P1P×] − 1, 0]) ∪ (△× {0})

and let ρ be constant and elliptic. Then there is a p > 3 such that

(3.8) −∇ · ρ∇ : W 1,q
Υ2

(Λ) → W−1,q
Υ2

(Λ)

is a topological isomorphism for all [2, p[.
(iv) Let now Υ2 be defined by

(3.9) Υ2 := (P1P×] − 1, 0]) ∪ (△̃ × {0}),

where △̃ is the triangle with vertices P1, P, P3. Let H ⊂ R3 be a plane which contains
the line segment P1P2 and a point Q := (P3,κ) with κ ∈]−1, 0[ and let ρ be any elliptic
coefficient function which is constant on both components of Λ \ H. Then there is an
open, arbitrarily small neighbourhood V ∋ (P, 0) and a p > 3 such that

(3.10) −∇ · ρ∇ : W 1,q
Υ!

(Λ!) → W−1,q
Υ!

(Λ!)

is a topological isomorphism for all q ∈ [2, p[, provided one defines Λ! := Λ ∩ V and
Υ! := Υ2 ∩ V.

Fig. 7. Model constellations of Proposition 3.10. The shaded part of the boundary again carries
the Neumann condition. The plane H contains the points P1, P2, Q.

Proof. The assertions (i) and (ii) have been proved in [35, Thm. 1 and 2]. Asser-
tion (iii) in case of (3.7) is proved by a classical reflection argument: when reflecting
the problem symmetrically across the plane P which is determined by P, P1, P2, P3,
one ends up again with a problem of type ii), where the plane of discontinuity of the
coefficient function is exactly P. The proof of iv) is postponed to the beginning of
Subsection 5.2.

Remark 3.11. In the model constellations of Proposition 3.10, 2, 3 and 4,
Dirichlet and Neumann parts of the boundary meet in the plane at an angle of π.
This is known to be the most critical case, cf. [63] and [71].
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4. The main result. Let us first explain the organization of this chapter. At
the beginning, we introduce the relevant geometric assumptions and suppositions on
the admissable coefficient functions µ. Primarly, this affects the question in which
way hetero structures are admissable in our context. Then we introduce geometric
suppositions on the pair (Ω,Γ) of the three-dimensional domain Ω and its Neumann
boundary part Γ ⊂ ∂Ω. We divide points on the boundary of Ω into three classes,
namely

• points on the Dirichlet part ∂Ω \ Γ (cf. Assumption 4.4),
• points on the Neumann part Γ (cf. Assumption 4.5), of three different types,

NS points on a Neumann Surface;
NE points on a Neumann Edge NE1, NE2 or NE3;
NV Neumann Vertices.

• Finally, we consider points on the joint boundary of Dirichlet and Neumann
parts B := (∂Ω \Γ)∩Γ (cf. Assumption 4.6). Again, we distinguish between
BS points in B on a Surface;
BE points in B on an Edge BE1–BE4;
BV Vertices in B.

We then state the main result of this paper.

Remark 4.1. Up to now, we have not given a precise definition of the notions
of surfaces, edges and vertices of the Lipschitz domain Ω. In the assumptions below,
these disctinctions come into play only in the case of points on the closure of the
Neumann boundary part Γ. Locally around these points, we assume Ω to be C1-
diffeomorphic to one of the nine polyhedral model constellations given in the previous
section. Thus, a surface, edge or vertex of ∂Ω is defined locally as being a part of
the boundary which is transformed onto a surface, an edge or a vertex of one of
these prisms, respectively. Note that if Ω itself is a polyhedral Lipschitz domain, C1-
diffeomorphisms require surfaces to be mapped to surfaces, edges to be mapped to edges
and vertices to vertices.

Assumption 4.2. Let the pair (Ω,Γ) satisfy Assumption 2.3 and let µ be a
coefficient function according to Definition 2.1 such that, additionally:

(i) For every x ∈ Ω, there is an open neighbourhood Ux of x and a two-
dimensional C1-surface Sx, containing x, such that (Ux ∩ Ω) \ Sx has finitely many
components, and x is an accumulation point for each of them. The coefficient function
µ is uniformly continuous on each of these connected components.

(ii) For every x ∈ ∂Ω, there is a C1-diffeomorphism φx from a neighbourhood of
Ux into R3 such that φx(Ω∩Ux) equals the interior of a polyhedral 3-manifold M with
boundary, which we denote by Λ. We assume additionally that φx(Ω∩Ux∩Sx) = Λ∩Hx

holds for some plane Hx ∋ φx(x) in R3.
Remark 4.3. Of course, the particular case of µ being uniformly continuous on

the whole of Ux ∩ Ω is also allowed. Moreover:

(i) Observe that φx(Ux ∩ Ω) always equals a polyhedral Lipschitz domain Λ, cf.
Remark 3.2.

(ii) If x ∈ Ω is included in a C1-surface S, then there is always a neighbourhood
Ux such that Ux \ S has exactly two components, cf. [80, Ch. I.2]. This is not true
for boundary points, see the example in Fig. 8.

Assumption 4.4. For Dirichlet points x ∈ ∂Ω \Γ, we demand the following: Let
Ux be the neighbourhood from Assumption 4.2, and φx and S = Sx the corresponding
C1-diffeomorphism and C1-surface, respectively. We ask that Ux can be chosen suffi-
ciently small to guarantee Ux ∩ Γ = ∅.
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Fig. 8. A 2d cross-section of a domain which is constant in the third direction. The dashed line
indicates the position of the 2d interface S, giving an example of a Lipschitz configuration excluded
by Assumption 4.4.

Then we assume that every edge on the boundary of Λ, induced by the hetero interface
H, is adjacent to exactly two connected components of Λ \ H, and the angles between
H and the two adjacent boundary faces, measured on the inside of Λ, shall not exceed
π.

The next assumption affects points on the Neumann boundary part Γ.
Assumption 4.5. Let x ∈ Γ and let Ux be its neighbourhood given in Assumption

4.2, φx the corresponding C1-diffeomorphism and Sx the C1-surface and let again Ux

be sufficiently small to yield Ux ∩ ∂Ω = Ux ∩ Γ =: Γ•. We assume the following.
If x is a point on a geometrical surface,
NS) then φx(Ux ∩ Ω) meets the geometrical requirements of Proposition 3.10 i), i.e.
there is an open triangle ∆, S being one of its sides such that

φx(Ux ∩ Ω) = ∆×] − 1, 0[=: Λ,

and

φx(Ux ∩ ∂Ω) = φx(Ux ∩ Γ) = S×] − 1, 0[.

Moreover, H ∋ φx(x) is a plane in R3 which touches neither the top nor the bottom
side of Λ.
If x is a point on a geometrical edge, then either
NE1) φx(Ux ∩ Ω) meets the geometrical requirements of Proposition 3.7, i.e.

