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A super-Brownian motion 
with a locally infinite catalytic mass 

Klaus Fleischmann1 and Carl Mueller2'* 

1Weierstrass-Institute for Applied Analysis and Stochastics Berlin 
2University of Rochester 

inf.tex November 10, 1995 

Abstract 

A super-Brownian motion X in IR with "hyperbolic" branching rate 
e2 (b) = 1 /b2

, b E IR, is constructed, which symbolically could be described 
by the formal stochastic equation 

t?. 0, (1) 

(with a space-time white noise W). 
If the finite starting measure Xo does not have mass. at b = 0, then 

this superprocess X will never hit the catalytic center: There is a Brow-
nian stopping time 'T strictly smaller than the hitting time of 0 such that 
Dynkin's stopped measure X-r vanishes a.s. 

AMS S.ubject Classification Primary 60J80; Secondary 60J55, 60G57 

Keywords hyperbolic branching rate, strong killing, infinite point catalyst, Feynman-
Kac equation, killed Brownian motion, historical process, super-Brownian motion, 
superprocess, branching functional of infinite (local) characteristic, measure-valued 
branching 

1 Introduction and results 

1.1 Motivation and purpose 
A continuous super-Brownian motion {SBM} X = {Xt; t ~ O} in IR with 
branching rate e(b) ~ O, b E IR, can heuristically be thought of as follows: 

*Supported by an NSA grant. 



2 K. Fleischmann & C. Mueller 

Many particles with small mass move independently on the line IR according 
to standard Brownian motions. Additionally each particle at position b may die 
with a large rate proportional to g(b), or it may split with the same rate into 
two particles situated again at b which continue to evolve independently and 
according to the same rules. If we now denote by Xt ( B) the mass at time t 
in the Borel set B, then the measure Xt describes the cloud of mass at time t. 
Although Xt is not integer-valued (since the mass of particles is asymptotically 
small), it is useful to interpret Xt(db) as the mass of all particles situated in b 
at time t. (For background, we refer to the lecture notes Dawson [Daw93].) 

In the simplest case, the branching rate {! is a constant. But it may also 
vary in space and even in time (varying medium). For instance, consider the 
case g(b) = (2e)- 1 l{lb - cl ::; e}, b E IR, which means that branching is 
allowed only if particles are in a small neighborhood of a fixed point c E IR, 
and then the rate is huge. Even the limiting model as e -+ 0 makes sense 
non-trivially (in this one-dimensional situation). Then formally one can write 
g = 8c (Dirac 8-function at c), and speak of a single point catalyst situated 
at c; see [DF94, DFLM95, FL95, Dyn95] or the surveys [DFL95, Fle94]. In 
Dynkin's [Dyn91a] terminology, in this case the branching phenomenon of the 
appr~aching particles is governed by the Brownian local time at c. 

More generally, g may be a fairly general non-negative Schwartz distribution, 
that is, the generalized derivative of a measure, which we denote by the same 
symbol g; see [DF91, DFR91, DF95b, DLM94]. (Or g could additionally be 
time-dependent, for in~tance a continuous super-Brownian motion, in which 
case the catalytic masses itself suffer a branching mechanism; see [DF95a].) 
But so far we know, a common assumption is that the generalized function {!is 
locally integrable, as in the 8-function case {! = 8c; that is, {! corresponds to a 
locally finite measure. 

Our first purpose in this paper is to demonstrate that a super-Brownian 
motion X with a locally infinite branching rate measure {! may make sense 
(Theorem 3). Then of course the question arises whether such a branching 
measure-valued process has qualitatively new properties. Intuitively one can 
expect that X has significantly more extinction features in the area where the 
branching rate measure is locally unbounded. 

Indeed, our second aim is to exhibit the following new effect. We consider 
a particular branching rate {! (as e2 in ( 1)) which has a sufficiently infinite 
(accumulated) catalytic mass around a center c. Then, starting X with a finite 
initial measure without mass in c, the branching population will never hit c. 
Actually, the infinite catalytic mass around c will kill all the hidden particles 
before they reach c (Theorem 5). 

The figure shows a simulation of equation (1) with initial condition Xo(b) = 
1, but with the singular branching rate e2 replaced by the truncated rate (22 /\ K 
with K = 104 . Large fluctuations around the catalytic center c = 0 are clearly 
exhibited, whereas extinction at c = 0 is not apparent, because of the truncation. 



SBM: Infinite catalytic mass 3 

800 

600 

400 

200 

0 

Figure: Simulation of a solution to equation (1) 

1.2 Existence in the case of a locally infinite catalytic mass 
As started above, we completely concentrate on the one-dimensional case, 
whete, by the way, all the super-Brownian motions known so far have abso-
lutely continuous states ([DFR91]). To warm up we will start with the single 
point catalytic model f2 = Boe, where e 2: O is an additional weight of the point 
catalyst, which we let tend to infinity. But it turns out that in this case the 
limiting model is degenerate: The limiting infinite point catalyst will only in-
stantaneously kill the mass, that is, no mass is born. This results into the heat 
flow with absorption, i.e. the randomness of the model disappears (Proposition 
7 at p. 8). 

Going away from this degenerate situation, our main model is based on the 
following branching rate 

b E IR, (2) 

for c E IR, e > 0 and a 2: 0 fixed. If 0 ~a < 1, we get a special case of a model 
constructed in [DF91, DFR91], since here in particular the catalytic measure 
f2o-(b) db is locally finite. On the other hand, by a limitation of our methods, as 
a rule we exclude the "supercritical" case a > 2. For convenience, we introduce 
the following notation. 

Definition 1 {hyperbolic branching rate) Under 1 ~ a ~ 2, the branching 
rate g(j of (2) is called hyperbolic. Moreover, we distinguish between a moderate 
hyperbolic branching rate if 1 ~ a < 2, ,and a critical one if a= 2. Analogously, 
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the related super-Brownian motions X (to be constructed in§ 4.2) are also called 
hyperbolic, moderate, etc., in the respective cases. 0 

Remark 2 The name critical hyperbolic branching rate is motivated by the 
fact that under O' = 2 (and c = 0) the related cumulant equation (26) admits 
self-similar solutions; see Remark 15 at p. 15. 0 

Here is our first theorem (a more precise description will be given with 
Theorem 21 at p. 21): 

Theorem 3 (hyperbolic SBM X) 

(a) (existence) There e:vists a non-degenerate (finite-measure-valued) super-
Brownian motion X = {Xt; t ~ O} in IR with hyperbolic branching rate 
{Jc; • 

(b) (total mass process) The total mass process X(IR) = {Xt(IR); t ~ O} is 
a supermartingale but no longer a martingale. Its variance is finite if and 
only if O' < 2.. · 

As opposed to the previously mentioned model of a point catalyst with a 
limiting infinite weight, in the present case outside of the catalytic center c 
now we have a non-degenerate critical branching mechanism allowing a proper 
stochastic process. 

On the other hand, intuitively speaking, the infinite -catalytic mass around 
the. hyperbolic pole will again kill the Brownian particles eventually arriving at 
c. Thus, the underlying motion law should "effectively" be the Brownian motion 
we killed at c (non-conservative Markov process), and we will indeed finally work 
with we as "underlying" motion process. Note also that this heuristic picture 
of Brownian particles killed at c says that at c no birth of mass will occur. In 
particular, the usual criticality of the bran~hing mechanism will "effectively" 
be violated at c. This also makes transparent why the total mass process t i-+ 
Xt(IR) is no longer a martingale, as opposed to the usual critical super-Brownian 
motions with a locally finite branching rate measure. 

The theorem leaves open the case O' > 2. 

