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1. INTRODUCTION

Since Wigner’s initial suggestion [1] that the statistical properties of the eigenvalues of random
Hermitian matrices should provide a good description of the excited states of complex nuclei,
random matrix theory (RMT) has become one of the prominent fields of research, at the bound-
ary between atomic physics, solid state physics, statistical mechanics, statistics, probability the-
ory, and number theory [2].

The two main models for Hermitian random matrices (which have been extensively studied in
the literature, see [2, 3, 5, 4, 6] for a review of RMT) are: (i) the ensembles of Wigner matrices
which have independent (up to symmetry) and identically distributed entries; (ii) the classical
real, complex and quaternion invariant ensembles, which are respectively stable under the con-
jugation by the orthogonal, unitary, and symplectic groups. The intersection between those two
types of random matrices is actually reduced to the famous Gaussian orthogonal, unitary and
symplectic ensembles.

In this paper, we construct Hermitian matrix diffusion processes (H(t), t ≥ 0), which evolve
in non-confining potentials and which are invariant under rotation at all time t ≥ 0. The initial
motivation for our work is to make sense of invariant ensembles of random matrices in non-
confining potentials such as Va(x) = x3/3−a x, a ∈ R, which cannot be defined in the usual
way because of the divergence of the partition function. The family {Va, a ∈ R} of potentials
we are looking at includes the cubic interaction (a = 0) and our results can be extended to
a variety of non-confining polynomial potentials with the same ideas. In particular, our method
also permits us to construct a family of invariant ensembles in non-confining quartic potentials
of the form Ug(x) = x2/2 + g x4 where g < 0 is a parameter called the coupling constant.
Such potentialsUg have already been considered in the paper [7], where Brézin, Itzykson, Parisi
and Zuber use an enumerative formula established in [8] for planar diagrams in terms of matrix
integrals associated to the potential Ug, to count planar diagrams. Our construction brings new
lights on some of their results on the limiting spectral density as the dimension N →∞, in the
case g < 0.

The idea of our construction is inspired by [9] where Halperin studies one dimensional diffusion
processes in non-confining potentials. We first simply let our diffusive matrix process evolve in
the non-confining potential of interest, until the first explosion time of one of the coefficients
of the matrix. To extend the trajectory after this explosion time, we restart our matrix process
at this time from a new position insuring continuity of the non-exploding coefficients, until the
next explosion occurs, and so on. This procedure is explained in section 3. After some time, we
expect that this matrix process will reach an equilibrium, which is, in contrast with the classical
case of Dyson Brownian motion in a quadratic potential, a dynamical steady state. In particular,
we establish in Section 6 that there is a stationary flux of particles (eigenvalues) flowing across
R in the steady state if the barrier of the potential is not too strong to confine the particles. This
feature appears to be new and leads to interesting further questions about the fluctuations of
this flux around its leading order in the large N -limit. We compute the leading behavior of the
stationary flux in the large N limit (see formula 30), which measures the number of eigenvalues
crossing over the system per unit of time. We believe that our construction defines an interesting
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model of interacting charged particles with a random flux, to be related with the asymmetric
exclusion processes which have attracted attention in the last decade (see e.g. [10, 11]).

In the particular case of a cubic potential, we describe precisely the dynamics of the spectrum of
our matrix process in the limit of large dimensionN in section 4. We analyze the stationary state
of this dynamic by computing explicitly the spectral density, which gives the global allocation of
the eigenvalues. We observe an interesting sharp phase transition for this spectral density at the
critical value a = a∗. If a < a∗, then the well of the potential Va is not deep enough to prevent a
macroscopic proportion of the eigenvalues to explode and we find a stationary spectral density
ρa with full support in R, flanked with heavy tails such that ρa(x) ∼ Ca/x

2 as x → ±∞.
On the contrary, if a ≥ a∗, then the eigenvalues are confined in the well near x = +

√
a

of the potential Va such that the spectral density in the stationary state has compact support.
The underlying flux of particles displays also a phase transition at the critical value a = a∗.
The current of particles, which allocate according to the stationary profile ρa, is macroscopic
compared to the total mass of the N eigenvalues if a < a∗ whereas it is microscopic if a ≥ a∗.

We conclude in the last section 8 with some open questions related to the statistics of the
eigenvalues and their current, in the stationary state.

2. INVARIANT ENSEMBLES

Given an analytic potential V such that V (R) ⊆ R, we associate an invariant ensemble of
random matrices in the space of (real, complex or quaternion) Hermitian matrices by specifying
their law as

P (dH) :=
1

Z
exp (−N Tr(V (H))) dH ,(1)

where V is meant to act on Hermitian matrices by holomorphic functional calculus, dH is the
Lebesgue measure on the space of Hermitian matrices and Z is the partition function given by

Z :=

∫
exp(−N Tr(V (H))) dH ,(2)

where the integral is over the corresponding space of Hermitian matrices.

An assumption on the growth of V (x) when x→ ±∞ is necessary here [12], such that

(3) Z <∞ .

so that the partition function Z and the probability law P are well defined.

Under this assumption, the eigenvalues of the matrix H(t), which evolves in the stationary
potential V , are confined and do not explode.

The purpose of this article is to construct new invariant ensembles of random matrices in a family
of potentials (Va, a ∈ R), which violates the key assumption (3). For simplicity, we reduce to
the case of real symmetric matrices, although this discussion can be extended to the complex
and quaternion cases.

The first step is to view the probability distribution P defined in (1) as the Boltzmann equilibrium
weight of the diffusive matrix process satisfying the Langevin equation

dH(t) = −1

2
V ′(H(t))dt+

1√
N
dB(t) ,(4)
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with H(0) = 0 at the initial time and where (B(t)) is a Hermitian Brownian motion, i.e. a
real symmetric N ×N matrix process with entries given by independent (up to symmetry) real
Brownian motions (BMs), with an extra factor 1/

√
2 for the off diagonal entries of (B(t)) 1.

The dynamic (4) preserves the invariance under rotation of the processH , in the sense that the
matrixH(t) is invariant in law under the conjugation of any orthonormal matrix: For allO ∈ ON
(the orthonormal group) and for any t ≥ 0, we have

H(t)
(d)
= OH(t)O†

where O† refers to the transpose of O.

The interesting feature of this second approach is that one can still define a Hermitian matrix
process satisfying the Langevin equation (4) even if the potential V does not fulfill the confining
restriction (3).

3. HERMITIAN MATRIX PROCESS IN CUBIC POTENTIALS

In this paragraph, we consider the odd potential

Va(x) =
x3

3
− a x ,(5)

where a ∈ R is a given parameter. This family of potential (Va, a ∈ R) includes the cubic
interaction (case a = 0) and we shall soon see that it is also natural to introduce a linear
term in order to cover a wider variety of behaviours. Besides, this family of potentials already
appeared in various contexts: random matrices [13, 14, 15, 16], random Schrödinger operators
and diffusions [9, 17, 18, 19, 20, 21].

If a > 0, the potential Va presents a local minimum in x =
√
a and a local maximum in

x = −
√
a (see Fig. 1). The local minimum is then separated from the local maximum by a

potential barrier of size ∆Va = 4
3
a3/2. If a ≤ 0 however, the potential is fully non-confining.

For such a potential Va, the probability P defined in (1) does not exist because of the divergence
of x3 as x → −∞ which prevents the partition function Z to be finite. Nevertheless, the
Langevin equation (4) remains well defined up to a small time interval [0; ε] (with overwhelming
probability) and there exists a diffusive matrix process (H(t), t ∈ [0; ε]) in the space of real
Hermitian matrices such that,

dH(t) = (a−H(t)2) dt+
1√
N
dB(t) ,(6)

with H(0) = 0 at the initial time and where B is a Hermitian Brownian motion (defined above).
Similar diffusion processes have also been thoroughly considered in dimension N = 1 in
[9, 13, 14, 15, 17, 18, 19, 20]. We invite the reader to look at [20] for a brief review on the
dynamics of a one-dimensional diffusion in such a potential.

As in the one-dimensional case, the main difficulty to define such a Hermitian process (6) on
the whole positive half line t ≥ 0, comes from the fact that, with probability one, the diffusive
matrix process (H(t)) satisfying (6) will eventually blow-up at some finite time τ1 defined as

τ1 := inf{t ≥ 0 : max(|Hij(t)|, 1 ≤ i, j ≤ N) = +∞} .
1To insure invariance by rotation, the variance of the real BMs on the diagonal has to be twice the off diagonal

terms.
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FIGURE 1. Picture of a Coulomb gas with N = 20 particles (red dots) carrying
positive charges in the potential Va(x) as a function of x for a = 2/3.

In [16], Bloemendal and Virág construct an Hermitian diffusive process (H(t), t ≥ 0) on the
whole positive half line t ≥ 0, satisfying a similar equation to (6) off what they call the focal
points (see [16, Eq. (5.8)]), which corresponds to the explosion times of the process (H(t)).
They are interested in the case of a non stationary potentials similar to ours with an additional
linear term rt in the drift (r > 0). Our case would simply corresponds to the r = 0 case. The
authors of [16] use a matrix generalization of Sturm oscillation theory, which goes back to the
work of Morse [22] (see also [23, 24, 25, 26]).

Let us now explain how the eigenvalues and eigenvectors ofH(t) evolve until the first explosion
time τ1 and see how the trajectories of those processes can be extended after this time.