φx(Ux ∩ Ω) = Λ0 =: Λ

and

φx(Ux ∩ ∂Ω) = φx(Ux ∩ Γ) = Υ0

and furthermore, H is a plane which touches neither the top nor the bottom side of
Λ0, or
NE2) φx(Ux ∩ Ω) meets the geometrical requirements of Proposition 3.8, i.e.

φx(Ux ∩ Ω) = Λ0 =: Λ

and

φx(Ux ∩ ∂Ω) = φx(Ux ∩ Γ) = Υ0

and H is the plane which contains PQ×] − 1, 0[, or
NE3) φx(Ux ∩ Ω) meets the geometrical requirements of Proposition 3.9, i.e.

φx(Ux ∩ Ω) = Λ1 =: Λ

11



and

φx(Ux ∩ ∂Ω) = φx(Ux ∩ Γ) = Υ1

and H is the plane which contains P0P1×] − 1, 0[.
If x is a vertex,
NV) then φx(x) must be a vertex of Λ and in addition to Assumption 4.2, we require
that every edge on the boundary of Λ, induced by the plane H, is adjacent to exactly
two connected components of Λ \ H, and the angles between the hetero interface H
and the two adjacent boundary faces do not exceed π.

The next assumption covers the points on the joint boundary B = Γ ∩ (∂Ω \ Γ)
of Dirichlet and Neumann boundary parts.

Assumption 4.6. For x ∈ B, let Ux be the neighbourhood from Assumption 4.2,
φx the corresponding C1-diffeomorphism and Sx the corresponding C1-surface. Then,
there is a triangle ∆ with vertices P1, P2, P3 such that φx(Ux ∩Ω) = ∆×]− 1, 0[=: Λ.

Denoting the midpoint of P1P2 by P and the triangle with vertices P1, P, P3 by △̃, we
suppose that one of the following is satisfied:
If x is a point on a geometrical surface,
BS) then

φx(Ux ∩ ∂Ω) = P1P2×] − 1, 0[

and

φx(Ux ∩ Γ) = P1P×] − 1, 0[

and H is a plane in R3 which touches neither the top nor the bottom side of Λ, cf.
Proposition 3.10 ii).
If x is a point on a geometrical edge, then
BE1) either

φx(Ux ∩ ∂Ω) = (P1P2 ∪ {P2} ∪ P2P3)×] − 1, 0[,

and

φx(Ux ∩ Γ) = P1P2×] − 1, 0[

and H is a plane in R3 which touches neither the top nor the bottom side of Λ, cf.
Proposition 3.10 i),
BE2) or

φx(Ux ∩ ∂Ω) =
[
P1P2×] − 1, 0]

]
∪

[
△× {0}

]
,

φx(Ux ∩ Γ) = P1P×] − 1, 0[,

φx(x) = (P, 0) and µ is uniformly continuous on Ux ∩ Ω, cf. Proposition 3.10 ii),
BE3) or

φx(Ux ∩ ∂Ω) =
[
P1P2×] − 1, 0]

]
∪

[
△× {0}

]
,

φx(Ux ∩ Γ) =
[
P1P×] − 1, 0[

]
∪

[
△× {0}

]
,
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φx(x) = (P, 0) and µ is uniformly continuous on Ux ∩ Ω, cf. Proposition 3.10 iii),
BE4) or

φx(Ux ∩ ∂Ω) =
[
P1P2×] − 1, 0]

]
∪

[
△× {0}

]
,

φx(Ux ∩ Γ) =
[
P1P×] − 1, 0[

]
∪

[
△̃ × {0}

]
,

φx(x) = (P, 0) and H is a plane which contains the segment P1P2 × {0} and a point
(P3,κ) with κ ∈] − 1, 0[, cf. Proposition 3.10 iv).
If x is a vertex, then
MV1) either

φx(Ux ∩ ∂Ω) =
[
(P1P2 ∪ {P2} ∪ P2P3)×] − 1, 0]

]
∪

[
△× {0}

]
,

and

φx(Ux ∩ Γ) = P1P2×] − 1, 0[,

and φx(x) = (P2, 0) and µ is uniformly continuous on Ux ∩Ω, cf. Proposition 3.10 i),
MV2) or

φx(Ux ∩ ∂Ω) =
[
(P1P2 ∪ {P2} ∪ P2P3)×] − 1, 0]

]
∪

[
△× {0}

]
,

and

φx(Ux ∩ Γ) =
[
P1P2×] − 1, 0]

]
∪

[
△× {0}

]
,

and φx(x) = (P2, 0) and µ is uniformly continuous on Ux ∩ Ω, cf. Proposition 3.10
iii).

Remark 4.7. For clarification of these statements, we remark that
(i) in BS) it is implicitly contained that φx(x) ∈ {P}×] − 1, 0[. This follows

from the property x ∈ Γ∩ (∂Ω\Γ) and the requirements φx(Ux∩∂Ω) = P1P2×]−1, 0[,
φx(Ux ∩ Γ) = P1P×] − 1, 0[.

(ii) In BE1) it is implicitly contained that φx(x) ∈ {P2}×] − 1, 0[. This follows
from the property x ∈ Γ ∩ (∂Ω \ Γ) and the demands φx(Ux ∩ ∂Ω) = (P1P2 ∪ {P2} ∪
P2P3)×] − 1, 0[, φx(Ux ∩ Γ) = P1P2×] − 1, 0[.

(iii) In fact, Assumptions 4.2 and 4.6 imply that the set Ω ∪ Γ is regular in the
sense of Gröger. Assumption 2.3 is thus redundant and was stated in the beginning
in order to simplify the exposition.

Let us now state the main result.
Theorem 4.8. Let Ω, Γ, µ be as introduced in Section 2. Then, under the

Assumptions 4.2, 4.4, 4.5, 4.6, there is a p > 3 such that (1.1) is a topological
isomorphism for all q ∈ [2, p[.

