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Abstract

Algorithms for generating Delaunay tetrahedral meshes have difficulty with domains
whose boundary polygons meet at small angles. The requirement that all tetrahedra be
Delaunay often forces mesh generators to overrefine near small domain angles—that is,
to produce too many tetrahedra, making them too small. We describe a provably good
algorithm that generates meshes that are constrained Delaunay triangulations, rather than
purely Delaunay. Given a piecewise linear domain free of small angles, our algorithm is
guaranteed to construct a mesh in which every tetrahedron has a radius-edge ratio of
2
√

2/3 .= 1.63 or better. This is a substantial improvement over the usual bound of 2; it
is obtained by relaxing the conditions in which boundary triangles are subdivided. Given a
domain with small angles, our algorithm produces a mesh in which the quality guarantee is
compromised only in specific places near small domain angles. We prove that most mesh
edges have lengths proportional to the domain’s minimum local feature size; the exceptions
span small domain angles. Our algorithm tends to generate meshes with fewer tetrahedra
than purely Delaunay methods because it uses the constrained Delaunay property, rather
than vertex insertions, to enforce the conformity of the mesh to the domain boundaries. An
implementation demonstrates that our algorithm does not overrefine near small domain
angles.
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1 Introduction1

Delaunay refinement algorithms for tetrahedral mesh generation [5, 12, 20, 24, 25] offer mathematical2

guarantees on the quality of the tetrahedra they produce, and they have proven to be popular and effective3

in practice for generating meshes suitable for finite element and finite volume methods. However, these4

methods have difficulty in theory and practice when meshing domains whose facets or edges meet at small5

angles. A primary difficulty is that Delaunay triangulations do not naturally respect the boundaries of a6

nonconvex domain, especially if the domain has internal boundaries (e.g. separating different materials in a7

heat conduction simulation) to which the mesh must conform.8

Delaunay mesh generators insert additional vertices that force a Delaunay triangulation to conform to9

the input domain. Even if we disregard the quality of the tetrahedra, constructing what is known as a10

conforming Delaunay triangulation of a polyhedral domain with internal boundaries is challenging. The11

problem has received some attention [9, 14], but no solution is known for which the number of added vertices12

is polynomial in the size of the domain description. The mesh generation problem, in which tetrahedron13

quality is not disregarded, has received yet more attention [6, 4, 15, 16]. Some authors replace Delaunay14

triangulations with weighted Delaunay triangulations [2, 3, 5], which help to reduce the number of added15

vertices. In quality mesh generation, the number of vertices is not expected to be polynomial in the size of the16

input description, but the edges of the mesh should not be much shorter than they must be to accommodate17

the domain geometry and the user’s wishes. Especially for domains with small angles, it is crucial to prevent18

overrefinement, wherein the edges are shorter and the tetrahedra more numerous than desired.19

In this paper, we advocate using constrained Delaunay triangulations (CDTs, defined in Section 2) to20

enforce domain conformity in guaranteed-quality tetrahedral meshing. A CDT has the advantage that once21

enough vertices have been inserted to recover the edges of the domain, no additional vertices are needed to22

recover its polygonal facets (although some are usually needed to improve the quality of the tetrahedra).23

Two-dimensional CDTs are widely and successfully used in algorithms for triangular mesh generation24

[1, 5, 7, 8, 22] because they enforce domain conformity with no need to add any new vertices. In three25

dimensions, the advantages of CDTs are less clear-cut. A difficulty of working with CDTs is that not every26

polyhedron has one—there exist simple polyhedra with no tetrahedralization at all [18]. Overcoming this27

difficulty requires added vertices. However, for domains with internal boundaries meeting at small angles,28

the number of added vertices can be far fewer than a conforming Delaunay triangulation would require.29

A mathematical difficulty that all mesh generators face, Delaunay or not, is that for some domains with30

small angles, no algorithm can guarantee that every tetrahedron will have high quality. It is not possible31

to place good tetrahedra at points where boundary polygons meet at a tiny angle, of course; worse yet,32

for some domains, there exists no mesh in which even the tetrahedra not adjoining those points are all33

good [21]. Inherently, part of the problem of meshing domains with small angles is to decide where to let34

skinny tetrahedra survive in the output mesh. For example, Cheng et al. [5] allow poor-quality tetrahedra to35

adjoin protective weighted vertices placed at small domain angles, but all the other tetrahedra are good.36

This paper makes three main contributions. First, we devise a mesh generation algorithm that, given a37

piecewise linear domain free of small angles, constructs a mesh in which every tetrahedron has a radius-edge38

ratio of 2
√

2/3 � 1.63 or better. (The radius-edge ratio of a tetrahedron is its circumradius divided by the39

length of its shortest edge. Its circumradius is the radius of its circumscribing sphere. The radius-edge ratio40

has become a standard measure of tetrahedron quality in Delaunay refinement algorithms. It is a flawed41

measure of quality, but the bad tetrahedra that escape it, called slivers, are relatively easy to eliminate in42

practice [20]—except near small domain angles.) This is a substantial improvement over the usual radius-43

edge ratio bound of 2 and the strongest bound on radius-edge ratios we know of for any tetrahedral mesh44

generation algorithm for polyhedra. The main insight is that the constrained Delaunay property allows us to45

relax the conditions in which triangles on the domain boundary are considered to be “encroached.”46
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Second, given a domain with small angles, our algorithm produces meshes in which the quality guarantee47

is compromised only in specific places: where a tetrahedron intersects a boundary polygon or edge that48

meets another polygon or edge at an acute angle. Our implementation, discussed in Section 5, shows that49

for difficult domains, the use of a CDT helps us control the number of added vertices quite well.50

Third, we provide theorems useful for understanding the refinement of constrained Delaunay meshes.51

Three-dimensional constrained Delaunay refinement is substantially harder to analyze than ordinary De-52

launay refinement because the tetrahedra in a CDT are not guaranteed to have empty circumspheres. We53

overlooked this problem in our prior work on meshing with CDTs [21, 24]. Here, we develop a theory and54

an algorithm for attacking a skinny tetrahedron (specifically, by a careful treatment of the order in which en-55

croached subsegments and subpolygons are attacked) that offers correctly proven guarantees on tetrahedron56

quality and thereby repairs the prior work. (The present algorithm is also more strict about where it permits57

poor tetrahedra to survive than many prior algorithms.)58

2 Piecewise Linear Complexes and Constrained Delaunay Triangulations59

The input to our meshing algorithm is a piecewise linear complex (PLC), introduced by Miller et al. [13].60

PLCs generalize polyhedra to permit internal boundaries and other constraints. A three-dimensional PLC X61

is a set of vertices, edges, polygons (not necessarily convex), and polyhedra, collectively called cells, that62

satisfies two properties. (1) The boundary of each cell in X is a union of cells in X. (2) If two distinct cells63

F,G ∈ X intersect, their intersection is a union of cells in X, all having lower dimension than at least one of64

F or G. The underlying space of X, denoted |X|, is
⋃

F∈X F, which is usually the domain to be triangulated.65

PLCs permit vertices and segments to float in the relative interior of a polygon or polyhedron to ensure that66

a triangulation of the PLC will support boundary conditions applied there. See elsewhere [5, 23] for details.67

The segments and polygons in X constrain how X can be triangulated. A triangulation of X is a sim-68

plicial complex T such that (1) X and T have the same vertices, (2) every cell in X is a union of simplices69

in T , and (3) |T | = |X|. A mesh of X is a triangulation of X ∪ S , where S ⊂ |X| is a set of Steiner points70

disjoint from X’s vertices. A triangulation of X does not permit added vertices, whereas a mesh of X does.71

A mesh T of X subdivides each polygon in X into triangles in T , and each edge in X into edges in T .72