For any t ≥ 0, the real eigenvalues of the Hermitian matrix H(t) will simply be denoted, in non
increasing order, as ΛN(t) := (λ1(t) ≥ λ2(t) ≥ · · · ≥ λN(t)). The main point is that the
symmetric matrix dB(t) in (6) is invariant under conjugation by an orthogonal matrix so that
the usual derivation of Dyson’s Brownian motion [27] is easily extended to this case. Indeed,
the authors of [16] derive the stochastic differential system satisfied by the eigenvalues process
using Hadamart’s variation formula, see [16, Theorem 5.4], which is somehow the rigorous way
of performing basic perturbation theory in the eigenvalues problem associated to the Langevin
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equation (6) 2. Either way, we eventually obtain the following stochastic differential system for
the eigenvalues ΛN(t),

dλi = (a− λ2
i ) dt+

β

2N

∑
j 6=i

dt

λi − λj
+

1√
N
dBi ,(7)

where β = 1 and Bi, i = 1, . . . , N are real independent Brownian motions. Note that the
cases β = 2, 4 may have also been covered using complex and quaternion Hermitian Brownian
motions. Let us simply mention that for β ≥ 1, the electrostatic repulsion is strong enough to
prevent any collision between the eigenvalues so that the stochastic differential system has a
well defined and continuous solution in the Itô’s sense [3]. Towards a physical picture, we can
see the process (λ1, . . . , λN) as a one dimensional repulsive Coulomb gas of N positively
charged particles, subject to a thermal noise and lying in the non-confining cubic potential Va
(5) (see Fig. 1).

0 2 4 6 8 10

-6
-4

-2
0

2
4

6

FIGURE 2. (Color online). Simulated paths of the eigenvalues
(λ1(t), λ2(t), λ3(t)) as a function of time t for N = 3 and a = 1/3.
The green horizontal dashed lines give the position of the well and the hill of
the potential Va in λ = ±

√
a.

2 An indirect derivation, which takes the stochastic differential system of the eigenvalues as granted in order to
recover a posteriori the matrix equation (6) can also be done as in [3] for the usual Dyson Brownian motion.
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The evolution of the (orthonormal) eigenvectors ψi(t) respectively associated to λi(t) can also
be derived using standard perturbation theory, or by the indirect method of [3, Proof of Theorem
4.3.2], applied for the Hermitian Brownian motion, together with the eigenvalues. Note that the
ψi(t) are all determined up to a sign ±1. Up to an arbitrary choice at the initial time, we can
prove, following [3, Proof of Theorem 4.3.2] (see also [28]), that there exists a continuous (with
respect to time) version of the process Ψ := (ψ1, . . . , ψN) which evolves according to

dψi(t) = − 1

2N

∑
j 6=i

dt

(λi − λj)2
ψi(t) +

1√
N

∑
j 6=i

dWij(t)

λi − λj
ψj(t) ,(8)

where the real Brownian motions Wij, 1 ≤ i < j ≤ N are mutually independent and defined
by symmetry Wij = Wji for i > j. Moreover the Wij, i ≤ j are independent of the Brownian
motions Bi driving the stochastic differential system of the eigenvalues (7). This allows us to
freeze the trajectories of the eigenvalues until the first explosion time τ1 and then to study the
eigenvectors dynamics with this realization of the eigenvalues path.

Now the main problem is to understand the behavior of the eigenvectors when we approach the
explosion time τ1 at which λN(t) → −∞ as t → τ1. We can easily see that this singularity
does not affect the eigenvectors in the sense that, for all i = 1, . . . , N , the trajectory of ψi(t)
can be extended continuously when t ↑ τ1. Indeed, all the terms of the form 1/(λN − λj), j 6=
N which appear in (8) vanish at the explosion time τ1, so that we can check the Cauchy criterion
ψi(t)−ψi(s)→ 0 when t, s→ τ1, which insures the existence of a limit for ψi(t) when t ↑ τ1
for all i.

This remark suggests to extend the trajectory of the matrix process (H(t)) after each explosion
times, which are labeled as τk, k ≥ 1, according to the following procedure. Whenever an
explosion occurs at some time τk, the (exploding) eigenvalue λN is immediately restarted at
the explosion time τk+ in +∞, while the trajectories of the other particles (λ1, λ2, . . . , λN−1)
are extended in a continuous way (note again from (7) that for all i 6= N , λi(t) has a limit when
t ↑ τ1). At each explosion τk, we re-label the eigenvalues according to the circular change of
indexation

λ1 → λ2 → · · · → λN−1 → λN → λ1 .(9)

Now, in order to define the trajectory of the Hermitian process (H(t)) for all time t ≥ 0, we
need to check that the sequence of explosion times (τk)k≥1, defined recursively for k ≥ 1 as

τk+1 := inf{t ≥ τk : λN(t) = −∞} ,

has no accumulation points in R+. This fact follows from [16, Section 5] where the authors prove
that the explosion times of the eigenvalues process (7) correspond to the focal points, which are
almost surely finitely many in compact sets of R+ (see in particular [16, Proposition 5.1]).

In this way, the trajectory of the Hermitian process (H(t)) is defined for all time t ≥ 0. Its
eigenvalues process evolves according to the stochastic differential system (7) with a circular re
labeling at each explosion time τk, while the associated eigenvectors process follows (8) with
the same re labeling at time τk.

Because H(t) is invariant under rotation at all times, there is not much to say on the eigen-
vectors dynamics of the process H . In the next sections of this paper, we focus on the spectral
statistics of H .
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Remark 3.1. One could have chosen a different dynamic where the process (λ1, . . . , λN) is
still a solution of the stochastic differential system (7) but with no restarting procedure after the
explosions. Instead the particles are killed in−∞ whenever they explode at some finite time (in
the sense that they are stuck forever in−∞ and do not interact anymore with the living particles,
which have not yet exploded). This interesting model seems more complicated to handle with
our methods, see Remark 6.1 for more details.

4. DYNAMICS IN THE SCALING LIMIT

We are mainly interested in the empirical measure of the eigenvalues of the Hermitian process
H at time t

µNt :=
1

N

N∑
i=1

δλi(t) .(10)

Recall that the eigenvalues process (λ1(t), λ2(t), . . . , λN(t))t≥0 satisfies the stochastic dif-
ferential system (7) on the intervals (τk; τk+1), k ∈ N with the restarting and re-indexing pro-
cedures (9) at each explosion time τk.

4.1. Evolution equation for the spectral density. We denote by P(R) the space of proba-
bility measures on R and by C([0;T ],P(R)) the space of continuous functions from [0;T ]→
P(R).

Let us briefly recall the definition of the Stieltjes transform of a measure. Let H := {z ∈ C :
=z > 0} the upper half complex plane. If ν is a measure on R, its Stieltjes transform3 is the
holomorphic function G : H→ H defined by

G(z) =

∫
R

ν(dx)

x− z
.

We can recover the probability measure µt from the Stieltjes inversion formula, which writes for
x < y,

lim
ε↓0

∫ y

x

=G(λ+ i ε, t) dλ = π µt[x; y] +
π

2

(
µt({y})− µt({x})

)
.(11)

Basic properties of Stieltjes transforms, which shall be useful throughout the paper, are recalled
in Appendix B.

Our main result in this section establishes the convergence of the continuous stochastic process
(µNt )t≥0 when the dimension N tends to∞.

Theorem 4.1. Let T > 0 and a ∈ R.

Suppose that, at the initial time, the empirical density µN0 := 1
N

∑N
i=1 δλi(0) converges weakly

as N goes to infinity towards some µ ∈ P(R).

Then, (µNt )0≤t≤T converges almost surely in C([0, T ],P(R))4. Its limit (µt)0≤t≤T is the unique

measure valued process such that µ0 = µ and whose Stieltjes transform G(z, t) :=
∫

R
µt(dx)
x−z

3Note that the Stieltjes transform is sometimes defined as the negative of G i.e.
∫

R ν(dx)/(z − x).
4The space C([0, T ],P(R)) is a Polish space as P(R) equipped with its weak topology is metrizable (R is a

separable space)
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satisfies the holomorphic equation

G(z, t) = G(z, 0) +

∫ t

0

∂z

[
β

4
G(z, s)2 + (z2 − a)G(z, s) + z

]
ds .(12)

The proof of Theorem 4.1 is deferred to Section 9. Our approach is classical and follows the
method introduced in [3, 29] (see also [30, 31]). It consists in writing an evolution equation for
the Stieltjes transform GN(·, t) : H→ H of the probability measure µNt thanks to Itô’s formula
and the stochastic differential system (7) satisfied by the λi(t), i = 1, . . . , N in section 9.1.
We first prove the almost-sure pre-compactness of the family ((µNt ))0≤t≤T , N ∈ N in the
space C([0;T ],M≤1(R)) whereM≤1(R) is the space of measure with total mass smaller or
equal to 1 equipped with its weak-? topology. It turns out that it is sufficient for our purposes
to prove pre-compactness in C([0;T ],M≤1(R)) (instead of C([0;T ],P(R))) as we can show
afterwards that the Stieltjes transform solutions of (12) are associated to probability measures.
This feature is original and contrasts with the classical case of the quadratic potential for which
the solutions of the Stieljes equation are not necessarily probability measures (see [3, 29] where
the authors prove a dynamical version of Wigner’s Theorem). Finally we prove uniqueness of
the solution (12) in Lemma 9.2 using the characteristic method.

4.2. Convergence to equilibrium. We are interested in this paragraph in the convergence of
the probability measure process µt when t → ∞ (in the space of Radon measures endowed
with the topology of weak convergence).

To prove that µt converges weakly as t → ∞ to some µ ∈ P(R), it is sufficient to show (see
[32]) that the Stieltjes transform G(·, t) associated to µt converges point-wise for z ∈ H to the
Stieltjes transform G of the probability measure µ.

Although we were not able to prove it, it is natural to expect that the following convergence holds:

Conjecture 4.2. Let (G(z, t))z∈H,t≥0 be the solution of the evolution equation (12). Then, the
following limit exists for all z ∈ H,

Ga(z) := lim
t→∞

G(z, t) .(13)

Assuming that conjecture 4.2 is true, we can prove that the limit is indeed the Stieltjes transform
of some probability measure and deduce the desired convergence:

Proposition 4.3. The function Ga is the Stieltjes transform of a probability measure µa and is
a stationary solution of the evolution equation (12).

Consequently, the probability measure µt defined in Theorem 4.1 converges weakly as t →
+∞ to the probability measure µ∞.

The proof of this Proposition is deferred to Subsection 9.4.

