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1. INTRODUCTION

One of the most influential random matrix theory (RMT) developments of the last decade was
discovery in 2002 of the so-called tridiagonal β-ensembles by Dumitriu and Edelman in [1]. The
tridiagonal random matrices of this ensemble have explicit and independent (up to symmetry)
entries and their eigenvalues are distributed according to the equilibrium joint probability density
function (jpdf) of charged particles in a one dimensional Coulomb gas with electrostatic repul-
sion, confined in a quadratic potential and subject to a thermal noise at temperature T = 1/β
for arbitrary β > 0. More precisely, the jpdf of the eigenvalues is given by

(1) Pβ(λ1, · · · , λN) =
1

Zβ
N

∏
i<j

|λi − λj|β exp(−1

4

N∑
i=1

λ2
i ) .

For β = 1 (respectively β = 2, 4), this jpdf arises as the joint law of the eigenvalues of
the classical Gaussian orthogonal (respectively unitary, symplectic) ensembles, whose linear
eigenvalues statistics were extensively studied in the literature (see [2, 3, 4, 5, 6] for a review of
RMT and its applications).

The introduction of the tridiagonal random matrices for arbitrary β-ensembles has led to consid-
erable progress for the study of linear statistics of the point process with jpdf Pβ . They have per-
mitted to prove that the largest eigenvalues converge jointly in distribution to the low-lying eigen-
values of the random Schrodinger operator, also called stochastic Airy operator,− d2

dt2
+t+ 2√

β
b′t,

restricted to the positive half-line, where b′ is a white noise on R+ [7, 8] ( see also [9] for a review
on the top eigenvalue statistics of random matrices).

In this paper, we are interested in the limiting marginal distributions of the bottom eigenvalues
of the stochastic Airy operator when the parameter β tends to 0. As mentioned above, the
stochastic Airy operator appears as the continuous scaling limit of β-ensembles at the edge of
the spectrum and we shall see that the question we investigate is in fact related to the largest
eigenvalues statistics of β-ensembles when the β index scales with the dimension N such that
βN → 0 when N → +∞.

A somehow related question was investigated in [10] (see also [11]) where the authors consider
the empirical eigenvalues density of β-ensembles in the limit of large dimension N and with
β = 2c/N . The limiting family of probability density {ρc, c ≥ 0} is computed explicitly in
terms of Parabolic cylinder functions and is proved to interpolate continuously between the
Gaussian shape (obtained for c = 0) and the Wigner semicircle shape (which is recovered
when c→ +∞). The β-Wishart ensemble was handled similarly in [12].

The question of the characterization of an interpolation between the Tracy-Widom β distribution
(which governs the typical fluctuations of the top eigenvalue as N →∞ with β > 0 fixed) and
the Gumbel distribution (which governs the typical fluctuations of the maximum of independent
Gaussian variables – corresponding to the β = 0 case) was raised in [10] and [13].

We answer this question proving that the Tracy-Widom β distribution converges weakly (when
properly rescaled and centered) to the Gumbel distribution when β goes to 0. This is the con-
tent of Theorem 4.2. We use the characterization of the marginal distributions of the low lying
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eigenvalues of the stochastic Airy operator in terms of the explosion times process of the associ-
ated Riccati diffusion [8]. We show that the empirical measure of the explosion times converges
weakly in the space of Radon measures to an inhomogeneous Poisson point process on R+

with explicit intensity. The weak convergence of all the marginal distributions of the second,
third, etc eigenvalues can be readily deduced. Although we expect the minimal eigenvalues to
have Poissonian statistics in the small β limit, the convergences of the joint distribution of the k
bottom eigenvalues for any fixed index k seem to be difficult to prove as there is not a simple
characterization of this law in terms of a single diffusion. It is still characterized in this setting in
terms of a family of coupled diffusions but the interaction between those diffusions is complex
and makes the analysis difficult (see Figures 1 and 2 below).

As an application, we investigate (with heuristic and numerical arguments) the weak conver-
gence of the top eigenvalue of βN -ensembles in the double scaling limit N → +∞ and
βN → 0. We revisit the ideas of [7] which proposes that tridiagonal random matrices of β-
ensembles are properly viewed as finite difference schemes of the stochastic Airy operator.
From our heuristic discussion in section 5, this relation seems to remain valid also in the regime
βN → 0 and permits to establish the weak convergence of the top eigenvalue of βN ensembles
to the Gumbel distribution, for any sequence βN such that

1 � βN '
lnN

N
.

We explicit the scaling and centering of this convergence which are in fact the same as in the
convergence of the Tracy-Widom β distribution to the Gumbel distribution. Again, the allied
results on the second, third, fourth, etc eigenvalues can also be derived from our former results
on the Stochastic Airy ensemble (SAEβ for short).

We finally mention that our derivation does not cover the case where β ∼ 1/N , which is highly
interesting as the interpolation for the empirical spectral distribution occurs on this range of βN
[10]. For βN decreasing as slowly as lnN/N or even more slowly, the typical fluctuations of the
top eigenvalues seem to enter the Gumbel regime in the sense that the centerings and scalings
are found to be the same as in the classical setting of independent Gaussian variables.

To facilitate the reading, let us draw up a short outline of the paper. In Section 2, we give a brief
review on Stochastic Airy Ensemble (SAEβ for short), recalling in particular the correspondence
between the law of the eigenvalues and the law of the explosion times process of the associated
Riccati diffusion established by [8].

In section 3, we revisit the classical problem of the exit time from a domain of a diffusion which
evolves in a stationary potential. This problem is the stationary counterpart of our main study
and turns to be useful in the next sections to approximate the non stationary Riccati diffusion
and in particular its explosion times. We provide a simple characterization of the law of the exit
time which permits to prove its weak convergence to an exponential distribution, when the trap
gets very deep in comparison to the noise. Then we consider the explosion times process of
the stationary Riccati diffusion and we prove that it converges to a (homogeneous) Poisson
point process. Finally, we discuss in view of subsection 4.3 the Fokker Planck equation which
relates between the transition probability distribution of a diffusion and the flux of probability in
the system.

In Section 4, we state our results on the convergence of the distribution of the minimal eigen-
value of the stochastic Airy operator, i.e. of the Tracy-Widom β law, to the Gumbel law. This is
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straightforwardly deduced from the convergence of the explosion time process of the diffusion.
The convergences of the marginal distributions of the other neighboring minimal eigenvalues
can be deduced as well. The proofs of those results appear in subsection 4.2. At the end of the
section, we compute with a perturbative heuristic method the empirical eigenvalue density of
the stochastic Airy operator as β → 0 on the macroscopic scale, i.e. without any zooming in
the minimal eigenvalues scaling region.

As an application of our results, we discuss in section 5 the marginal statistics of the minimal
eigenvalues of βN -ensembles in the double scaling limit βN → 0, N → +∞. We conjec-
ture that they can be readily deduced from our results since the tridiagonal random matrices,
when zooming in the edge scaling region, are well approximated, even when βN → 0, by the
stochastic Airy operator. Some technical computations and auxiliary proofs are gathered into
appendices.

2. STOCHASTIC AIRY OPERATOR: A SHORT REVIEW

In the first subsection, we recall the recent results on the spectral statistics of the stochastic Airy
operator obtained in [7, 8, 16, 17, 18]. Then, we give a characterization of the first exit time (also
called blow-up time) of the non homogeneous Riccati diffusion associated to the stochastic Airy
operator.

The stochastic Airy operator Hβ is defined formally (see [8, Section 2] for a precise definition)
for β > 0 and t ≥ 0 as

(2) Hβ := − d2

dt2
+ t+

2√
β
B′t

whereB′t is a white noise on R+. Following [8], denote by S∗ the space of functions f satisfying
f(0) = 0 and

∫∞
0

(f ′)2+(1+t)f 2 <∞. We will say that (φλ, λ) ∈ S∗×R is an eigenfunction/
eigenvalue pair forHβ if ||φλ||2 = 1 and if

(3) φ′′λ(t) = (t− λ)φλ(t) +
2√
β
φλ(t)B

′
t

holds for all t ≥ 0 in the following integration by part sense,

(4) φ′λ(t)− φ′λ(0) =

∫ t

0

(s− λ)φλ(s) ds+
2√
β

(
Bt φλ(t)−

∫ t

0

Bs φ
′
λ(s) ds

)
.

Ramírez, Rider and Virág proved in [8, Theorem 1.1] that, almost surely, for each k ≥ 0, the set
of eigenvalues of Hβ has a well defined (k + 1) st lowest element denoted Λβ

k . Furthermore
the law of any eigenvalue Λβ

k with given index k is characterized in term of the explosion times
of a stochastic process (Xλ(t))t≥0 defined through the Riccati change of functions Xλ(t) :=
φ′λ(t)/φλ(t). This stochastic process is a diffusion process whose initial condition and Langevin
equation are obtained from the Dirichlet boundary condition φλ(0) = 0 1 and (3)

(5) Xλ(0) = +∞ and dXλ(t) =
(
t− λ−Xλ(t)

2
)
dt +

2√
β
dBt for t ≥ 0,

1Necessarily φ′λ(0) 6= 0 (otherwise φλ is identically 0) and the two signs of φ′λ(0), φλ(0+) are equal.
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whereBt is a standard Brownian motion. Solutions of (5) may blow up to−∞ at finite times, as
will happen whenever φλ vanishes. In this case, the diffusion Xλ immediately restarts at +∞
at that time in order to continue the solution corresponding to the Langevin equation (5).

The authors of [8] prove that the operator Hβ satisfies a Sturm-Liouville like property in the
sense that the number of eigenvalues ofHβ at most λ is equal to the total number of explosions
of the diffusion (Xλ(t)) on R+

2.

Before explaining the idea behind this key relation, let us preliminary state the so-called increas-
ing property of the coupled family of diffusions (Xλ)λ∈R, which will be used many times in the
paper. The increasing property is rather intuitive and can be enunciated as follows: if λ′ ≤ λ,
then the number of explosions of Xλ is stochastically bounded above by the number of explo-
sions of Xλ′ on any compact interval [0, T ]. Equivalently, the diffusion Xλ′ remains below Xλ

until its first explosion time and can not cross the trajectory of Xλ from below to above. Intu-
itively this property is rather obvious since the drift of Xλ′ pulls stronger downside than the one
of Xλ. Note however that the comparison theorem for sdes (see [38, Proposition 2.18] or [39,
Theorem (3.7), Chapter IX]) does not apply directly (the drifts are not Lipschitz) and one needs
to use a localization argument before applying it.

Now we explain the key relation. First, we will look at the operator HL
β defined on the set of

functions with support in the truncated interval [0, L] with Dirichlet boundary conditions at both
endpoints. This truncated operator is shown to approximate closely the operatorHβ when L→
∞ in a precise topology [8]. At fixed L, the definitions of the eigenfunctions and their associated
Riccati transform imply that λ ∈ R is an eigenvalue of the operator HL

β if and only if the
Riccati diffusion Xλ explodes precisely at the end point L. We can deduce that the number of
eigenvalues of the operatorHL

β smaller than λ equals the number of real numbers λ′ ≤ λ such
that (Xλ′) blows up exactly in L. Indeed, if λ′ slowly decreases from λ to −∞, we can see
from the increasing property and the continuity of the whole trajectory (Xλ′(t)) with respect to
λ′ that the explosion waiting times of Xλ′ will simultaneously get longer and longer to finally
diverge to +∞ when λ′ gets too small for the diffusion to explode in R+ (see Fig. 1 and 2). In
particular, any explosion of Xλ which occurs before time L will slowly translate continuously to
occur at some point exactly in L for some Xλ′ with λ′ ≤ λ. Thus the number of eigenvalues
of HL

β smaller than λ is equal to the number of explosions of Xλ on the interval [0;L]. Taking
L→∞ finally establishes this property for the operatorHβ .