We call the edges in a PLC segments to distinguish them from the edges in the mesh. An edge in T is a73

subsegment if it is included in a segment. A triangle in T is a subpolygon if it is included in a polygon.74

Two points x and y are visible to each other if the open line segment xy does not intersect a polygon inX,75

excepting polygons that x or y is coplanar with. A polygon inX that xy crosses (i.e. intersects though neither76

x nor y lie on the polygon’s affine hull) is said to occlude the visibility between x and y. A tetrahedron t ∈ T77

is constrained Delaunay if the circumsphere (circumscribing sphere) of t encloses no vertex in X that is78

visible from a point in the interior of t. A constrained Delaunay triangulation (CDT) of X is a triangulation79

of X in which every tetrahedron is constrained Delaunay. A CDT of X does not permit added vertices. A80

Steiner CDT ofX is a CDT ofX∪S , where S ⊂ |X| is a set of Steiner points. Our mesh generation algorithm81

constructs a Steiner CDT of the input PLC.82

Our algorithm relies on the CDT Theorem [19, 23], which provides a useful sufficient condition for83

a PLC (or a polyhedron) to have a CDT. A segment e ∈ X is strongly Delaunay if there exists a closed84

ball whose boundary passes through e’s two vertices, but the ball contains no other vertex in X. (This is85

a slightly stronger condition than e being Delaunay, which requires only that no vertex lie in the ball’s86

interior.) A PLC is edge-protected if all its segments are strongly Delaunay. The CDT Theorem states that87

every edge-protected PLC has a CDT.88

Let F be a segment, polygon, subsegment, or subpolygon. For p ∈ R3, projF(p) denotes the orthogonal89

projection of p onto the affine hull of F—that is, the point nearest p on the affine hull. Two adjoining cells90

F and G in a PLC X are said to satisfy the projection condition if projF(G) = {projF(p) : p ∈ G} does not91

intersect F \G, and projG(F) does not intersect G\F. (It is trivially satisfied for the vertices inX.) X satisfies92
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the projection condition if every pair of adjoining cells in X does. Roughly speaking, this rules out cells93

meeting at acute angles. For such a PLC, the standard Delaunay refinement algorithm [20] is guaranteed to94

produce a mesh of tetrahedra whose radius-edge ratios do not exceed 2. Our goal is to mesh PLCs that fail95

the projection condition, for which the standard algorithm often fails to terminate at all.96

The lengths of the edges in a high-quality mesh are largely determined by user-specified upper bounds97

and the geometry of the domain; small gaps between PLC cells necessitate short mesh edges nearby. The98

effect of geometry on the edge lengths is roughly captured by the well-known local feature size of a PLC99

X, a function lfs : R3 → R such that lfs(x) is the radius of the smallest ball centered at x that intersects two100

disjoint cells in X. Let lfsmin = minp∈|X| lfs(p).101

3 A Constrained Delaunay Refinement Algorithm102

Here, we describe an algorithm that generates a tetrahedral mesh by refining a CDT. The input is a PLC103

X and a positive constant B that specifies the maximum permitted radius-edge ratio for tetrahedra in the104

output mesh. We call a tetrahedron skinny if its radius-edge ratio exceeds B. The algorithm is guaranteed105

to terminate and produce a mesh if B ≥ 2
√

2/3 � 1.63. If X satisfies the projection condition, the mesh106

has no skinny tetrahedra. If X fails, the mesh may have some, but a skinny tetrahedron can exist only if it107

adjoins (has at least one vertex lying on) the relative interior of a segment or polygon that fails the projection108

condition. Every other tetrahedron is guaranteed not to be skinny.109

The refinement algorithm maintains the CDT of an augmented PLCY as it adds new vertices toY. The110

PLC Y is X with additional vertices, so the CDT of Y is a Steiner CDT of X. At times during refinement,111

Y might not have a CDT (even the initial PLC X might not have a CDT), but repeated applications of the112

forthcoming Rule 1 restore the edge-protected property to Y. The algorithm updates the CDT (or computes113

it for the first time) whenever Y is edge-protected.114

We employ refinement rules typical of tetrahedral Delaunay refinement: skinny tetrahedra are “split”115

by new vertices inserted at their circumcenters, and “encroached” subsegments and subpolygons are split116

likewise. The standard methods used to prove the correctness of Delaunay refinement algorithms serve as117

our inspiration for modifying the refinement rules so that small domain angles do not cause havoc.118

For each vertex v in the mesh, its insertion radius rv is the distance to the closest distinct vertex visible119

from v at the moment when v is first inserted into the PLC Y. If Y has a CDT, rv is, equivalently, the length120

of the shortest edge that initially adjoins v. This definition differs from that of most Delaunay refinement121

algorithms by considering visibility; CDTs do not connect vertices that cannot see each other.122

Standard analyses of Delaunay refinement algorithms rely on the relationships between the insertion123

radius of a newly inserted vertex and the insertion radius of some prior vertex to guarantee a lower bound on124

the lengths of all the edges created during refinement—specifically, a provably good refinement algorithm125

never creates an edge much shorter than the shortest edge in the initial triangulation. It eventually runs out of126

space to place new vertices, so it must terminate. But it does not terminate while skinny tetrahedra survive127

in the mesh—thus one can prove that it produces meshes free of skinny tetrahedra.128

Unfortunately, the usual relationships between insertion radii do not hold where PLC polygons or seg-129

ments meet at small angles. Sometimes it is necessary to insert a new vertex that creates a CDT edge that130

is much shorter than any prior edge. The central idea of our algorithm is to deprive those unreasonably131

short edges of the power to cause further refinement. Specifically, if a tetrahedron is skinny because it has132

an unreasonably short edge, we may decline to try to split the tetrahedron. This breaks an endless cycle133

wherein ever-shorter edges drive the creation of yet shorter edges. The cost is that some skinny tetrahedra134

survive in the final mesh, but only near small domain angles.135

We implement this policy by storing for each vertex v a relaxed insertion radius rrv, which always136

satisfies the constraint rrv ≥ rv. For most vertices, including all input vertices, rrv = rv. However, when the137

algorithm is forced to create a new edge that it considers to be unreasonably short, the newly inserted vertex138
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v has rrv greater than the length of that edge. This communicates to the algorithm that skinny tetrahedra139

having that edge should not be split if the splitting would create edges shorter than rrv.140

Specifically, when we compute the radius-edge ratio of a tetrahedron t, we pretend that t’s shortest edge141

is not shorter than rrv for the minimizing vertex v of t. The relaxed shortest edge length `t of t is either the142

length of t’s shortest edge or the smallest relaxed insertion radius among t’s vertices—whichever is greater.143

The relaxed radius-edge ratio of t is t’s circumradius divided by `t. We say that t is splittable if its relaxed144

radius-edge ratio exceeds B. Every splittable tetrahedron is skinny (has a radius-edge ratio greater than B),145

but not every skinny tetrahedron is splittable. Our algorithm eliminates all tetrahedra that are splittable but146

not fenced in (a term we will define shortly).147

Whereas most Delaunay refinement algorithms define the insertion ra-148

dius rv as an analysis tool but do not compute it, our algorithm explicitly149

computes the relaxed insertion radius rrv for each vertex v and stores it with150

v for future reference. Vertex insertion is governed by three rules.151

Rule 1: Splitting encroached subsegments. The diametric ball of a subsegment is the unique smallest152

closed ball that includes the subsegment. We say that a subsegment is encroached if a vertex other than153

its endpoints lies in its diametric ball—even if the encroaching vertex is not visible from the subsegment.154