In the next section, we characterizeGa : H→ C as the unique function satisfying the following
two properties:

� Ga is a stationary solution of (12);
� Ga is the Stieltjes transform of a (probability) measure µa.
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Moreover, we derive Ga and µa explicitly in analytic forms (see Theorem 5.1 and its proof
below). The probability measure µa is the limiting empirical eigenvalue density of the matrix
H(t) in the stationary state. We will see that Ga provides additional information on the current
of particles in the system, when the well in

√
a of the potential Va is not too confining to retain

all the particles inside (see section 6 for further details).

5. EQUILIBRIUM SPECTRAL DENSITY

In this section, we compute the limiting (i.e. when N =∞) empirical eigenvalue density of the
matrix H(t) in the stationary state (i.e. after a long time t→∞).

Under the assumption that Conjecture 4.2 is true, we know that there exists a Stieltjes transform
Ga associated to µa ∈ P(R) which is a stationary solution of the evolution equation (12). In
this section, we prove the uniqueness of the analytic function Ga which enjoys those properties
and we compute it explicitly in terms of the roots of a cubic polynomial. Using the Stieltjes inver-
sion formula recalled in (60), we derive the probability density of µa with respect to Lebesgue
measure and exhibit an interesting (sharp) phase transition displayed by µa at the critical value
a = a∗ = 3

4
β2/3.

Many details on the stationary probability measure µa are provided in this section. We briefly
summarize the main features in the following theorem.

Theorem 5.1. For all a ∈ R, there exists a unique analytic function Ga with the following two
properties:

� it is the Stieltjes transform of a probability measure µa, or equivalently (Akhiezer’s The-
orem [33, page 93]) Ga is analytic on H with Ga(H) ⊆ H and Ga(iy) ∼ −1/(iy) as
y → +∞;

� it is a stationary solution of the evolution equation (14).

Moreover, the probability measure µa(dλ) admits a density ρa(λ) with respect to the Lebesgue
measure, computed explicitly (see (20) and (22)) in terms of the roots of the polynomial of
degree three P ′(z) := 4z3 − 4az − β.

We distinguish two regimes depending on whether a ≥ a∗, or a < a∗ where

a∗ =
3

4
β2/3

is the critical value at which the probability density ρa displays a sharp phase transition (illus-
trated in Fig. 1):

� If a ≥ a∗, ρa is supported on a compact interval.
� If a < a∗, ρa has full support in R and is flanked with symmetric heavy tails as x→ ±∞,

ρa(x) ∼ Ca
x2

,

where Ca > 0 is an explicit constant (see below).

In the supercritical regime a ≥ a∗, the particles are all confined in the well of the local minimum
of the potential Va. The well is deep enough compared to the electrostatic repulsion between
the eigenvalues, to keep the particles inside it. The limiting density of particles has a classical
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shape in random matrix theory with a compact support and singularities of order 1/2 at the
upper and lower edges of the spectrum (square root cancelations). The critical density ρa∗ , still
compactly supported, is of particular interest with an usual singularity at the lower edge (see
paragraph 5.3 where we compute it explicitly as function of β (see (23)).

A sharp transition is observed at the critical value a = a∗: the density ρa is compactly supported
for a ≥ a∗ but has full support with heavy tails if a < a∗. As we will see in the next section, the
equilibrium of the eigenvalues becomes very unusual in the subcritical regime, mainly due to
the non-confining shape of the potential Va. This observation appears to be new. Although the
density profile of the eigenvalues has a stationary shape ρa, the particles are still flowing across
the system in the equilibrium state. There is in fact a positive current of eigenvalues flowing from
+∞ to −∞ in a stationary way: the number of particles per unit of time shifting from the right
to the left (counted algebraically) at some given level x ∈ R is constant (in time and in space).
This stationary current is also computed explicitly in the next section.

We provide an illustration of the variety of possible behaviors for the density ρa in Fig. 3 where
we show the graphics of the limiting eigenvalues density ρa(x) as a function of x, for par-
ticular values of a in the three different regimes a < a∗, a = a∗ and a > a∗. We have
also checked our result with numerical simulations with excellent agreement (see Fig. 3). The
samples to construct the empirical densities were obtained by simulating the Hermitian matrix
process (H(t))t≥0 satisfying (6), with N = 50. The method is usual and consists in discretiz-
ing time and diagonalizing the matrix H(t) at each time step. We have introduced a cut off in
order to deal with the explosions. Whenever the lowest eigenvalue λN(t) of the matrix H(t)
gets smaller than the cut-off value, we re initialize the matrix H(t) according to the procedure
described in section 3, using again a cut-off to approximate the value +∞. We let our algorithm
run for a time t = 100 with a time step δt = 10−3 and constructed the empirical densities in
the respective cases using the eigenvalue samples at all time steps after time 10. We noted that
both the convergences in dimension and time are extremely fast.

The rest of this section is devoted to the proof of Theorem 5.1. Additional informations on the
probability measure µa are provided along this proof.

Proof of Theorem 5.1. From Conjecture 4.2 and Proposition 4.3, we know that there exists an
analytic function Ga which satisfies the two properties given in Theorem 5.1. It is therefore
sufficient to prove the uniqueness of Ga with those two properties.

In the following, we work with the complex square root function
√
· : C→ H ∪ R+ defined for

z = reiθ ∈ C, r ≥ 0, θ ∈ [0; 2π) as
√
z :=

√
r eiθ/2. With this definition, the square root is

analytic on the domain C \R+ (to H) but displays a discontinuity near the positive half line R+.

If Ga is a stationary solution of (12), then there exists a constant J ∈ C such that for all z ∈ H,

β

4
Ga(z)2 + (z2 − a)Ga(z) + z = J .(14)

For any z ∈ H, we can solve the second degree equation (14) for which we have two solutions,

G±(z) =
2

β

(
a− z2 ±

√
(z2 − a)2 − β(z − J)

)
.(15)

Our analytic function Ga : H → H is equal either to G+(z) or to G−(z) depending on the
value of z ∈ H. It is possible that both G+(z) and G−(z) belong to H for certain values of z,
but for any z ∈ H, we will see that there will be one unique possible value of Ga(z).



11

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 3. (Color online). Graphics of the limiting eigenvalues densities ρa(x)
as a function of x, in the real case (β = 1) for a = 0, a = a∗ = 3/4
and a = 3/2 corresponding respectively to the sub-critical, critical and super
critical regimes. The points on top of the straight line represent the empirical
densities obtained from our simulated samples with N = 50.

We now seek for the constants J such that Ga has the two required properties of Theorem 5.1.
We shall in fact prove that there exists a unique such constant J := Ja.

The main idea is that the analyticity of Ga : H→ H and the non- analyticity of the square root
function in 0 prevent the complex polynomial function P (z) := (z2 − a)2 − β(z − J) inside
the square root of (15) to have any root with odd multiplicity, one or three, in H.

Additional information on the spatial locations of the roots of the polynomial P is then provided
by the zeroes of its derivative with degree three,

P ′(z) = 4z3 − 4az − β .(16)

Mainly, it is well known (Gauss-Lucas Theorem) that the roots of P ′ all lie within the convex hull
of the roots of P , that is the smallest convex polygon containing the roots of P .

It is easy to check from Cardan’s formulas that P ′ has three real roots if and only if

a ≥ 3

4
β2/3 = a∗ .
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If a < a∗, then P ′ has one real root and two roots in C \ R which are complex conjugate.
Moreover Cardan’s formulas permit us to compute the three roots of P ′ analytically. Gathering
those arguments, we can now compute the constant Ja treating separately the two cases a <
a∗ and a ≥ a∗.

5.1. Subcritical regime. If a < a∗, then P ′ has one (unique) root in H so that, by Gauss-
Lucas Theorem, P has at least one root in H. By analyticity of G+ on H, any such root of P is
necessarily of multiplicity two 5, and therefore is equal to the unique root of P ′ in H. Denoting
by ζa this root and using the condition P (ζa) = 0, we obtain

Ja = ζa −
1

β
(ζ2
a − a)2(17) (

=
a

β
ζ2
a +

3

4
ζa −

a2

β

)
,

and the polynomial P (z) = Pa(z) := (z2 − a)2 − β(z − Ja) is uniquely determined.

Note that we have the following expression for ζa:

ζa =
β1/3

2

((
1 +

√
1− (a/a∗)3

)1/3

j +
∣∣∣1−√1− (a/a∗)3

∣∣∣1/3 j2
)

where j = −1/2 +
√

3 i/2 which permits us to check that Ja ∈ H thanks to elementary
computations (using the second expression for Ja). Therefore Ga can be extended analytically
to a neighborhood of the real axis (indeed ζa ∈ H implies that Pa cannot have real roots).
Moreover Ga takes the following expression for z ∈ H near the real axis:

Ga(z) =
2

β

(
a− z2 +

√
Pa(z)

)
.(18)

Remark 5.2. The polynomial Pa can be factorized with elementary computations as

Pa(z) := (z − ζa)2(z − γ−)(z − γ+) ,(19)

where

γ± = −ζa ±
√

2(a− ζ2
a) ∈ H− := {z ∈ C : =(z) < 0}

Eq. (18) characterizes the function Ga uniquely. The Stieltjes inversion formula (60) permits
us to check that the probability measure µa admits a density ρa with respect to the Lebesgue
measure given by for x ∈ R,

ρa(x) =
2

βπ
=
[√

Pa(x)
]
.(20)

It is easy to check that ρa has full support in R. Recalling that =Ja > 0, it is straightforward to
derive the heavy tails of ρa when x→ ±∞,

ρa(x) ∼ 1

π

=Ja
x2

.(21)

The function ρa is integrable on R as expected for a probability measure. It would be interesting
to check the normalization condition

∫
R ρa = 1 6 by direct integration.

5Multiplicity four is excluded because it would imply for example that P ′ would have a root of multiplicity three.
6We did a numerical check of this fact with mathematica.
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In order to prove the existence of the Stieltjes transformGa satisfying the two required properties
of Theorem 5.1 without assuming that Conjecture 4.2 holds, one would need to prove that
the Stieltjes transform of the explicit probability density ρa given in (20) is indeed the analytic
functionGa characterized in (18). We were not able to perform this integration, although the two
formulas (20) and (18) look very similar. In the super-critical regime (see below), we can do this
integration.