Remark 4 In the terminology of Dynkin [Dyn94, § 1.3.1], X is a subcritical 
superprodess with motion law given by the Brownian motion we killed at c. 
But note that in the case O' = 2 our existence claim (Theorem 3 (a)) is not cov-
ered, for instance, by the very general existence Theorem 3.4.1 of [Dyn94], since 
the branching rate {Jc; is unbounded and the functional K ( ds) = {Jc; (W:) ds of 
Brownian motion we killed at c has infinite characteristic, that is the expecta-
tion of J~ K(ds) is infinite, [Dyn94, (3.2.2)]. (In fact, the characteristic of K is 
finite if and only if O' < 2; to see this, use Lemma 6 below.) 0 
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1.3 Strong killing in the critical case O' = 2 

Here is now a more important question: Is it perhaps possible that all the hidden 
Brownian particles die already before they reach c? The main result of the paper 
will be a positive answer to this question. To formulate it, we make use of the 
"stopped measure" Xr in the sense of Dynkin [Dyn91a, Dyn91b]: Intuitively, if 
T is a (finite) stopping time of Brownian motion, then Xr describes the cloud 
of all the branching Brownian particles in their moments T. 

Theorem 5 (strong killing in the case of a critical e2 ) Assume that X is 
a super-Brownian motion with a critical hyperbolic branching rate e2 and with 
starting measure Xo satisfying Xo({c}) = 0. Then there exists a stopping time 
T of Brownian motion, which is strictly smaller than the Brownian (first) hitting 
time Tc of the catalytic center c, such that the stopped measure Xr vanishes with 
probability one. 

Consequently, here all population mass dies already before it reaches the 
catalytic center c, that is, the superprocess X does not hit c. Of course, at 
this stage the formulation of this theorem is a bit vague. Anyway, a precise 
description will be given with Theorem 24 at p. 25. 

1.4 Tools and outline 

An essential tool for our approach is the ~istorical superprocess X related to X, 
we now roughly want to indicate (for background in the locally finite branching 
measure case, see [DP91] or [Dyn91b]). To this aim, the measures Xt(da) on 
IR are thought of to be refined by measures Xt(dw), where w are continuous 
functions on IR+ stopped at time t. Heuristically, each particle hidden in the 
cloud of mass Xt and situated at time t in a is now additionally equipped with 
its former and all their ancestors motion path w in space (motion path.traced 
back from t to time 0). 

A further refinement is used by switching to stopped historical superpro-
cesses: Hidden particles are stopped at any stopping time T < Tc of Brownian 
motion, instead of t, resulting i::_to a random measure Xr ( dw) defined on paths 
w stopped at T. Consequently, Xr describes the "traced back mass distribution 
of the cloud" from the point of view of the random moment T. 

The outline of the paper is as follows. In the next section the case of a single 
infinite point catalyst is investigated. In Section 3, we deal with the cumulant 
equation which we tread in a Feynman-Kac approach. The construction of the 
hyperbolic SBM is provided in Section 4, and indeed in a setting of historical 
superprocesses. The proof of the strong killing in the case of a critical hyperbolic 
branching rate then follows in the final section. 
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2 Single point-catalytic model: degeneration 
As announced, in this section we discuss the degenerate case of a single, infinite 
point catalyst. 

2.1 Preliminaries: Some notation 
vVe adopt the following conventions. If Eis a topological space then subsets of 
E will be equipped with the induced topology. Products of topological spaces 
will be endowed with the product topology. Measures on a topological space 
E will be defined on the Borel o--algebra (generated by the open subsets of E). 
A measure m on E with m(E\E') = 0 for some measurable E', that is, m is 
concentrated on E', will also be regarded as a measure on E' (and conversely). 

If E 1 and E2 are topological spaces, let B[E1 , E 2] denote the space of all 
measurable maps f : E1 ~ E2. Write bB[E1, E2] for the subset of all bounded 
functions. If E2 is a normed space with norm II· II, and E1 compact, as a rule we 
equip bB[Ei, E2] with the supremum norm llflloo :=sup {llf(e1)ll; ei E E1} of 
uniform convergence. Note that bB[Ei, E2] is a Banach space if E2 is. By 
C[Ei, E2] and bC[Ei, E2] we denote the spaces of all continuous f in B[Ei, E 2] 
or bB[E1, E 2], respectively. 

M[E1] refers to the set of all finite (non-negative) measures on a Polish 
space E 1 , endowed with the topology of weak convergence. The pairing (µ, cp) 
abbreviates the integral J µ(de1) cp(e1), µ E M[E1], cp E B(E1 , IR] (if it exists). 

Write simply B, C, M etc., if the respective spaces Ei coincide with the real 
line IR. The lower index+ on the symbol of a set will always refer· to the subset 
of all of its non-negative members. 

2. 2 Brownian motion killed at c 

Let W = [W, Ila, a E IR] denote the standard Brownian motion in IR starting 
at time 0. We use the symbol Ila also to describe the expectation with respect 
to the law Ila for the process starting at a, and proceed similarly in related 
situations. For instance, forµ EM, define IT1.J(W) := Jµ(da) fIIa(dw) f(w), 
for reasonable functionals f. 

Denote by S ={St; t ~ O} the Brownian semigroup acting on B+, and by p 
the related (continuous) Brownian transition density function, 

1 [ (b-a)2 J p(t,a,b)=p(t,b-a) := ~exp - , 
v 27rt 2t 

t > O, a, b E IR, 

(fundamental solutions of the heat equation). 
Recall that Tc refers to the hitting time of c of the Brownian motion W. 

Set 
t > 0, a E IR, cp E B+ , (3) 
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for a fixed c E IR, and 

(Sfµ, cp) := (µ,Sf cp), t > 0, µ E M, <p E B+. 

We call {Sf; t > O} the semigroup of Brownian motion killed at c, and the dual 
{Sfµ; t > O} the heat flow with absorption at c, starting withµ. This is justified 
by the fact that restricting to non-negative measurable functions <p defined only 
on {a=/=- c} and adding the unity operator, we actually get the semigroup of a 
non-conservative Markov process on {a=/=- c}, the Brownian motion killed at c. 
Also, by the reflection principle of Brownian motion, 

pc(t,a,b) := 1{(a-c)(b-c) >o}[p(t,a-b)-p(t,a+b-2c)], (4) 

t > 0, a, b E IR, yields the transition kernels related to sc. Note that pc(t, a, b) 
> 0 if and only if (a - c)(b - c) > 0, and that the pc are the fundamental 
solutions of the heat equation with boundary value 0 at c. 

For convenience, we expose at this place the following simple but useful 
transition density estimate. 

Lemma 6 (bounds for pc) Let c = 0. Then there are constants 0 < c1 < c2 
such that 

[ 2a
2 J t

3
1

2 
c( b) [ a

2 J c1 exp - -t- ~ a:b p t, a, ~ c2 exp - 8t , t > 0, 0 < b < ~. 

Proof To get the upper bound, use the mean value theorem and ~ ~ a+'!9b ~ 
~a for 1191 ~ 1 and the assumption on b. On the other hand, to obtain the lower 
bound, apply the elementary estimate e-:z: - e-Y ~ (y - x )e-Y, y ~ x ~ O, and 
a+ b ~ 2a. II 

2.3 Single point-catalytic super-Brownian motion 
Consider the continuous single point catalytic super-Brownian motion xe 
{ Xf; t > 0} with branching rate fMc , where c E IR and, for the moment, also 
(} ~ O is fixed. That is, xe is the continuous superprocess related to the formal 
cumulant equation 

a 1 2 
- Ve = - £1 Ve - (} 0 Ve • at 2 c 

(5) 

Consequently, the critical branching phenomenon is restricted to the location 
c of the point catalyst whereas outside c only the heat flow acts. As usual for 
superprocesses, the connection to (5) is given by Laplace transition functionals: 

Eµ. exp (x:, -<p) = exp(µ, -ve (t, ·) ), µEM, t > 0, <p E bB+, 

where ve solves (5) in a mild sense with initial condition ve (O+, ·) = <p. For 
a detailed exposition of this point-catalytic SBM xe we refer to [DF94] or 
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[FL95]. Note thatµ serves as the initial measure xg of xe although we formally 
excluded xg from the notation xe for the sake of a simpler formulation of the 
following proposition. 