The marginal laws of the eigenvalues are characterized in a rather simple way in term of the
distribution of the explosion times process of one single Riccati diffusionXλ as a function of the
parameter λ. We shall use this characterization several times throughout the paper.

In particular, the cumulative distribution of the lowest eigenvalue Λβ
0 satisfies

(6) P
[
Λβ

0 < λ
]

= P [Xλ(t) blows up to −∞ in a finite time] .

And for k ≥ 1, we have

P
[
Λβ
k < λ

]
= P [Xλ(t) blows up to −∞ at least k + 1 times] .(7)

2It is also proved that the diffusion Xλ has only a finite number of explosions in R+ and thus that the number
of eigenvalues below λ is almost surely finite.
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λ increases

λ = 1.5

λ = 1.6

FIGURE 1. Simulated paths of diffusions Xλ driven by the same Brownian mo-
tion for several values of λ. The values of λ are between 1.5 and 3 on a grid
of mesh 10−1. We took β = 4. The smallest eigenvalue −TW (4) of the Airy
operator is between 1.5 (no explosion) and 1.6 (at least one explosion) on this
event.

The joint distribution of the k bottom eigenvalues can also be characterized in this setting but in
a more complicated way from the law of the family of coupled diffusions ((Xλ(t))t≥0, λ ∈ R)
all satisfying (5) with the same driving Brownian motion (B(t))t≥0. For instance, with λ′ < λ,

P[Λβ
k−1 ≤ λ,Λβ

k > λ′]

= P
[
Xλ blows up to −∞ at least k times , Xλ′ blows up to −∞ at most k times

]
.(8)

Although the two diffusions Xλ and Xλ′ are driven by the same Brownian motion, they have
different drifts and (to our knowledge) this makes the right hand side probability of (8) difficult to
estimate in practice.

In view of [8, Theorem 1.1] which states that the top eigenvalue of the tridiagonal matrices
properly centered and scaled converges in law to −Λβ

0 , the Tracy-Widom β law (TW (β) for
short) has been defined for general β > 0 as the law of the random variable −Λβ

0 .

Using the characterization (6) in terms of the diffusionXλ, the first two leading terms of the right
large deviation tail of the Tracy-Widom β distribution were rigorously obtained by the second
author and Virág in [16]. Those two first terms were also computed by Forrester in [18] using a
different method. Finally, the right tail of the Tracy-Widom β law was computed to all orders by
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-1
0

-5
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5
10

FIGURE 2. (Color online) Simulated paths of two diffusions Xλ and Xλ′ driven
by the same Brownian motion with λ = 8 (blue curve) and λ′ = 6 (red curve),
for β = 4. We add in dashed lines the corresponding parabolas where the
drifts cancel. When t→ +∞, the diffusions converge to the upper part of their
respective parabolas. On this event, we have Λβ

4 < 8 < Λβ
5 and Λβ

2 < 6 < Λβ
3 .

Borot and Nadal in [17] using heuristic arguments. Their result valid in the λ→ +∞ limit reads

(9) P [TW (β) > λ] =
Γ
(
β
2

)
(4β)

β
2 2π

λ−
3β
4 exp

(
−2

3
β λ3/2

)
exp

(
+∞∑
m=1

β

2
Rm(

2

β
)λ−3m/2

)
,

where the Rm are (explicit) polynomials of degree at most m+ 1.

It is in fact possible to obtain an analytical characterization of the law of the minimal eigenvalue
Λβ

0 . In [19, Theorem 1.7], the authors prove that the cumulative distribution of Λβ
0 is the unique

solution of a boundary value problem. Using similar techniques, we can prove slightly more: The
Laplace transform of the first explosion time is the solution of a boundary value problem as well.
See Remark 3.2 for more details. But it turns out that this boundary value problem is hard to
analyse, even in the limit β → 0, and this approach in spite of its robustness did not permit us
to prove Theorem 4.1.

3. TRAPPING OF A DIFFUSION IN A STATIONARY WELL

We now revisit the classical problem of the exit time from a domain of a diffusion which evolves
in a stationary potential. The small noise limit was widely studied in the literature (see e.g.
[20, 21, 22]) using large deviation theory. The results we derive in this section are not new and
hold in a general setting.
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The diffusion Ya considered below in the small noise limit appears in the study [15, 23, 24, 25]
of the law of the ground state (minimal eigenvalue) of the Hill’s operator, defined as

GL := − d2

dt2
+B′(t)

where B′(t) is as before a white noise on the segment [0, L], L > 0. In this context, due to the
stationarity (absence of the linear t term), we need to restrict to a finite perimeter L > 0 and
we work with Dirichlet boundary conditions ψa(0) = ψa(L) = 0 for the eigenvectors such that
GLψa = aψa. As in the previous section, the law of the minimal eigenvaluesALk of the operator
GL can be characterized in terms of the family of diffusions (Ya(t))t≥0 obtained through the
Riccati transformation and defined by{

dYa(t) = (a− Ya(t)2) dt+ dB(t) for t ≥ 0 ,

Ya(0) = y .
(10)

where a ∈ R is a fixed parameter and y ∈ R∪{+∞} and the diffusion Ya immediately restarts
from +∞ whenever an explosion occurs. The characterization of the marginal distribution of the
minimal eigenvalue with index k now reads

(11) P
[
Aβk < a

]
= P [Ya blows up to −∞ at least k + 1 times before time L] .

The forthcoming study of the exit time distribution of the diffusion Ya in the small noise limit will
permit us to analyze the (marginal) distributions of the minimal eigenvalues of the stochastic
operator GL in the limit L→∞ (which replaces the limit β → 0 in the Airy case).

In view of subsection 4.3, we also provide a discussion in subsection 3.4 on the transition
probability density of the diffusion Ya, and relate this transition pdf with the limiting density of
state of the operator GL. This section corresponds to the stationary counterpart of the main
study of this paper. The problem is of course easier to solve for the Hill’s operator GL than for
the Airy operatorHβ thanks to the stationarity.

We will actually see later that the law of the minimal eigenvalues of the operators GL and Hβ

are similar in the respective limits L→∞ and β → 0.

3.1. Definition. In this section, P denotes the law of the diffusion Ya when y = +∞ and
Py[·] := P[·|Ya(0) = y] is the law of the diffusion Ya conditionally on Ya(0) = y. In particular,
P = P+∞.

We are interested in the distribution of the exit time (blowup time) ζ := inf{t ≥ 0 : Ya(t) =
−∞} and in particular in its limit in law when a→ +∞.

The diffusion evolves in a potential V (y) := −ay + y3

3
which presents a local minimum in

y =
√
a and a local maximum in y = −

√
a. The potential barrier ∆V = 4

3
a3/2 gets very large

when a→ +∞ while the noise remains constant (see Figure 3).

If the particle starts from above the potential well (from y = +∞, say) at time 0, then it has to
cross a very large barrier of size ∆V = 4 a3/2/3 with a deep well in

√
a. From Kramer’s theory

[27], we expect the exit time to be distributed according to an exponential law with parameter
∼ exp(−2∆V ). We give a simple proof of this result by a Laplace transform method (see also
[15]).
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FIGURE 3. The potential V (y) as a function of y.

3.2. Exit time distribution. Let us introduce the Laplace transform of the first exit time ζ of the
diffusion Ya(t) with initial position y

(12) gα(y) := Ey[e
−αζ ] .

The following proposition characterizes the Laplace transform gα as the unique solution to a
boundary value problem. The proof of this Proposition cand be found in Appendix A.

Proposition 3.1. Let α > 0. Then the function gα defined in (12) is the unique bounded and
twice continuously differentiable solution of the boundary value problem

1

2
g′′α − (y2 − a) g′α = α gα(13)

satisfying the additional boundary condition

(14) gα(y)→ 1 when y → −∞ .

In addition, it satisfies the fixed point equation

(15) gα(y) = 1− 2α

∫ y

−∞
dx

∫ +∞

x

ds exp

(
2 a(s− x) +

2

3
(x3 − s3)

)
gα(u) .

This proposition permits to derive a lot of information about the behavior of the diffusion. A first
natural question one could ask is: what is the probability that the diffusion (Ya) explodes in a
finite time? The answer is straightforward from Proposition 3.1 by taking α = 0 and noting that

g0(y) := lim
α↓0

Ey[e
−αζ ] = Py[ζ < +∞] = 1 .
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The mean exit time of the diffusion starting at time t = 0 from position y can also be computed
explicitly from Proposition 3.1. It suffices to differentiate gα(y) with respect to α and then take
α = 0. Eq. (13) then transforms into a second order differential equation which can be solved
explicitly. We find the mean exit time m(a, y) starting from position y

(16) m(a, y) = 2

∫ y

−∞
dx

∫ +∞

x

du exp

(
2a(u− x) +

2

3
(x3 − u3)

)
.

For y = +∞, this expression m(a,+∞) (simply denoted as m(a) in the sequel) simplifies,
after two changes of variables and a further Gaussian integration, in a single integral expression

m(a) =
√

2π

∫ +∞

0

dv√
v

exp

(
2av − 1

6
v3

)
.(17)

This explicit integral form for m(a) is convenient to determine its asymptotic when a → +∞
using the saddle point method. This is done in Appendix C and the estimate (85) will be useful
throughout the paper.

All the moments Ey[ζ
n] for n ∈ N of the exit time ζ (when the diffusion starts from y at time 0)

can also be derived by iterating this argument (see Appendix A). In particular all the moments
are finite for all starting point y and fixed a. They actually satisfy Ey[ζ

n] ≤ n!m(a)n.

Remark 3.2. As mentioned in the previous paragraph, it is interesting to note that we can derive
a similar theorem for the Laplace transform of the first exit time of the non-stationary diffusion
under consideration in the latter section Xλ (5). Indeed, let us denote by ζ := ζ(x, t) the first
explosion time of the diffusion process (Xλ(s))s≥t conditioned to start at time t in x and let
fα(x, t) for α > 0 be its Laplace transform. For α = 0, the Laplace transform is extended by
continuity

(18) f0(x, t) := lim
α↓0

fα(x, t) = P[ζ(x, t) < +∞] .

Similarly to Proposition 3.1, we can show that the function fα(x, t) is the unique solution of the
following boundary value problem:

(19)
∂fα
∂t

+
(
t− λ− x2

) ∂fα
∂x

+
2

β

∂2fα
∂x2

= α fα ,

satisfying the additional boundary conditions

fα(x, t)→ 1 when x→ −∞ with t fixed ,(20)

fα(x, t)→ 0 when x, t→ +∞ together.(21)

Note that this characterization is also true for α = 0: We recover the result of [19, Theorem 1.7
(ii)] which permits to find the cumulative distribution of the minimal eigenvalue thanks to Eq. (6)
which rewrites as

P[Λβ
0 > λ] = lim

x→+∞
P[ζ(x, 0) = +∞] .

The generalization given here has the advantage to contain the full information about the law
of the first exit time. Nevertheless, it did not permit us to derive the convergence of the point
process of the explosion times.

We can now establish the weak convergence when a → +∞ of the explosion waiting time ζ
when rescaled by its mean m(a) to the exponential distribution with parameter 1. The result is
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valid for a large range of starting points, mainly all the points which are in the potential well (i.e.
above the local maximum of the potential).