The algorithm splits any encroached subsegment that arises into two subsegments by inserting a new vertex,155

usually at its midpoint (but not always), as the figure shows.156

Rule 2: Splitting encroached subpolygons. The diametric ball of a triangular subpolygon is the unique157

smallest closed ball whose boundary passes through the subpolygon’s three vertices. The diametric ellipsoid158

is the diametric ball scaled by a factor of 1/
√

3 in the direction orthogonal to the polygon. The subpolygon’s159

circumcircle is the equator of the diametric ellipsoid. We depart from standard usage by declaring that the160

ellipsoid, like the ball, is a point set that includes all the points inside the ellipsoid too. The shape is chosen so161

that if a tetrahedron on one side of the equator has its circumcenter on the other side, either the circumcenter162

is in the ellipsoid or a vertex of the triangle is.163

Usually, we say a subpolygon is encroached if a vertex other than its vertices lies in its diametric el-164

lipsoid, but later we describe three circumstances in which a vertex is not eligible to encroach upon the165

subpolygon. Each subpolygon is a face of one or two tetrahedra in the CDT. A subpolygon is immediately166

encroached if the apex of one of those tetrahedra encroaches upon it. With some exceptions, discussed later,167

our algorithm usually ignores encroached subpolygons unless they are immediately encroached.168

When no subsegment is encroached, the algorithm responds to an169

immediately encroached subpolygon by trying to split an encroached170

subpolygon—but not necessarily the same one. If a vertex p encroaches171

upon a subpolygon f of a polygon F, but the projected point projF(p) does172

not lie on f , then splitting f does not obtain the best guarantee of quality.173

Given that no subsegment of F is encroached, one can prove that projF(p)174

lies on F and that p also encroaches upon the subpolygon g of F that con-175

tains projF(p) [5, 20]. We usually split g in preference to f . The attempt to split g often eliminates f , but if176

it doesn’t, the algorithm may try again with another subpolygon split.177

We split a subpolygon by inserting a new vertex at its circumcenter and deleting all the vertices in its178

diametric ball that were inserted by Rule 3 and are visible from the new vertex. as illustrated. These vertices179

are deleted so that the new vertex will not adjoin unnecessarily short edges. (This idea was introduced by180

Chew [8] for triangular meshing.) However, if the new vertex would encroach upon a subsegment (visible181

or not), it is not inserted (and no vertex is deleted). Instead, a subsegment it would encroach upon is split by182

Rule 1. We say that the new vertex (circumcenter) has been rejected.183

Rule 3: Splitting splittable tetrahedra. When no subsegment is encroached and no subpolygon is184

immediately encroached, the algorithm tries to split a splittable tetrahedron by inserting a new vertex at its185
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parent p type 3: tetra. type 2: subpolygon type 1: subsegment vertex
new vertex v circumcenter circumcenter or type 0: input vertex
3: tetrahedron circumcenter rrv ← |vp| rrv ← |vp| rrv ← |vp|
2: subpolygon circumcenter rrv ← minw |vw| with w ranging over a and eligible neighbors in diametric ball
1: subsegment vertex rrv ← |va| rrv ← minw dvw

v not entwined with p rrv ← |va| with w ranging over
v entwined with p rrv ← max{|va|,min{ rrp

√
2
,minw dvw}} all neighbors of v

If v is a subpolygon circumcenter, a is the subpolygon’s nearest vertex and |va| is the subpolygon’s circumradius.
If v is a subsegment vertex, a and b are the subsegment endpoints with |va| ≤ |vb|.
dvw = max{|vw|, rrw} if w = a or w = b or v and w are entwined; dvw = |vw| otherwise.

Table 1: How the constrained Delaunay refinement algorithm assigns a relaxed insertion radius rrv to a new
vertex v with parent p. Note that for the entries below the diagonal, the parent vertex p is rejected from the mesh.

circumcenter. Tetrahedra larger than the user desires are also split this way. However, if the new vertex186

would encroach upon a subsegment or subpolygon, then it is not inserted; instead, a subsegment or sub-187

polygon it would encroach upon is split by Rule 1 or 2. If several subsegments and subpolygons would188

be encroached, the choice of which one to split is crucial; we discuss it in detail later. If the splittable189

tetrahedron is not eliminated as a side effect, the algorithm may try again to split it later.190

c

t

v
F

There is one circumstance in which our algorithm declines to try to split a splittable191

tetrahedron. Let t be a tetrahedron with circumcenter c, and let q be an arbitrary point192

in the interior of t. Suppose c is not visible from q; one or more polygons occlude the193

visibility. Let F be the occluding polygon that intersects qc nearest q. Usually c is in the194

diametric ellipsoid of the subpolygon g of F containing projF(c); we split g and reject c. However, if c is so195

far to the other side of F that it does not encroach upon any subpolygon of F, then at least one vertex of t not196

on F must lie in g’s diametric ellipsoid. However, some or all of t’s vertices might be ineligible to encroach197

upon F because they lie on F or on a polygon or segment that meets F at a small angle. If c does not lie in198

any subpolygon’s diametric ellipsoid and no vertex of t encroaches upon any subpolygon of F either, we say199

that t is fenced in and we do not attempt to split it. Our algorithm tries to split every splittable tetrahedron200

that is not fenced in, and terminates only when none remain.201

Encroached subsegments (Rule 1) have priority over immediately encroached subpolygons (Rule 2),202

which have priority over splittable tetrahedra (Rule 3). A CDT might not exist when there are encroached203

subsegments; observe that Rule 1 makes no reference to the constrained Delaunay tetrahedra, and Rules 2204

and 3 are executed only when a CDT exists. We update the CDT whenever no subsegment is encroached.205

We say that a vertex is of type i if it is inserted by Rule i. Input vertices in X are of type 0.206

Our algorithm must be careful in handling encroachment between segments or polygons that meet at207

small angles. Let F and G be two segments or polygons (possibly one of each, but the segment is not a208

subset of the polygon) that adjoin each other and do not respect the projection condition. If a vertex v lies on209

F \G and a vertex w lies on G\F, with v and w each having type 1 or 2, we say that v and w are entwined. We210

also say that v and G are entwined; likewise that w and F are entwined; likewise that F and G are entwined.211

There is a danger that these vertices might form an edge vw shorter than the shortest prior edge in212

the mesh. The hazard is great when one vertex is inserted because the other one is encroaching, then the213

new vertex encroaches back. The standard analysis of Delaunay refinement shows that this cycle of mu-214

tual encroachment cannot continue forever if no vertices are entwined (e.g. when X satisfies the projection215

condition). To break the cycle, we sometimes choose rrv > rv for a new entwined vertex v.216

We now consider Rules 1–3 in more detail and discuss how the algorithm chooses the relaxed insertion217

radius rrv; these choices are summarized in Table 1.218
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Rule 1: Let e be an encroached subsegment. Our algorithm usually inserts a new vertex v at the midpoint219

of e, but it occasionally inserts v off-center. We use “modified segment splitting using concentric spherical220

shells,” introduced by Ruppert [17], to prevent segments that meet at small angles from engaging in cycles221

of mutual encroachment that produce ever-tinier subsegments. Imagine that each input vertex is enclosed222

by concentric spheres whose radii are 2i for all integers i. If e adjoins another segment at an acute angle, we223

split e not at its midpoint, but on one of the circular shells centered at the shared vertex, so that one of new224

subsegments has a power-of-two length. We choose the shell that gives the best-balanced split, so the two225

new subsegments are between one-third and two-thirds the length of the split subsegment. Each segment in226

X undergoes at most two unbalanced splits—one for each end—in which case all three subsegments are at227

least one-fifth the length of the original segment. All other subsegment splits are bisections.228