The proof of this theorem will be given in the next chapter.
Remark 4.9. In fact, using the argument given in the proof of Lemma 5.5 below,

under the assumptions of Theorem 4.8, it follows that (1.1) is a topological isomor-
phism for all q ∈]p′, p[, where 1

p′ + 1
p = 1. In particular, in three space dimensions,

the space of Radon measures embeds into W−1,q′

for all q′ < 3
2 and p > 3 provides

p′ < 3
2 . Thus, arbitrary Radon meausure right-hand sides may be treated by Theorem

4.8.
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Remark 4.10. Probably, the reader is interested in the optimal magnitude of p
in Theorem 4.8.
If the domain Ω is C1, then the assertion is true for any p ∈]1,∞[ in case of Γ = ∅
or Γ = ∂Ω, as long as the coefficient function is uniformly continuous.
Moreover, it is shown in [43] that in case of the Dirichlet Laplacian (on a strong Lip-
schitz domain), p only depends on the Lipschitz constant of the domain and exceeds
3 by only an arbitrarily small margin in general. The same is true in case of the
Neumann Laplacian [81].
In case of the Laplacian with either Neumann or mixed boundary conditions, Dauge
proved in [17] that lower bounds for p can be obtained from the edge and vertex singu-
larities. Unfortunately, this is really restricted to the Laplacian (or to be substantially
and nontrivially modified in case of other operators), and these singularityies are hard
to control if the geometry is (a bit) complicated.
Furthermore, Shamir’s famous counterexample [75] shows that in case of mixed bound-
ary conditions, p ≥ 4 can generically not be expexted, even if the domain and the
coefficients are smooth.
If the coefficient function is discontinuous, our results rest heavily on the deep insight
of Maz’ya [59] that, in case of a polyhedral Lipschitz domain and Γ = ∅, it suffices
to control the edge singularities. The proof of this, however, is essentially based on
Hölder estimates, where the Hölder exponent is not known explicitly in general, com-
pare [53]. Thus, one cannot expect any detailed information on p in these cases.

5. Proof of Theorem 4.8. In this section, we give a proof of Theorem 4.8.

5.1. Auxiliaries. We first establish some technical tools needed in the proof.
We start out with a lemma which shows that the L∞-norm on the set of coefficient
functions is an adequate choice for a suitable perturbation theory for the operators
(1.1). Next, we quote an interpolation theorem which, together with the pioneering
result of Sneiberg [76], shows that the set I of indices q for which (1.1) is a topological
isomorphism is an open interval. This enables us later to conclude Theorem 4.8 from
the fact that (1.1) provides a topological isomorphism for q = 3. Afterwards, we
present a result which shows that the isomorphy (1.1) is in some sense invariant
under bi-Lipschitzian deformations of the domain. We conclude with a technique
which allows us to localize the problem (1.1) and thus reduce the assertion to the
regularity statements for the local model constellations given in Section 3.

Lemma 5.1. Let Λ be a Lipschitz domain, and Υ be an open part of its boundary.
Let ρ be a coefficient function.

(i) For all q ∈]1,∞[ we have the estimate

(5.1) ∥ − ∇ · ρ∇∥L(W 1,q
Υ

(Λ);W−1,q
Υ

(Λ)) ≤ ∥ρ∥L∞(Λ;L(R3)).

(ii) If (∇ · ρ∇)−1 ∈ L(W−1,q
Υ (Λ);W 1,q

Υ (Λ)) and ρ̂ is another coefficient function
on Λ which satisfies

∥ρ − ρ̂∥L∞(Λ;L(R3))∥(∇ · ρ∇)−1∥L(W−1,q
Υ

(Λ);W 1,q
Υ

(Λ)) < 1,

then also (∇ · ρ̂∇)−1 ∈ L(W−1,q
Υ (Λ);W 1,q

Υ (Λ)).
Proof. i) follows directly from the definition of −∇·ρ∇ and Hölder’s inequality. ii)

is implied by i) and a classical perturbation theorem, cf. [48, Ch. IV.1.4, Thm. 1.16].
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Proposition 5.2. (see [28]) Let the pair (Λ,Υ) satisfy Assumption 2.3 and
assume q0, q1 ∈]1,∞[. For θ ∈]0, 1] and 1

q = 1−θ
q0

+ θ
q1

, one has the following identities
concerning complex interpolation:

(5.2) [W 1,q0

Υ (Λ);W 1,q1

Υ (Λ)]θ = W 1,q
Υ (Λ)

and

(5.3) [W−1,q0

Υ (Λ);W−1,q1

Υ (Λ)]θ = W−1,q
Υ (Λ).

Remark 5.3. In fact, (5.3) is proved in [28] in the case where W−1,q
Υ (Λ) is

the space of continuous linear forms on W 1,q′

Υ (Λ), nota bene not the space of anti-
linear forms. But from this the above assertion may be easily concluded by assigning
to each linear form F the antilinear form f 4→ ⟨F, f̄⟩ and then applying the retrac-
tion/coretraction theorem, c.f. [79, Ch. 1.2.4].

Corollary 5.4. Assume q0, q1 ∈]1,∞[ and

A ∈ L(W−1,q0

Γ (Ω);W 1,q0

Υ (Λ)) ∩ L(W−1,q1

Υ (Λ);W 1,q1

Υ (Λ)).

Then A ∈ L(W−1,q
Υ (Λ);W 1,q

Υ (Λ)) for every q ∈]q0, q1[.
Lemma 5.5. Let Λ ⊂ Rd be a bounded Lipschitz domain and Υ be an open subset

of its boundary such that the pair (Λ,Υ) satisfies Assumption 2.3 and let ρ be an
elliptic coefficient function (cf. Definition 2.1).

(i) Then the set I of indices q for which

(5.4) −∇ · ρ∇ + 1 : W 1,q
Υ (Λ) → W−1,q

Υ (Λ)

is a topological isomorphism, is an interval which contains 2.
(ii) This interval is open.

Proof. i) The mapping (5.4) is continuous for all q ∈]1,∞[, due to (5.1). Due
to the ellipticity of ρ, 2 belongs to the set I by Lax-Milgram. Secondly, since the
coefficient function ρ is symmetric, it is not hard to see that for q > 2, the restriction
of the adjoint of (5.4) to W 1,q

Υ (Λ) is again the operator (5.4). This shows that q′ ∈ I
iff q ∈ I. That the set I forms an interval follows from Corollary 5.4. However, up
to now, this interval could be degenerate with I = [2, 2].
ii) If we put X1− 1

p
:= W 1,p

Υ (Λ) and assume ]α,β[⊂]0, 1[, then the family {Xτ}τ∈[α,β]

forms a complex interpolation scale (see [51, Ch.1]), due to (5.2). The same is true

for the family {Yτ}τ∈[α,β], with Yτ = W
−1, 1

1−τ

Υ (Λ), according to (5.3). But then a
deep theorem of Sneiberg ([76], see also [77, Proposition 4.1]) yields that the set of
parameters τ for which

−∇ · ρ∇ + 1 : Xτ → Yτ

is a topological isomorphism, must be open.
Proposition 5.6. [35, Prop. 16] Let Λ ⊂ Rd be a bounded Lipschitz domain and

Υ be an open subset of its boundary. Assume that φ is a mapping from a neighbourhood
of Λ̄ into Rd which is bi-Lipschitz. We write φ(Λ) =: Λ⋆ and φ(Υ) =: Υ⋆. Then:

(i) For any q ∈ ]1,∞[, φ induces a linear, topological isomorphism

Ψq : W 1,q
Υ⋆

(Λ⋆) → W 1,q
Υ (Λ)

which is given by (Ψqf)(x) = f(φ(x)) = (f ◦φ)(x). These isomorphisms are consistent
for different indices q.
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(ii) Ψ∗
q′ is a linear, topological isomorphism between W−1,q

Υ (Λ) and W−1,q
Υ⋆

(Λ⋆).
(iii) If ρ is a coefficient function on Λ, then

(5.5) Ψ∗
q′∇ · ρ∇Ψq = ∇ · ρ⋆∇

with

(5.6) ρ⋆(y) =
1∣∣ det(Dφ)(φ−1y)

∣∣ (Dφ)(φ−1(y))ρ(φ−1(y))
(
Dφ

)T
(φ−1(y)),

where Dφ denotes the Jacobian of φ and det(Dφ) denotes the determinant of Dφ. If,
in particular, −∇ · ρ∇ : W 1,q

Υ (Λ) → W−1,q
Υ (Λ) is a topological isomorphism, then the

same is true for −∇ · ρ⋆∇ : W 1,q
Υ⋆

(Λ⋆) → W−1,q
Υ⋆

(Λ⋆) and vice versa.
Remark 5.7. The formula (5.6) shows that ρ⋆ is again a coefficient function

in the sense of Definition 2.1 since boundedness, measurability and symmetry of the
values are preserved. Moreover, ρ⋆ is elliptic, iff ρ is.

Lemma 5.8. Let Λ ⊂ Rd be a bounded Lipschitz domain and Υ be an open subset
of its boundary. Let U ⊂ R3 be open such that Λ• := Λ ∩ U is again a domain.
Furthermore, we put Υ• := Υ ∩ U and fix an arbitrary function η ∈ W 1,∞

0 (U).
(i) If v ∈ W 1,q

Υ (Λ) then ηv|Λ•
∈ W 1,q

Υ•
(Λ•).

(ii) For any w ∈ W 1,1(Λ•), let the symbol w̃ indicate the extension of w to Λ by
zero.
a) For every q ∈ [1,∞[ the mapping

W 1,q
Υ•

(Λ•) ∋ v 4−→ η̃v

has its image in W 1,q
Υ (Λ) and is continuous.

b) If U ∩ (∂Λ \ Υ) = ∅ then, for any q ∈ [1,∞[, the mapping

W 1,q(Λ•) ∋ v 4−→ η̃v

has its image in W 1,q
Υ (Λ) and is continuous.

Proof. i) and ii a) are proved in [38], c.f. Lemma 5.8, or see [37] Lemma 4.6.
We provide the proof of iib): obviously, supp η has a positive distance to Λ \ U .
Therefore, the continuation by zero preserves the W 1,q-property and, additionally,
the corresponding operation is continuous. Thus, in order to show the property η̃v ∈
W 1,q

Υ (Λ) it suffices to show that this indeed holds true for every element v ∈ W 1,q(Λ•)
which equals the restriction of a function v̂ which is C∞ on R3. But it is clear that
in this case, supp ηv̂ does not intersect ∂Λ \ Υ and, additionally, η̃v = ηv̂|Λ.

Lemma 5.9. Let Λ,Υ,U , η,Λ• be as in the previous lemma. If U ∩ (∂Λ \Υ) ̸= ∅,
we set Υ• := Υ ∩ U . If U ∩ (∂Λ \ Υ) = ∅, we put either Υ• = ∂Λ• or Υ• := Υ ∩ U .
Let µ• denote the restriction of the coefficient function µ to Λ• and let the operator

−∇ · µ•∇ : W 1,2
Υ•

(Λ•) → W−1,2
Υ•

(Λ•)

be defined as in (2.2). Assume u ∈ W 1,2
Υ (Λ) to be the solution of

(5.7) −∇ · µ∇u = f ∈ W−1,2
Υ (Λ).

Then for all of the above choices of Υ•, the following holds.
(i) The function v := ηu|Λ•

is in W 1,2
Υ•

(Λ•).

16



(ii) The anti-linear form

fη : w 4→ ⟨f, η̃w⟩

(η̃w again denotes the extension of ηw to Λ by zero) is well defined and continuous

on W 1,q′

Υ•
(Λ•) whenever f ∈ W−1,q

Υ (Λ).
(iii) Denoting the anti-linear form

w 4−→

∫

Λ•

uµ•∇η ·∇w dx

by Tu, the function v = ηu|Λ•
satisfies

(5.8) −∇ · µ•∇v = −µ•∇u|Λ•
·∇η|Λ•

+ Tu + fη =: f•.

(iv) Assume that Λ• := Λ ∩ U is also a Lipschitz domain and suppose q ∈ [2, 6].
Then the right hand side f• of (5.8) is in W−1,q

Υ•
(Λ•), provided that f ∈ W−1,q

Υ (Λ).
Proof. i) We have to distinguish two cases: if Υ• = ∂Λ•, the assertion is trivial.

Otherwise, it is implied by Lemma 5.8 i). ii) — iv) are proved in [35, Ch. 4.2] for
linear forms, but for anti-linear forms the proof is analogous.

Remark 5.10. In contrast to Gröger’s localization principle (see [31] Lemma 2),
here, if U ∩ (∂Λ \ Υ) = ∅, then there are two possible choices for Υ•, providing the
localized problem with either pure Neumann or mixed boundary conditions.

Remark 5.11. The requirement in iv) that Λ• is again a Lipschitz domain
guarantees the usual Sobolev embedding theorems. In particular, the term µ•∇u|Λ•

·
∇η|Λ•

is generically in L2, but can be interpreted as an element of W−1,q
Υ•

(Λ•) for
q ∈ [2, 6]. This is the reason for the restriction to parameters q ∈ [2, 6] at this point.

Lemma 5.12. Let Λ be a bounded Lipschitz domain and Υ be an open part of
its boundary. Assume that Λ is the disjoint union Λ = ∪n

j=1Λj ∪ (Λ ∩ N ), where
every Λj ⊂ Λ is open, and N ⊂ R3 is closed and Lebesgue negligible. Assume that
a prescribed x ∈ N is an accumulation point for each of the sets Λ1, . . . ,Λn, and,
additionally, that the limits limy∈Λj ,y→x ρ(y) =: ρj, j ∈ {1, . . . , n} exist. Define the
coefficient function ρ̂x by

ρ̂x(y) =

{
ρj , if y ∈ Λj , j ∈ {1, . . . n},

1, if y ∈ Λ ∩N .

and suppose that ∇ · ρ̂∇ ∈ LH(W 1,q
Υ (Λ);W−1,q

Υ (Λ)) for some q ∈ [2, 6]. Then, for
every sufficiently small neighbourhood W of x and any function η ∈ W 1,∞

0 (W), the
function ηu belongs to W 1,q

Υ (Λ), provided that u satisfies −∇ · ρ∇u = f ∈ W−1,q
Υ (Λ).