Proposition 7 (degeneration) As () -+ oo and in the sense of weak con-
vergence of all finite-dimensional distributions (fdd), the single point-catalytic 
super-Brownian motion xe degenerates to the heat flow with absorption at c: 

xe ~ x= := {sfXo; t > o}. 
e~= 

Roughly speaking, if the catalytic mass () of the point catalyst will be infinite, 
then all population mass which arrives at the catalyst will immediately be killed, 
and no branching occurs anymore in the model. In particular, Xf° = 0 fort> 0, 
provided that Xo (IR\ { c}) = O, that is if the initial measure Xo is concentrated 
at c. 

This proposition will be proved in the next subsection. 

Remark 8 ( r-stable catalysts) Let r denote the stable random measure on 
IR with index 0 <I < 1 determined by its Laplace functional 

<p E bB+. 

For the moment, consider the super-Brownian motion xe with branching rate 
er, () ~ 0. That is,. xe is the superpr~cess related to the formal equation 

a 1 2 at Ve = 2 ~Ve - () r Ve , ve ( o+) = 'P ~ o (6) 

(see [DF91]). Then Proposition 7 suggests that Xf weakly converges (as()-+ oo) 
to the heat flow with absorption at r I which should degenerate to Xf° = 0 
fort> O, since the atoms of r (point catalysts) are dense in IR. In terms of the 
related equation (6) this should mean that ve(t, a) -----+ 0, t > 0, a E IR. 0 

e~= 

2.4 Proof of the degeneration proposition 
We start the Proof of Proposition 7 by recalling first the following approach 
[FL95] to the continuous single point catalytic super-Brownian motion xe with 
a finite initial state xg which w.l.o.g. can be assumed to be a deterministic 
measureµ EM. Start with introducing the transition densities q of a standard 
stable subordinator with index ~ on IR+: 

s [ 5
2 J q(s,a,b)=q(s,b-a):= exp - (b ) , 

y'27r(b-a)3 2 -a 
(7) 
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s > 0, 0 ::; a < b. Let U 8 denote the related super-stable subordinator in 
IR+ with index·~ and constant branching rate B. Assume that the initial state 
U0 := U8 of U 8 is given by 

Uo(dr) := dr Jµ(db)q(jc- bj,r), r ~ O, (8) 

with q defined in (7) and using the convention dr q(O, r) = 50 ( dr ). That is, U0 
is the "law" of the hitting time Tc of c of a Brownian motion starting at time 
0 "distributed" according to the initial measure µ of X 8 (the latter has to be 
constructed). In particular, Uo = 5o if µ = 5c . 

Now let V! := J0
00 ds u: denote the total occupation time (measure) re-

lated to the measure-valued process U8 • Then the single point catalytic super-
Brownian motion X 8 can be defined by 

x:(db) := Sfµ(db) + ( { V!(ds)q(lb-cj,t-s))db, 
J[o,t) 

see for~ula (16) in [FL95] .. 

t > O; (9) 

To understand this formula, recall that q(jbj, s) is also Ito's Brownian ex-
cursion from 0 density at time s at jbj. Hence, X 8 results from two parts. 
Namely first from the initial mass described by µ which propagates according 
to the heat flow sc µwith.absorption at c. The second contribution comes from 
some randomly created mass which starts at time s from the catalyst with the 
amount V! ( ds) and spreads deterministically away according to the mentioned 
Ito's excursion density. In particular, V! yields the occupation density measure 
of X 8 at c (super-local time measure at c). 

Based on this representation formula (9) and by the Markov property of X 8 , 

for the proof of Proposition 7 it suffices to show that the total mass Ve!, (IR) of 
the total occupation measure Ve!, converges to 0 in distribution as B -T oo. But 
from the definition of the super-stable subordinator U8 follows that 

t >--+ [ ds u:(IR) =: V,'(IR), t ~ o, 

is the occupation time process related to Feller's critical branching diffusion 
with branching rate B, starting with Uo(IR) = µ(IR) (recall (8)). That is, 

E exp [ - ). V/ (IR)] = exp [ - µ(IR) ua(t)], 

where u 8 is the solution to the ordinary differential equation 

d 
dt ue (t) = - B u~(t) +). with u8(0) = 0. 
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But this equation can explicitly be solved getting 

ue(t) = ./)J8 tanh [tv'>:BJ ---+ ./)J8 ---+ 0. 
t-+oo 0-too 

Therefore the !-stable law of V! ( IR) has the scaling parameter µ( IR) / ..fe tending 
to 0, hence it converges weakly to the Dirac measure o0 as()--+ oo. Hence V!(IR) 
tends to 0 in distribution as () --+ oo, finishing the proof of Proposition 7. II 

3 Analytical tool: Feynman-Kac equation 
As a preparation for the construction of the hyperbolic SBM X in IR as claimed 
in the existence Theorem 3, in this section we want to introduce our analytical 
main tool for this: a Feynman-Kac equation. For convenience, here we restrict 
our attention to a fix_:d finite time interval I := [O, T], T ~ 0. Since the his-
torical superprocess X related to X we actually need is a time-inhomogeneous 
process, it is convenient to work with a backward and historical setting from 
the beginning. 

·3.1 Preliminaries: Terminology and spaces 
We start by introducing some terminology. If A, B are sets and a r-+ Ba is a 
map of A into the set of all subsets of B, then we write 

(10.) 

for the graph of this map. Note that AxB• ~ AxB. 
To each path w in the Banach space C :=·C[J, IR], and t E I = [O, T], we 

associate the corresponding stopped path wt by setting w; := Wt/\&, s E J. 
That is, the path is held constant after time t. The set of all stopped paths 
wt = { w;; s E I} is denoted by et, getting (fort fixed) a closed subspace of C. 
Note that C" ~ et ifs ~ t, that CT = C, and that C 0 can be identified with 
IR, whereas et could also be considered as C [[O, t], IR]. 

To each path w in C, we can also associate the corresponding stopped path 
trajectory w by setting: Wt :=wt, t E J. Note that w is a mapping of I into C. 
Since, for 0 ~ s ~ t ~ T, 

lliiit - w,,lloo = llwt - w"lloo = sup,,~r9 lwr - w,,j ----+ o, 
t-&-+0 

w actually belongs to the closed subspace 

C(J) := {w E C[J, C]; Wt E et, t E 1} 

of the Banach space C[I, CJ. Moreover, 

(11) 

v,w EC, 
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hence w i-+ w maps C continuously into the space C(I) of stopped path tra-
jectories. Note also that C(I) ~ Ix C • where the latter is a closed subset of 
Ix C. 

3.2 Brownian path processes W and we 
Recall that Ila denotes the distribution of a standard Brownian path W starting 
at Wo =a. Now we regard it as a probability law at C = C[I, IR]. Applying then 
the map w i-+ w from the previous subsection to W, we get the so-called Brown-
ian path process W = [W, fi:.s,w, s E I, w E C"'] which is a time-inhomogeneous 
strong Markov process. In other words, at times we start with a path w = W,,. 
stopped at time s, and let evolve a path trajectory {Wt; t E [s, T]} with law 
Ils,w determined by a Brownian path {Wt; s ::; t::; T} starting at times at w,,.. 
We may and will regard Ils,w as a probability law on C ([s, T]) (recall (11)). 

The semigroup of W will be denoted by 

Ss,t cp ( W) := Ils,w cp(Wt), 0::; S::; t::; T, W E Q°", cp E bB[Ct, IR], (12) 

and the related generator by {A,,. ; s E I}: 

A,,.1/J(w) = ~~h- 1 [Ss-h,s1/J (w"'-h) -1/J(w)], w EC"', 

1/J E '.D(A,,.) (that is 1/J E bB[CS, 113] such that the limit exists). 
Analogously, we introduce the standard Brownian· motion killed at c: 

we = [we, II~ , a E IR] , 

and the related Brownian path process killed at c : 

we= [we, IT~,w' s EI, w EC"']. 