Theorem 3.3. Let f : R→ R such that a1/4(f(a) + a1/2)→a→+∞ +∞. Then,

sup
y≥f(a)

∣∣∣∣gα/m(a)(y)− 1

1 + α

∣∣∣∣ −→ 0 .

In particular, for any y ≥ f(a) the first blowup time to−∞ of the diffusion (Ya(t)) starting from
position y at time 0, rescaled as ζ/m(a), converges weakly when a→ +∞ to an exponential
law with parameter 1.

Remark 3.4. We recover here the prediction of Kramer’s theory. Indeed the exit time (starting
from a point inside the well) is distributed in the limit a → +∞ according to an exponen-
tial law with parameter m(a)−1, for which we have found a logarithmic equivalent m(a)−1 �
exp(−8/3 a3/2) in Appendix C.

From Theorem 3.3 and the characterization (11) of the law minimal eigenvalues of the operator
GL, we get back the result due to McKean in [25] about the fluctuations of the ground state of
the Hill’s operator.

Corollary 3.5. In the limit L → ∞, the fluctuations of the minimal eigenvalue AL0 of the sto-
chastic Hill operator GL are governed by the Gumbel distribution. More precisely, we have the
convergence in law as L→∞,

−2 · 31/3(lnL)1/3

[
AL0 +

(
3

8
ln
L

π

)2/3
]
⇒ e−x exp(−e−x) dx .

Proof.

Using the asymptotic estimate (85) for m(a) as a → +∞, the convergence in law of the exit
time towards the exponential distribution provided by Theorem 3.3 and the characterization (11),
it is easy to see that

P

[
AL0 ≤ −

(
3

8
ln
L

π

)2/3

+
1

2 · 31/3

x

(lnL)1/3

]
→L→+∞ 1− e−ex ,

which yields the result. �

3.3. Exit times point process. Although the diffusion (Ya(t)) blows up to −∞ in a finite time
almost surely, we can again define the trajectory for all time t ≥ 0 by restarting the diffusion in
+∞ immediately after any blow up to −∞.

Endowed with this new definition, we introduce the empirical measure µa of the explosion times
ζ1 < ζ2 < ζ3 . . . (with a further rescaling) defined for any Borel set B of R+ as

µa(B) =
+∞∑
i=1

δζi/m(a)(B) .(22)

In particular, the random variable µa([0, t]) is the number of explosions of the diffusion in the
interval [0,m(a)t].
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We have seen (see Theorem 3.3) that the sequence of the waiting time (ζi − ζi−1)/m(a) until
the next increment for µa converges in law when a → +∞ to an exponential distribution with
parameter 1. It is therefore easy to deduce the convergence of the point process µa to a Poisson
point process on R+. More precisely, we have the following result.

Theorem 3.6. Let Ya the diffusion (10) with initial position Ya(0) = +∞. The associated
explosion times point process µa (22) converges weakly (in the space of Radon measures on
R+ equipped with the topology of vague convergence [28]) when a→ +∞ to a Poisson point
process with intensity 1 on R+.

The end of this section is devoted the proof of Theorem 3.6.

Proof of Theorem 3.6.

We will use the useful criterion from Kallenberg [28], which states that it is sufficient to prove
that, for any finite union I of disjoint and bounded intervals, we have the following convergences
when a→ +∞,

E[µa(I)] −→ |I| ,(23)

P[µa(I) = 0] −→ exp(−|I|) ,(24)

where |I| denotes the length of the set I .

Towards (23), by linearity we just need to prove that E[µa[0, t]] → t. The advantage here is
that the starting point of the diffusion Ya at time 0 is +∞ so that the waiting time ζ/m(a) until
the first explosion converges weakly to an exponential distribution according to Theorem 3.3.
We have

E[µa[0, t]] =
+∞∑
k=0

P [µa[0, t] ≥ k] = 1 +
+∞∑
k=1

P
[
ζk

m(a)
≤ t

]
,

where ζk is the k th exit time of the diffusion Ya started at +∞. The strong Markov property
implies that, for each k, the random variable ζk+1− ζk is independent of (ζ1, ζ2− ζ1, . . . , ζk−
ζk−1) and has the same distribution as ζ1. It is then easy to deduce that for any fixed k, ζk/m(a)
converges in law when a → +∞ to the Gamma distribution Γ(k, 1) with shape and scale
parameter k and 1 [Recall Γ(k, 1) is simply the law of a sum of k independent exponential
random variables with parameter 1]. One can easily prove existence of a constant C > 0
independent of k such that P[ζk/m(a) ≤ t] ≤ C/k2 using for instance Chebyshev’s inequality
since we have E[(ζi−ζi−1)

2/m(a)2] ≤ 1 for all i ≤ k or the Cramer’s large deviation principle
which would give a much stronger bound. The bounded convergence theorem finally applies and
gives, when a→ +∞,

E[µa[0, t]] −→ 1 +
+∞∑
k=1

P [Γ(k, 1) ≤ t] = t.(25)

The second equality (24) is proved with the same idea. For any k ≥ 1, using the strong Markov
property for the diffusion Ya, we easily prove that the first k explosions times converge jointly in
law to the first k occurrence times ξ1 < ξ2 < · · · < ξk of a Poisson point process with intensity
1 (the increments are independent and each of them converges to an exponential distribution
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thanks to Theorem 3.3) i.e.

1

m(a)
(ζ1, ζ2, . . . , ζk)⇒a→+∞ (ξ1, ξ2, . . . , ξk) .(26)

The convergence (24) follows by proving first that we can consider only the first k explosion
times for k large enough using a large deviation argument as above (in order to bound the
probability of having more than k explosion times before time m(a)t) and then by using the
convergence (26) on the overwhelming event {ζk > m(a)t} . �

3.4. Transition probability density. We aim at describing also the probability density p(y, t)
of the diffusion Ya(t) at time t and other related quantities. The main tool is the Fokker Planck
equation which gives the evolution of p(y, t) and writes as

∂p

∂t
=

∂

∂y

[
(y2 − a) p(y, t) +

1

2

∂2

∂y2
p(y, t)

]
.(27)

This equation takes the form of a continuity equation. Indeed, introducing the flux

j(y, t) := (y2 − a) p(y, t) +
1

2

∂2

∂y2
p(y, t) ,

Eq. (27) rewrites as
∂p

∂t
=
∂j

∂y
.

The equilibrium of the system can be characterized by finding the stationary solution p0(y) to
the Fokker Planck equation (27) which satisfies

(28)
1

2
p′0(y) + (y2 − a) p0(y) = J0 ,

where J0 is a constant, which does not depend on y or t. We can solve the ode Eq. (28) explicitly
and find the constant J0 using the additional normalization constraint

∫
R p0 = 1. We obtain

(29) p0(y) = 2 J0(a)

∫ y

−∞
du exp

[
2a(y − u) +

2

3
(u3 − y3)

]
,

where

(30) J0(a) =
1

m(a)
=

1√
2π

[∫ +∞

0

dv√
v

exp

(
2av − 1

6
v3

)]−1

.

Here we stress that J0(a) is precisely equal to the inverse of the expected exit time of the
diffusion starting from +∞ [23, 24]. In the limit of large L, the number nL of blow-ups to −∞
of the diffusion (Ya(t))t≥0 during the interval [0;L] (or equivalently – using the characterization
(11) – the number of GL-eigenvalues lying below the level a) is proportional (at leading order)
to the inverse of the expected exit time of the diffusion,

(31) nL = LJ0(a) +O(
√
L) .

We recover the formula of McKean [25] for the limiting integrated density of states of the operator
GL introduced above, as L → ∞. The scaling order

√
L for the fluctuations comes from the

central limit theorem.

Let us finally mention that this study corresponds to the N = 1 case of a more general model
of N interacting particles. In this context, we expect the number of explosions per unit of time to
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display a different fluctuation order whenN goes to infinity because of the non-trivial interaction.
See [29] for more details about the model and this conjecture.

4. STATISTICS OF SAEβ WHEN β → 0

We first state our results on the limiting marginal distributions of the minimal eigenvalues of the
stochastic Airy operator Hβ when β → 0. Then, we provide a more global information on the
spectrum by computing the empirical eigenvalue density on the macroscopic scale.

Let us introduce a more convenient stochastic linear operator defined for t > 0 as

Lβ := − d2

dt2
+
β

4
t+B′(t) .

Denoting by Lβ0 < Lβ1 < · · · < Lβk · · · its eigenvalues, it is easy to show that in law

(32) {Lβk , k ∈ N} (d)
=

(
β

4

)2/3

{Λβ
k , k ∈ N} ,

where Λβ
0 < Λβ

1 < · · · < Λβ
k · · · are the eigenvalues of the operatorHβ . Indeed, (32) follows

after the change of function ψ(t) = cφ(t/c) with c = ( 4
β
)1/3 in the differential equation (3)

satisfied by the eigenfunction φ ofHβ .

The Riccati diffusion Z` associated to the stochastic linear operator Lβ satisfies

(33) Z`(0) = +∞ and dZ`(t) =

(
β

4
t− `− Z`(t)2

)
dt+ dB(t) for t ≥ 0

where B is a Brownian motion. The law of the diffusion Z` is denoted P and Pz,t[·] :=
P[·|Z`(t) = z] is the law of the diffusion (Z`(s))s≥t conditionally on Z`(t) = z.

Recall that when blowing up to −∞ at some time t, the diffusion Z` immediately restarts in
+∞ at this time t and that we have the key relation

P[Lβk ≤ `] = P [Z` blows up to −∞ at least k times in R+ ] .(34)

4.1. Minimal eigenvalues of Lβ . We investigate the minimal eigenvalues statistics of the lin-
ear stochastic operator Lβ when β → 0 and in particular the convergence of the marginal
distributions of the bottom eigenvalues.

When β → 0, we can check that for any fixed ` and k, P[Lβk ≤ `] → 1. Indeed, if β tends
to 0 while ` is fixed, the diffusion Z` defined in (33) converges in law to the diffusion Ya of the
previous section for a = −`. The probability for the diffusion Z` to explode k times in R+ will
therefore tend to the corresponding probability for the diffusion Ya, which is exactly equal to 1.
Recalling (34), we have the claim.

Therefore if we look for a non trivial limit in law for the eigenvalue Lβk when β → 0, the pa-
rameter ` should decrease to −∞ as β → 0 and we need to determine the rescaling of `
as a function of β. We can actually make the guess `β ∼ − ln(1/β)2/3 using the right tail
asymptotic of the Tracy-Widom β distribution (9) and the relation (32) between the laws of Lβ0
and Λβ

0 = −TW (β).
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In agreement with this heuristic derivation, we fix x ∈ R and set

`β = `β(x) := −
(

3

8
ln

1

βπ

)2/3

+
1

2

1

31/3

(
ln

1

β

)−1/3

x .(35)

We shall prove that the function x → P[Lβk ≤ `β(x)] converges to a non trivial cumulative
distribution function on R when β → 0.

Similarly to the previous section, we first consider the empirical measure νβ of the explosions
times (ζk)k∈N of the diffusion Z`β(x) after a further (well chosen) rescaling of time. For a Borel
set A ⊂ R+,

νβ(A) =
+∞∑
k=1

δβ( 3
8

ln(1/β))1/3 ζk
(A) .(36)

Finally, recall the key point: for almost all x, the number νβ(R+) of explosions in R+ is equal to
the number of eigenvalues smaller than `β(x).

Theorem 4.1. The explosion times point process νβ associated to the diffusion Z`β(x) con-
verges weakly (in the space of Radon measures equipped with the topology of vague conver-
gence [28]) when β → 0 to a Poisson point process with inhomogeneous intensity ex× e−t dt.
It readily implies the following convergence: for any t < t′, k ∈ N,

P [νβ [t; t′] = k] −→β→0 exp

(
−ex

∫ t′

t

e−s ds

) (
ex
∫ t′
t
e−s ds

)k
k!