5.2. Super critical regime. If a ≥ a∗, then the derivative polynomial P ′ has three real roots,
and the analyticity conditions on Ga and the Gauss-Lucas Theorem permit to show that all the
roots of P are real valued. Indeed, we have already seen that the polynomial P can not have
any root in H (otherwise, this root would be of multiplicity two and P ′ would have a root in
H, which leads to a contradiction). The remaining scenario where P has two distinct zeroes
in R with multiplicity one and two other zeroes (counting multiplicity) in H− is also excluded:
the zeroes of P ′ would then lie on the frontier of the convex hull of the zeroes of P and this is
possible only if the two real zeroes of P have multiplicity two, leading again to a contradiction.

We conclude that all the zeroes of the polynomial P are real, so that P has real coefficients. In
particular, J ∈ R. The polynomial P is now determined up to the real constant J ∈ R, which
has the effect of translating vertically (along the y-axis) the graph {(x, P (x)) : x ∈ R}.
The uniqueness of J := Ja ∈ R leading to the correct solution Ga will come from the nor-
malization condition

∫
R µa(dx) = 1. By the Stieltjes inversion formula (60), we know that the

measure µa is supported on the compact set K := {x ∈ R : P (x) ≤ 0} 7 and has a density
ρa with respect to Lebesgue, defined for x ∈ K as,

ρa(x) =
2

βπ

√
−P (x) =

2

βπ

√
β(x− J)− (x2 − a)2 .

The area A under the graph of ρa can thus be seen as a function of J , A := A(J). It is obvi-
ously a continuous and strictly decreasing function of J , and we have limJ→−∞A(J) = +∞
and limJ→+∞A(J) = 0 (for J large enough, P (x) > 0 for all x ∈ R). By the intermediate
value theorem, there exists a unique J := Ja such thatA(J) = 1. The uniqueness of J := Ja
is proved.

Now we would like to determine the value of Ja in the present case, a ≥ a∗. To guess its value,
let us notice that if P has four distinct real roots in R, then the measure µa has a disconnected
compact support, union of two disjoint intervals, and this solution is not physically sound in view
of the shape of the potential Va. Recalling the confining shape of the potential Va(x) near the
region x ∼

√
a when a > 0, we would rather expect the polynomial P to have its smallest

root of multiplicity two and then two other roots of multiplicity one near the confining zone of
the potential. The minimal root of P , which will be denoted (again) by ζa, would then also be
the minimal root of P ′. Finally, we can compute the real constant J := Ja associated to this
scenario using the condition P (ζa) = 0, and we re obtain, with now ζa ∈ R, formulas (17) for
Ja, (19) for the polynomial Pa and (18) for Ga(z) when z is near the real line.

7K is a union of intervals. For instance, if P has four distinct eigenvalues x1 < x2 < x3 < x4, then µ has a
disconnected support of the form [x1;x2] ∪ [x3;x4].
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From the Stieltjes inversion formula, we see that µa has a density ρa with compact support
[γ−; γ+], given by

ρa(x) =
2

βπ
(x− ζa)

√
(x− γ−)(γ+ − x)(22)

for x ∈ [γ−; γ+]. Reciprocally, we can check with an elementary integration that ρa is a proba-
bility measure and (using the residue Theorem) that its Stieltjes transform is indeed the analytic
function Ga characterized for z near the real line in (18). We therefore do not need to assume
Conjecture 4.2 to prove the existence of Ga in this case. We treat in the next paragraph the
particular case when a = a∗ in more details.

5.3. Critical regime. We now analyze (even more explicitly) the probability density of the mea-
sure µa∗ at the critical value. A straightforward computation permits to factorize the derivative
polynomial as

P ′(z) = 4 (z +
β1/3

2
)2 (z − β1/3) .

Its minimal root (with multiplicity two) is ζa∗ = −1
2
β1/3 and from relation (17), we find

Ja∗ = −3

4
β1/3.

The factorization of Pa writes as

Pa(z) = (z +
β1/3

2
)3 (z − 3

2
β1/3) .

We note in particular that ζa is of multiplicity three for P . This behavior is rather natural at the
transition: the root ζa with multiplicity two for a > a∗ reaches multiplicity three for a = a∗ (the
first and second roots merge together) and finally splits up into three non real roots in C \ R,
leading to a constant Ja ∈ H. We shall see in the next subsection that the probability density
starts to flow at this point.

We finally derive the density ρa∗ , which has a compact support,

ρa∗(x) =
2

βπ

(
x+

1

2
β1/3

)3/2
√

3

2
β1/3 − x , −1

2
β1/3 ≤ x ≤ 3

2
β1/3 .(23)

We note the unusual order of the singularity 3/2 of the density ρa∗ at its lower edge−1
2
β1/3. At

the critical value, the concavity changes near the lower edge in order to prepare the sharp phase
transition when a gets smaller than a∗. The probability will start to flow in the system as soon
as a < a∗ with a constant profile (allocation) µa supported on the whole real line R flanked
with heavy tails. It is interesting to note that such singularities at the edges of random matrices
spectrum were already observed in [7] in the context of a non-confining quartic potential. We
shall revisit some of the questions investigated in [7] in section 7.

We are now interested in the so called flux of particles in the system, which measures the
number of particles which shifts from the right to the left at some given level x ∈ R per unit
of time. It turns out that our method permits us to compute this flux explicitly in the stationary
regime.
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6. STATIONARY FLUX OF CHARGES

Let us recall the evolution equation (12) which may be rewritten for s < t as

G(z, t)−G(z, s) =

∫ t

s

∂z J(z, u) du ,(24)

where

J(z, u) =
β

4
G(z, u)2 + (z2 − a)G(z, u) + z .(25)

Eq. (24) is a continuity equation. We can transform (24) into an evolution equation on the mea-
sure µt thanks to the Stieltjes inversion formula recalled in (11), so that the interpretation of this
continuity equation becomes clearer. Taking imaginary part, integrating (24) on the horizontal
segment [x+ iε; y + iε], x < y, ε > 0 and sending ε→ 0, we obtain

µt[x; y]− µs[x; y] =
1

π
lim
ε→0

∫ y+iε

x+iε

dz

∫ t

s

∂z =J(z, u) du .

For ε > 0 fixed, the Fubini Theorem permits us to exchange the order of integration over z and
u in the right hand side. We eventually obtain, for any s < t, x < y,

µt[x; y]− µs[x; y] =
1

π
lim
ε→0

∫ t

s

= J(y + iε, u) du−
∫ t

s

= J(x+ iε, u) du .(26)

We can interpret the probability measure µt as the electrostatic charge flowing across R from
+∞ to−∞. Therefore, the right hand side of (26) may be seen as the amount of charge which
enters the interval [x; y] during the time interval [s, t].

In order to further extend the present discussion, we admit that the Stieltjes transform G(z, t)
solution of (12) has a continuous extension to R ∪ H. Unfortunately, we are not able to prove
this mathematical detail, although it is physically sound. Note that this continuous extension
was proved in [34] in the case of the complex Burgers equation given in [34, Introduction], which
is the free analogue of the heat equation. The fact that G(z, t) has a continuous extension
to R ∪ H implies that the probability measure µt(dx) admits a density ρt(x) with respect to
Lebesgue measure, such that (x, t) 7→ ρt(x) is smooth, and we have

lim
ε↓0

G(λ+ iε, t) = P.V.

∫
R

ρt(x)

x− λ
dx+ iπρt(λ) ,

where P.V. stands for Principal Value.

Under this assumption, it is clear that the analytic function J(·, t) defined in (25) has a continu-
ous extension to R ∪H. In particular, we have

lim
ε↓0
= J(λ+ iε, t) = πjt(λ) ,(27)

where

jt(λ) = ρt(λ)

(
β

2
P.V.

∫
R

ρt(x)

x− λ
dx+ λ2 − a

)
.

Coming back to (26), we easily obtain using (27)

µt[x, y]− µs[x, y] =

∫ t

s

(ju(y)− ju(x)) du ,(28)
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which may be rewritten also as ∂t
∫ y
x
ρt(λ)dλ = 1

π
(jt(y)− jt(x)). From (28), we have a clear

physical interpretation of the quantity jt(x) which is precisely the flux of probability density in
x at time t, measuring the amount of probability density shifting from the right to the left of x
(algebraically) per unit of time at time t.

The interesting feature of our matrix model (6) is that the flux does not vanish identically in the
stationary state of the scaling limit, as we will see.

If Conjecture 4.2 holds such that G(z, t)→t→∞ Ga(z) pointwise in H, then it follows immedi-
ately that J(z, t)→t→+∞ Ja. Using now (27) and Montel’s theorem, we get

jt(x) −→t→∞
1

π
=Ja .(29)

Note that, as one may have expected, the flux of probability becomes independent of the position
x ∈ R in the stationary state. Recall also from section 5 that =Ja is non zero if and only if
a < a∗. In fact, if a ≥ a∗, the well of the potential Va is deep enough to confine all the particles.
The number of explosions per unit of time in the stationary state is negligible compared to the
macroscopic mass of the confined particles. On the other hand, if a < a∗, then the well in
λ =
√
a (see Fig. 1) is not strong enough to confine all the charges which repel each other with

electrostatic interaction.

If a < a∗, we have the analytic expression (17) for Ja in terms of the unique root ζa ∈ H of P ′,
given in (16).

We end this section by establishing the link with the discrete setting where the N eigenvalues
of the matrix process (H(t)) defined in (6) are diffusing in the potential Va (see fig. 1). In
this context, the probability (or electrostatic charge for a physical analogy) is carried by the
eigenvalues λi(t) satisfying the stochastic differential system (7). Each particle λi carries a
proportion 1/N of the total probability. Using (29), we conclude that in the large N limit and in
the stationary state (i.e. after a long time t), the flux of probability density is =Ja/π. In other
words, the numbers of particles Nt(x) which shift in x from the right to the left at time t per unit
of time is, in the stationary state, proportional to N with

Nt(x) ∼ N

π
=Ja .(30)

This formula was checked numerically with very good agreement for N = 50. We have also
noted that the convergence in time and inN is very fast. It would be very interesting to compute
the fluctuations of this flux of particles around its typical value. We leave this challenging problem
for future research.