If the encroaching vertex is not a circumcenter, e’s diametric ball may contain multiple vertices, all of229

type 0 or 1. (Type 2 and 3 vertices would be rejected.) Let v be the vertex inserted on e, let a be the endpoint230

of e closer to v, and let b be the farther endpoint. Let |vw| denote the distance from v to w. We define a231

relaxed distance dvw between v and any other vertex w. For most vertices, dvw = |vw|, but if v and w are232

entwined (implying that w is of type 1) or w is an endpoint of e, let dvw = max{|vw|, rrw}. The algorithm sets233

rrv ← minw dvw, where w ranges over the vertices that are connected to v by edges of the CDT, including a234

and b. (If no CDT exists, w ranges over all the vertices in e’s diametric ball.) The vertex p that provides the235

minimum value of dvp is called the parent of v—the vertex held responsible for v’s insertion. Observe that236

rrv is the distance rv from v to its nearest visible neighbor if that neighbor is not a, b, or entwined with v.237

If a circumcenter p of type 2 or 3 encroaches upon e, p is rejected, but p is the parent of v. The diametric238

ball of e contains no vertex not on e—otherwise the algorithm would have split e before attempting to insert239

p. If p is not entwined with v, the algorithm sets rrv ← rv = |va|. If p is entwined with v (implying that p is240

of type 2), the algorithm sets rrv ← max{|va|,min{rrp/
√

2,minw dvw}} where w ranges over v’s neighbors in241

the CDT. If v’s insertion yields an updated PLC Y with no CDT, during the failed attempt to insert v we can242

nonetheless easily identify the vertices of the tetrahedra that are no longer constrained Delaunay.243

Rule 2: Let f be a subpolygon of a polygon F. A vertex w in f ’s diametric ellipsoid encroaches upon244

f only if it is eligible to encroach upon F. Type 3 vertices (tetrahedron circumcenters) are always eligible.245

Type 0–2 vertices are ineligible in the following three circumstances:246

• w ∈ F. (Note that a vertex w ∈ F influences how F is subdivided into constrained Delaunay subpoly-247

gons, but w is not permitted to encroach upon those subpolygons.)248

• w is of type 1, w is entwined with F, and the distance from w to F is less than
√

2rrw.249

• w is of type 2, w is entwined with F, and the distance from w to F is less than rrw.250

The last two disqualifiers prevent entwinement from leading to sequences of ever-shorter edges.251

Suppose f is encroached and we insert a vertex v at the circumcenter of the subpolygon g that contains252

projF(w). Rule 2 is executed only when no subsegment is encroached, which implies that v ∈ F [5, Lemma253

6.2]. Thus a vertex inserted by Rule 2 always lies on the same polygon as the encroached subpolygon.254

We delete from v’s diametric ball any type 3 vertices visible from v. (It suffices to delete only those255

that would otherwise be connected to v by an edge of the CDT.) After deleting the type 3 vertices, we256

set rrv ← minw |vw|, where w is chosen from among g’s vertices and all the vertices in g’s diametric ball257

that are connected to v by edges of the CDT and eligible to encroach upon F (even if they’re not in the258

diametric ellipsoid and don’t actually encroach). Observe that rrv is the distance rv from v to its nearest259

visible neighbor if that neighbor is not entwined with F.260

The minimizing vertex w is the parent of v unless it is a vertex of g. In the latter case, rrv is the radius261

of the diametric ball and the parent of v is the encroaching vertex p that triggered the subpolygon split.262

(Usually p is a rejected type 3 circumcenter, but occasionally p is a mesh vertex that is not connected to v263

because ineligible vertices block the way).264

Observe an important difference between the treatment of subsegments and the treatment of subpoly-265
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gons: a subsegment is always split if there is a vertex in its diametric ball, whereas we often decline to split266

a subpolygon if the vertices in its diametric ellipsoid are not visible or are too close to the subpolygon.267

Rule 3: Let t be a splittable tetrahedron with circumsphere S and circumcenter c. We always set rrc to268

be the radius of S . In the standard Delaunay refinement algorithm, rc also is the radius of S , as S is empty.269

In a CDT, however, there might be vertices inside S , and these might be visible from c (albeit not from the270

interior of t), in which case rc < rrc. We will see that in that circumstance, c is always rejected on account271

of encroachment. However, we are in danger of creating indefensibly short edges by repeatedly splitting a272

small subsegment or subpolygon near c. One of our main contributions is a proof that we can always avoid273

that fate by splitting subsegments and subpolygons in the right order.274

Our procedure for splitting a tetrahedron appears in Figure 1. If c encroaches upon multiple subsegments275

or subpolygons, the main goal of SplitTetrahedron is to find a subsegment whose diametric ball’s radius276

is at least rrc/
√

2 or a subpolygon whose diametric ball’s radius is at least
√

3rrc/2 to help guarantee that277

the final mesh has no skinny tetrahedra. Usually, SplitTetrahedron achieves this goal by identifying a278

subsegment or subpolygon that has no vertex inside S . Occasionally, SplitTetrahedron meets the goal by279

identifying a subpolygon that is sufficiently far from c.280

SplitTetrahedron has several subsidiary goals. We prefer to split encroached subsegments over en-281

croached subpolygons, except that we prefer to split subpolygons that are partly or fully visible from c over282

fully occluded subsegments. If polygons subdivide the domain into multiple chambers, we try to split a283

subsegment or subpolygon in the same chamber as t, even if c is in a different chamber.284

We have embedded a proof of the procedure’s correctness as comments in the pseudocode that explain285

the theoretical justification for each step. The theory it relies on (the lemmas in the appendix) form a286

foundation for constrained Delaunay refinement that we hope will enable further developments.287

4 Correctness and Guarantees of the Refinement Algorithm288

Every vertex v of type 1–3, inserted or rejected, has a parent vertex p(v). Parents for type 1 and 2 vertices289

are defined in Section 3. For a type 3 circumcenter v of a splittable tetrahedron t, p(v) is the vertex of t with290

the smallest relaxed insertion radius rrp. Every vertex v has an insertion radius rv, even a rejected vertex,291

for which rv is the distance to the nearest distinct vertex visible from v at the moment when v was rejected.292

Our algorithm assigns a relaxed insertion radius rrv to every mesh vertex and rejected circumcenter.293

The success of our algorithm follows from the fact that the relaxed insertion radii obey the same inequal-294

ities that the insertion radii obey for domains that satisfy the projection condition.295

Lemma 1. Let v be a vertex (inserted or rejected), and let p = p(v) be its parent.296

i. If v is of type 3, then rrv > Brrp ≥ Brp (by the definition of splittable).297

ii. If v is of type 2 and p is of type 3, then rrv ≥
√

3rrp/2.298

iii. If v is a type 1 midpoint (not inserted off-center) and p is of type 3, then rv ≥ rrp/
√

2.299

iv. If v is a type 1 midpoint of a segment s and p is of type 2 on a polygon F ⊃ s, then rv ≥ rrp/
√

2.300

tetrahedron subpolygon
circumcenters

subsegment
midpointscircumcenters ×

√
3

2 × 1
√

2
×B

The flow graph at right301

represents Lemma 1. Type 3302

circumcenters can father type 2303

circumcenters whose relaxed304

insertion radii are smaller by305

a factor of
√

3/2, which in turn can father type 1 midpoints whose insertion radii are smaller by another306

factor of 1/
√

2. To avoid spiralling into the abyss, we insist that no cycle in the graph have a product less307

than one. This constraint fixes the best guarantee on the relaxed radius-edge ratios at B = 2
√

2/3.308

For an input PLC X that satisfies the projection condition, the inequalities in Lemma 1 make it possible309

to put a lower bound on the insertion radius of every vertex. Without the projection condition, vertices with310
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SplitTetrahedron(t,T ,X) { Split a tetrahedron t in a Steiner CDT T of X. }
1 Let S and c be the circumsphere and circumcenter of t. Let q be any point in the interior of t.
2 Locate c in T by a straight-line walk from q to c. (Stop the walk if it strikes a subpolygon.)
3 if c is visible from q

{ As q sees c, by Lemma 5, no mesh vertex inside S is visible from c. }
{ Therefore, a subsegment or subpolygon that is fully visible from c has no vertex inside S . }

4 if c encroaches upon a subsegment e ∈ T that is fully visible from c
5 SplitSubsegment(e). return.