.

It might be useful to compare the time scale of the measure νβ with the one used in the definition
of µa (22). Using the asymptotic formula Eq. 85 given in Appendix C, we can check that

m(−`β(0))−1 = m
((3

8
ln(1/(βπ))

)2/3)−1

∼β→0 β

(
3

8
ln

1

β

)1/3

.

In such a way, the two time scales are actually the same up to exchanging the parameters a
and −`β(0) = (3

8
ln 1

βπ
)2/3. More generally, note that for any x ∈ R, t ∈ R+,

m (−`β(x− t)))−1 ∼β→0 β

(
3

8
ln

1

β

)1/3

ex−t .

The scenario described in Theorem 4.1 is therefore fairly simple. When β → 0, the diffusion
Z`β(x) feels the evolution in time due to the linear term β

4
t in the drift but in a rather trivial way:

setting

s :=
t

β(3
8

ln(1/β))1/3

to work in the appropriate time scale, the explosion times process of Z`β(x) is somehow the
same as the one of a stationary “frozenßystem which evolves with time t adiabatically such that
the parameter a in the drift of the diffusion Ya evolves slowly with time t as

a := −`β(x) +
β

4
s = −`β(x− t) .(37)
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Finally let us come to the initial motivation of this paper which comes from interesting questions,
recently asked in the literature in [10, 12, 13], about the existences and characterizations of
possible distributions in extreme value theory which would interpolate between the Tracy-Widom
β = 1, 2, 4 (maximum of highly correlated random variables) and the Gumbel law (maximum of
weakly correlated random variables).

The following Theorem, obtained as a straightforward application of Theorem 4.1, establishes
and describes precisely the progressive deformation of the Tracy-Widom β laws into a Gumbel
law when β → 0.

Theorem 4.2. When properly rescaled and centered, the Tracy-Widom β law converges weakly
to the Gumbel law. More precisely, when β → 0, the following convergence in law holds

2 · 31/3 ·
(

ln
1

β

)1/3
[(

β

4

)2/3

TW (β)−
(

3

8

)2/3 (
ln

1

βπ

)2/3
]

=⇒ e−x exp(−e−x) dx .

Comparing Theorem 4.2 to Corollary 3.5, we see that the fluctuations of the ground state of the
stochastic Hill and Airy operators are very similar, governed by the Gumbel distribution, with the
same scalings under the relation L = 1/β.

The convergences of the marginal distributions of the other minimal eigenvalues with general
index k can also be deduced from Theorem 4.1 which implies that

P
[
Lβk ≤ `β(x)

]
= P [νβ[0; +∞] ≥ k + 1]→β→0 1− e−ex

k∑
i=0

(ex)i

i!
.(38)

We can check that the function of x in the right hand side is indeed a cumulative distribution
function and the weak convergence of Lβk follows. Note also that the right hand side of (38)
corresponds exactly to the cumulative distribution of the point with index k of a Poisson point
process on R with intensity exdx.

It is therefore natural to conjecture that the empirical measure ρβ of the eigenvalues of Lβ
defined, for any A Borel set of R, as

ρβ(A) =
+∞∑
k=0

δLβk
(A) ,(39)

converges weakly when considered on the microscopic scaling region of the minimal energies
as in this paragraph to a Poisson point process on R with intensity exdx, when β → 0.

Let us finally consider the matching between the microscopic (where one zooms in the measure
ρβ on the microscopic region of the bottom eigenvalues) and the macroscopic regime where the
sets A ⊂ R remains fixed as β → 0.

In section 4.3, we compute asymptotically when β → 0 the empirical spectral measure on the
macroscopic scale. Our result reads

ρβ(A) =
4

β

∫
A

J0(`)d` +O(1)(40)

where O(1) is a constant of order 1 as β → 0. In particular, ρβ(] − ∞; `]) is the number
of eigenvalues below the level `. Using the result obtained in Appendix D, — where we check
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that the second order term O(1) in (40) remains negligible compared to the leading order when
β → 0 and A =]−∞; `β(x)]— we see that for any fixed x,

ρβ (]−∞; `β(x)]) ∼β→0 e
x ,

where we have also used the asymptotic (87).

Therefore, if one considers a Poisson point process P on R with intensity 4J0(·)/β, then the
probability that the k + 1 bottom points of P are below the level `β(x) converges when β → 0
as

P [P (]−∞; `β(x)]) ≥ k + 1] −→ 1− e−ex
k∑
i=0

(ex)i

i!
.

The matching between the two microscopic and macroscopic regimes, if the Poisson point pro-
cess convergence be true, would be smooth.

Let us mention two articles [30, 31] from the literature on random Schrodinger operators (with
stationary potential) which establish that the bottom eigenvalues have Poissonian statistics in
the limit of infinite support for different kind of potential, including sums of Dirac masses and
smooth functions of diffusions.

4.2. Proof of Theorem 4.1. Let us fix x ∈ R and denote simply by Z the diffusion Z`β(x) in
this proof. From Kallenberg’s theorem [28], we just need to see that, for any finite union I of
disjoint and bounded intervals, we have when β → 0,

E[νβ(I)] −→ ex
∫
I

e−t dt ,(41)

P[νβ(I) = 0] −→ exp(−ex
∫
I

e−t dt) .(42)

Denote by [t1; t2] the right most interval of I , by J the union of disjoint and bounded intervals
such that I = J ∪ [t1; t2] and by t0 the supremum of J . Note that t0 < t1.

To simplify notations, set si := ti/(β(3
8

ln 1
β
)1/3) for i = 0, 1, 2 (the times si will correspond to

the real time scale for the diffusion Z).

Thanks to the linearity of the expectation, it is enough to prove (41) for intervals I of the form
I = [0, t].

On the other hand for (42), the simple Markov property yields

P[νβ(I) = 0] = P
[
1νβ(J)=0PZ(s0),s0 [νβ[t1; t2] = 0]

]
.

Showing (42) therefore reduces to see that with probability going to 1 as β → 0,

PZ(s0),s0 [νβ[t1; t2] = 0] −→β→0 exp(−ex
∫ t2

t1

e−t dt) .

For both (41) and (42), the idea is to decompose the interval [s1; s2] (with s1 = 0 for (41))
into a finite number of small intervals of length δ := ε/(β(3

8
ln(1/β))1/3) and to approximate

the number of explosions of Z on each small interval of the subdivision by those of stationary
diffusions, thanks to the increasing property.
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We will use in fact a random subdivision instead of a deterministic one to avoid technical issues
due to special points. To this end, let us define a sequence (τk)k∈N of i.i.d. random variables
with uniform law in [0; 1], independent of the diffusion Z . Let δ small enough such that 0 <
δ < s1 − s0. Then, we construct iteratively the sequence of random times (Sk)k≥0 such that
S0 := s1 − δτ0 3, Sk := Sk−1 + δτk for k ≥ 1 and the stopping times defined as:

K1 := inf{k ≥ 1 : Sk ≥ s1} ,
K2 := inf{k ≥ 1 : Sk ≥ s2} .

In the following P refers to expectation with respect to both Z and the τk.

s1 s2

S0 SK1 SK2

δ := ε/(β(3
8 ln(1/β))1/3)

scale :

δ τ0
δ τ1s0

FIGURE 4. Definition of the times (Sk, k ≥ 0).

Set a := −`β(x) such that the drift of Z at time s simply equals a+ βs/4− Z(s)2. On each
interval [Sk, Sk+1] of the random subdivision, we define the following two diffusionsmk andMk

(independent of the times τk) driven by the same Brownian motion as Z .

mk(Sk) = Z(Sk) , and dmk(s) =

(
a+

β

4
Sk −m2

k(s)

)
ds+ dBs for s ∈ [Sk;Sk+1] ,

Mk(Sk) = Z(Sk) , and dMk(s) =

(
a+

β

4
Sk+1 −M2

k (s)

)
ds+ dBs for s ∈ [Sk;Sk+1] .

The increasing property implies that the number of explosions νβ[Sk;Sk+1] of the diffusion Z is
stochastically dominated from above (respectively from below) by the number of explosions of
the diffusion mk (respectively Mk). Indeed, the drifts of the diffusion mk(s), Z(s) and Mk(s)
are in increasing order for s ∈ [Sk;Sk+1]

a+
β

4
Sk ≤ a+

β

4
s ≤ a+

β

4
Sk+1 .

The drifts of the diffusions mk and Mk do not depend on time s so that the previous section
applies on each [Sk;Sk+1].

Let us introduce the so-called downside region D and its complementary upside one U we
define as

D := {y ∈ R : y ≤ −a1/2 +
(ln a)1/4

a1/4
} , U := R \D .(43)

The choice f(a) = (ln a)1/4 is large enough for our purposes (it tends to infinity) and small
enough such that the process will spend little time in the region D (see Lemma 4.3).

From the previous section, we know that as long as the starting point Z(Sk) belongs to the
region U (which indeed is contained in the interval where the convergence applies), the two
respective explosions point processes of the diffusions mk and Mk converge weakly in the
space of Radon measure, when the time scale is renormalized respectively by m(a+ βSk/4)

3In the case where s0 = 0, we simply set S0 := 0.
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and m(a + βSk+1/4), to Poisson point processes with intensity 1, independently of the exact
location of Z(Sk).

Therefore we need to prove that

(44) C :=

K2−1⋂
k=0

{Z(Sk) ∈ U}

has a probability going to 1 when β → 1.

We first prove that the occupation time of the region D by the particle Z on the region of times
considered tends to 0 in expectation. This is the content of the following Lemma whose proof is
deferred at the end of this section.

Lemma 4.3. Fix t′0 < t′1 < t′2 and as before s′i := t′i/[β (3
8

ln 1
β
)1/3], i = 1, 2. Define

Tβ(s′1, s
′
2) :=

∫ s′2

s′1

1{Z(u)∈D} du .

Then, for any z ∈ R there exists η > 0 and a positive constant C independent of β such that
for all β > 0,

Ez,s′0
[Tβ(t′1, t

′
2)] ≤ C

(
ln

1

β

)−η
.

We are now ready to prove that P(C) → 1. Indeed, using the notations introduced above, the
probability of Cc is easily bounded from above by

PZ(s0),s0

[
K2−1⋃
k=0

{Z(Sk) ∈ D}

]
≤

4(t2−t1)/ε∑
k=0

PZ(s0),s0 [Z(Sk) ∈ D] + P
[ 4(t2−t1)/ε∑

k=1

τk ≤
t2 − t1
ε

]
.

(45)

The second probability on the RHS of (45) is easily bounded by noting simply that the τk have
mean 1/2 so that the empirical sum of the τk should be of order 2(t2 − t1)/ε. From large
deviation theory, we know that this probability is of order exp(−c/ε) where c is a positive
constant independent of ε.

Thanks to the independence between the diffusion Z and the sequence (Sk), the sum in (45)
can be bounded as

4(t2−t1)/ε∑
k=1

PZ(s0),s0 [Z(Sk) ∈ D] =

4(t2−t1)/ε∑
k=1

EZ(s0),s0 [

∫ Sk−1+δ

Sk−1

1{Z(τ)∈D}
dτ

δ
]

≤ 2β(
3

8
ln

1

β
)1/3ε−1 EZ(s0),s0

[∫ S4(t2−t1)/ε

S0

1{Z(τ)∈D} dτ

]
.