Here the II~ are subprobability laws satisfying; in particular, 

II~(Wt E ·) = IIa(rc > t, Wt E · ), t E J, a E IR, 

(where re is the hitting time of the catalytic center c). Analogously, 

(13) 

0 ::; s ::; t ::; T, w E C"'. ( 14) 

Recall that sc is the semigroup related to the Brownian motion we killed 
at c, introduced in (3). Denote by sc = {s~,t; 0 ::; s ::; t ::; T} the semigroup 
of We. 

As in the case of Brownian motion, we use notations as 

(15) 
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- -Of course, from Wand we we can gain back Wand we by projection. For 
instance, Wt := (Wt)t, which will repeatedly be used. 

3.3 Truncated equation 
Fix a constant K > 1 and consider the truncated rate function f!a- /\ K, where 
f!a is the hyperbolic branching rate from (2) (recall that 1 :::; a :::; 2). 

For cp E bB+ [ C, IR] fixed, let V K cp := v K ~ 0 denote the unique element 
in bB[IxC•, IR] (recall (10)) which solves the following non-linear equation 
("truncated" cumulant equation) 

VK(s, w,) = IT,,w, [\?(WT) - J.T dr (l?u J\ K)(Wr) vk(r, W,)], (16) 

[s,w 5 ] E Jxc• (cf. e.g. Dynkin [Dyn91b, Theorem 1.1]). Note that by a formal 
differentiation using the semigroup S = { Ss,t; 0 :::; s :::; t :::; T} of W, from this 
integral equation we get the partial differential equation 

-:
5

VK(s,ws) ·= AsvK(s,w5 )-(f2a/\K)((w.s).s)v~(s,w 5 ), 

with terminal condition vK(T, WT)= cp(wT ). 
(17) 

(Here - :s vK(s, w5 ) = -limh.J,O h-1 [vK (s - h, (w~)s-h) - VK(s, Ws)] .) Moreover, 
if cp is in the domain 'D(AT) of AT, then VK actually solves (17). But then it 
also uniquely solves the following "truncated Feynman-Kac equation" (that is, 
Feynman-Kac version of (16)): 

[s,w 8 ] E Jxc• (cf. Dynkin [Dyn94, Theorem 4.2.1]). By dominated conver-
gence, also in this equation we can go back to any cp E bB+[C, IR]. 

3.4 Simplified terminal functions 
If the terminal function cp (defined on paths w E cT = C) in the truncated 
equation only depends on lwT - cl and even in a non-decreasing way, then also 
the solution VK = VK cp has a similar property, which we now want to expose 
in a lemma. Recall that K > 1 is fixed. 

Lemma 9 (simplified terminal condition) Assume that cp E bB+[C, IR] can 
be represented as 
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with f E - bB[IR+, IR+ J being non-decreasing. Then the (unique) solution VK 
= yK cp to the truncated equation (16) or (18) has a representation 

(19) 

with g E bB[I x IR+, IR+] being non-decreasing in the second coordinate. 

Remark 10 By an abuse of notation, in cases as in the lemma (and in similar 
situations), we simply write 

0 

Proof of Lemma 9 Without loss of generality, we may assume that c = 0. 
1° (Trotter's product formula) VK can be thought of as arising in the following 
way. Fix n > > 1 and decompose the interval [O, T] into small pieces of length 
T /n. Apply now alternatively both terms at the r.h.s. of (17), that is consider 
separately the pure Brownian path process and the pure quadratic absorption. 
(That this Trotter's product formula like procedure converges as n-+ oo to VK 
also in the present non-linear situation can be seen as follows: Via Laplace tran-
sition functionals, as in ( 41) below, one can switch to the corresponding Markov 
processes, and for their linear semigroups one can apply Trotter's product for-
mula~ as e.g. in [EK86, Corollary 1.6. 7], to get the desired convergence result.) 

For a proof by induction, assume that for some k, 0 :::; k < n, at time 
sk := (n - k)T/n a representation as in (19) is given (which is certainly true 
for k = 0). Now it suffices to show that such representation is reproduced at 
time Sk+i, if either only the Brownian path process acts, or only the quadratic 
absorption is effective. In fact, then the claim follows by taking the limit as 
n-+ oo. 
2° (pure Brownian path process semigroup) By the semigroup property, we 
have 

By the induction hypothesis and (19), we may continue with 

But this expression depends only on a:= !(w$1o+J$i.+1 11 and, moreover, in a non-
decreasing way. To see this monotonicity, use a simple coupling argument. In 
fact, for fixed 0 :::; a 1 < a 2 , consider a pair of coupled reflected standard Brown-
ian motions denoted by [Z1' Z 2], starting at [a1 'a2], which evolve independently 
until they hit each other, and are identical afterwards. Then Z 1 :::; Z 2 , hence 
g(Z1 ) :::; g(Z2 ) from the assumed monotonicity of g, and the claim follows by 
taking expectations. 
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3° (pure quadratic absorption) We have to solve (in a mild sense) the equation 

-:s VK(s,ws) = -(g(j/\K)((ws)s)v_k(s,w5 ), [s,w.,] E Ixc·, 
at time s = Sk+l. By the semigroup property of solutions, we may fix here our 
attention to the terminal condition vK(sk, Ws1o) = g(sk, J(ws1c)s1cl), according to 
the induction hypothesis. As solution we get 

with a := j(ws1c+i)s1c+i I, which is obviously non-decreasing in a. This finishes 
the proof. lll 

3.5 Constant terminal functions 
Lemma 9 is applicable in particular if the terminal function r.p is a constant. 
Then we can complement that lemma by the following result. Recall that K > 1 
is fixed. 

Lemma 11 (temporal monotonicity at the catalytic center) Assume 
that r.p E bB+[C, IR] equals the constant m 2'.: 0. Then the solution VK = vKm 
to the truncated equation (16)-(18) has the following property. Fix s E [O, T). 
Consider only Wt E et with (wt)t = c for all t E [s, T). Then VK(t, Wt) is 
non-decreasing in t E [ s, T). . 

Proof Again we may set c = 0. 
1° (reformulation) Fix s < T, and consider only those [t, Wt] E [s, T) x C • 
such that (wt)t = a on [s, T) for some a E IR. By Lemma 9 we may write 
vK(t, Wt)= vK(t, a), and from (17) we get 

·8 1 
- at VK(t, a) = 2 ~vK(t, a) - (g(j /\ K)(a) v_k (t, a), s ::::; t < T, a E IR, 

with constant terminal condition vK(T, a) = m. But for a E IR fixed, VK(t, a) 
only depends on T - t, and since we intent to use a scaling argument it is 
convenient to turn to a forward setting. Then it suffices to show that the 
solution VK to 

VK(t, a) = m - rr. fo' dr (i.>a i\ K)(W.) v~<(t - r, w.) (20) 

is non-increasing in t > 0 if a= c = 0. 

2° (scaling) For t > 0 fixed, introduce 

Ut(s, a):= VK (ts, Vta), s > O, a E IR. 
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Then by Brownian scaling, from (20) we conclude 

ut( s, a) = m - II. 1' dr e'(W,) u;(s - r, W,) (21) 

with 
.. f) tl-a-/2 

l(b) := t(eu /\K)(.Jib) = jbju /\ (tK), b E IR. (22) 

These new bounded coefficients et in the absorption term of ( 21) are non-
decreasing in t > 0 since a::; 2. Hence the (unique) solutions Ut of equation (21) 
are non-increasing in t > 0. In particular, Ut(l, 0) = vK(t, 0) is non-increasing 
in t > 0. This finishes the proof. II 

Remark 12 (limitation to a::; 2) This is the first time in the present devel-
opment we needed to restrict to a ::; 2. O 

3.6 Limiting functions 
~rning back to the truncated equation (16) or (18), we n.ow replace the ter-
minal function cp by 'PK E bB+[C, IR], and assume that 'PK+ cp E bB+[C, IR] as 
K ---+ oo. Then from monotonicity in both 'PK and eu /\ K, we obtain, for the 
corresponding solutions VK := VK 'PK, the following pointwise limit assertion: 

VK = vK 'PK + some v =: Vcp ~ 0 as K---+ 00. (23) 

Note that at this stage the limiting v = Vcp could depend on the choice of the 
approaching sequence cp K . . 