Remark 6.1. Let us say a few words about the non-conservative system already mentioned
in Remark 3.1, where the particles are killed when they explodes instead of being restarted
at +∞. One can easily adapt the proofs of Theorem 4.1, and prove that for any T > 0 and
a ∈ R, if the empirical density at the initial time converges weakly as N goes to infinity towards
some µ ∈ P(R), then the limit points (µt)0≤t≤T of the (almost surely pre-compact) sequence
(µNt )0≤t≤T ∈ C([0, T ],M≤1(R)) satisfy µ0 = µ and their Stieltjes transforms G(z, t) are
solution of the holomorphic equation

G(z, t) = G(z, 0) +

∫ t

0

∂z

[
β

4
G(z, s)2 + (z2 − a)G(z, s) + µs(R)z

]
ds .(31)
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The main difference with Theorem 4.1 is that the solutions (µt) of (31) evolve in the space of
measures with a total mass µt(R) decreasing over time. There is no longer uniqueness of a
solution (µt)0≤t≤T to (31) such that µ0 = µ ∈ P(R) (Eq. (31) depends itself of µ·(R)) and Eq.
(31) does not characterize the limiting process (µt)0≤t≤T . It makes the analysis of this model
much more complex than in the restarting case.

We conjecture that the limit t→∞ of the continuum process (µt) corresponds to the metastable
equilibrium of the finite-N model (note that for any finite N , all the particles will explode in a
finite time almost surely). In the case of the sub-critical regime (a < a∗), the system should
lose some mass until it gets closer and closer to the critical regime. The study of the stationary
regime gives the relation ac := (3/4)α1/3β1/3 between the critical point ac and the mass α
of the stationary measure. In the supercritical regime, the behaviour of the system should not
depend on the choice of restarting or killing the particles as the explosions are too scarce to
matter.

7. NON-CONFINING QUARTIC POTENTIAL

We now revisit a problem investigated in [7] (see also [35, 12]) and related to the quartic potential
Ug such that

Ug(x) =
x2

2
+ g x4 ,

where g ∈ R is usually referred as the coupling constant. For negative values of g, the potential
Ug is non-confining with Ug(x)→ ±∞ as x→ ±∞, respectively. In [7], the authors consider
an ensemble of random matrices with invariant law in the space of complex Hermitian matrices
given by

P (dH) =
1

Z
exp

(
−1

2
TrH2 − g

N
TrH4

)
dH .(32)

Although the probability distribution (32) does not make sense for g < 0, the authors of [7] are
still able to derive (analytically) a density, which corresponds if g > 0 to the limiting spectral
density when N → ∞ of the random matrices in the ensemble (32). The probability density
they obtain still makes sense even for g ∈ [− 1

48
; 0). The purpose of this section is to bring

new lights on this result. We extend (with more details) their computations for β = 2 to general
values of β > 0.

The method described above with the non-confining cubic potential Va permits us to define a
stationary ensemble of random matrices in the potential Ug for negative values of g. As before,
we restrict ourselves to symmetric real random matrices although the complex and quaternion
Hermitian cases may be covered as well. The idea is again to consider the symmetric matrix
process (H(t)) such that

dH(t) = −
(

1

2
H(t) + 2g H(t)3

)
dt+

1√
N
dB(t) ,(33)

with H(0) = 0 at the initial time and where (B(t)) is a N × N symmetric Brownian motion,
until the first explosion time. To extend the trajectory of the Hermitian process (H(t)) after this
explosion time, we follow the method explained in section 3. The situation is very similar: the
non exploding eigenvalues and eigenvectors trajectories are a.s. continuous at the explosion
times. The exploding eigenvalue is immediately restarted from 0 (instead of +∞ in section 3).
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FIGURE 4. The potential Ug(x) as a function of x ∈ R for g = −1/48.

There are now two different types of explosions, either on the right side in +∞ or on the left
side in−∞. Re starting the eigenvalues in 0 permits us to preserve the symmetry with respect

to x = 0 and, for any t ≥ 0, the equality in law H(t)
(d)
= −H(t) holds. A sample path of

the eigenvalues of the process H is shown in Fig. 5. It is obtained with numerical simulations
of the process H following the restarting procedure at each explosion times described in this
paragraph.

The restarting procedure of the eigenvalues in 0 leads to some new difficulties, compared to
the previous case. Mainly, the Stieltjes transform GN(z, t) of the empirical measure of the
eigenvalues is not continuous at the explosion times. It is in fact right continuous in τk+ with
left limit in τk−, with a jump of size − 1

Nz
in τk. In order to obtain an evolution equation for the

empirical measure in a differential form, we can consider the set of smooth test functions

F := {f ∈ C0(R) : f(0) = 0, x3 f ′(x) is bounded on R} .

If f ∈ F , then the function t 7→
∫

R f(λ)µNt (dλ) is continuous on R+, even at the explosions
times, and we can use Itô’s formula to obtain, for any t ≥ 0,

d

∫
R
f(λ)µNt (dλ) = −

∫
R

(
λ

2
+ 2gλ3

)
f ′(λ)µNt (dλ)dt+

β

4

∫
R

∫
R

f ′(λ)− f ′(λ′)
λ− λ′

µNt (dλ)µNt (dλ′)dt

+
1

2N
(1− β

2
)

∫
R
f ′′(λ)µNt (dλ)dt+

1

N3/2

N∑
i=1

f ′(λi)dBi(t) ,
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FIGURE 5. (Color online). Simulated paths of the eigenvalues
(λ1(t), λ2(t), λ3(t)) as a function of time t for N = 3, β = 1 and
g = −1/6. The green horizontal dashed lines give the position of the two
symmetric local maximum (hills) of the potential Ug in λ = ±

√
−1/(4g).

where the Bi are independent real Brownian motions. In order to prove convergence as N →
+∞ of the empirical measure µNt towards a probability measure µt and to characterize the
evolution of the process (µt)t≥0, we propose to follow the same steps as in Section 9. First, we
show precompactness of the family of continuous processes (µNt )0≤t≤T , N ∈ N in the space
C([0, T ],M≤1(R)). This proof is rather straightforward adapting the proof of Lemma 9.1 to
the present quartic case. Then, taking N → ∞, we obtain, as in subsection 9.1, the following
evolution equation for the limiting process (µt)0≤t≤T : for all t ∈ [0, T ] and f ∈ F ,

∂t

∫
R
f(λ)µt(dλ) = −

∫
R

(
λ

2
+ 2gλ3

)
f ′(λ)µt(dλ) +

β

4

∫
R

∫
R

f ′(λ)− f ′(λ′)
λ− λ′

µt(dλ)µt(dλ
′) .

(34)

It would remain to show the uniqueness of the continuous process (µt)0≤t≤T and that this
process takes values in the space of probability measures. As in the proof of Theorem 4.1,
we only know a priori that the limit point (along some subsequence) (µt)0≤t≤T belongs to
C([0, T ],M≤1(R)) (instead of C([0, T ],P(R))). This question seems more difficult and we
do not have insights on the method to prove this. We leave this problem as an open question.
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We are now interested in the probability measures µ which are stationary solutions of the evo-
lution equation (34), i.e. such that for any test functions f ∈ F ,∫

R

(
λ

2
+ 2gλ3

)
f ′(λ)µ(dλ) =

β

4

∫
R

∫
R

f ′(λ)− f ′(λ′)
λ− λ′

µ(dλ)µ(dλ′) .(35)

Solving equation (35) by choosing a particular family of functions f ∈ F is not an easy task
and has led us to heavy computations. Another route like in [7] is to fix z ∈ H and simply
consider f(λ) = 1/(λ − z) (although f 6∈ F ). Equation (35) conveniently rewrites (after a
further integration) in term of the Stieltjes transform G of the probability measure µ as

β

4
G2(z) +

(
2gz3 +

z

2

)
G(z) + 2gz2 = J ,(36)

where J ∈ C is an integration constant.

We repeat the same steps as in section (5) to prove the uniqueness of the analytic function
Gg : H→ H with the following two properties:

� there exists J ∈ C such that Gg satisfies the quadratic equation (36) for all z ∈ H;
� Gg is the Stieltjes transform of a probability measure µg.

In fact, assuming the existence of such a function Gg, we show that there is a unique possible
constant J := Jg that we compute explicitly. We can then determineGg uniquely by solving the
quadratic equation (36). Note however that, in order to prove existence, we still have to check
that the solution Gg we obtain is indeed the Stieltjes transform of a probability measure. As we
will see, such a Stieltjes transformGg exists if and only if g ≥ gc := − 1

24β
. For g < gc however,

the method breaks down, leading to a measure which is not a probability measure. In this case,
there are no Stieltjes transforms satisfying (36) whatever the values of J ∈ C. For β = 2, we
re obtain the critical value −1/48 already obtained in [7].

We now explain the main steps of this computation. For any J ∈ C and all z ∈ H, there are
two solutions to the quadratic equation (36)

G±(z) =
2

β

(
−z

2
− 2gz3 ±

√
(2gz3 +

z

2
)2 − β(2gz2 − J)

)
.

The idea is again to compute the derivative polynomial P ′g of the discriminant of the quadratic
equation (36), which writes as

P ′g(z) = z

(
24g2z4 + 8gz2 +

1

2
− 4βg

)
.

The quadratic equation 24g2X2 + 8gX + 1
2
− 4βg = 0 has two roots

X± = − 1

6g

(
1± 1

2

√
1 + 24βg

)
.