Using again the Cramer’s theorem of large deviation theory, we can show that, with probability
going to 1 when ε → 0, the empirical sum S4(t2−t1)/ε − S0 = δ

∑4(t2−t1)/ε
k=1 τk is smaller

than δ + 3(s2 − s1)
4. Lemma 4.3, applied for fixed times s′0 := s0 < s′1 < s′2 such that

4the choice of 3 is arbitrary.
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[s1 − δ; s1 + 3(s2 − s1)] ⊂ [s′1; s
′
2] and for z = Z(s0), permits to conclude that there exist

η > 0 and two positive constants c and C > 0 both independent of β, ε, η such that

PZ(s0),s0

[
K2−1⋃
k=1

{Z(Sk) ∈ D}

]
≤ Cβ (ln

1

β
)1/3−η + e−c/ε .

We are now ready to prove (41) and (42). To simplify notations, set Nk, N−k and N+
k for the

number of explosions of the diffusions Z,Mk and mk in the interval [Sk;Sk+1]. Recall that a.s.
for all k, N−k ≤ Nk ≤ N+

k

We begin with (41). Similarly to the stationary case, we could take s1 = 0 in this case for which
the situation is slightly easier. Indeed, at the starting point s1 = 0, Z(s1) = +∞ ∈ U and we
do not need to introduce an independent random time just before s1 to start from a nice position.
Nevertheless, we treat the case s1 > 0 to have consistent notations with the ones required in
the proof of (42).

Thanks to the increasing property, we can bound from above the mean number of explosions of
Z as

E[νβ[t1, t2]] ≤ E

[
K2−1∑
k=0

E
[
N+
k |Z(Sk) ∈ U

]]
+ E[νβ[t1, t2]1Cc ] .(46)

The second expectation in (46) is negligible. To show this, we use the Cauchy Schwartz inequal-
ity and the increasing property which permits to bound the second moment of νβ[0, t2] by the
second moment of the number of explosions in the interval [s1, s2] of the diffusion Ya+βs1/4
studied in section 3. It is easily seen that this second moment is bounded independently of a
thanks to Cramer’s theorem for example as was done to bound the expectation of the number
of explosions in the proof of Theorem 3.6.

Gathering the above arguments, we can deduce the convergence of the first term. Indeed,
conditionally on {Z(Sk) ∈ U}, the explosion times process of mk converges when time is
renormalized by m(a+ βSk/4), to a Poisson point process with intensity 1. Here we must pay
attention to the renormalization of time: Noting that

a+ βSk/4 =

(
3

8
ln

1

βπ

)2/3

+
1

2

1

31/3

(
ln

1

β

)−1/3
(
t1 − x+ ε(−τ0 +

k∑
i=1

τi)

)
,

we can find the limit of the time scales ratio

β

(
3

8
ln

1

βπ

)1/3

m(a+ βSk/4) −→β→0 exp(t1 − x+ ε(−τ0 +
k∑
i=1

τi)) .

Therefore, when β → 0, we have

E
[
N+
k |Z(Sk) ∈ U

]
−→ E[τk+1 exp(x− t1 − ε(−τ0 +

k∑
i=1

τi))] ,

which finally gives taking ε→ 0 and thanks to the convergence of the Riemann sum associated
to the subdivision τ1 < τ1 + τ2 < · · · < τ1 + · · ·+ τk < · · · that

lim sup
β→0

E[νβ[t1, t2]] ≤ ex
∫ t2

t1

e−u du .(47)



20

For the lower bound,

E[νβ[t1, t2]] = E

[
∞∑
k=0

E
[
N−k 1{s1≤Sk≤Sk+1≤s2}1{Z(Sk)∈U}

]]

≥ E

4(t1−t0)/ε∑
k=0

E
[
N−k 1{s1≤Sk≤Sk+1≤s2} |Z(Sk) ∈ U

]
− E

4(t1−t0)/ε∑
k=0

E
[
N−k 1{s1≤Sk≤Sk+1≤s2} |Z(Sk) ∈ U

]
P [Z(Sk) ∈ D]

 .

It suffices to show that the second term is negligible and apply the same method as was done
above to obtain (47). The second term is bounded from below by

−E
[
Number of explosion of Ya+βs1/4 in [s1, s2]

]
× sup

0≤k≤ 4(t1−t0)
ε

P[Z(Sk) ∈ D]

1− P[Z(Sk) ∈ D]
.(48)

Lemma 4.3 applied for t′0 := 0 < t′1 < t′2 such that t′1 < t1 − ε and t′2 > t1 + 4(t2 − t1)
gives a uniform (independent of k ≤ 4(t2 − t1)/ε) bound of P[Z(Sk) ∈ D] which goes to 0
as β → 0. It easily follows that the quantity (48) tends to 0 (we have already seen that the first
term is bounded independently of a).

We now turn to the convergence (42). By the increasing property, we have

PZ(s0),s0 [νβ[t1; t2] = 0]

≤ PZ(s0),s0

[
K2−2∏
k=K1

PZ(Sk),Sk

[
N−k = 0 |Z(Sk) ∈ U, (τk)k∈N

]]
+ PZ(s0),s0 [Cc] .

Using the previous arguments, we get

lim sup
β→0

PZ(s0),s0 [νβ[t1; t2] = 0] ≤ E

[
K2−2∏
k=K1

exp

(
−ετk+1 exp(x− t1 − ε(−τ0 +

k+1∑
i=1

τi))

)]
+ e−c/ε .

Taking the limit ε→ 0, we obtain as before

lim sup
β→0

PZ(s0),s0 [νβ[t1; t2] = 0] ≤ exp(−ex
∫ t2

t1

e−u du) .

For the lower bound, we use again the increasing property which allows to write

PZ(s0),s0 [νβ[t1; t2] = 0]

≥PZ(s0),s0

[
K2−1∏
k=0

PZ(Sk),Sk

[
N+
k = 0 |Z(Sk) ∈ U, (τk)k∈N

]]
− PZ(s0),s0 [Cc] .

Using the same arguments as above, we can deduce that

lim inf
β→0

PZ(s0),s0 [νβ[t1; t2] = 0] ≥ exp(−ex
∫ t2

t1

e−u du) ,

and (42) is proved.

Proof of Lemma 4.3.
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The key estimate to prove this Lemma is given by [16, Proposition 10], which is recalled in
Appendix B. Let us recall it here. We denote by ζ(u) := inf{v ≥ 0 : Z(u + v) = −∞} the
waiting time of the first explosion after u. There exists a constant c > 0 independent of β such
that for all u ∈ [s′1; s

′
2]

5

(49) P
−a1/2+

(ln a))1/4

a1/4
,u

[
ζ(u) <

ln a√
a

]
≥ exp(−c

√
ln a) .

We can rewrite the inequality (49) in the following way, using the asymptotic expansion of a as
a function of β:

(50) P
−a1/2+

(ln a)1/4

a1/4
,u

[
ζ(u) < C (ln

1

β
)−η
]
≥ exp(−c (ln

1

β
)1/3) .

Eq. (50) gives a lower bound of the probability for the diffusion Z starting from the right most
point of the intervalD at time u to explode to−∞ in a short time. For the sake of completeness,
we rewrite the proof of the estimate Eq. (49) in Appendix B with more details than originally given
in [16].

The idea to obtain the Lemma is to use (50) to relate between the time spent in the region D by
the process Z and the number of its explosions which is bounded on the interval [s′1; s

′
2]. In the

following, the probability P is with respect to the diffusion starting from z at time s′0.

From (49), we can control for any given u > 0, the probability that the diffusion Z is in the
region D at time u: Indeed, we have

P[Z(u) ∈ D] = P
[
Z(u) ∈ D, ζ(u) ≤ C (ln

1

β
)−η
]

+ P
[
Z(u) ∈ D, ζ(u) > C (ln

1

β
)−η
]

≤ P
[
Z(u) ∈ D, ζ(u) ≤ C (ln

1

β
)−η
]

+

(
1− exp(−c (ln

1

β
)1/3)

)
P [Z(u) ∈ D]

(51)

where we have used the simple Markov property and the increasing property in the second line.
Eq. (51) readily rewrites as

P [Z(u) ∈ D] ≤ exp(c (ln
1

β
)1/3) P

[
Z(u) ∈ D, ζ(u) ≤ C (ln

1

β
)−η
]

≤ exp(c (ln
1

β
)1/3) P

[
The interval

[
u, u+ C (ln

1

β
)−η
]

contains at least one explosion

]
.

(52)

Note that, denoting by k = νβ[t′1, t
′
2] the (random) number of explosions in the interval It,t′ and

as before by 0 < ζ1 < ζ2 < · · · < ζk the explosion times, we have almost surely∫ s′2

s′1

1{∃i:ζi∈[u,u+C (ln 1
β

)−η ]}du ≤ C (ln
1

β
)−η νβ[t′1, t

′
2] .

Therefore, integrating Eq. (52) with respect to u in the interval It,t′ , we finally obtain the inequal-
ity

E[Tβ(s′1, s
′
2)] ≤ C (ln

1

β
)−η exp(c (ln

1

β
)1/3) E [νβ[t′1, t

′
2]] .

5[s′1; s
′
2] indeed is contained in the region where Lemma B.1 applies.
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In addition we easily check, using the increasing property and the convergence (25) proved in
the previous section, that the mean number of explosions E[νβ[t′1, t

′
2]] is bounded indepen-

dently of β. The Lemma follows.

�

4.3. Empirical spectral measure on the macroscopic scale. In this subsection, we derive
the empirical spectral measure ρβ defined in (39) of the stochastic linear operator Lβ on the
macroscopic scale, i.e. without zooming in the minimal eigenvalues scaling region.

As mentioned above, we expect the number ρβ(]−∞; `]), which is almost surely finite for any
β > 0 (see [8]), to tend to +∞ when β → 0. The minimal eigenvalues are indeed going to
−∞ as β → 0 and if one sets β = 0 abruptly so that the linear confining term disappears,
then the operator L0 := − d2

dt2
+B′t has an infinite number of eigenvalues below any given level

` ∈ R (see subsection 3). The spectral statistics of this operator have in fact been extensively
studied in the literature (see [23, 24, 25, 15]). For this study, the eigenfunctions are restricted to
a finite interval [0;L] with Dirichlet boundary conditions in t = 0 and t = L so that the number
of eigenvalues below a certain level remains finite. The authors investigate the spectrum of L0

in the large L limit. The minimal eigenvalues statistics of the operator Lβ when β → 0 as
described above are different from the statistics found in [25, 15]. We shall see that the limiting
empirical eigenvalue density differs as well (to be compared with the density found in [23, 24]).

To compute ρβ(]−∞; `]), we use again the fact that the number of Lβ-eigenvalues strictly less
than ` equals the number of explosions of the diffusion (Zt)t≥0 (defined in Eq. (33)) on R+.
Counting the blow-ups along the trajectory (Zt)t≥0 can be done computing the flux of particles
at z = −∞ in the system, i.e. the number of particles going through −∞ per unit of time. In
this non stationary system, the flux depends on time t and on position z and will be denoted
Jβ(z, t) in the following.

As the particle immediately restarts in z = +∞ when blowing up to −∞, the flux in z = −∞
is equal to the flux in z = +∞. We can again write the Fokker Planck equation which gives the
evolution of the transition probability density qβ(z, t) of the diffusion Zt as

(53)
∂

∂t
qβ(z, t) =

∂

∂z

[
(z2 + `− β

4
t)qβ(z, t) +

1

2

∂

∂z
qβ(z, t)

]
.

This equality can in turn be rewritten as a continuity equation

∂qβ
∂t

=
∂Jβ
∂z

where Jβ(z, t) = (z2 + ` − β
4
t)qβ(z, t) + 1

2
∂
∂z
qβ(z, t) is the flux of probability in z at time t.