Proof. Taking U as a neighbourhood of Λ, Lemma 5.9 shows that ηu satisfies an
equation of the form

−∇ · ρ∇(ηu) = f• ∈ W−1,q
Υ (Λ).

If W is any neighbourhood of x and supp η ⊂ W, then ηu also satisfies −∇ · ρ̌∇(ηu) =
f•, where ρ̌ is given by

ρ̌(y) =

⎧
⎪⎨

⎪⎩

ρ(y), if y ∈ W ∩ Λ,

ρj , if y ∈ Λj \W,

1, otherwise.
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One easily calculates

∥ρ̌ − ρ̂x∥L∞(Λ;L(R3))∥
(
∇ · ρ̂∇

)−1
∥L(W−1,q

Υ
(Λ);W 1,q

Υ
(Λ))

= ∥ρ̌ − ρ̂x∥L∞(Λ∩W;L(R3))∥
(
∇ · ρ̂∇

)−1
∥L(W−1,q

Υ
(Λ);W 1,q

Υ
(Λ)),(5.9)

because the coefficient functions ρ̂x and ρ̌ coincide on Λ \W. By the definition of ρ̂x

and ρ̌, the factor ∥ρ̌−ρ̂x∥L∞(Λ∩W;L(R3)) can be made arbitrarily small by shrinking the
neighbourhood W. We chose W, e.g. as a ball, so small that (5.9) becomes smaller 1.
Then Lemma 5.1 tells us that the property −∇·ρ̂x∇ ∈ LH(W 1,q

Υ (Λ);W−1,q
Υ (Λ), carries

over to −∇ · ρ̌∇. Finally, the equation −∇ ·ρ∇(ηu) = −∇ · ρ̌∇(ηu) = f• ∈ W−1,q
Υ (Λ),

together with the isomorphism property of −∇ · ρ̌∇, gives the assertion.
Lemma 5.13. Suppose that Assumption 4.2 holds and that x ∈ Ω.

(i) Then there is a neighbourhood Vx ⊆ Ω such that

(5.10) −∇ · µ∇ : W 1,q
0 (Vx) → W−1,q(Vx)

is a topological isomorphism for any q ∈]1,∞[.
(ii) If, in particular, u satisfies

(5.11) −∇ · µ∇u = f ∈ W−1,q
Γ (Ω) with q ∈ [2, 6]

and η ∈ W 1,∞(R3) has its support in Vx, then ηu ∈ W 1,q
Γ (Ω).

Proof. The first assertion i) is proved in [21, p. 244]. If, in particular, µ is
continuous in a neighbourhood of x, then the assertion has been proved already in
[65, p. 156/157] and [1, Ch. 15]). Assertion ii) follows from i) by means of Lemma
5.9.

5.2. Proof of the main result. In this subsection we give the proof of our
main result, starting with the proof of Proposition 3.10 iv):
Modulo an affine transformation, we may assume that P1P2 is part of the e1-axis,
and that P = 0 ∈ R2. Let us define a bi-Lipschitzian mapping χ from R3 onto R3

as follows: on the halfspace below the plane H we define χ as the identity. On the
(closed) half space above the plane we define χ as the linear mapping which leaves H
invariant and transforms (P3, 0) into (P, 1). Let ! be the quadrilateral with vertices
P1, P2, P3,−P3 and Π be the prism !×] − 1, 1[. Then it is not hard to see that, for
small λ ∈]0, 1[,

(5.12) λΠ ∩ χ(Λ) = λ(△×] − 1, 1[), and λΠ ∩ χ(Υ2) = λ(P1P×] − 1, 1[).

If one defines, for sufficiently small, positive λ, V := χ−1(λΠ), we get from (5.12) that

(5.13) χ(V ∩ Λ) = λΠ ∩ χ(Λ) = λ(△×] − 1, 1[),

and, analogously,

(5.14) χ(V ∩ Υ2) = λΠ ∩ χ(Υ2) = λ(P1P×] − 1, 1[).

Furthermore, one easily observes that (cf. Formula (5.6)) the induced coefficient
function on λ(△×]− 1, 1[) is constant above H and constant below H. This, together
with (5.13) and (5.14) shows that one is essentially again in the situation of Proposition
3.10 ii). Since χ is bi-Lipschitzian, Proposition 5.6 gives the result.
Proposition 3.10 iv) has the following useful implication:
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Corollary 5.14. Suppose that Assumption 4.2 and Assumption 4.6/BE4 hold
and that φ := φx is the corresponding isomorphism. Then there is an open neighbour-
hood Ũx of x such that

(5.15) φ(Ω ∩ Ũx) = Λ! and φ(Γ ∩ Ũx) = Υ!,

cf. Proposition 3.10 iv).

Proof. We put Ũx := φ−1(φ(Ux)∩ V), where V is the neighbourhood from Propo-

sition 3.10 iv). Observing Ũx = Ux ∩ Ũx one obtains

φ(Ω ∩ Ũx) = φ(Ω ∩ Ux ∩ φ−1(φ(Ux) ∩ V)) = φ(Ω ∩ Ux) ∩ φ(Ux) ∩ V

= φ(Ω ∩ Ux) ∩ V = Λ ∩ V = Λ!,

cf. Assumption 4.6/BE4 and Proposition 3.10 iv). Analogously, one gets

φ(Γ ∩ Ũx) = φ(Γ ∩ Ux ∩ φ−1(φ(Ux) ∩ V)) = φ(Γ ∩ Ux) ∩ φ(Ux) ∩ V

= φ(Γ ∩ Ux) ∩ V = Υ2 ∩ V = Υ!,

cf. Assumption 4.6/BE4 and Proposition 3.10 iv).
Remark 5.15. Proposition 3.10 iv) and Corollary 5.14 show that the constella-

tions BE4 and BE2 are ’equivalent’ when aiming only at the regularity behavior around
the point P , if one admits bi-Lipschitzian charts, instead of restricting to C1-charts.
These considerations illustrate that in general, given two different configurations, it
may be difficult to judge whether they are Lipschitz-diffeomorphic. For this reason, we
decided to introduce nine model constellations which are partly redundant with respect
to Lipschitz charts, but look different. Thus, given a particular model problem, they
may more easily be locally identified.

Lemma 5.16. Suppose Assumption 4.2, x ∈ ∂Ω \ Γ and Assumption 4.4. Then
there is an open neighbourhood Vx of x with the following property: if u satisfies

(5.16) −∇ · µ∇u = f ∈ W−1,3
Γ (Ω)

and η ∈ W 1,∞
0 (Vx), then ηu ∈ W 1,3

Γ (Ω).
Proof. If η0 ∈ C∞

0 (R3) is any function with support in Ux, then (5.16) leads,
according to Lemma 5.9, to an equation

(5.17) −∇ · µ∇η0u = g ∈ W−1,3(Ω ∩ Ux).