Therefore, if g > gc, all the zeroes of the polynomial P ′g are real and we denote by ξg the
minimal root of P ′g, given for g < 0, by

ξg := −
√
X+ =

(
− 1

6g

(
1 +

1

2

√
1 + 24βg

))1/2

.
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Using the Gauss Lucas Theorem and the analyticity of Gg, we can prove as before that all the
zeroes of the polynomial Pg(z) := (2gz3 + z

2
)2 − β(2gz2 − J) are also real. This implies

that J ∈ R. With the same continuity argument of the area below the graph of the underlying
probability density with respect to J , we can prove that there is in fact a unique Jg ∈ R insuring
the normalization constraint

∫
R ρg = 1.

Physical arguments lead us to the value of Jg. The six real roots of P can not be all of multiplic-
ity one otherwise the measure µ would have a disconnected support (union of three disjoints
intervals), which is counter intuitive. Moreover the polynomial P is even so that there are two
roots with multiplicity two and two roots with multiplicity one. The zeroes with multiplicity two are
symmetric and exterior while the zeroes with multiplicity one stand inside (see Fig. 6). We can
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FIGURE 6. Polynomial Pg(x) for g = −1/48 and β = 1.

compute the constant Jg from the condition Pg(ξg) = 0. We obtain

Jg = − 1

β

((
2gξ3

g +
ξg
2

)2

− 2βgξ2
g

)
.

The polynomial P := Pg is characterized completely and we can factorize it as

Pg(z) = 4g2 (z − ξg)2 (z + ξg)
2 (z2 − γ2)

where

(37) γ2 = − 1

6g

(
1−

√
1 + 24βg

)
.

The Stieltjes transform Gg is also determined: for z ∈ H near the real axis, we obtain the
following (explicit) expression for Gg(z) after further (elementary) computations,

Gg(z) =
2

β

[
−z

2
− 2gz3 +

(
2gz2 +

1

6

√
1 + 24βg +

1

3

)√
z2 − γ2

]
.(38)

From the Stieltjes inversion formula, we can recover the probability density ρg, which is sup-
ported on the compact interval [−γ; γ] where γ > 0 is given in (37). For λ ∈ [−γ; γ], we
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obtain

ρg(λ) =
2

βπ

(
2gλ2 +

1

6

√
1 + 24βg +

1

3

)√
γ2 − λ2 .(39)

Reciprocally, we can check with an elementary integration that ρg is a probability measure
and (using the residue Theorem) that its Stieltjes transform is indeed the analytic function Gg

characterized for z near the real line in (38).

At the critical value gc = −1/(24β), we find

Pgc(z) = 4gc
2(z − 2

√
β)3(z + 2

√
β)3 ,

and

ρgc(λ) =
1

6πβ2
(4β − λ2)3/2 .(40)

For β = 2, we re obtain the solution found in [7, see their Figure 1].
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FIGURE 7. (Color online). Spectral density ρg(x) for g = gc = −1/24 and
β = 1 together with the semi-circle obtained for g = 0. The red points rep-
resent the empirical density obtained from our simulated samples in the critical
case.

For g ∈ [− 1
24β

; 0), the probability density functions ρg, given in (40) for g = gc and (39) for
g > gc, are the limiting spectral density of the matrix H(t) which follows the Langevin equation
(33) in the stationary state as N →∞.
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For g < gc, the situation is more complicated than that. One can still try to find the unique
constant Jg such that there exists Gg with the two required properties and compute the imagi-
nary part =Gg(λ)/π for λ ∈ R. But, in this case, one can check (at least numerically) that the
function ρg(λ) := =Gg(λ)/π is not a probability density. Its integral over R is in fact strictly
smaller than 1. This simply means that there is not a constant J ∈ C such that the Stieltjes
transform of some (probability) measure satisfies the quadratic equation (36) for all z ∈ H.

There is a rather clear physical interpretation to the non existence of such a constant J . For the
cubic potential, the constant Ja ∈ H was related to the flux of probability in the system. The
positive imaginary of Ja was measuring the amount of probability density flowing from the right
to the left of x ∈ R per unit of time in the stationary state. In the present case of the Quartic
potential with two sided exits, there can not be such a stationary flux of charges as the particles
can exit either to the right by exploding in +∞ or to the left in −∞.

It would actually be very interesting to compute the limiting density ρg of eigenvalues in the
stationary state for values of g < gc, by analyzing directly (35). We would expect some diverging
terms coming in at the origin, where there is a birth process of new particles.

8. CONCLUSION AND OPENING

We now conclude this work with some open questions and further comments on possible ex-
tensions.

We note that the case of a cubic potential was also considered at the end of [7]. The authors
study divergent matrix integrals of the form

∫
exp(−NWg(M))dM where Wg(x) = x2/2 +

gx3/3, g ∈ R viewed as power series and they recover the limiting spectral density when
the confinement is strong enough so that the eigenvalues are localized in a compact support.
The ideas developed in this paper permit one to define invariant ensembles associated to the
potential Wg for g > 0. The stationary spectral densities can also be obtained in explicit forms,
as was done in [7] for g smaller than a critical value gc. The novel contribution of our work is that
we went further by computing the spectral density in the regime g > gc, where it has unbounded
support with a stationary macroscopic current of particles across the system.

More generally, the construction explained in section 3 permits one to define invariant ensem-
bles of random matrices in general polynomial potentials V (x) of arbitrary odd degree k, with
possibly multiple wells. The Stieltjes transform method to study the largeN limit of the spectrum
does not adapt straightforwardly though because unknown moments of the limiting spectral den-
sities arise in the evolution equation satisfied by G if deg(V ) ≥ 5. Those unknown moments
have to be determined from the constraints and analyticity conditions but we expect the explo-
sions to occur sufficiently fast for the tails of the spectral density to be light enough for those
(few) moments to be finite. We also conjecture that such potentials lead to stationary spectral
densities with support on several disconnected intervals, in the semi-confining regimes. A sharp
phase transition should be observed as the confinement gets weaker, leading to spectral den-
sities with unbounded support and associated to macroscopic stationary currents of particles in
the system. In the semi-confining cases, the eigenvalues would lie in the wells near the local
minimums of the potential V , leading to a more complex deformation towards the unbounded
probabilities found in the fully non-confining regimes. We are currently working on this problem.
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It seems that other types of phase transitions for the spectral density at the critical value could
be observed. Indeed, one can obtain, through an appropriate choice of the (polynomial) poten-
tial V [36], a limiting spectral density which vanishes at the end point of the spectrum λc as
(λ − λc)k−1/2 for any integer k ≥ 1. The potential V is then called k multi-critical. A general
potential usually leads to criticality k = 1, as in the case of the quadratic (Gaussian) poten-
tial. An interesting extension of our work would be to exhibit such (polynomial) potentials with
odd degree which would cover general criticality parameters k ≥ 3 and lead to more com-
plex phase transitions for the spectral density. In our work, the potential Va at the critical value
a = a∗ is 2 multi-critical, leading to a density vanishing at the lower edge as (λ− λc)3/2 (with
λc = −1

2
β1/3).

Other interesting questions would be to study the top eigenvalues statistics in the subcritical
case a < a∗ when the density of eigenvalues has full support with tails ρa(x) ∼ Ca/x

2. In
particular, the fluctuations of the top eigenvalue around its asymptotic value of order N are of
interest in this fully non-confining regime. One may wonder whether those statistics are related
to those of the top eigenvalues of heavy tailed Wigner matrices, or if they are of a different
nature. In particular, the crossover for those statistics at the critical value a = a∗ is interesting.
The eigenvalues statistics at the edge of the spectrum in the critical a = a∗ and super critical
a > a∗ cases have been extensively investigated since 1990. In 1991, Bowick and Brézin
[37] have computed the spectral density at the edge of the spectrum for general multi-critical
potentials, in the scaling region of width N−ν with ν = 2k

2k+1
, where k is the criticality (see

also [38]). Their results are in fact universal in the sense that the scaling shape of the density at
the edges does not depend on the particular choice of the potential V of given criticality k. In
particular, for k = 1 their work is pioneer and provides the first description of the Tracy-Widom
region. In 1993, Tracy and Widom [39, 40] proved the weak convergence of the top eigenvalue
for the classical Gaussian ensembles (which correspond to the quadratic potential) to the so
called Tracy-Widom distributions. A more precise description was later provided in [13] where
the authors prove that the joint convergence of the top eigenvalues of the Gaussian ensembles
to those of the stochastic Airy operator. The multi-critical cases k ≥ 2 were later considered in
[41] and the results of [13] are conjectured to extend for those potentials as well (see the end of
[42]).

We conclude this paper with a last open question on the fluctuations of the random flux of
particles around its asymptotic value given in Eq. (30), in the stationary state and in the large
N limit. It would be very interesting to relate the order of the fluctuations, the shape of the
fluctuations in the central regime or the large deviations regimes to other models of interacting
particles with random flux.

9. PROOF OF THEOREM 4.1

9.1. Evolution equation of GN(z, t). Recall the notations τ1 < τ2 < · · · < τk · · · , k ∈ N
for the successive explosions times of the diffusive matrix process H .
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Following [29, 30, 31], we look for an evolution equation for the Stieltjes transform GN(z, t). By
Itô’s formula, we have for any z ∈ H and for any t ∈ (τk; τk+1),

dGN(z, t) = − a

N

N∑
i=1

dt

(λi − z)2
+

1

N

N∑
i=1

λ2
i

(λi − z)2
dt− β

2N2

∑
i 6=j

1

(λi − z)2

dt

λi − λj

(41)

+
1

2N2

N∑
i=1

2

(λi − z)3
dt− 1

N3/2

N∑
i=1

dBi

(λi − z)2
.(42)

At the explosion times τk, k ∈ N, the eigenvalue which explodes in −∞, is immediately
restarted at +∞, so that the Stieltjes transform GN(z, t) of the empirical measure is con-
tinuous in τk. The evolution equation (41) therefore holds for all t ≥ 0.

We want to rewrite this equation in a more compact way as a function of GN . Using symmetry
and anti-symmetry properties, we have∑

i 6=j

1

(λi − z)2

1

λi − λj
=

1

2

∑
i 6=j

1

λi − λj

(
1

(λi − z)2
− 1

(λj − z)2

)
=

1

2

∑
i 6=j

1

λi − λj
(λj − λi)2 + 2(λj − λi)(λi − z)

(λi − z)2(λj − z)2
= −

∑
i 6=j

1

(λi − z)(λj − z)2
.