By definition of the flux, the number of explosions to −∞ of the diffusion (Zt)t≥0 on R+ is

ρβ(]−∞; `]) =

∫ +∞

0

Jβ(−∞, t) dt .

Re scaling time as before by setting pβ(z, t) := qβ(z, 4
β
t), Eq. (53) becomes

(54)
β

4

∂

∂t
pβ(z, t) =

∂

∂z

[
(z2 + `− t) pβ(z, t) +

1

2

∂

∂z
pβ(z, t)

]
.

We now use perturbation theory in the limit β → 0 in Eq. (53) in order to obtain an approxima-
tion for pβ for small β. The method consists in searching a solution of Eq. (53) valid at small β
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under the form

(55) pβ(z, t) = p0(z, t) + β p1(z, t) + o(β)

At leading order, we find the following ordinary differential equation for p0

(56)
d

dz

(
(z2 + `− t) p0(z, t) +

1

2

d

dz
p0(z, t)

)
= 0 .

Equation (56) is the same as Eq. (27) of the previous section with the parameter a replaced by
−`+ t. The solution is

p0(z, t) = 2 J0 (`− t)
∫ z

−∞
du e2(`−t)(u−z)+ 2

3
(u3−z3)

where J0 is the stationary flux given by Eq. (30) such that
∫

R p0(z, t)dz = 1. Hence, recalling
that pβ(z, t) is the law of Z4t/β , we conclude that the flux in−∞ at time t is J0 (`− βt/4) and
thus,

(57) ρβ(]−∞; `]) =

∫ +∞

0

Jβ (−∞, t) dt =
4

β

∫ `

−∞
J0 (u) du+O(1) ,

where O(1) is a correction of order 1 when β → 0. It is now straightforward to deduce the
empirical eigenvalue density

(58) ρβ(`) ∼β→0
4

β
J0 (`) .

This formula contrasts with the result found in [23, 24, 25] where the empirical eigenvalue density
of the operator L0 restricted on a finite interval [0;L] is proportional to the length L of the time
interval

n′L(`) ∼L→−∞ LJ ′0(`) .

The computation leading to this result was in fact recalled above in (31).

It is interesting to study the behaviors at ` → ±∞ of the empirical eigenvalue density ρβ(`)
and of the integrated density ρβ(] −∞; `]). This can be done from the integral forms with the
saddle point route. When `→ −∞, we have (see again end of Appendix C)

(59) ρβ(`) ∼ 4

πβ
|`|1/2 exp

(
−8

3
|`|3/2

)
and ρβ(]−∞; `]) ∼ 1

πβ
exp

(
−8

3
|`|3/2

)
.

On the other side, when `→ +∞, we obtain

ρβ(`) ∼ 1

πβ
`1/2 and ρβ(]−∞; `]) ∼ 8

3πβ
`3/2 .

We note the correct matching of the tails of the empirical eigenvalue density ρβ(`) as `→ ±∞
with those of the crossover density of eigenvalues (in random matrix models) near the edge
scaling region of width N−2/3 found by Bowick and Brézin in [14, 36] (see Figure 5).

We discuss the validity of perturbation theory as applied here in Appendix D.
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FIGURE 5. (Color online). Red non-oscillatory curve: 4J0(λ) as a function of λ.
Blue oscillatory curve: density KAiry(λ, λ) = Ai′(λ)2 − λAi2(λ) at the edge
of the spectrum for β = 2 found by Bowick and Brézin. The bumps of the β = 2
curve are reminiscent to the electrostatic repulsion between the particles.

5. APPLICATIONS TO RANDOM MATRIX THEORY

5.1. Top eigenvalue of β-ensembles. In this subsection, we use the connection between
random matrices and stochastic linear operators to study the top eigenvalue statistics of β-
ensembles with an index βN depending of N such that

(60) βN →N→+∞ 0 and NβN →N→+∞ +∞ .

Example of such a sequence is βN = 1/Nα where 0 < α < 1. The tridiagonal random matri-
ces introduced by Dumitriu and Edelman in [1], whose eigenvalues are distributed according to
the jpdf Pβ defined in (1), can be written as

XN =



√
2 g1 χ(N−1)βN

χ(N−1)βN

√
2 g2 χ(N−2)βN
. . . . . . . . .

χ2β

√
2 gN−1 χβN
χβN

√
2 gN

(61)

where the gk are independent Gaussian random variables with variance 1 and where the χkβN
are independent χ distributed random variables with kβN degrees of freedom and scale pa-
rameter 2.

In [8], the authors prove that the largest eigenvalues of those tridiagonal random matrices con-
verge in distribution to the low lying eigenvalues of the stochastic Airy operator Hβ introduced
above. Their proof is rather technical, but a simple heuristic of this convergence can be found in
[7].

In the following, we apply this heuristic to analyse the present case with a vanishing repulsion
coefficient βN satisfying (60). The main idea is that, under the assumption (60), the information
on the top eigenvalues of the matrix XN is contained in the upper left sub matrices of XN . In
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order to analyze the law of those eigenvalues, it is sufficient to consider only the entries with
column or line numbers very small compared to the dimension N of the matrix. Developing for
k � N the χ variables as χβN (N−k) ≈

√
βN(N − k) + hk√

2
where the hk are independent

Gaussian variables, we obtain the following decomposition for the translated and rescaled matrix

AN := (NβN)2/3

(
2IN −

XN

(NβN)1/2

)
= −(NβN)2/3

−2 1
1 −2 1

. . . . . . . . .


(62)

+ βN
1

2

1

(NβN)1/3


0 1
1 0 2

2
. . . . . .
. . .

− 1√
2

(NβN)1/6

2g1 h1

h1 2g2 h2

. . . . . . . . .

+ o

(
1

N

)
.

Using the same argument as in [7], (62) may be rewritten in short as

(63) AN ≈ −
d2

dt2
+ βN t+ 2 b′t .

In view of the previous section, it is important to keep the linear term βN t (even for N → +∞)
so that the least eigenvalue of the operator on the right hand side of (63) remains finite. This
term is small for small values of t but gets large for values of t� β−1

N and should not neglected.

The top eigenvalue λN0 of the matrixXN should therefore approximately satisfy, for large values
of N , the equality in law

(NβN)2/3

(
2− λN0

(NβN)1/2

)
(law)
≈ 42/3 LN0(64)

where LN0 is the least eigenvalue of the operator − d2

dt2
+ βN

4
t+ b′t. Using the previous results,

Eq. (64) can be rewritten

(NβN)2/3

(
λN0

(NβN)1/2
− 2

)
(law)
≈
(

3

2

)2/3(
ln

1

πβN

)2/3

+

(
2

3

)1/3(
ln

1

πβN

)−1/3

G .

(65)

where G is a random variable distributed according to the Gumbel distribution. This result (65)
was checked numerically with very good agreement.

From this proposal that the tridiagonal random matrices in the β ensembles may be regarded
at the edge of the spectrum as finite different schemes of the stochastic Airy operator, we ar-
gue that the results proved in the continuous setting for the stochastic Airy operator can be
extended to the discrete setting of random matrices. The convergence we obtained for the mar-
ginal distribution of any eigenvalue with fixed index k in (38) can be rewritten in the context of
βN ensembles as was done in (65) for the maximal eigenvalue.

At this point, it is tempting to conjecture, as in the continuous setting of the stochastic Airy
operator, that the maximal eigenvalues of βN -ensembles have Poissonian statistics in the dou-
ble scaling limit N → +∞, βN → 0. Nevertheless the transition between Wigner/ Airy and
Poisson statistics is not very well known up to now and many questions have been asked in
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the literature of RMT (see e.g. [32, 33, 34, 35] for related questions on eigenvectors localiza-
tion/delocalization).

5.2. Break down at β = 2c/N . The discussion of the previous subsection breaks down if β
scales with N as βN = 2c/N where c is a positive constant. In such cases (and for even more
rapidly decreasing βN ), the lower part of the matrix XN is no longer negligible compared to
the upper part. One has to keep all the entries in the matrix XN and the approach through the
stochastic linear operator is no longer valid.

As mentioned in the introduction, the case β = 2c/N was studied before. In [10], the authors
prove that, if β scales with N as β = 2c/N where c is a positive constant, then the empiri-
cal eigenvalue density 1/N

∑N
i=1 δ(λ − λi) of the matrix XN converges in the large N limit

to a continuous probability density ρc with non compact support. The density ρc is computed
explicitly in [10] and one can easily recover the Gaussian tails of ρc for λ→ ±∞

ρc(λ) ∼ Cλ2ce−λ
2/4(66)

where C is an explicit multiplicative constant.

The reader may wonder whether Eq. (65) is coherent with the results found in [10] where the
limiting empirical eigenvalue density of the matrix XN was computed in the double scaling limit
βN = 2c/N with N →∞. The developments of the previous subsection should a priori apply
for any sequence βN such that βN → 0 and NβN → +∞ as N → +∞. In particular, it
should hold for βN = lnN/N . For such a βN , Eq. (65) rewrites under the form

λN0 = c1
√

lnN + c2
ln lnN√

lnN
+ c4

1√
lnN

+ c3
1√

lnN
G ,(67)

where c1, c2, c3, c4 are (explicit) constant (their values are irrelevant in the present discussion).
This scaling form matches the one would find for the maximum of N particles allocated accord-
ing to the density ρc derived in [10] when βN = 2c/N .

We therefore conjecture that, even though λN0 has Gumbel fluctuations for any sequences βN
going to 0 in the large N limit, it has different scalings depending on whether

� βN decreases faster than lnN/N , then the centering and scaling in the convergence of
λN0 are as in (67).

� βN decreases slower than lnN/N , then the centering and scaling are as in Eq. (65).

APPENDIX A. PROOFS OF AUXILIARY RESULTS

Proof of Proposition 3.1.

It is classical to show that the function gα defined in Eq. (12) is a weak solution to the boundary
value problem Eq. (13) and (14) [37]. Note simply that the differential equation is Ggα = αgα
where G is the infinitesimal generator associated to the diffusion process (Ya(t)). The boundary
condition (14) is satisfied by gα as defined in Eq. (12) since the diffusion, when starting from y,
will explode in a time going to 0 when y → −∞.

At this point, we do not know yet that the function gα is a C2 function. Nevertheless, we can (at
least formally) perform the change of function u(y) = exp[−2(y3/3−ay)]g′α(y) and show that
the function gα satisfies the fixed point equation (15). This computation can be made rigorous
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by considering regularizations of gα and taking the limit in the end. It immediately follows from
Eq. (15) that the function gα is C∞.

We can now prove that there exists a unique bounded C2 function gα satisfying the boundary
value problem specified by Eq. (13) and (14). If h is another solution, it is straightforward to
check from Itô’s formula that the process e−αth(Ya(t)) is a martingale. Besides, it is bounded
and hence we can apply the stopping time Theorem which yields

h(y) = Ey[e
−αζ 1{ζ<∞} h(Yζ)] = Ey[e

−αζ ] = gα(y) ,

where we have used the boundary condition at y → −∞ satisfied by h as well as the fact that
ζ <∞ almost surely. The unicity is proved. �

Proof of Theorem 3.3.

First note that gα/m(a)(y) is non increasing with respect to y. In addition we have 0 ≤ gα/m(a)(y) ≤
1 and thus gα/m(a)(y) admits a limit when y → +∞. We will denote this limit gα/m(a)(+∞).