We denote the domain φx(Ux ∩Ω) by Λ. Transforming (5.17) under the mapping φx,
we find that the function v := η0u satisfies an equation of the form

(5.18) −∇ · µ̌∇v = h ∈ W−1,3(Λ).

Observe that the resulting coefficient function µ̌ is uniformly continuous on all com-
ponents Λ1, . . . ,Λn of Λ\H, thanks to Proposition 5.6. When replacing the coefficient
function µ̌ by another one, µ̃, which is even constant on each of these components,
the result in Proposition 3.4 i) tells us that

(5.19) −∇ · µ̃∇ : W 1,3
0 (Λ) → W−1,3(Λ)

is a toplogical isomorphism. In particular, one may take the matrices on each Λj as

lim
y∈Λj , y *→φx(x)

µ̌(y),
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respecticely. Thanks to Lemma 5.12, there is an open neighbourhood Wx ⊆ φx(Ux)
of φx(x) such that η1v ∈ W 1,3

0 (Λ) for every function W 1,∞-function η1 with support
in Wx. Define now Vx := φ−1

x (Wx). If η ∈ W 1,∞(R3) with support in Vx is given,
then take η0 as any C∞

0 (Vx)-function which is identical to 1 on supp η. Then, putting
η1 = η ◦ φ−1

x , one obtains the asserted properties for ηu = (η1v) ◦ φx.
Lemma 5.17. Suppose Assumption 4.2, x ∈ Γ and Assumption 4.5. Then there

is an open neighbourhood Vx with the following property: if u satisfies

(5.20) −∇ · µ∇u = f ∈ W−1,3
Γ (Ω)

and η ∈ W 1,∞
0 (Vx), then ηu ∈ W 1,3

Γ (Ω).
Proof. The proofs for the cases NS, NE1, NE2, NE3 run along the same lines as

the proof of Lemma 5.16, resting on the results in Proposition 3.7, Proposition 3.8
and Proposition 3.9, respectively. The proof in the case NV is a bit more involved
and we provide it in some more detail. According to the supposition, there is a poly-
hedral 3-manifold M with boundary, a neighbourhood Ux and a C1-diffeomorphism
φx, defined on a neighbourhood of Ux which maps Ω ∩ Ux onto Λ := Interior(M)
such that φ(x) is a vertex of M . Moreover, φx(Ux ∩ S) = Λ ∩H, where H is a plane
satisfying the suppositions in Proposition 3.4. Localizing the problem according to
Lemma 5.9 (with U := Ux), one gets an equation for ηu with Neumann boundary
conditions, compare Remark 5.10. Now one transforms the resulting problem using
the C1-diffeomorphism φx, again obtaining a Neumann problem. Let µ̌ be the trans-
formed coefficient function, which is then uniformly continuous on all the components
Λ1, . . . ,Λn of Λ \ H. On Λ, we define the modified coefficient function µ̃ by

µ̃(y) =

{
limz∈Λj ,z *→x µ̌(z), if y ∈ Λj ; j = 1, . . . , n

1 on H.

According to Proposition 3.4, there is an open neighbourhood Ũx ⊂ φx(U) of

φx(x) with the following property: Setting Π := Λ ∩ Ũx and Γ := ∂Λ ∩ Ũx, we obtain

−∇ · µ̌|Π∇ ∈ LH(W 1,3
Γ (Π);W−1,3

Γ (Π)).

Now one can apply Lemma 5.12 and argue as in the proof of Lemma 5.17 above.
Lemma 5.18. Assume x ∈ Γ∩ (∂Ω\Γ). Then, under Assumptions 4.2/4.6, there

is an open neighbourhood Vx ∋ x with the following property: if u satisfies

(5.21) −∇ · µ∇u = f ∈ W−1,3
Γ (Ω)

and η ∈ W 1,∞
0 (Vx), then ηu ∈ W 1,3

Γ (Ω).
Proof. The proof runs essentially along the same lines as that of Lemma 5.16.

The corresponding regularity results are as follows: BS" Proposition 3.10 ii), BBE1"
Proposition 3.10 i), BE2" Proposition 3.10 ii), BE3" Proposition 3.10 iii), BE4"
Proposition 3.10 iv)/Corollary 5.14, MV1" Proposition 3.10 i), MV2" Proposition
3.10 iii).

We now finish the proof of Theorem 4.8: For any f ∈ W−1,3
Γ (Ω) ↪→ W−1,2

Γ (Ω),
the equation

(5.22) −∇ · µ∇u + u = f
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admits exactly one solution u ∈ W 1,2
Γ (Ω). In three space dimensions, W 1,2

Γ (Ω) con-
tinuously embeds into W−1,3

Γ (Ω), so that one can rewrite (5.22) as

(5.23) −∇ · µ∇u = f − u ∈ W−1,3
Γ (Ω).

Since we already know the solution u of this equation to exist in any case, the
localization principle in Lemma 5.9 is applicable. Thus, according to Lemma 5.13,
Lemma 5.16, Lemma 5.17 and Lemma 5.18, for every x ∈ Ω, there is an open neigh-
bourhood Ux ∋ x such that ηu ∈ W 1,3

Γ (Ω), if η ∈ C∞
0 (Ux). Let Ux1

, . . . ,Uxn
be a finite

subcovering of Ω and η1, . . . , ηn be a partition of unity over Ω which is subordinate
to this subcovering. Clearly, then

u =
n∑

j=1

ηju ∈ W 1,3
Γ (Ω).

Thus, −∇ · µ∇ + 1 : W 1,3
Γ (Ω) → W−1,3

Γ (Ω) is a continuous bijection. By the Open
Mapping Theorem, its inverse is also continuous. Finally, Lemma 5.5 gives the result.

6. Scalar multipliers for the coefficient function. In this section, we show
how uniformly continuous positive scalar multipliers preserve the isomorphism prop-
erty (1.1). This abstract result is particularly useful for handling quasilinear elliptic
or parabolic problems.

Definition 6.1. Let C(Ω) denote the set of positive functions on Ω which are
uniformly continuous and admit a positive lower bound.