Lemma 13 (independence of the choice of the 'PK) For cp in bB+[C, IR] 
fixed, the limiting function v = Vcp of (23) is independent of the choice of the 
approximating functions 'PK + cp. 

Proof Consider two sequences cp K + cp and 'lj; K + cp. We may assume that 
cp K ::; 'ljJ K (otherwise bound cp K and 'lj; K in-between cp K /\ 'lj; K and cp K V 'ljJ K). 
Then V K cp K ::; V K 'ljJ K , and using the equation ( 16) or ( 18), and monotonicity, 
we may continue with 

::; VK 'PK+ fi~,w. [ 1/JK(WT) - 'PK(WT)] · 

Then the claim immediately follows by bounded convergence as K ---+ oo. II 

Remark 14 (monotonicities) It is clear that the statements of the Lemmas 
9 and 11 remain valid also for the limiting function v = V cp. 0 

Remark 15 (self-similarity) In the case a = 2, c = O, and for constant ter-
minal functions m, the limiting functions v = Vm are self-similar with respect 
to the Brownian scaling. In fact, for approximating VK in a forward setting we 
have vK(L2t, La) = vpK(t, a), for each L > O, since (20) is uniquely solvable. 
Letting K ---+ oo gives the claim. 0 
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3. 7 Disappearance at the catalytic center 

Without any additional assumptions on cp, the limiting functions vanish at the 
catalytic center c in the following sense: 

Lemma 16 (disappearance at the catalytic center) For cp in bB+ [C, IR], 
the limiting function v = V cp of (23) has the following property: 

Proof Set again c = 0. Since V cp ;::: 0 is non-decreasing in cp, without loss of 
generality we may assume that cp equals a constant m > 0. Start with considering 
an approximating solution VK of (16) with terminal condition m, for a fixed 
K > 1. 

For any [s, w8 ] E Ix C •,by Lemma 9 (and recalling Remark 10) we may write 
VK(s,w 8 ) = vK(s, l(w 8 ) 8 1). Additionally, by the monotonicity statement in that 
lemma, we may continue with;::: vK(s, 0);::: v(s, 0). Applying this to the integral 
term in ( 16) we get in particular 

0 S fio,o lT dr (l?a /\ K)(W,) v2(r, 0) < m. 

Additionally, by monotone convergence as K--+ oo we therefore conclude that 

Ilo lT dr l?a(W,) v2(r, 0) S m. 

However, 
r > 0, 

since a- ;::: 1. Thus 

v(r, 0) = 0 for almost all r E [O, T). (24) 

Finally, combined with the monotonicity statement in Lemma 11 (recall Remark 
14)), we get v(r, 0) = 0 on [O, T). Hence, the claim v(s, W8 ) = 0 follows, finishing 
the proof. • 

Remark 17 (supercritical a) Under a > 2, letting in (22) first K --+ oo, 
we get a non-increasing function in t which suggests that (instead of Lemma 
11) v(t, Wt) should be non-increasing in t, provided that (wt)t = c on [s, T). 
Then (24), which was derived by using only a ~ 1, would imply that again v 
disappeared at the catalytic center in the sense of Lemma 16. 0 
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3.8 Limiting equation: Existence of solutions 

Here we want to show that, for cp and T > 0 fixed, the limiting function v 
introduced in (23) solves the formal limiting equation (as K -+ oo) arising from 
the Feyn2::an-Kac equation (18), if we additionally switch to the Brownian path 
process we killed at c : 

Proposition 18 (limiting equation: existence of solutions) Given cp in 
bB+[C, IR], the limiting function v = Vcp of (23) satisfies the Feynman-Kac 
equation 

v( s, w,) = fr:,w, \O(Wj) exp [ - 1T dr i?u(W:) v (r, W,0 )], (25) 

[ s, w $] E [ 0, T) x C • .. 

Note that (25) can symbolically be written as 

(26) 

with terminal condition v ( T, · ) = cp, and boundary condition v ( s, w $ ) I ( ) _ w, 1 -C = 0, s < T. 

Proof of Proposition 18 Fix [s,w$] E [O,T)xc·. If (w$)$ = c holds, then 
the r.h.s. of (25) disappears by.the property (14) of the subprobabilities fie. But 
by Lemma 16 also the l.h.s. vanishes. Therefore we may restrict our attention 
to the case (w$)$ -:fa c. 

Going back to the approximating functions VK = VKcp, look at the truncated 
Feynman-Kac equation (18). First we restrict the expectation at the r.h.s. 
additionally to the event {re ::; T} (with Tc the hitting time of the catalytic 
center) and want to show that this results in a negligible term as K -+ oo. In 
fact, this part of the expectation can be bounded from above by restricting the 
integral in the exponent additionally tor> Tc. Next we use the strong Markov 
property at time re, and the uniqueness of the solutions to (18). Then the 
resulting upper bound of this part of the r.h.s. of (18) can be written as 

By monotone convergence this tends to rt,w. 1 {Tc ::; T} v (Tc' Wrc) as K -+ 00. 

However, this vanishes, since by (Wrc )re = Wrc = c the latter v-expression 
disappears on the event {Tc < T} according to Lemma 16, and since Tc has a 
continuous law. 
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It remains to show that 

converges as K -+ oo to the analogous expression without involving the K 
(recall the identity (14)). This we will provide via two-sided estimates. 

First of all, to estimate from above, switch in (27) from VK to v, and let K 
tend to oo. Then the desired limit term will come out by monotone convergence 
based on (e(j /\ K) t e(j. 

Concerning the other direction, pass from (e(j /\ K) to e(j in (27). If we 
assume for the moment that a.s. we still have a finite integral in the exponent, 
than again by monotone convergence we will be done. To demonstrate the 
mentioned finiteness, it suffices to show that the (weighted) expectation of the 
new integral in the exponent is finite: 

But since from (18) always 

follows, and 0 ::; cp ::; JlcpJJ 00 trivially holds, it is sufficient to show that 

fr,,w, l{rc > T} JT dr i?u(W,) < +oo. 
$ -

Recall that (ws )s f. c. By time-homogeneity of the Brownian motion we are left 
with the claim 

II. 1 {re > t} l' dr i?u (W,) < +oo, t > O, a f. c. (28) 

For this purpose, without loss of generality we may assume that a > c = 0. 
Changing the order of expectation and integration, we get 

= { dr Ila~{ rc > t} e(j(Wr ). 
J(o,t) 

Using the Markov property at timer, we can rewrite this as 

= { dr { db pc ( r, a, b) b: ITb { rc > t - r} 
J(o,t) J(o,oo) 

(29) 

with the transition density pc of Brownian motion killed at c = 0 (recall (4)). 
We may additionally restrict the internal integral to 0 < b < ~ (since for the 
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opposite case the finiteness is obvious). For the internal probability expression 
we have 

Ih{ Tc > t - r} = J. 00 

dr' q(b, r') = j 00 

dr' q(l, r') (30) 
t-r (t-r)/b'J 

with q defined in (7). Insert this together with the upper estimate of Lemma 6 
into (29) (with the restricted b), and substitute b ~ (t - r) 112 b to arrive at 

it 1 a/(2yt=;) f, 00 

dr (t - r )l-a/2 db bl-a a r- 3! 2 exp [ - ~; J dr' q(l, r'), 
0 0 1/b'J 

except a positive constant. As b-+ O, the most internal integral is of order b, and 
b2 -a is integrable (under O" < 3). On the other hand, as b -+ oo, the internal 
integral remains bounded by 1, and as r t t the upper part of the b-integral is 
of order (t - r)- 1+a/ 2 which is compensated. But the remaining r-integral as 
r + 0 is certainly finite since a f. 0 by assumption. This finishes the proof. • 

3.9 Uniqueness of solutions under O" < 2 

In the previous subsection. we showed that the limiting function v = Vcp in-
troduced in (23) satisfies the limiting Feynman-Kac equation. In the case of a 
moderate hyperbolic branching rate we are able to determine v as the unique 
solution of that equation: 

Proposition 19 (uniqueness in the moderate case) Suppose 1 ~ O" « 2. 
For <p E bB+ [C, IR] fixed, the limiting function v = V <p of (23) is the unique 
element in bB[Ix C •, IR+ J which solves the Feynman-Kac equation (25). 