{ At this point, by the contrapositive of Lemma 4, a subsegment can be encroached upon by c only if }
{ it is fully occluded from c. We prefer to split visible subpolygons over occluded subsegments. }

6 if c encroaches upon a subpolygon f ∈ T that is fully visible from c and contains proj f (c)
7 SplitSubpolygon( f ). return.

{ At this point, by Lemma 8, no subsegment or subpolygon intersects the inner half of S ’s radius. }
{ Therefore, if c encroaches upon a subpolygon g that contains projg(c), g must have a circumradius }
{ at least

√
3/2 times the radius of S and be safe to split. }

8 if c encroaches upon a subpolygon f ∈ T that is partly or fully visible from c
9 Let F ∈ X be the polygon that includes f .
10 Locate the subpolygon g of F that contains projF(c) by a straight-line walk on F from f .

{ As c encroaches upon f , c also encroaches upon every subpolygon and subsegment that inter- }
{ sects a straight-line walk from f to projF(c) by the Monotone Power Lemma [5, Lemma 7.5]. }

11 if the walk strikes a subsegment e ⊂ F before reaching projF(c)
12 SplitSubsegment(e). return. { Note: e might not be visible from c. That’s okay. }
13 else SplitSubpolygon(g). return. { Note: g might not be visible from c. That’s okay. }

{ Unfortunately, an encroached subsegment can be entirely occluded by an unencroached subpolygon. }
14 if c encroaches upon a subsegment e ∈ T that is occluded from c
15 SplitSubsegment(e), but if the occluding polygon is entwined with e, pretend that c is

also entwined for the purpose of computing rrv for the new vertex v. return.
{ c might encroach upon a subpolygon that is fully occluded from c, but we don’t care. }

16 Insert c into T . Set rrc ← the radius of S . return.
17 else { c is not visible from q; c will not be inserted. }
18 Let f ∈ T be the subpolygon intersecting qc nearest q (blocking c’s visibility from q).
19 Let F ∈ X be the polygon that includes f . Let c′ be the point where qc intersects F.

{ Let c′′ be a point on qc′ infinitesimally close to c′. At this point, by Lemma 5, no mesh vertex }
{ inside S is visible from c′′. Therefore, no vertex of f nor g (Line 22) is inside S . }

20 if some vertex w of t encroaches upon f
{ Sometimes we discover late that an existing vertex encroaches upon f . Time to split it. }

21 Locate the subpolygon g of F that contains projF(w). SplitSubpolygon(g). return.
22 Locate the subpolygon g of F that contains projF(c) by a straight-line walk in F from c′.
23 if the walk strikes a subsegment e of F before reaching projF(c)
24 SplitSubsegment(e). return. { c encroaches upon e. }

{ If c encroaches upon any subpolygon of F, c encroaches upon the one that contains projF(c). }
25 if c encroaches upon g
26 SplitSubpolygon(g). return.

{ As c does not encroach, some vertex of t must be in the ellipsoid but ineligible. We’re stuck. }
27 else Mark t as “fenced in” so the algorithm doesn’t try to split t again. return.

Figure 1: Procedure for splitting a tetrahedron t whose relaxed radius-edge ratio exceeds a threshold B. The
subroutines SplitSegment and SplitSubpolygon implement Rules 1 and 2 (pseudocode not included here). The
lemmas invoked by the comments appear in the appendix.
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very small insertion radii might appear because of encroachments among polygons and segments that meet311

at small angles. However, our algorithm forces the inequalities to apply to the relaxed insertion radii. The312

following theorem is proven in the appendix.313

Theorem 2. Given an input PLC X, let lfsmin = minp∈|X| lfs(p). Let ψ be the smallest angle at which two314

adjoining segments in X meet. Let θ be the smallest dihedral angle at which the affine hulls of two adjoining315

polygons in X meet. Let φ be the smallest nonzero angle at which a segment meets the affine hull of an316

adjoining polygon. Suppose a tetrahedron is considered to be splittable if its relaxed radius-edge ratio317

exceeds a specified bound B ≥ 2
√

2/3 � 1.63 Our Delaunay refinement algorithm terminates with no edge318

shorter than min{2, 4 sin(ψ/2), 4
√

2 sin(θ/2), 2 sin φ} · lfsmin/5. Moreover, no edge is shorter than 2 lfsmin/5319

except for subsegments and edges whose endpoints are entwined with each other. Every skinny tetrahedron320

(having a radius-edge ratio greater than B) in the final mesh has at least one vertex that lies on a segment321

or polygon in X that fails the projection condition.322

This lower bound on edge lengths compares favorably with the O(φθ · lfsmin) bound of Cheng et al. [5].323

The only edges our algorithm creates shorter than O(lfsmin) are subsegments of segments that participate324

in small angles, and edges that span cells meeting at small angles. Short edges of the latter type cannot be325

avoided, but we would prefer that all subsegments have length O(lfsmin). Fortunately, we can achieve this326

goal if we are willing to tolerate a slightly weaker bound B on the radius-edge ratio. The idea is to use327

off-center splits to align the type 2 vertices on the same spheres as the type 1 vertices so the former cannot328

encroach on small subsegments. We require not just Ruppert’s power-of-two spheres, but also additional329

spheres between them aligned with the subsegment bisections. There is a trade-off between using coarsely330

spaced spheres to prevent type 2 vertices from encroaching and using finely spaced spheres to obtain high331

tetrahedron quality by limiting the circumcenter perturbations. We omit further details.332

Our proof shows that our algorithm does not produce unnecessarily short edges relative to a global333

smallest feature size lfsmin. There are well-known methods for showing that the edge lengths locally adapt334

proportionally to the local feature size function lfs(x). Our method can adapt in the same way, though a335

proof would be quite tedious and we doubt anybody would read it. But we emphasize that our accounting336

method of recording relaxed insertion radii is particularly effective at limiting the propagation of the tiny337

edge lengths that necessarily form at tiny domain angles, and could be harnessed to give a user local control338

over how far small edge lengths propagate and how smoothly they attenuate.339

5 A Partial Implementation and Example Meshes340

We have a partial implementation of our algorithm in the software TetGen, version 1.5 (November341

2013, http://www.tetgen.org). Crucial features we have included are the tracking of relaxed insertion radii342

and the refusal to split tetrahedra that are fenced in or not splittable. We have not yet implemented diametral343

ellipsoids; we are using diametral balls for subpolygon encroachment. As a torture test, we created a PLC344

with 64 irregular “fan blades” adjoining at a common segment separated by very small dihedral angles,345

ensuring a great deal of mutual encroachment. Figure 2 shows the PLC and the mesh our algorithm generates346

with a radius-edge ratio bound of B = 2. The main observations are that the algorithm successfully produces347

a mesh, the surviving skinny tetrahedra are all nested within the fan blades (many of them fenced in), there348

are surprisingly many good tetrahedra between the blades, and the spacing of vertices near the central349

segment is surprisingly moderate. We also show a mesh of the PLC m1249 from INRIA’s mesh repository,350

which has many small plane and dihedral angles.351

Unfortunately, we were unable to find a conforming Delaunay triangulation code that could triangulate352

this example for a comparison. However, we are confident that any conforming Delaunay triangulation353

would necessarily have far more vertices than our constrained Delaunay mesh, because the triangles on the354

fan blades are squeezed between the neighboring blades.355
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PLC: 70 polygons, 161 vertices mesh: 23,727 tetrahedra, 1.0 sec. mesh cut along central segment
3,733 mesh vertices skinny tetrahedra (radius-edge ratios > 2) plane angles

subpolygons subpolygons, some polygons hidden subpolygons, more polygons hidden
m1249: 49,745 tetrahedra, 1.3 sec. skinny tetrahedra (radius-edge ratios > 2) plane angles