The last expression conveniently rewrites in terms of GN as∑
i 6=j

1

(λi − z)(λj − z)2
=

N∑
i,j=1

1

(λi − z)(λj − z)2
−

N∑
i=1

1

(λi − z)3

= N2GN ∂zGN −
N

2
∂2
zGN .

From (41) and the previous computations, we have, for any z ∈ H and t ≥ 0,

GN(z, t)−GN(z, 0) =

∫ t

0

∂z

[
β

4
G2
N(z, s) + (z2 − a)GN(z, s) + z +

1

2N
(1− β

2
)∂zGN(z, s)

]
ds

− 1

N3/2

N∑
i=1

∫ t

0

dBi(s)

(λi(s)− z)2
.(43)

We aim at takingN →∞. For this, we need to prove that the sequence of probability measures
process {(µNt ){0≤t≤T}, N ∈ N} is almost surely pre-compact in the space C([0, T ],M≤1(R))
whereM≤1(R) is the space of Borel measures ν on R with total mass ν(R) ≤ 1 equipped
with its weak-? topology.

It is convenient to work with the weak-? topology onM≤1(R) (where a sequence µn converges
to µ iff

∫
fdµn converges to

∫
fdµ for all f ∈ Cc(R), the space of continuous and com-

pactly supported functions on R) as this topology is metrizable on this bounded set and makes
M≤1(R) compact8. Therefore, the topology on C([0, T ],M≤1(R)) we consider is simply the
topology of uniform convergence for this metric. Note that the weak-? topology on the bounded

8It is closed and sequentially compact
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setM≤1(R)) is equivalent to the vague topology9 (where µn converges to µ iff
∫
fdµn con-

verges to
∫
fdµ for all f ∈ C0(R), the continuous functions on R which tends to 0 when

x→ ±∞).

Let us emphasize that, in contrast with the usual case handled in [3, 29] where the authors
prove a dynamical version of Wigner’s Theorem, we do not need to prove pre-compactness in
the smaller space C([0, T ],P(R)) as we will prove that the continuous limiting process (along
subsequences) necessarily takes values in the space of probability measures.

This almost sure pre-compactness in C([0, T ],M≤1(R)) is proved in Lemma 9.2. From any
subsequence of N, we can now extract a sub-sub-sequence (Nk)k≥0 such that we have the
following pointwise convergence in C([0, T ],M≤1(R)),

(µNkt )0≤t≤T ⇒ (µt)0≤t≤T ,

where (µt)0≤t≤T ∈ C([0, T ],M≤1(R)).

To any limit point (µt)0≤t≤T , we associate its Stieltjes transform process (G(·, t))0≤t≤T such
G(·, t) is the Stieltjes transform of the measure µt for any t ≥ 0.

We note that, for z ∈ H fixed, the function f(x) = 1/(x − z) and its derivative f ′(x) =
−1/(x− z)2 are continuous and tends to 0 when x→ ±∞ and therefore belongs to C0(R).
We deduce the following convergences (along the subsequence (Nk)) for any t ∈ [0, T ],

GN(z, t) −→ G(z, t) , ∂zGN(z, t) −→ ∂zG(z, t) .

Note in addition that the martingale term

MN
t =

1

N3/2

N∑
i=1

∫ t

0

dBi(s)

(λi(s)− z)2

which appears in (43) has a quadratic variation 〈MN
· 〉t smaller then t/(N2|=z|4). By the

Burkholder-Davis-Gundy inequality [3, Theorem H.8] and the Chebyshev’s inequality, we get
that, for a universal constant C > 0,

¶[ sup
0≤t≤T

|MN
t | ≥ ε] ≤ C T

ε2N2|=z|4
.(44)

By the Borel-Cantelli Lemma, for any z ∈ H, we have sup0≤t≤T |MN
t | → 0 as N → +∞

almost surely.

Eventually, from (43), we obtain the following equation satisfied by the Stieltjes transform pro-
cess (G(·, t))0≤t≤T of any limit point (µt)0≤t≤T of the pre-compact family ((µNt )0≤t≤T ), N ∈
N (see Lemma 9.1) ,

G(z, t) = G(z, 0) +

∫ t

0

∂z

[
β

4
G(z, s)2 + (z2 − a)G(z, s) + z

]
ds ,(45)

which holds for all t ∈ [0;T ], z ∈ H.

9But of course, as we are working with sub-probability measures, the weak-? topology is weaker than the usual
topology of weak-convergence where the limit should hold for all continuous bounded functions.
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It remains to prove that the measure µt is indeed a probability measure for any t ≥ 0. Let
t ≥ 0, ε > 0 and z = i/ε2 ∈ H. From (45), we easily deduce that for all ε > 0,

G(
i

ε2
, t+ ε)−G(

i

ε2
, t)(46)

=

∫ t+ε

t

ds

[
β

2
G(

i

ε2
, s)∂zG(

i

ε2
, s)− (

1

ε4
+ a)∂zG(

i

ε2
, s) +

2 i

ε2
G(

i

ε2
, s) + 1

]
.(47)

Recalling G(z, t) =
∫

R
µt(dx)
x−z , we can check that the left hand side of (46) is of order ε2 (or

even smaller) as ε→ 0 while the right hand side is equivalent to ε(1−µt(R)) (using in addition
the continuity of the function t 7→ µt(R)). Therefore we have µt(R) = 1 for every t ≥ 0.

Finally, the convergence of (µNt )0≤t≤T to (µt)0≤t≤T follows by uniqueness of the solution of
(45) (proved in Lemma 9.2). Theorem 4.1 is proved.

9.2. Pre-compactness of the family ((µNt )t≥0), N ∈ N. Denote byM≤1(R) the space of
Borel measures on R with total mass smaller or equal to 1 equipped with its weak-? topology
and recall that P(R) denotes the space of probability measures on R.

Lemma 9.1. The family {(µNt ){0≤t≤T}, N ∈ N} of continuous process in P(R) is almost
surely pre-compact in the space C([0, T ],M≤1(R)).

Proof. We first describe a family of compact subsets of C([0, T ],M≤1(R)). Let (fi)i≥0 be a
sequence of bounded continuous functions dense in the space C0(R) of continuous function on
R which converge to 0 in ±∞ and let (Ci)i≥0 be a family of compacts subsets of the space
C([0, T ],R) of continuous functions from [0, T ] → R. Then, adapting the proof of Lemma
4.3.13 in [3], we can prove that the set

K :=
⋂
i≥0

{t→
∫

R
fi dµt ∈ Ci}

is a compact subset of C([0, T ],M≤1(R)). This proof is straightforward showing that K is
closed and sequentially compact10 with a diagonal extraction, noting in addition thatM≤1(R)
is compact for the topology of weak-? convergence.

We denote by F the set of twice differentiable functions f : R → R, such that ||f ||∞ <
∞, ||f ′||∞ < ∞ and ||f ′′||∞ < ∞ and such that, in addition, ||x2f ′(x)||∞ < ∞. Note
that F is dense in C0(R). We need an estimate on the Hölder norm of the function t →∫

R f(x)µNt (dx) for any f ∈ F .

Applying Itô’s formula, we get for any s < t,∫
R
f(λ)µNt (dλ)−

∫
R
f(λ)µNs (dλ) =

∫ t

s

∫
R
(a− λ2)f ′(λ)µNu (dλ)du+

β

2N2

∫ t

s

∑
i 6=j

f ′(λi(u))

λi(u)− λj(u)
du

+
1

N3/2

N∑
i=1

f ′(λi(t))dBi(t) +
1

2N

∫ t

s

∫
R
f ′′(λ)µNu (dλ) du .

10The space C([0, T ],M≤1(R)) is metrizable.
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Using symmetry, we have ∑
i 6=j

f ′(λi)

λi − λj
=

1

2

∑
i 6=j

f ′(λi)− f ′(λj)
λi − λj

.

Therefore,

β

2N2

∣∣∣∣∣
∫ t

s

∑
i 6=j

f ′(λi(u))

λi(u)− λj(u)
du

∣∣∣∣∣ ≤ β

4N2
N(N − 1)||f ′′||∞(t− s) ≤ β

4
(t− s)||f ′′||∞ .

Denote by Cf := max{||f ||∞, ||f ′||∞, ||f ′′||∞, ||x2 f ′(x)||∞} <∞. Gathering the above
estimates, it follows that, such that for any s, t ∈ [0, T ]2,

|
∫

R
f(λ)µNt (dλ)−

∫
R
f(λ)µNs (dλ)| ≤

(
a+

β

4
+

3

2

)
Cf |t− s|+ |MN

f (t)−MN
f (s)|

where (MN
f (t))t≥0 is the martingale process defined as

MN
f (t) =

1

N3/2

N∑
i=1

f ′(λi(t)) dBi(t) .

With the same proof as in [3, Proof of Lemma 4.3.14, page 265], we can prove that there exists
a constant C > 0 which depends only on T such that, for any δ > 0,M > 0,

¶

 sup
|t−s|≤δ
0≤s,t≤T

|MN
f (t)−MN

f (s)| ≥Mδ1/8

 ≤ Cδ1/2

N2M4
||f ′||2∞ .(48)

Using (48), we deduce that for any δ := δ(a, β, Cf ) > 0 small enough and M > 0, we have

¶

 sup
|t−s|≤δ
0≤s,t≤T

|
∫

R
f(λ)µNt (dλ)−

∫
R
f(λ)µNs (dλ)| ≥ (M + 1)δ1/8

 ≤ Cδ1/2

N2M4
||f ′||2∞ .

(49)

Recall that, by the Arzela-Ascoli Theorem, sets of the form

C :=
⋂
k∈N

{g ∈ C([0;T ],R) : sup
|t−s|≤δk
0≤s,t≤T

|g(t)− g(s)| ≤ εk, sup
0≤t≤T

|g(t)| ≤ 1/αk} .

where (δk)k, (εk)k, (αk)k are sequences of positive real numbers going to zero as k goes to
infinity, are compact in C([0;T ],R).