Proof Assume that v1 and v2 are different solutions of (25). Let s0 ~ T 
denote the supremum over all s < T such that v1 (s, ·) f. v2 (s, ·). Fix for the 
moment 0 ::; s < s0 and W 8 E cs. Next we search for an upper bound for 
lv1 (s,w 8 ) - v2 (s,ws)I by using the equation (25). To this aim, split up the 
common part of the integral in the exponent, estimate the related exponential 
term by 1, and use the elementary inequality le-:z: - e-YI ~ l:z: - YI, :z:, y ~ O, 
to get the bound 

Denoting (in this proof) by II· II the supremum norm on [O, so) x C •, and using 
the time-homogeneity of the Brownian motion killed at c, we conclude for 
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To get a contradiction, it suffices to show that 

sup t dr II~ea(Wrc) --+ 0. 
a lo e.j..O 

Using the Brownian scaling, this supremum expression is of order cl-a/2 con-
verging to 0 as c i 0 (since O' < 2 by assumption) provided that 

sup { dr II~ea(Wrc) < +oo. 
a 1(0,1) 

Without loss of generality we may restrict the supremum to the case a> c = 0. 
Then we have to show 

sup r dr r)O db pc(r, a, b) b-a < +oo. 
a>O 1(011) lo 

Using the substitutions bi-+ r112b, for (31) we get the upper bound 

::; f 1
dr 1'-a/2 sup r;O db pc(l, a, b) b-a. lo a>O lo 

(31) 

The first integral is finite by our assumption O' < 2. It remains to show that the 
latter supremum expression is also finite. If in addition b ~ 1, then simply use 
that all the pc(l, a,·) are probability densities. In the other case b < 1, apply 
the inequality pc(l, a, b)::; canst b (recall Lemma 6) to finish the proof. II 

4 Hi~torical hyperbolic super-Brownian motion 
The purpose of this section is the construction of the hyperbolic SBM X in IR 
as claimed in the existence Theorem 3. Actually we will construct the related 
historical superprocess X. This can be done by starting from the historical SBM 
XK with truncated branching rate (Ja AK and passing to the limit as K--+ oo. 

4.1 Semigroup structure of limiting functions 
In the previous section, all paths wended at time T. Now we write t instead of T 
and think oft as a variable. To have again a unified reference space, we replace 
C[[O, t], IR] by C(IR+, IR] =: C endowed with the topology of uniform convergence 
on bounded intervals (Polish space). c.s is again the closed subspace of all 
continuous paths stopped at time s. Also the other notations of the previous 
section are modified in the obvious way. 

Take cp E bB+[Ct, IR]. Recall the solution VKcp of the truncated cumulant 
equation (16) with T replaced by t, and similarly Vcp for its limit as K t oo. 
We write now more carefully 

(32) 
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and define ~,tcp(w.!) analogously based on Vcp(s,w.!)· 

Lemma 20 (semigroup structure) The limiting functions of (23) satisfy 

Vs,T Vr,t <p = ~1 t <p, 0::::; s::::; r::::; t, <p E bB+[Ct, IR]. 

Proof Fix s, r, t, <pas in the lemma. From equation (16) or (18) we get 

v/; v;.1; cp = v/~ cp, 
I l l 

Then the claim follows from the limit assertion (23) and the independence of 
choice Lemma 13. • 

4.2 Existence of the historical hyperbolic SBM X 
Now we are ready to formulate the following existence theorem. 

Theorem 21 (existence of the historical hyperbolic SBM X) There is a 
(time-inhomogeneous) Markov process X = [.X, P.!,µ, s 2:: 0, µ E M(C.!]J with 
states Xt E M(Ct], t.2:: s, having the following Laplace transition functional 

(33) 

0::::; s::::; t, µ E M[C.!], <p E bB+[Ct, IR]. Here V.,t <p 2:: 0 is the limiting function 
of (23) (with T replaced by t), 'U}hich solves the Feynman-Kac equation. 

v( s, w,) = ii;,w, cp(W,°) exp [ - l dr lla(W;) v(r, W:)], (34) 

[ s, w .! ] E [ 0, t) x C • . The fallowing expectation and variance formulas hold: 

P.!,µ(xt, cp) = n~.µcp(wn, 
Var,,µ(X\, cp) = 2 ii;," [dr lla(W;) [ii~.W; cp(Wt') J2. 

0::::; s < t, µ E M[C.!], <p E bB+[Ct, IR]. 

(35) 

(36) 

X is called the historical hyperbolic super-Brownian motion in IR. Note that 
Xt is a measure on continuous paths w on IR+ stopped at time t. It describes 
the ancestry of all particles alive at time t. 

As a rough interpretation of the expectation formula (35) one could say: The 
"expectation" of the historical superprocess X is given by the Brownian path 
process we with killing at c. 

Recall also (Proposition 19) that in the moderate case O" < 2, the limiting 
function v = V.,t <p, t > O, was characterized as unique solution to the Feynman-
K ac equation ( 34). 
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Before we turn to the proof of this theorem in the next subsection, we want 
to show how it implies the existence Theorem 3. 

Proof of Theorem 3 By the projection 

B Borel~ IR, (37) 

we define the hyperbolic super-Brownian motion X = [ X, Pµ,, µ E M] in IR 
(statement (a) of Theorem 3, except the claimed non-degeneration). Note that 
X (as opposed to X) is a time-homogeneous M-valued Markov process. 

From the expectation formula (35) follows 

µ E M, t > O, cp E bB+ , (38) 

in particular, 

E{Xt(IR)!Xo} = jxo(da) IIa(rc > t) < Xo(IR), Xo # O, t > 0. 

. . 
Hence, the total mass process t 1-7 Xt(IR) is a supermartingale but no longer a 
martingale (part (b) of Theorem 3), as opposed to the critical superprocesses 
with locally finite catalytic mass. In fact, since the underlying Brownian motion 
is killed at the center c. of the catalytic medium, no mass can be born at c and 
the expectation of the process is not preserved (except the zero mass), despite 
the otherwise criticality of the branching mechanism. 

The variance formula (36) specializes for X as follows: 

Varµ,(Xt,cp) = 2 {tdrf. µ(da)fdb ea-(b)pc(r,a,b) (s~-rcp) 2 (b), (39) Jo a;tc 

µEM, <p E bB+, t > 0. In particular, 

Varo. X,(IR) = 2 l'dr Jdb l!u(b)p0 (r,a,b) > O, a# c, t > 0. ( 40) 

Note that the latter expression is finite, provided that O' < 2 (moderate case), 
whereas it is infinite for O' = 2 (critical hyperbolic branching rate). In fact, 
only the influence of the singularity for b --+ c of the branching rate ea- has 
to be checked, for a # c. But for this we can apply the bounds in Lemma 6. 
(Consequently, the total mass process X(IR) has finite variance if and only if 
the branching functional K ( dr) = ea-(W,.C) dr has finite characteristic; recall 
Remark 4.) 