Figure 2: Our torture test (top nine images) and the PLC m1249 from INRIA’s mesh repository (bottom three).
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Appendix: Proofs356

Note to reviewers: We append the missing lemmas and proofs here. You don’t have to look at them, but we357

think the statements of Lemmas 5 and 8 are interesting and surprising. We expect that the important parts358

will fit in the proceedings format. Thank you.359

Let e and e′ be two edges in R3. Say that e overlaps e′ from the viewpoint q if some point of e not shared360

by e′ lies between q and e′. In other words, there exists a point pe ∈ e\e′ and a point pe′ ∈ e′ such that361

pe ∈ qpe′ . We begin by establishing that when no edge is encroached, this overlap relationship is a partial362

order with no cycles. Thus, it is not possible for an edge e1 to overlap e2, which in turn overlaps e3, which363

in turn overlaps e1, all from the same viewpoint q.364

Let B be a ball with center o and radius r. The power of B with respect to a viewpoint q is Ψq(B) =365

|qo|2 − r2. Clearly, q ∈ B if Ψq(B) ≤ 0, and q is outside B if Ψq(B) is positive. Given an edge e, we use Ψq(e)366

as a shorthand for the power Ψq(B) of e’s diametric ball B. Thus, a point q encroaches upon e if Ψq(e) ≤ 0.367

Lemma 3. Let e and e′ be two edges. Suppose that no vertex of e′, except perhaps a vertex shared by e, lies368

in the diametric ball of e, and no vertex of e not shared by e′ lies in the diametric ball of e′. If e overlaps e′369

from the viewpoint q, then Ψq(e) < Ψq(e′).370

Proof. See Shewchuk [19], Lemma 3. �371

372

Similar results on the acyclicity of Delaunay triangulations can be found in earlier papers by Edelsbrun-373

ner [10] and Edelsbrunner and Shah [11].374

Lemma 4. Let T be a CDT whose vertices do not encroach upon any of its subsegments. Let c be a point375

in R3. If c encroaches upon a subsegment in T that is partly visible from c, then c encroaches upon a376

subsegment in T that is fully visible from c.377

Proof. By assumption, there is a subsegment that is encroached upon by c and at least partly visible from378

c. Among all such subsegments, let e be the one having the least power with respect to c.379

If e is fully visible from c, the result follows. If e is only partly visible from c, pick a point p on e where380

the visibility changes from visible to occluded. The line segment cp must intersect another subsegment e′381

that is at least partly visible from c. Because e′ overlaps e from c’s viewpoint, and neither subsegment is382

encroached, the power of e′ with respect to c is less than the power of e by Lemma 3. As c encroaches upon383

anc101: 2,772 triangles, 1,378 vertices Initial CDT mesh: 258,428 tetrahedra, 6.3 sec.

Figure 3: PLC anc101 from INRIA’s mesh repository. This example demonstrates that our algorithm leaves no
skinny tetrahedra behind on a PLC that has no small angles. Our algorithm behaves much like standard Delaunay
refinement in the absence of difficult angles.
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e, the power of e is zero or negative, thus so is the power of e′, and c encroaches upon e′. This contradicts384

the assumption that e has the least power among all encroached subsegments at least partly visible from c.385

Therefore, e is fully visible from c. �386

387

Lemma 5. Let T be a Steiner CDT of a PLC X, and suppose that T ’s vertices do not encroach upon any of388

T ’s subsegments. Let t ∈ T be a tetrahedron with circumsphere S and circumcenter c. Let q be a point in389

the interior of t. Let c′ be a point on the line segment qc that is visible from q and does not lie on a polygon390

in X. Then no vertex of T strictly inside S is visible from any point on qc′.391

Proof. Let H be the convex hull of t, c, and all the vertices of T strictly inside S . Let E ⊂ T be the set of392

all subsegments with these two properties: for each e ∈ E, at least one vertex of e is strictly inside S , and393

there is a point p ∈ e ∩ H that is visible from q. We will see that E is empty.394

For the sake of contradiction, let e be the subsegment in E that has the least power with respect to q.395

Let v be a vertex of e that is strictly inside S , and let p ∈ e ∩ H be a point that is visible from q. As t is396

constrained Delaunay, v is not visible from q. However, both q and v are visible from p. Therefore, 4qpv397

intersects one or more polygons in X; moreover, 4qpv intersects some subsegment e′ ∈ T (on the boundary398

of one of those polygons) at a point p′ that is visible from q. To see this, imagine moving p along e toward v399

until the instant when q loses sight of p; at that moment, the line segment qp intersects a polygon’s boundary400

at a point visible from q. The subsegment e′ found this way overlaps e from q’s viewpoint, and therefore e′401

has lesser power with respect to q than e by Lemma 3. By assumption, e is the subsegment in E with least402

power, so e′ < E. Observe that H includes 4qpv, and therefore contains p′. It follows that no vertex of e′ is403

inside S ; otherwise, e would be in E.404

Let B be the diametric ball of e′. The boundary of B intersects t’s circumsphere S in a circle C. The405

affine hull of C is a plane Π, which divides space into two halfspaces. The vertices of e′ lie on the boundary406

of B but not inside S , so e′ is restricted to a closed halfspace we call ΠB. No subsegment is encroached, so407

no vertex of T is in B; the vertices of T that lie on or inside S are restricted to the complementary open408

halfspace which we call ΠS . Suppose without loss of generality that Π is oriented horizontally with ΠB409

below and ΠS above. Let m be the midpoint of e′, which is also the center of B. The line passing through410

m and S ’s center c is perpendicular to Π with m directly below c. Recall that H is a convex hull of vertices411

on or inside S , which lie below Π in ΠS , and the center c of S . Although c might be above or below Π, it is412

always below m. If c is below Π, then H is entirely below Π and cannot intersect e′. If c is above Π, then413

the portion of H above Π is strictly included in the cone with apex c and boundary circle C. As e′ has its414

center m above c and its endpoints on or above C, H still cannot intersect e′. This contradicts the fact that415

p′ ∈ H. From this contradiction we conclude that the overlapping subsegment e′ does not exist, the vertex v416

of e cannot be hidden from q by a polygon, and E is empty.417

Let us return to the original claim. Suppose for the sake of contradiction that some vertex w ∈ T lies418

strictly inside S and is visible from a point on qc′. As t is constrained Delaunay, w is not visible from q. As419

w and q are visible from a point on qc′, but not from each other, 4qwc intersects some subsegment e ∈ T420

(on the boundary of one of those polygons) at a point p that is visible from q. Observe that p ∈ 4qwc ⊂ H.421

If no vertex of e is inside S , we repeat the argument of the previous paragraph and obtain a contradiction.422

If e has a vertex inside S , then e ∈ E; but E is empty. It follows that no vertex inside S is visible from any423

point on qc′. �424

425

Lemma 6. Let S be a sphere with center c and radius r. Let B be a ball with center m and radius R, and426

suppose that B is the diametric ball of a subsegment or subpolygon f whose vertices are not inside S . Let427

p = proj f (c) be the point nearest c on f ’s affine hull, and suppose that p ∈ f .428

If c ∈ B, then R ≥ r/
√

2.429
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If c < B, then |cm| ≥ |cp| > r/
√