For f ∈ F and ε > 0, we consider the subset of C([0;T ],M≤1(R)), defined by

CT (f, ε) :=
⋂
k∈N

{(νt) ∈ C([0;T ],M≤1(R)) : sup
|t−s|≤k−4

0≤s,t≤T

|
∫

R
f(x)νt(dx)−

∫
R
f(x)νs(dx)| ≤ 1

ε
√
k
} .

Then, using (49), we have

¶
[
(µNt )t∈[0;T ] ∈ CT (f, ε)c

]
≤ Cε4

N4
.
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We now pick a dense family (fi)i∈N in C0(R) of functions fi ∈ F and setting εi = 1/i, we
define the subset

K :=
⋂
i∈N

CT (fi, εi) ⊂ C([0;T ],M≤1(R)) .

By the Borel-Cantelli Lemma, we get

¶[
⋃
N0∈N

⋂
N≥N0

(µNt )t∈[0;T ] ∈ K] = 1 ,

and the Lemma follows since K is a compact set of C([0;T ],M≤1(R)).

�

9.3. Proof of uniqueness of solutions of (12).

Lemma 9.2. Let µ ∈ P(R). There exists a unique (deterministic) process (G(·, t))t≥0 in the
space of analytic function H→ H which enjoys the two following properties:

� for any t ≥ 0, G(·, t) is the Stieltjes transform of a real probability measure;
� G is a strong solution of the holomorphic partial differential equation on H× R+,

∂tG(z, t) = ∂z

[
β

4
G(z, t)2 + (z2 − a)G(z, t) + z

]
,(50)

with initial condition G(z, 0) =
∫

R
µ(dx)
x−z .

Proof. We set

(51) H(z, t) := G(z, t) +
2

β
(z2 − a) .

It is straightforward to check that the analytic functionH(·, t) satisfies the evolution equation for
t ≥ 0,

∂tH(z, t) =
β

2
H(z, t)∂zH(z, t)− 4

β
z(z2 − a) + 1 .(52)

It suffices to prove that there is at most one unique strong solution H : H × R+ → C of the
partial differential equation (pde) (52) such that in addition H(·, t) : H → H is analytic for
any t ≥ 0. Following [3, 29], we use the characteristic method. For z0 ∈ H, we consider the
following Cauchy problem

z′(t) = −β
2
H(z(t), t) , z(0) = z0.(53)

For η > 0 and any z1, z2 ∈ Hη := {z ∈ C : =z > η}, we have for any t ≥ 0,

|G(z1, t)−G(z2, t)| ≤
∫

R
µt(dx)| 1

x− z1

− 1

x− z2

|

≤ |z1 − z2|
∫

R

µt(dx)

|x− z1||x− z2|
≤ |z1 − z2|

η2
.

We deduce that the continuous function (z, t) ∈ Hη × R+ → H(z, t) is locally in z (globally
in t) Lipschitz on Hη × R+ with respect to the first variable z. More precisely, we mean that,
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for any compact set K ⊂ Hη, there exists a constant M > 0 such that for any t ≥ 0 and
z1, z2 ∈ K , we have

|H(z1, t)−H(z2, t)| ≤M |z1 − z2| .(54)

By the Cauchy Lipschitz theorem, for any z0 ∈ Hη, there exists a unique solution (z(t))0≤t<ε
to the Cauchy problem (53), defined up to a time ε > 0 small enough such that z(t) ∈ H for all
t < ε (recall that H(·, t) is analytic on H so that the solution has to remain in this domain for
the differential equation in (53) to be well defined).

Let us now fix ω0 ∈ Hη. We can prove using the Lipchitz condition (54) and (53) that we can
pick r > 0 small enough (depending only on ω0 and on the constant M ) such that any solution
of the Cauchy problem starting from any z0 in the open ball B(ω0, r) with center ω0 and radius
r > 0 is defined up to a time ε > 0 (which depends on M and r but which is independent of
z0 ∈ B(ω0, r)).

Differentiating (53) with respect to t and using also the pde (52), we obtain a new explicit Cauchy
problem for the function z,

z′′(t) = 2z(t)(z2(t)− a)− β

2
=

1

2
P ′(z(t)), z(0) = z0, z′(0) = −β

2
H(z0, 0) ,(55)

where P ′ is the polynomial we have already met in (16).

We now regard the Cauchy problem (55) as a holomorphic Cauchy problem on the domain
(t, z) ∈ C×C. We know from the fundamental theorem [43] that there exists a unique solution
to (55) defined for all t ∈ C and for any initial condition z0 ∈ Hη. Moreover, z(t) depends
holomorphically on the initial conditions: there exists a holomorphic function Ft such that, for
any t ∈ C,

zt = Ft(z0) .

By uniqueness, for any z0 ∈ B(ω0, r), the solution (z(t)) of the Cauchy problem (55) coincides
with the one of the Cauchy problem (53) on the small interval [0, ε).

We now fix t ∈ [0, ε] and we consider the open and simply connected domain Ω := Ft(B(ω0, r))
of the “targets". By definition of ε, we have Ω ⊆ H. Besides, by uniqueness, the solutions of
the Cauchy problem (53) can not coincide in H at the given time t, and Ft : B(ω0, r) →
Ft(B(ω0, r)) is a conformal isomorphism (i.e. analytic and bijective).

Finally, for any t ∈ [0, ε] and ω ∈ Ω fixed, we can find a unique z0 ∈ B(ω0, r) such that the
solution of (53) satisfies z(t) = ω. Then the formula

H(ω, t) = − 2

β
z′(t) ,

valid for any ω in the open and simply connected domain Ω, characterizes uniquely the analytic
function H(·, t) : H → H. This argument is true for any t ≤ ε so that H(z, t) is uniquely
characterized for all z ∈ H and t ∈ [0; ε].

The same method (starting from the same initial condition ω0 for example so that the same ε
will work) permits us to extend this characterization on the intervals [ε, 2ε], [2ε, 3ε], ...

Uniqueness of G is implied by the uniqueness of H from (51).

�
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9.4. Proof of Proposition 4.3. We first prove the existence part of (1). It is easy to see that the
solution G of the evolution equation (12) is Lipchitz in t locally uniformly in z i.e. for all compact
subset K ⊆ H, there exists a constant M such that for all t ≥ 0 and all z ∈ K ,

|G(z, t)−G(z, s)| ≤M |t− s| .

Therefore, using the Cauchy formula, we deduce that the holomorphic function z 7→ ∂z[βG(z, s)2/4+
(z2 − a)G(z, s) + z] is Lipchitz in t locally uniformly in z as well. The existence of the limit
when t→∞ of G(z, t) leads to the existence of the limit of the integral on the right hand side
of (12). As the integrated function is uniformly continuous, we deduce that Ga is a stationary
solution of (12), i.e.

∂z

[
β

4
Ga(z)2 + (z2 − a)Ga(z) + z

]
= 0 ,

so that there exists a constant J ∈ C such that for all z ∈ H,

β

4
Ga(z)2 + (z2 − a)Ga(z) + z = J .(56)

From (13), we already know that Ga is bounded in the neighbourhood of ∞. Therefore, we
deduce from (56) that indeed limy→∞ iy Ga(iy) = 1. We then know from [32, Theorem 1] that
Ga is the Stieltjes transform of a probability measure µ∞ and that µt converges weakly to µ∞.
The proposition is proved.

APPENDIX A. BOLTZMANN WEIGHT OF THE HERMITIAN DIFFUSION PROCESS H

Let us check that the probability distribution P defined in (1) is a stationary measure of the
stochastic differential system (4). First notice that, ifM is aN×N real matrix, then the gradient
of the function M → Tr(V (M)) ∈ R with respect to the N2 entries of the matrix M , is the
function M → V ′(M †). Thus, if H is a Hermitian matrix, we simply have

∇Tr(V (H)) = V ′(H) .(57)

It remains to check that the probability distribution P is the unique stationary solution of the
Fokker Planck equation satisfied by the (stationary) transition probability of the diffusion process
(H(t)),

∂P

∂t
= 0 =

1

2

∑
i,j=1

∂

∂Hij

[
(∇Tr(V (H)))ij P (H)

]
+

1

2N

∑
i,j=1

1 + δi=j
2

∂2

∂H2
ij

P (H) .(58)

The reader may actually check that the function P as defined in (1) satisfies, for any Hermitian
matrix H , the following conditions

∂

∂Hii

P (H) = −N (∇Tr(V (H)))ii P (H) ,

∂

∂Hij

P (H) =
∂

∂Hji

P (H) = −2N (∇Tr(V (H)))ij P (H) if i < j ,(59)

under which (58) trivially holds. The factor 2 which appears in the second line (59) is due to the
symmetry of the matrix H .
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APPENDIX B. STIELTJES TRANSFORM PROPERTIES

The Stieltjes transform is frequently used in random matrix theory for the study of empirical
spectral densities in the large N limit.

A measure µ is characterized by its Stieltjes transform, which is an analytic functionG : H→ H
(H denotes the open upper half-plane), defined as

G(z) :=

∫
R

µ(dx)

x− z
.

We have the following inversion formula valid for any measure µ on R,

lim
ε↓0

∫ y

x

=G(λ+ i ε) dλ = π µ(x; y) +
π

2
(µ({y})− µ({x})) ,(60)

where =z denotes the imaginary part of z ∈ C.

When the Stieltjes transformG(z) has a continuous extension to R∪H, it is easy to check that
µ admits a smooth density with respect to the Lebesgue measure.

If µ is a probability measure, its Stieltjes transform G(iy) behaves as −1/(iy) when y goes
to +∞. Reciprocally, Akhiezer’s theorem [33, page 93] states a useful criterium characterizing
Stieltjes transforms of probability measure: G is the Stieltjes transform of a probability measure
iff G is analytic on H with G(H) ⊆ H and G(iy) ∼ −1/(iy) as y → +∞.
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