Since the variance ( 40) is not zero, the hyperbolic super-Brownian motion 
X is non-degenerate. This completes the proof of Theorem 3. II 
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Remark ·22 (stochastic equation) It can be expected that the hyperbolic 
super-Brownian motion X lives on the set of absolutely continuous measures, 
and that there is a density field jointly continuous on {t > O} x IR satisfying the 
stochastic equation (1). Setting formally cp = 5c in (38) and (39) suggests that 
this density field vanishes identically at the catalytic center (as opposed to the 
single point-catalytic super-Brownian motion where the variance of the density 
field blows up approaching the catalyst and the density field is non-zero at the 
catalyst's position at some random times). O 

4.3 Proof of the existence theorem 
Now we are ready for the Proof of Theorem 21. For K > 1, let 

denote the historical SBM related to the truncated branching rate g(j /\ K, that 
is, a Markov process with Laplace transition functionals 

( 41) 

0::; s::; t, µ E M[C"], cp E bB+[Ct,IR]. Here V;fcp ~ 0 uniquely solves the. 
truncated equation (16) (with T replaced by t). For a detailed exposition we 
refer e.g. to Dawson and Perkins [DP91, Chapter 2] or to Dynkin [Dyn91b]; see 
also Mueller and Perkins [MP92]. 

The interpretation is that Xf ( dw) describes the mass of all particles at time 
t with location Wt but only those which (or whose ancestors) moved during the 
time interval [s, t] along the curve {wr j S ::; r ::; t}. In this sense, XK is a 
refinement of the usual continuous super-Brownian motion X K with truncated 
branching rate {!(j /\ K. 

Passing in ( 41) to the monotone limit V8~ cp -!- Ys,t cp as K t oo, we get 
limiting Laplace functionals of (proper) random measures since 0 ::; V8 ,t cp ::; 
ll'Plloo. Actually, from the (non-linear) semi-group property of V according to 
Lemma 20, we obtain limiting Laplace transition functionals which determine 
the finite-dimensional distributions of a time-inhomogeneous Markov process X, 
the historical hyperbolic SBM, as formulated in Theorem 21. 

Note that fort > 0 the limiting function V.,t cp solves the Feynman-Kac equa-
tion (34). Based on the representation (33) of Laplace transition functionals, 
by standard arguments, the mentioned moment formulas can be derived. • 

Immediately from the previous proof, by bounded convergence we conclude 
for the following result. 

Corollary 23 (convergence of truncated processes) The historical SBM 
X K with truncated branching rate {!(j /\ K (and non-killed Brownian motion 
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W as motion law) tends to the historical hyperbolic SBM X (with the killed 
Brownian motion we as motion law) as K -+ oo in the sense of convergence of 
all finite-dimensional distributions. 

4.4 Stopped historical hyperbolic super-Brownian motion 

There is a further refinement of the historical super-Brownian motion X K with 
truncated branching rate f!a /\K, which goes back to Dynkin [Dyn91a, § 1.5]. In 
fact, for s 2:: 0, let G denote the set of all finite s-stopping times T. Then there 
is a family 

{ x:; T E G ' s 2:: 0} 

called the stopped historical super-Brownian motion with truncated branching 
rate f!a /\ K. The principal idea here is that Xf is a random measure on paths 
stopped at time T instead oft, illustrating the historical population picture at 
the random moment T. 

This family satisfies the so-called special Markov property, which roughly 
says that at any T E G , the stopped historical .SBM starts anew (see Dynkin 
[Dyn91a, Theorem 1.6]). 

As in (35) and (36), we have the following expectation and variance formulas: 

IT 8 ,µ<l>(Wr ), ( 42) 

2.fi,,~ [ dr (ea AK) (W,) [rr,,W, ii?( W,} r ( 43) 

s 2:: 0, TE G, <I> E bB[cr, IR+], andµ E M(C 8
); see e.g. Dynkin [Dyn91a, 

(1.50a)J. 
Finally, we mention that for TE G which is an exit time from a set A~ IR 

such that IR+ x A is finely open in IR+ x IR, the so-called CB-property holds: 

logP~(x: = o) = jµ(d.w) Pf:w (x: = o) 

( cf. Dynkin [Dyn93, ( 4.18) and (3.19)]). 

(44) 

As with the existence Theorem 21 and Corollary 23, there is also a refinement 
of the historical hyperbolic SBM X as described above in the truncated case. 
In fact, for s 2:: 0, let Tse denote the set of all finite s-stopping times T strictly 
smaller than Tc. Then there is a family 

called the stopped historical hyperbolic super-Brownian motion. Of course, Xr 
is again a random measure on paths stopped at time T < Tc, illustrating the 
historical population picture at the random moment T. 
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Also this family satisfies the special Markov property, saying that at any 
T E Tse, the stopped historical hyperbolic SBM starts anew. 

The expectation formula ( 42) again reads as 

( 45) 

s 2:: 0, TE Tse, <PE bB[cr, IR+], but where the measureµ E M(Cs) satisfies 
µ{ W E Cs i Ws = C} = 0. 

As before, for r E ~c which is an exit time from a set A ~ IR \ {O} such that 
IR+ x A is finely open in IR+ x IR \ {O}, the CB-property holds: 

( 46) 

5 Killing around the critical hyperbolic pole 
In this section we want to show that for the super-Brownian motion X in the 
critical hyperbolic medium (12 no mass will ever reach the catalytic center. That 
is, the particles hidden in the clouds die already before they hit c. This will be 
based on some methods involving historical superprocesses developed in Chapter 
8 of Dawson and Perkins [DP91] to estimate the modulus of continuity of the 
support of superprocesses (see also Mueller and Perkins [MP92]). 

5 .1 Reformulation of the strong killing theorem 
Actually, we restate Theorem 5 at the level of historical ·superptocesses in the 
following way. 

Theorem 24 (strong killing in the case of the critical e2) There exists a 
stopping time T < Tc such that 

Po,µ.(Xr = 0) = 1 

for eachµ EM withµ( {c}) = 0. 

For the proof of this theorem, without loss of generality we may set c = 0. 
Moreover, by the CB-property ( 46) and symmetry, we may restrict our attention 
toµ= 8a for an a> 0 fixed, which is assumed for the remainder of this section. 
That is, the historical catalytic superprocess starts off at time 0 with a unit 
mass concentrated at a > 0. To simplify notation, we identify 8a. with a and 
write Pa. instead of Po,o"" . 

By this choice of the initial state, we may restrict to particle paths w in 

Ca:= { w EC= C[IR+, IRJ; wo =a> O}. 
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We will observe these paths at most until they reach the catalytic center c = 
0. More precisely, for w E Ca, we pay attention to the following increasing 
sequence of hitting times 

n ~ 0, ( 47) 

where T( b) := Tb denotes the (first) time the path w hits the point b E IR. 
(Recall that by the recurrence of one-dimensional Brownian motion each hitting 
time T(b) is finite IIa-a.s.) In§ 5.2 we will actually use this monotone sequence 
To , T1 , ... of hitting times smaller than To to prove Theorem 24. For this purpose 
it suffices to show that 

Pa (xr,. -::p o) --+ o. 
n-+oo 

( 48) 

In fact, then these probabilities are summable along a subsequence, and from 
Borel-Cantelli we conclude for the existence of a smallest (random) integer N 
(concerning this subsequence) such that x'TN = 0 with Pa-probability one. Since 
0 is an absorbing state, we found a stopping time T := TN strictly smaller than 
Tc at which the stopped historical process does not have any mass, then proving 
Theorem 24. 

As a technical preparation for the proof of ( 48), in this subsection we still 
state the following simple property of the Brownian motion. 

Lei:nma 25 (infinite accumulated branching rate) Along a Brownian path 
W until it reaches 0, the accumulated rate of branching is infinite: 

a> 0. 

Proof First of all, using the hitting times Tn from (47), 
'To oo i dt g2(Wt) ~ LRn, 

n=O 

where 
(49) 

Since Ro > 0 with Ila-probability one, it suffices to show that. the Ro, Ri, ... 
are independent and identically distributed (with respect to Ila)· 

The independence immediatelyfollowsfrom the strong Markov property. We 
want to calculate Ila (Rn. ::; T), r > 0. Again by the strong Markov property 
but also time- and space-homogeneity as well as symmetry, it equals 
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Now we can use the self-similarity of standard Brownian motion starting from 
the origin to continue with 

( 
r(a/2) ) 

=Ilo ea- 2
}

0 
dtl{Wt2:'.:0}:Sr 

finishing the proof. 