From Theorem 3.1, gα/m(a)(y) satisfies for any α ∈ (0; 1) the fixed point equation
(68)

gα/m(a)(y) = 1− 2
α

m(a)

∫ y

−∞
dx

∫ +∞

x

du exp

(
2a(x− u) +

2

3
(x3 − u3)

)
gα/m(a)(u) .

Let us define recursively a sequence Rn(y, a) such that R0(y, a) = 1 and for n ≥ 1

(69) Rn(y, a) :=
2

m(a)

∫ y

−∞
dx

∫ +∞

x

du exp

(
2a(x− u) +

2

3
(x3 − u3)

)
Rn−1(u, a) .

To begin note that, for α ≥ 0, and for all u ∈ R,

(70) 0 ≤ gα/m(a)(u) = Eu[e
−αζ/m(a)] ≤ 1

Using the upper bound of Eq. (70), we obtain from Eq. (68) a new lower bound

1− αR1(y, a) ≤ gα/m(a)(y) ≤ 1 .(71)

Using now the lower bound of Eq. (71), we obtain from Eq. (68) a new upper bound

1− αR1(y, a) ≤ gα/m(a)(y) ≤ 1− αR(y, a) + α2R2(y, a) .

We can check iteratively that for all N ,
2N−1∑
n=0

(−1)nαnRn(y, a) ≤ gα/m(a)(y) ≤
2N∑
n=0

(−1)nαnRn(y, a) .

In particular, we have by letting N → +∞ that, for any α ∈ (0; 1),

(72) gα/m(a)(y) =
+∞∑
n=0

(−1)nαnRn(y, a) .

Note that (72) permits to deduce the values of all the moments Ey[ζ
n] = n!m(a)nRn(y, a).

Now it suffices to prove that for all fixed n ∈ N and for any y ∈ R, Rn(y, a) converges to 1
when a → +∞. This is the content of the following Lemma A.1 whose proof can be found at
the end of this section.

Lemma A.1. Let f(a) such that a1/4(f(a) + a1/2)→ +∞. Then, for each n ∈ N and for any
y ≥ f(a), Rn(y, a) converges to 1 when a→ +∞.



28

It is then straightforward to see that

gα/m(a)(y, a)→ 1

1 + α
.

This convergence holds for any α ∈ (0; 1). The theorem follows since 1/(1+α) is the Laplace
transform of an exponential law with parameter 1. �

Proof of Lemma A.1.

First note that for each n, Rn(y, a) is increasing with respect to y and uniformly bounded by 1.
This can be seen easily by induction over n recalling the expression of m(a)(= m(a,+∞))
given in (16). It follows that the limy→+∞Rn(y, a) exists and is denoted as usualRn(+∞, a).
We proceed by induction over n to show that Rn(y, a) converges to 1 for any n and for any
y ≥ f(a). By monotonicity, it is enough to prove that both Rn(f(a), a) and Rn(+∞, a)
converges to 1 when a→ +∞.

By the definitions of R1(y, a) (Eq. (69) for n = 1) and of m(a) (see Eq. (16)), it is clear that,
for y ∈ R fixed and a→ +∞, R1(y, a)→ 1. Moreover, by monotonicity arguments, we easily
check that this convergence holds uniformly on the interval [f(a); +∞[.

At step n, performing two changes of variables in the recursive integral expression Eq. (69) of
Rn(y, a), we obtain for all a > 0,

Rn(y, a) =
2

m(a)
a

∫ y/a1/2

−∞
dx

∫ +∞

x

du exp

(
2a3/2

(
1

3
(x3 − u3)− x+ u

))
Rn−1(a

1/2u, a)

=
2

m(a)

1

a1/2
exp

(
8

3
a3/2

) a1/4(y+a1/2)∫
−∞

dx

+∞∫
−2a3/4+x

du

exp

(
−2x2 − 2u2 +

2

3
(
x3

a3/4
− u3

a3/4
)

)
Rn−1(a

1/2(1 +
u

a3/4
), a) .

By monotonicity again, we simply need to consider y ∈ {f(a); +∞}. From the second line
and provided that a1/4(y + a1/2) → +∞ (which is insured by assumption), we see that this
integral is concentrated in the regions x = O(1), u = O(1). One can in fact show that the
other regions bring negligible contributions. In this regime u = O(1) and we have, by the
induction hypothesis, Rn−1(a

1/2(1 + u
a3/4 ), a) → 1 uniformly for u ∈ [−aε; +∞], ε > 0

small. The convergence of Rn(f(a), a) and Rn(+∞, a) follow from the previous arguments
and the asymptotic expression for m(a) given in (85). �

APPENDIX B. PROOF OF (49)

Setting a = −` to work with a positive parameter and writing Za instead of Z`, recall the
definition of the diffusion Za,

dZa(t) = (
β

4
t+ a− Za(t)2) dt+ dB(t) .

Recall also that Pz,t refers to the law of the diffusion Za starting from z at time t. We denote in
this paragraph by ζ(u) the first blowup time after time u of Za.

Proposition 10 of [16] yields that
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Lemma B.1. Fix c′ > 0. There exists a positive constant c independent of a and β ∈ [0; 1]
such that for all a large enough and for all u ≤ c′ ln(a)/(β

√
a)

P
−
√
a+

(ln a)1/4

a1/4
,u

[
ζ(u) <

ln a√
a

]
≥ exp(−c

√
ln a) .(73)

Remark B.2. The constant in front of ln a/
√
a on the LHS is not optimal and can be replaced

by any value strictly greater than 3/8.

Proof. For x ∈ R ∪ {−∞}, set Tx := inf{t ≥ 0 : Za(t) = x} and let δ := (ln a)1/4/a1/4

and ε :=
√

ln a/a1/4. Without loss of generality we can suppose that B0 = 0.

Moreover, to simplify the proof, we will restrict to the case u = 0. The other cases follow the
same lines (the only change to make is the value of A introduced below (81) which should be
replaced by A′ := a+ (1 + c′) ln a√

a
).

Using the strong Markov property and the increasing property [16, 8], we can lower bound the
left hand side of (73) by

P−√a+δ,0
[
T−√a−δ <

1√
a
∧ T−√a+2δ

]
× P−√a−δ, 1√

a

[
T−√a−ε <

ln a

8
√
a
∧ T−√a

]
(74)

×P−√a−ε, ln a
8
√
a

[
T−∞ <

3

8

ln a√
a

]
.(75)

• The first probability gives the main cost. Using the comparison Theorem for sde (see [38,
Proposition 2.18] or [39, Theorem (3.7), Chapter IX]), we see that the process Za starting from
Za(0) =

√
a + δ and until the stopping time T−√a−2δ is stochastically dominated for a large

enough by the drifted Brownian motion−
√
a+δ+4

√
a δ t+B(t). More precisely, this means

that for all t ≤ T−√a+2δ, we have a.s.

Za(t) ≤ −
√
a+ δ + 4

√
a δ t+B(t) .

Therefore, using the fact that B(t) + 4
√
a δ t ≥ B(t) for all t ≥ 0, we can lower bound the

first probability of (74) by

P

[
B(

1√
a

) < −5
(ln a)1/4

a1/4
, sup
0≤t≤1/

√
a

B(t) <
(ln a)1/4

a1/4

]
.(76)

By the reflection principle 6 and Brownian scaling, this later probability is

P[B(1) ≤ −5(ln a)1/4]− P[B(1) ≥ 7(ln a)1/4] = P[−7(ln a)1/4 ≤ B(1) ≤ −5(ln a)1/4]

≥ c′ exp(−25

2

√
ln a) ,

where the last inequality holds for a large enough and for a positive constant c′.

• For the second part, using again the comparison theorem for sde [38, Proposition 2.18], we
can see that the process Za starting from Za(

1√
a
) = −

√
a − δ is almost surely below the

Brownian motion for t ∈ [ 1√
a
;T−√a]. More precisely,

Za(t) ≤ −
√
a− δ +B(t)−B(

1√
a

)

6For b ≤ a and t ≥ 0, P[sup0≤s≤tB(s) ≥ a,B(t) ≤ b, ] = P[Bt ≥ 2a− b].
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for all t ∈ [ 1√
a
;T−√a].

Therefore the second probability is bounded from below by

P

B(
ln a

8
√
a

) ≤ δ − ε, sup
0≤t≤ ln a

8
√
a

B(t) ≤ δ

 .

Again from reflexion principle and Brownian scaling property, this probability is equal to

P

[
−
√

8−
√

8

(ln a)1/4
≤ B1 ≤ −

√
8 +

√
8

(ln a)1/4

]
=a→+∞ O(

1

(ln a)1/4
) .

This handles the second probability of (74) which does not contribute to the main cost as it is
much larger than the first probability.

• For the last probability, the idea of [16] is to compare the diffusion Za with the solution of an
(random) autonomous differential equation which can be computed explicitly. Set

Ga(t) := Za(t)−B(t) .(77)

Denote

M := sup
0≤t≤ 3

8
ln a√
a

|B(t)| .

For t ≤ T−√a ∧ 3
8

ln a√
a

, we have

Ga(t) ≤ −
√
a+M .(78)

The function Ga(t) satisfies the following (random) first order differential equation for t > ln a√
a

G′a(t) =
β

4
t+ a−Ga(t)

2

(
1 +

B(t)

Ga(t)

)2

, Ga(
ln a√
a

) = −
√
a−
√

ln a

a1/4
.(79)

Now consider the event

{M ≤ 1

2

√
ln a

a1/4
} ,

under which we are able control the solution Ga and its explosion time. Note that this event
happens with a positive probability p independent of a. Moreover, under this event, we have
T−√a ≥ 3

8
ln a√
a

so that the inequality (78) is valid for any t ≤ 3
8

ln a√
a

.

Thus, under the event {M ≤ 1
2

√
ln a
a1/4 } and for t ≤ 3

8
ln a√
a

, we easily check that(
1 +

B(t)

Ga(t)

)2

≥ 1− 2
M√
a−M

≥ 1−
√

ln a

a3/4 −
√

ln a
2

.

Introduce now the function Ha(t) solution of the (random) autonomous first order differential
equation

H ′a(t) = A−BHa(t)
2 , Ha(0) = −

√
a−
√

ln a

a1/4
(80)
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with

A := a+
ln a√
a

and B := 1−
√

ln a

a3/4 −
√

ln a
2

.(81)

It is easy to check (with the argument used to prove the increasing property) that, under the
event {M ≤ 1

2

√
ln a
a1/4 }, the function Ha dominates the function Ga a.s. for all t ≤ 3

8
ln a√
a

,

Ga(
ln a√
a

+ t) ≤ Ha(t) .(82)

But Eq. (80) can be integrated with respect to t leading to

Ha(t) +
√

A
B

Ha(t)−
√

A
B

= C e2
√
ABt

where C can be computed explicitly from the initial condition in t = 0. From this expression,
we see that the function Ha explodes after a finite time τ which can be computed explicitly and
bounded as

τ =
1

2
√
AB

ln
1

C
≤ 3

8

ln a√
a
.(83)

Using (77) and (82), we deduce that under the event {M ≤ 1
2

√
ln a
a1/4 }, the diffusion Za explodes

in a time smaller than (1 + 3
8
) ln a√

a
. The Lemma is proved. �

APPENDIX C. ASYMPTOTIC OF MAIN INTEGRALS

With two consecutive change of variables, we obtain for a > 0,

m(a) =
√

2π a1/4

∫ +∞

0

dx√
x

exp

(
2a3/2(x− 1

12
x3)

)
=

√
2π√
a

exp

(
8

3
a3/2

) ∫ +∞

−2a3/4

dy√
2 + y

a3/4

exp

(
−y2 − 1

6

y3

a3/4

)
(84)

∼a→+∞
π

a1/2
exp

(
8

3
a3/2

)
.