Lemma 6.2. Assume that

(6.1) −∇ · µ∇ : W 1,q
Γ (Ω) → W−1,q

Γ (Ω)

is a topological isomorphism for some number q ∈ [2, 6]. If ϑ ∈ C(Ω), then also

(6.2) −∇ · ϑµ∇ : W 1,q
Γ (Ω) → W−1,q

Γ (Ω)

is a topological isomorphism.
Proof. Let us identify ϑ with its unique uniformly continuous extension to Ω,

and let us denote the positive lower bound of ϑ by ϑ. Let, for any x ∈ Ω, Wx be a
neighbourhood of x such that for any y ∈ Wx ∩ Ω we have

(6.3) |(ϑ(x) − ϑ(y)| ∥µ∥L∞(Ω)
1

ϑ
∥(∇ · µ∇)−1∥L(W−1,q

Γ
(Ω);W 1,q

Γ
(Ω)) < 1.

Let Wx1
, . . . ,Wxn

be a finite covering of Ω and let η1, . . . , ηn be a subordinate partition
of unity on Ω. Let now f ∈ W−1,q

Γ (Ω) be arbitrary. Then the equation −∇·ϑµ∇ϕ = f
leads to the equations

(6.4) −∇ϑµ∇ηjϕ = fj ,

where the right hand side fj of (6.4) again belongs to W−1,q
Γ (Ω) by Lemma 5.9. Let

from now on j ∈ {1, . . . , n} be arbitrary but fixed and let us define the function ϑj

on Ω by

ϑj =

{
ϑ on Wxj

∩ Ω,

ϑ(xj) otherwise.
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Since ηj has its support in Wxj
, the function ηjϕ satisfies (6.4) and the equation

(6.5) −∇ · ϑjµ∇ηjϕ = fj ∈ W−1,q
Γ (Ω).

Obviously, thanks to our supposition on ∇ · µ∇, the operator

∇ · ϑ(xj)µ∇ = ϑ(xj)∇ · µ∇ : W 1,q
Γ (Ω) → W−1,q

Γ (Ω)

provides a topological isomorphism which satisfies the estimate

∥
(
∇ · ϑ(xj)µ∇

)−1
∥L(W−1,q

Γ
(Ω);W 1,q

Γ
(Ω)) =

1

ϑ(xj)
∥
(
∇ · µ∇

)−1
∥L(W−1,q

Γ
(Ω);W 1,q

Γ
(Ω))

≤
1

ϑ
∥
(
∇ · µ∇

)−1
∥L(W−1,q

Γ
(Ω);W 1,q

Γ
(Ω)).(6.6)

We write

(6.7) −∇ · ϑjµ∇ = −∇ · ϑ(xj)µ∇−∇ · (ϑj − ϑ(xj))µ∇.

The definition of the function ϑj yields, in combination with (6.6),

∥ϑjµ − ϑ(xj)µ∥L∞(Ω;L(R3))∥(∇ · ϑ(xj)µ∇)−1∥L(W−1,q
Γ

(Ω);W 1,q
Γ

(Ω))

≤ ∥ϑ − ϑ(xj)∥L∞(Wxj
)∥µ∥L∞(Ω;L(R3))

1

ϑ
∥(∇ · µ∇)−1∥L(W−1,q

Γ
(Ω);W 1,q

Γ
(Ω)) < 1,(6.8)

thanks to condition (6.3). Now (6.7), (6.8) and Lemma 5.1 tell us that the isomor-
phism property ∇ · ϑ(xj)µ∇ ∈ LH(W 1,q

Γ (Ω);W−1,q
Γ (Ω)) carries over to the operator

−∇ ·ϑjµ∇. Hence, for each j, the solution ηjv of (6.4) belongs to the space W 1,q
Γ (Ω),

which is then also true for v. Thus, the operator in (6.2) is a continuous bijection and
by the Open Mapping Theorem, its inverse is continuous as well.

Theorem 6.3. Assume that (1.1) is a topological isomorphism for some number
q ∈ [2, 6]. Then the mapping

(6.9) C(Ω) ∋ ϑ 4→ (−∇ · ϑµ∇)−1 ∈ L
(
W−1,q

Γ (Ω);W 1,q
Γ (Ω)

)

is well-defined and even continuous.
Proof. The first assertion results from the previous lemma. The second assertion

is implied by the first, Lemma 5.1 and the continuity of the mapping LH(X;Y ) ∋
B 4→ B−1 ∈ LH(Y ;X), see [73, Ch. III.8].

Corollary 6.4. Assume that (6.1) is a topological isomorphism for some num-
ber q ∈ [2, 6]. Let M be a compact set in C(Ω) which admits a uniform lower positive
bound. Then the function

M ∋ ϑ 4→
(
−∇ · ϑµ∇

)−1
∈ L

(
W−1,q

Γ (Ω);W 1,q
Γ (Ω)

)

is bounded and even Lipschitzian.
Proof. The first assertion follows from Theorem 6.3 and the compactness of M

in C(Ω). The second assertion follows from the first, the resolvent equation,
(6.10)
(−∇ ·ϑ1µ∇)−1 − (−∇ ·ϑ2µ∇)−1 = (−∇ ·ϑ1µ∇)−1(−∇ · (ϑ1 −ϑ2)µ∇)(−∇ ·ϑ2µ∇)−1,

and Lemma 5.1.
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Remark 6.5. Assume that (6.1) is a topological isomorphism for a q > 3, i.e.

D := domW−1,q
Γ

(Ω)(∇ · µ∇) = W 1,q
Γ (Ω).

Then, for θ ∈]0, 1
2 [, one has by re-iteration (cf. [79, Ch. 1.9.3])

[D,W−1,q
Γ (Ω)]θ = [W 1,q

Γ (Ω),W−1,q
Γ (Ω)]θ =

[
W 1,q

Γ (Ω), [W 1,q
Γ (Ω),W−1,q

Γ (Ω)] 1

2

]
2θ

↪→
[
W 1,q

Γ (Ω), [W 1,2
Γ (Ω),W−1,2

Γ (Ω)] 1

2

]
2θ

= [W 1,q
Γ (Ω), L2(Ω)]2θ

↪→ C(Ω),(6.11)

if θ is chosen sufficiently small, cf. [28].
Let F : R →]0,∞[ be a locally Lipschitzian function. If one defines, for u ∈ C(Ω),

A(u) := −∇ · F (u)µ∇,

then the mapping u 4→ A(u), considered between the spaces

[D,W−1,q
Γ (Ω)]θ ↪→ C(Ω) → LH(W 1,q

Γ (Ω);W−1,q
Γ (Ω))

is well-behaved according to Corollary 6.4 and (6.11). Thus, the quasilinear operators

W 1,q
Γ (Ω) ∋ u 4→ A(u)u

fit into Pruess’ sheme for the treatment of quasilinear parabolic equations, see [69] for
details.