2.430

Furthermore, if f is a subpolygon, let E be the diametric ellipsoid of f —that is, the diametric ball scaled431

by a factor of 1/
√

3 in the direction orthogonal to f .432

If c ∈ E, then R ≥
√

3r/2.433

If c < E, then |cm| ≥ |cp| > r/2.434

Proof. If f is a subpolygon, let Π be the affine hull of f . If f is a subsegment, let Π be the plane that435

includes f and is perpendicular to cp. In either case, Π contains m and p.436

The cross-section S ∩ Π is a circle C with center p and radius r̄, and no vertex of f is inside C. As437

p ∈ f , f has a vertex v for which ∠mpv ≥ 90◦, unless m = p or p = v. In any of these three cases,438

R2 = |mv|2 ≥ |mp|2 + |pv|2. As v is not inside C, |pv| ≥ r̄, thus R2 ≥ |mp|2 + r̄2. By Pythagoras’ Theorem,439

|cm|2 = |cp|2 + |mp|2 and r2 = |cp|2 + r̄2 ≤ |cp|2 + R2 ≤ |cm|2 + R2.440

If c ∈ B, then |cm| ≤ R; therefore r2 ≤ 2R2 and the first result follows. If c < B, then |cm| > R; therefore441

|cm|2 > R2 ≥ |mp|2 + r̄2 = |cm|2 − |cp|2 + r2 − |cp|2. Thus 2|cp|2 > r2 and the second result follows.442

If f is a subpolygon and c ∈ E, then |cp| ≤ R/
√

3; therefore r2 ≤ 4R2/3 and the third result follows. If443

c < E, then 3|cp|2 + |mp|2 > R2 ≥ |mp|2 + r̄2 = |mp|2 + r2 − |cp|2. Thus 4|cp|2 > r2 and the fourth result444

follows. �445

446

Lemma 7. Let T be a CDT whose vertices do not encroach upon any of its subsegments. Let S be a sphere447

with center c and radius r. Suppose that no vertex inside S is visible from c. Suppose that c encroaches448

upon no subsegment that is at least partly visible from c. Then the distance from c to every point that lies on449

a subsegment and is partly or fully visible from c is strictly greater than r/
√

2. Moreover, the distance from450

c to every point that lies on a subpolygon and is partly but not fully visible from c is strictly greater than451

r/
√

2.452

Proof. Consider a subsegment e whose vertices are not inside S and that is at least partly visible from c.453

By assumption, e’s diametric ball does not contain c. By Lemma 6, the distance from c to any point on e is454

strictly greater than r/
√

2.455

Can a subsegment have a point that is visible from c and closer to c than r/
√

2 if it has a vertex inside456

S (not visible from c by assumption)? We will see that this is not possible. Suppose for the sake of457

contradiction that there is a subsegment e with at least one vertex u inside S , and there is a point p on e that458

is visible from c and no farther than r/
√

2 from c. Moreover, suppose that among all such subsegments, e459

is the subsegment with least power with respect to c. There is a point q on e between p and u where the460

visibility from c changes. At this point another subsegment e′ overlaps e from c’s viewpoint and is visible461

from c. By Lemma 3, e′ has lesser power with respect to c than e, so e′ is not such a simplex, so the distance462

from c to any point on e′ is strictly greater than r/
√

2; hence so is the distance from c to q.463

Let B be the diametric ball of e′. Let m be the midpoint of e′, which is also the center of B. Consider464

two perpendicular planes that include e′: a plane passing through c and a plane P perpendicular to that one.465

P cuts B into two hemispheres; the hemisphere H farthest from c includes every point that is both inside S466

and opposite P from c. As e′ is not encroached, u cannot be in H. Because e′ overlaps e from c’s viewpoint,467

the point q is in H. Therefore, only one of p or u can be on the same side of P as c. It follows that it is not468

possible to have both u inside S and p no farther than r/
√

2 from c.469

This contradiction establishes that the distance from c to any point visible from c on any subsegment is470

strictly greater than r/
√

2.471

The same claim is true for every subpolygon that is partly but not fully visible from c. We establish this472

by a repetition of the reasoning in the last three paragraphs. �473

474
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Lemma 8. Given the assumptions of Lemma 7, suppose also that c is in the diametric ellipsoid of no475

subpolygon f that contains proj f (c) and is fully visible from c. Then the distance from c to every segment476

and every polygon is strictly greater than r/2, and the distance from c to the center of the diametric ball of477

every subsegment and subpolygon is strictly greater than r/2.478

Proof. Let p be the point nearest c on all the polygons and segments. Because p is nearest c, p is visible479

from c. If p lies on a subsegment, then by Lemma 7, the distance from c to every point on every polygon480

and segment is strictly greater than r/
√

2, as claimed.481

Otherwise, p lies on the interior of a polygon F. Note that because p is the point nearest c on F,482

p = projF(c). Let f be the subpolygon of F that contains p. Suppose for the sake of contradiction that the483

distance from p to c does not exceed r/2. By Lemma 7, partly visible subpolygons cannot be that close to484

c, so f is fully visible from c. By assumption, f has no vertex inside S and f ’s diametric ellipsoid does not485

contain c. By Lemma 6, |cp| > r/2, a contradiction. It follows that the distance from c to every point on486

every polygon and segment is strictly greater than r/2.487

The center of every subpolygon’s diametric ball lies on the subpolygon’s polygon, so no subpolygon has488

a diametric ball whose center is closer to c than r/2. �489

490

Lemma 1. Let v be a vertex (inserted or rejected), and let p = p(v) be its parent.491

i. If v is of type 3, then rrv > Brrp ≥ Brp.492

ii. If v is of type 2 and p is of type 3, then rrv ≥
√

3rrp/2.493

iii. If v is a type 1 midpoint (not inserted off-center) and p is of type 3, then rv ≥ rrp/
√

2.494

iv. If v is a type 1 midpoint of a segment s and p is of type 2 on a polygon F ⊃ s, then rv ≥ rrp/
√

2.495

Proof. i. By definition, a splittable tetrahedron has a circumradius rrv greater than B times rrp, where p is496

the tetrahedron vertex that minimizes rrp.497

ii. When SplitTetrahedron considers inserting a vertex at the circumcenter p of a tetrahedron t with498

circumradius rrp, it consents to split a subpolygon g with circumcenter v and circumradius rrv in only499

two circumstances: when the vertices of g are not in t’s circumsphere, in which case rrv ≥
√

3rrp/2 by500

Lemma 6, or when the distance from v to the center of the diametric ball of every subpolygon is known to501

be greater than rrp/2 by Lemma 7, in which case every encroached subpolygon satisfies the inequality. See502

the comments in SplitTetrahedron for further details.503

iii. As above, but a subsegment’s diametric ball is known to be empty when a type 3 vertex encroaches504

upon it, so we can bound rv as well as rrv.505

iv. Follows immediately from Lemma 6. �506

507

Theorem 2. Given an input PLC X, let lfsmin = minp∈|X| lfs(p). Let ψ be the smallest angle at which508

two adjoining segments in X meet. Let θ be the smallest dihedral angle at which the affine hulls of two509

adjoining polygons in X meet. Let φ be the smallest nonzero angle at which a segment meets the affine hull510

of an adjoining polygon. Suppose a tetrahedron is considered to be splittable if its relaxed radius-edge ratio511

exceeds a specified bound B ≥ 2
√

2/3 � 1.63 Our Delaunay refinement algorithm terminates with no edge512

shorter than min{2, 4 sin(ψ/2), 4
√

2 sin(θ/2), 2 sin φ} · lfsmin/5. Moreover, no edge is shorter than 2 lfsmin/5513

except for subsegments and edges whose endpoints are entwined with each other. Every skinny tetrahedron514