With a more precise analysis of the integral (84), we can in fact check that

(85) m(a) =
π√
a

exp

(
8

3
a3/2

)(
1 +

5

48

1

a3/2
+ o(

1

a3
)

)
,

Then it is plain to deduce that, with J0(a) = 1/m(a),

(86) J0(a) =
a1/2

π
exp

(
−8

3
a3/2

)(
1− 5

48

1

a3/2
+ o(

1

a3
)

)
,

and

(87)

∫ `

−∞
J0(t) dt ∼`→−∞

1

4π
exp

(
−8

3
|`|3/2

)(
1− 5

48

1

|`|3/2
+ o(

1

|`|3
)

)
.
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Differentiating J0(a) with respect to a, we obtain for a > 0

J ′0(a) = −2
√

2π J0(a)2

∫ +∞

0

dv
√
v exp

(
2a v − 1

6
v3

)
= −2

√
2π J0(a)2 a3/4

∫ +∞

0

dx
√
x exp

(
2a3/2(x− 1

12
x3)

)
= −2

√
2π J0(a)2

∫ +∞

−2a3/4

dy

√
2 +

y

a3/4
exp

(
−y2 − 1

6

y3

a3/4

)
∼a→+∞ −

4

π
a exp

(
−8

3
a3/2

)
.(88)

APPENDIX D. CONSISTENCY OF PERTURBATION THEORY

Perturbation theory was used to obtain approximation at leading order of the solution of the
partial differential equation Eq. (53).

The number ρβ(] −∞; `]) of eigenvalues below the level ` was then computed from the per-
turbative solution of the pde Eq. (53).

In this section, we check the validity of perturbation theory by verifying that the correction terms
remain negligible compared to the leading solution obtained.

D.1. Correction to the leading order. We compute the O(1) correction to the leading order
in the expansion Eq. (57) of ρβ(]−∞; `]) and show that, for all values of `, perturbation theory
leads to a consistent expansion at small β of ρβ(] − ∞; `]) such that the O(1) correction is
much smaller than the leading term of order 1/β. In particular this holds for ` := `β scaling with
β as `β ∼ − ln(1/β)2/3 when β → 0. This was not obvious in the first place and needed to
be checked in particular for `β in the scaling region of the minimal eigenvalues at small β.

The O(1) correction denoted Γ1
β(`) such that

(89) ρβ(]−∞; `]) =
4

β

∫ `

−∞
J0(u) du+ Γ1

β(`) + o(β) .

can be obtained by computing first the linear correction J1(z, t) to the flux Jqβ(z, 4t/β) =

Jpβ(z, t) = J0(`− t) +βJ1(z, t) + o(β). The flux J1 is related to the function p1 introduced in

Eq. (55) and satisfies J1(z, t) = (z2 + `− t)p1(z, t) + 1
2
d
dz
p1(z, t). We thus need to compute

p1. This can be done by identifying the linear terms in β on both sides of equation (54), we
obtain the following ordinary differential equation for p1(z, t)

d

dz

[
(z2 + `− t) p1(z, t) +

1

2

d

dz
p1(z, t)

]
=

d

dt
p`−t0 (z) .(90)

By a further integration with respect to z, Eq. (90) becomes

J1(z, t) =
d

dt

∫ z

−∞
p`−t0 (u) du+ j1(t)

where j1(t) is a constant which does not depend on z. As mentioned above, we are interested
only in limz→−∞ J1(z, t) = j1(t), which can be computed easily using the normalization
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constraint
∫

R p1(z, t)dz = 0 7. We find

j1(t) = 4J ′0(`− t)J0(`− t)
∫ +∞

−∞
dz

∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw e2(`−t)(u−z+w−v)+ 2

3
(u3−z3+w3−v3)

− 8J0(`− t)2

∫ +∞

−∞
dz

∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw (v − w) e2(`−t)(u−z+w−v)+ 2

3
(u3−z3+w3−v3) .

We can finally deduce the correction Γ1
β(`) as a function of the flux j1(t)

Γ1
β(`) =

∫ +∞

0

j1(t) dt ,

leading us to

Γ1
β(`) = 4

∫ `

−∞
dλJ ′0(λ)J0(λ)

∫ +∞

−∞
dz

∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw e2λ(u−z+w−v)+ 2

3
(u3−z3+w3−v3)

(91)

− 8

∫ `

−∞
dλJ0(λ)2

∫ +∞

−∞
dz

∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw(v − w)e2λ(u−z+w−v)+ 2

3
(u3−z3+w3−v3) .

A careful analysis of this integral (see Appendix D.2) permits to extract the asymptotic behavior
of Γ1

β(`) when `→ −∞

Γ1
β(`) ∼`→−∞ −

3

π
ln |`| exp

(
−4|`|3/2

)
.(92)

Using this estimate, we can check that the asymptotic range `β(x) for x ∼ O(1) (going to−∞
when β → 0) of the minimal eigenvalue Lβ0 satisfies

Γ1
β(`β(x)) ∝ − ln

(
ln

1

β

)
β3/2 � Γβ(`β(x)) = O(1) .

Thus we see that the correction Γ1
β(`) remains negligible compared to ρβ(] − ∞; `]) in the

region ` ∼ `β(x).

D.2. Other integrals. If λ < 0, then

Iλ :=

∫ +∞

−∞
dz

∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw exp

(
2λ(u− z + w − v) +

2

3
(u3 − z3 + w3 − v3)

)
=

∫ +∞

−∞
dz

∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw exp

(
2|λ|(z − u+ v − w) +

2

3
(u3 − z3 + w3 − v3)

)
=|λ|2

∫ +∞

−∞
dz

∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw exp

(
2|λ|3/2

(
(z − u+ v − w) +

1

3
(u3 − z3 + w3 − v3)

))
.

In the limit λ → −∞, we can determine the leading order of this integral with the saddle point
method. We have to compute the maximum of the function

f(z, u, v, w) = (z − u+ v − w) +
1

3
(u3 − z3 + w3 − v3)

7p1 is the coefficient of the linear correction in β to the probability density pβ : It should not bring mass in the
integral.
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on the domain of integrationD := {(z, u, v, w) ∈ R4, u ≤ z, v ≤ u,w ≤ v}. It is easily seen
that it is reached for z = 1, u = v, w = −1 and is equal to 4/3. Let us perform the following
change of variables

z = 1 +
x1

|λ|3/4
, u = x2, v = x2 −

x3

|λ|3/2
, w = −1 +

x4

|λ|3/4
.

Up to small corrections, when λ→ −∞, the integral is equivalent to

|λ|−1 exp

(
4

3
|λ|3/2

) +∞∫
−∞

dx1e
−x2

1

+∞∫
−∞

dx4e
−x2

4

+∞∫
0

dx3

1+
x1

|λ|3/4∫
−1+

x3

|λ|3/2
+

x4

|λ|3/4

dx2 exp

(
(x2

2 − 1)x3 − x2
x2

3

|λ|3/2

)
.

Two contributions have to be accounted for. The variables x1 and x4 being fixed of order 1, we
look separately at the integration over x3 with x2 ≤ 0 and then with x2 ≥ 0.

∫ +∞

0

dx3

0∫
−1+

x3

|λ|3/2
+

x4

|λ|3/4

dx2 exp

(
(x2

2 − 1)x3 − x2
x2

3

|λ|3/2

)

∼λ→−∞
∫ +∞

0

dx3

0∫
−1+

x3

|λ|3/2

dx2 exp
(
−(1− x2

2)x3

)
=

∫ 1

0

dx2

∫ (1−x2)|λ|3/2

0

dx3 exp
(
−(1− x2

2)x3

)

=

∫ 1

0

dx2

1− x2
2

(
1− exp

(
−(1− x2

2)(1− x2)|λ|3/2
))

=

∫ 1

0

dt

t(2− t)
(
1− exp(−t2(2 + t)|λ|3/2)

)
=

∫ |λ|3/4
0

dx

x
(

2− x
|λ|3/4

) (1− exp

(
−x2(2 +

x

|λ|3/4
)

))
∼λ→−∞

3

8
ln |λ| .

Integrating now with respect to x1 and x4 leads to a contribution to the total integral Iλ of order

π |λ|−1 exp

(
4

3
|λ|3/2

)
3

8
ln |λ| .
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The region x2 ≥ 0 has to be treated differently: Here we have to keep the correction term
−x2x

2
3/|λ|3/2 in the exponential which prevents the integral to be infinite.

+∞∫
0

dx3

1+
x1

|λ|3/4∫
0

dx2 exp

(
(x2

2 − 1)x3 − x2
x2

3

|λ|3/2

)
∼λ→−∞

+∞∫
0

dx3

1∫
0

dx2 exp

(
(x2

2 − 1)x3 − x2
x2

3

|λ|3/2

)

=
1

|λ|3/2

∫ +∞

0

dx3

∫ |λ|3/2
0

dt exp

(
− t

|λ|3/2
(2− t

|λ|3/2
)x3 − (1− t

|λ|3/2
)
x2

3

|λ|3/2

)
∼λ→−∞

1

|λ|3/2

∫ +∞

0

dx

∫ |λ|3/2
0

dt exp

(
− 2tx

|λ|3/2
− x2

|λ|3/2

)
=

1

|λ|3/4

∫ +∞

0

dy

∫ |λ|3/2
0

dt exp

(
− 2t

|λ|3/4
y − y2

)
=

1

2

∫ +∞

0

dy

y
e−y

2
(

1− e−2y|λ|3/4
)

∼λ→−∞
1

2

∫ 1

0

dy

y
e−y

2
(

1− e−2y|λ|3/4
)

=
1

2

∫ |λ|3/4
0

dt

t
e−t

2/|λ|3/2 (1− e−2t
)

∼λ→−∞
3

8
ln |λ| .

Hence the region x2 ≥ 0 leads to the same contribution as the region x2 ≤ 0. We finally have

Iλ ∼λ→−∞
3π

4

ln |λ|
|λ|

exp

(
4

3
|λ|3/2

)
.(93)

Next we need to analyse the integral

Kλ :=

∫ +∞

−∞
dz

∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw(v − w)e2λ(u−z+w−v)+ 2

3
(u3−z3+w3−v3)

= |λ|5/2
∫ z

−∞
du

∫ u

−∞
dv

∫ v

−∞
dw(v − w) exp

(
2|λ|3/2

(
(z − u+ v − w) +

1

3
(u3 − z3 + w3 − v3)

))
Up to small corrections, the integral Kλ takes the form

|λ|−1/2 exp

(
4

3
|λ|3/2

)
+∞∫
−∞

dx1e
−x2

1

+∞∫
−∞

dx4e
−x2

4

+∞∫
0

dx3

1+
x1

|λ|3/4∫
−1+

x3

|λ|3/2
+

x4

|λ|3/4

dx2(x2 + 1) exp

(
(x2

2 − 1)x3 − x2
x2

3

|λ|3/2

)
.

The integral in the second line can be analysed following the previous lines. We check that the
mass in the integral is carried this time exclusively by the region x2 ≥ 0. We obtain finally

Kλ ∼λ→−∞
3π

4

ln |λ|√
|λ|

exp

(
4

3
|λ|3/2

)
.(94)
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Gathering (86), (88), (93) and (94), we can deduce from (91) that

Γ1
β(`) ∼`→−∞ −

18

π

∫ `

−∞
dλ
√
|λ| ln |λ| exp

(
−4|λ|3/2

)
∼`→−∞ −

3

π
ln |`| exp

(
−4|`|3/2

)
.
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