7. Limitations/Obstructions. Let us, in this section, discuss the limitations of
our concept. It has been known for a long time that a fundamental obstruction against
higher integrability for the gradient are edge and vertex singularities. Aiming at a
W 1,q ⇔ W−1,q concept for q > 3, it was shown in [59] that it suffices to delimitate the
edge singularities suitably. Thus, in a first step, one has to exclude all constellations in
which the edge singularities are too strong. This leads to the requirement that hetero-
interfaces have to be C1, if matrix-valued coefficient functions are involved (for the
scalar case, compare [71]). However, this is in the nature of things: the presence of
just one edge in an interface is a potential obstruction against the Lq-integrability of
the gradient if q > 2, see Elschner’s counterexample ([20, Rem. 5.1] or [21, Ch. 4]).

Concerning multi-material boundary edges, the only setting in which the singu-
larity exponent is larger than 1

3 in general (in fact: even larger than 1
2 ) is if at most

two material sectors are involved – each having an opening angle not larger than π
— and pure Dirichlet or pure Neumann boundary conditions are imposed (see [20,
Lemma 2.3] or the Appendix of [35]). In the case of mixed boundary conditions, these
singularities are already too bad in general if only two materials are involved, or if
one material is involved, but the corresponding angle is larger than π, see [61]. In
particular, this excludes the crossing beams (Figure 3 right) if one of them is carrying
a Dirichlet boundary condition and the other one a Neumann condition — even if
the material is homogeneous. Regrettably, edge singularities are also too strong in
general in the cases of pure Dirichlet or Neumann boundary conditions, if the edge is
adjacent to at least three materials, see [61] and see also [36] for a detailed discussion
of singularities caused by multimaterial edges. Unfortunately, we did not succeed in
[36] in finding sufficiently rich classes of coefficient configurations, correponding to
three or four materials, which admit a singularity exponent larger that 1

3 as required
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in [59]. In particular, this means that interfaces which mark the heterogeneity of the
material are not allowed to intersect; as this would lead to multimaterial inner edges.
In this — very broad — sense, our material constellations are ‘layered’ ones. If one
wants to include the case of intersecting interfaces in a similar concept, spaces with
weights promise to yield an adequate framework, compare [60], [2], [3] and [6].

In view of Proposition 5.6, the question arises whether one could not admit bi-
Lipschitzian mappings φx in Assumption 4.2 instead of only C1 ones. In principle, this
is possible, but: deforming e.g. a suitable model constellation (say, NV from above)
by a bi-Lipschitzian mapping, one can obtain edges which are adjacent to arbitrarily
many materials — not to be identified on the image side as a possibly ‘harmless’
constellation (see [33, Thm. 3.10/Thm. 4.15] and cf. Remark 5.15). But the intention
of this paper was the following: Given a non-smooth model problem derived from a
real-world application, it should be possible to decide ’by appearance’, whether our
setting is applicable. For example, we did not want to introduce implicit conditions on
edge singularities (compare [59]) which are extremely difficult to control in palpable
examples, see [36] for the case of only three or four materials. This was the reason for
restricting the class of admissable transformations to C1, in which surfaces are forced
to be mapped into surfaces, edges into edges and vertices into vertices.

Strong Lipschitz domains provide another admissible class of model constellations.
For such domains, the isomorphism property (1.1) also holds for some q > 3, if Γ = ∅
or Γ = ∂Ω and the coefficient function is uniformly continuous. This is based on the
deep results of [43] in the Dirichlet case and of [81] in the Neumann case — there
obtained for the Laplacian — and carried over to general elliptic uniformly continuous
coefficient functions in [21]. As it is difficult to come up with examples of applications
with domains which may be strongly Lipschitz but are not locally C1-diffeomorphic
to polyhedra, for simplicity, we finally decided not to include them here.

Taking all of this into account, we feel that our concept is not far from optimal in
its generality, if one aims at an integrability exponent larger than 3 for the gradient
of solutions. Of course, there are special constellations — also admitting elliptic
regularity — which include for example three materials adjacent to one edge, see [59],
[36] and also [50].

Finally, let us remark that in this generality, we cannot expect an analogous
concept in dimensions four or higher. Since one aims at an integrability exponent q
which is larger than the space dimension, the classical counterexample of Shamir [75]
is an obstruction in the case of mixed boundary conditions.

8. Concluding remarks. As a conclusion, we remark on three immediate ex-
tensions of Theorem 4.8.

Remark 8.1. Theorem 4.8 remains true for real spaces: if one takes W 1,q
R,Γ as

the real part of the complex Sobolev space and W−1,q
R,Γ as the dual of W 1,q′

R,Γ , then

−∇ · µ∇ + 1 : W 1,q
R,Γ → W−1,q

R,Γ is a topological isomorphism for the same range of q′s
since the operator commutes with complex conjugation.

Remark 8.2. Let p be the number from Theorem 4.8, and let q ∈]3, p[. Assume
a, b ∈ L∞(Ω; C3) and c ∈ L∞(Ω). Then the first order operator

(8.1) B : W 1,q
Γ (Ω) ∋ u 4→ ∇

(
a u

)
+ b ·∇u + c u ∈ W−1,q

Γ (Ω)

is relatively compact with respect to −∇ ·µ∇. Hence, if −∇ ·µ∇ is perturbed by (8.1),
it also has W 1,q

Γ (Ω) as its domain of definition. Moreover, (8.1) is relatively bounded
with respect to −∇ · µ∇ with an arbitrarily small relative bound, due to Ehrling’s
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lemma. Since −∇ · µ∇ generates an analytic semigroup on W−1,q
Γ (Ω) (see [38]/[39])

this is then true also for −∇·µ∇+B — thanks to a well-known perturbation argument.
In particular, this shows that −∇ ·µ∇+B also has no spectrum in a suitable left half
plane, and, additionally, its spectrum is purely discrete.

Remark 8.3. In the proof of Theorem 4.8, Snejberg’s abstract argument for p > 3
may be avoided by choosing the minimal p > 3 of all local constituents. However, this
would in general not provide new insights on the size of p and would considerably blow
up technicalities.
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[76] I. Ja. Šnĕıberg, Spectral properties of linear operators in interpolation families of Banach

spaces, Mat. Issled., 9 (1974), pp. 214–229, 254–255.
[77] Anita Tabacco Vignati and Marco Vignati, Spectral theory and complex interpolation, J.

Funct. Anal., 80 (1988), pp. 383–397.
[78] I. E. Tamm, Fundamentals of the Theory of Electricity, Mir Publishers, Moscow, 1979.
[79] Hans Triebel, Interpolation theory, function spaces, differential operators, vol. 18 of North-

Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1978.
[80] J. Wloka, Partial differential equations, Cambridge University Press, Cambridge, 1987. Trans-

lated from the German by C. B. Thomas and M. J. Thomas.
[81] Daniel Z. Zanger, The inhomogeneous Neumann problem in Lipschitz domains, Comm. Par-

tial Differential Equations, 25 (2000), pp. 1771–1808.

28