(having a radius-edge ratio greater than B) in the final mesh has at least one vertex that lies on a segment or515

polygon in X that fails the projection condition.516

Proof. For every type 0 vertex w ∈ X, rw is the distance to the nearest visible vertex in X, so rrw = rw ≥517

lfs(w) ≥ lfsmin. Let v be a vertex that is subsequently inserted into the mesh or rejected. We show by518

induction on the temporal sequence of vertices that rrv ≥ 2 lfsmin/5, and moreover rrv ≥ 2
√

2 lfsmin/5 if519
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v is of type 2, and rrv > 4
√

2/3 lfsmin/5 if v is of type 3. Suppose for the inductive hypothesis that these520

statements hold for every vertex that was inserted into the mesh or rejected before v is inserted. Let p = p(v)521

be the parent of v. Consider the following cases.522

• If v is a type 3 circumcenter of a splittable tetrahedron, then rrv > Brrp by Lemma 1, so rrv >523

2
√

2/3rrp ≥ 4
√

2/3 lfsmin/5 by the inductive hypothesis.524

• If v is a type 2 circumcenter of an encroached subpolygon, consider the following cases.525

– If p is of type 3, then rrv ≥ rrp/
√

2 by Lemma 1. By the inductive hypothesis, rrp > 4
√

2/3 lfsmin/5.526

Therefore, rrv > 2
√

2 lfsmin/5.527

– If p is of type 2 and entwined with v, then |vp| ≥ rrp; otherwise, p would not be eligible to528

encroach. Therefore, rrv = |vp| ≥ 2
√

2 lfsmin/5.529

– If p is of type 1 and entwined with v, then |vp| ≥
√

2rrp; otherwise, p would not be eligible to530

encroach. Therefore, rrv = |vp| ≥ 2
√

2 lfsmin/5.531

– If p is of type 0–2 and the two cases above do not apply, then v and p lie on disjoint members of532

X. Therefore, rrv = |vp| ≥ lfs(v) ≥ lfsmin.533

• If v is a type 1 vertex inserted off-center on an encroached subsegment with endpoints a and b, |va| <534

|vb|, then |va| is at least one-fifth the length of the original segment. At the midpoint m of the original535

segment, lfs(m) is half the length of the original segment, so rrv ≥ |va| ≥ 2 lfs(m)/5 ≥ 2 lfsmin/5.536

• If v is a type 1 midpoint of an encroached subsegment with endpoints a and b, consider the following537

cases.538

– If p is of type 3, then rv ≥ rrp/
√

2 by Lemma 1. By the inductive hypothesis, rrp > 4
√

2/3 lfsmin/5.539

Therefore, rrv > 4 lfsmin/(5
√

3).540

– If p is a type 2 circumcenter of a subpolygon f on a polygon F ⊃ e, then rv ≥ rrp/
√

2 by541

Lemma 1. By the inductive hypothesis, rrp ≥ 2
√

2 lfsmin/5, so rrv ≥ rv ≥ 2 lfsmin/5.542

– If p is of type 2 and entwined with v, then rrv ≥ min{rrp/
√

2,minw dvw} by construction, where543

w ranges over vertices connected to v by CDT edges. If rrv = rrp/
√

2, then by the inductive544

hypothesis, rrv ≥ 2 lfsmin/5. Otherwise, let u be the vertex minimizing minw dvw. Either dvu =545

rru or dvu = |vu| and v is not entwined with u. In the former case, rrv = rru ≥ 2 lfsmin/5. In the546

latter case, if u is of type 0–2, then v and u lie on disjoint members of X, so rrv = |vu| ≥ lfs(v) ≥547

lfsmin. If u is of type 3, then |vu| > rrp/
√

2 by Lemma 7, because SplitTetrahedron would not548

have inserted u unless the lemma’s preconditions held. Therefore, rrv = |vu| > 4 lfsmin/(5
√

3).549

– If p is a, b, or a type 1 vertex entwined with v, then rrv = dvp ≥ rrp ≥ 2 lfsmin/5.550

– If p is of type 0–2 and the three cases above do not apply, then v and p lie on disjoint members551

of X. Therefore, |vp| ≥ lfs(v) ≥ lfsmin. By construction, rrv = |va| ≥ |vp| ≥ lfsmin if p is of type 2552

(thus rejected), and rrv = dvp ≥ |vp| ≥ lfsmin otherwise.553

For tetrahedron circumcenters that are not rejected, rv = rrv. Therefore, a newly inserted type 3 vertex554

is no closer than 4
√

2/3 lfsmin/5 to any prior visible vertex, so the algorithm can insert only a finite number555

of type 3 vertices. It eventually runs out of places to insert new ones.556

Although a subpolygon circumcenter can have rv � rrv because of entwinement, a newly inserted557

type 2 vertex is no closer than 2
√

2 lfsmin/5 to any prior vertex on the same polygon. Hence, the algorithm558
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can insert only a finite number of type 2 vertices. A type 2 vertex is not inserted if it encroaches upon559

a subsegment, so no type 2 vertex is closer than 2 lfsmin/5 to its polygon’s boundary. Thus the distance560

between two type 2 vertices lying on different polygons is at least lfsmin if the polygons are disjoint, and at561

least (4/5) lfsmin sin(θ/2) if their affine hulls meet at a dihedral angle of θ. The distance between a type 2562

vertex and a type 1 vertex not on the same polygon is at least lfsmin if the polygon and segment are disjoint,563

or at least (2/5) lfsmin sin φ if the segment meets the affine hulls of the polygon at an angle of φ.564

Segment splitting with concentric shells has the effect that if the vertices of a subsegment e lie on two565

concentric shells (or one on a shell and one at the center of the shells), e can only be encroached upon by566

vertices between those two shells. It follows that no vertex is ever inserted closer to a type 0 vertex than a567

distance of 2 lfsmin/5. (There is a shell centered at the vertex with a radius between 2 lfsmin/5 and 4 lfsmin/5568

in which no vertex can be placed.) The distance between two type 1 vertices lying on different segments is569

at least lfsmin if the segments are disjoint, or at least (4/5) lfsmin sin(ψ/2) if they meet at an angle of ψ.570

There is only one circumstance in which a subsegment shorter than 2 lfsmin/5 can be created if a sub-571

segment that short did not already exist. We have seen that a type 2 vertex and a segment can be as close as572

(2/5) lfsmin sin φ, but no closer, when a polygon meets a segment at a small angle. If the vertex encroaches573

upon a subsegment of the segment, the new subsegments thus created can be equally short, but no shorter.574

Hence, the algorithm can insert only a finite number of type 1 vertices. Therefore, the algorithm terminates.575

Consider a skinny tetrahedron t that survives in the final mesh; either t is not splittable or it is fenced576

in. If t is not splittable, the length ` of its shortest edge e is less than the relaxed insertion radius rrv of577

e’s most recently inserted vertex v. A CDT always connects a vertex to its nearest visible neighbor, which578

implies that when v was inserted, it was assigned a relaxed insertion radius rrv greater than the distance to579

that neighbor. This is possible only if v was entwined with its nearest visible neighbor when it was inserted,580

or if v is type 1 and was entwined with its rejected type 2 parent. In either case, v lies on a cell in X that fails581

the projection condition.582

If t is fenced in, t encroaches upon a subpolygon f that hides the visibility of t’s circumcenter c from a583

point in t’s interior, yet c is not in f ’s diametric ball. This implies that at least one vertex v of t that is not on584

F is in f ’s diametric ball. Yet v is not eligible to encroach upon F, so v is entwined with F. Hence v lies on585

a cell in X that, jointly with F, fails the projection condition. �586

587
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