Now we restrict our attention to paths w E Ca with infinite accumulated 
rate of branching as in Lemma 25. 

5.2 Proof of the killing theorem 
Recall that for the proof of Theorem 24 it suffices to show the convergence 
statement ( 48). 

From Lemma 25 we conclude for the existence of positive sequences en -+ 0 
and ~n -+ oo as n -+ oo such that 

II.( En) ;::: 1 - ·~ where En := { w E c.; 1T· dt ~,(wt);::: en}. (50) 

Note that En belongs to Fr.,,,, the O"-field generated by Wt fort :S Tn. 
Here is the intuitive picture for the further procedure. For a fixed large 

n, according to (50) there is only a small Ila-chance that a Brownian path 
belongs to the complement E~ of En (in Ca)· Therefore, E~ has a small stopped 
historical XT.,. -measure, with a high Pa-probability. Then using Iscoe's [Isc88] 
techniques, we will show that. the set of related particles is likely to die out 
before time Tn+l. Also, for the original set En of paths we will show that with 
high probability, the related particles have died out before time Tn, by the huge 
accumulated rate of branching. 

Now we give the details along these lines to arrive at the claim ( 48). 

Step 1° Recall that et denotes the set of all paths stopped at time t. We set 
C~ := Ca net and 

(51) 

By the expectation formula (45) with s = 0, 7" = Tn and~= 1{ c~.,. \En}, we 
have 

Using Markov's inequality, we therefore conclude 

Pa (>.n 2:'.: en) :S en ---+ 0. 
n~oo 

(52) 

Consequently, the set E~ has small XT.,.-measure An with high Pa-probability, 
as desired. 
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Step 2° Let us examine the further fate of the mass An defined in ( 51) we need 
to study in the case An -+ 0. Fix n. By the definition of Tn, at the moment Tn 
the (projected) population Xr.,. will be concentrated at the space point 2-na. 
Based on the special Markov property, we can start X anew after the time rn, 
namely with the mass An attached to the point 2-n a. 

Now we adapt Iscoe's [Isc88] analysis in the constant branching rate case to 
our situation of a critical hyperbolic medium e2 . We estimate the probability 
that, starting with the mass An, completely concentrated at the point 2-na, 
the range of the arising superprocess will be contained in the surrounding space 
interval In := (rn- 1a, 3 · rn- 1a) (at which the branching rate e2 is bounded 
since a and n are fixed). This probability, denoted by Pn, is given by 

(53) 

where u satisfies 

~ ~u = {!2 u 2 on In, uJa1.,. = oo, 

( cf. Dynkin [Dyn93, Corollary II.8.2]). Since on In the critical hyperbolic 
branching rate e2 is not smaller than 8 3-222n+2a-2, we conclude that u ::; u, 
where u solves 

.! " - _ 8 3-222n+2 -2 -2 
2 LJ..U - a U on In, uJa1.,. = oo, 

(recall that a > 0 is the fixed starting point, and 8 > 0 is an additional weight 
of the branching rate g2). By scaling, we find that v(b) := ~(2-nb), b E Jo, 
satisfies 

(54) 

But then u(2-na) ::; u(2-na) = v(a), which by uniqueness of the (maximal) 
solution to equation (54) does not depend on n. So finally we get 

(55) 

converging to 1 if An -+ 0. Consequently, the small starting mass An at time Tn 
concentrated at 2-na will essentially not hit 2-n-la in the further development. 

Step 3° Assume for the moment that 

Pa (xr.,. (En) > o) ---+ 0. 
n-+oo 

(56) 

Then we would have together all ingredients to show ( 48). Indeed, recalling the 
definition (51) of An, by the special Markov property we have 

Pa(Xr.,.+ 1 #0) < Pa(Xr.,.(En)>O)+Pa(An~en) (57) 

+ Pa {Pr.,. ,>..,.c~_.,.,.(Xr.,.+ 1 # 0) I An < en} 
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In fact, in order to be non-extinct at time rn+l, either at time rn we have some 
particles with path in En , or we do not have such particles. In the latter case, 
we must have particles with a path in E~. But then their mass An is either 
larger than en or smaller. If their mass is smaller than en , we use the fact that 
the superprocess X starts anew at time Tn with this mass An concentrated at 
2-na and has to survive by time Tn+l. 

By the preliminary assumption (56), the first term at the r.h.s. converges to 
0 as n-+ oo, whereas the second one tends to 0 by (52). Concerning the third, 
conditional expectation term, estimate the interior probability from above by 
using the definition of Pn given before (53), and its estimate (55) to obtain the 
bound 

Pr.,. ,>-.,.o:l_.,."' (Xr,.+1 f. 0) ::; 1- Pn ::; 1 - exp[ - Anv(a)] ::; Anv(a) ::; env(a). 

But the latter expression bounds the total third term in (57) and converges to 
0 as n-+ oo. 

Consequently, ( 48) i~ true, provided we know (56) which is all what remains 
to verify. 

Step 4° In order to prove (56) we intend to estimate the probability expression 
in (56) from above by a term converging to 0 as n :-+ oo. For the purpose of 
getting such an estimate, we will fix an n, and we will study X only until rn , that 
is until the particles reach 2-na. Until this time, we may read our hyperbolic 
branching rate g2 as a tn3:ncated rate f!2 /\ K, for a suitable K we fix from now 
on. 

Step 5° We next intend to define a new time scale denoted by r. Given for the 
moment w E Ca, set 

R(t) := lds [e2(w,) /\K], t ~ 0. (58) 

Note that with Ila-probability one, R(t) -+ oo as t t oo. Since R = R(w) 
is strictly increasing Ila-a.s., define finite stopping times a-(r) (converging to 
infinity as r -+ oo) by 

R( a-( r)) = r, 1' > 0. 

Note that 
da-( 1') - 1 

dr - fl2(Wa(r)) /\ K 
(59) 

for almost all r. Therefore the time change to the scaler has the advantage that 
the branching rate e2 /\ K will be "eliminated". This will enable us to use the 
well-know fact, that the total mass process of the continuous super-Brownian 
motion with uniform rate satisfies the simple stochastic equation (62) below. 

Step 6° Define 
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and set 
(60) 

Note that 

Assume for the moment that under the probability law P/! the following two 
statements hold: 

(i) If Zen. = 0 then Yn = 0. 
(ii) Z satisfies 

Then, 

dZr = j2Z; dBr, Zo = 1, 

for some Brownian motion B. 

P~ (x;.: (En)> o) = P~ (Yn > O) ~ P~(Zen. > o), 

(62) 

and from the well-know survival probability formula for solutions Z of (62) we 
continue with 

= 1 - e-l/€n. ~ 1/en. 
Since the fixed n was arbitrary, we can let n tend to oo to arrive at (56). 
Step 7° We are left with proving the statements (i) and (ii). The first one 
is easy. Indeed, if (X:{e,.)' 1) = Ze,. = 0 then X:(en.)(En) = 0. But since 
a(en) ~ r':' on En, it follow~ that Yn = x;_: (J?n) = 0 (recall (61)). 

Now we can concentrate on proving (ii). The initial condition is trivially 
fulfilled. Following Dynkin 's terminology, we let Q er( r) denote the pre-a( T) a-
field for the historical superprocess X K, for each T > 0. It suffices to show that 
Z is a (P!!, Ycr(r))-martingale with square variatio~ 

((Z))r = 2 [ ds Z,, T ~ 0. 

This claim would be verified if we could demonstrate that for 0 ~ T < r', 

z;. (63) 

Now we claim that it is enough to show that for each fixed T > 0 and finite 
measure µ on IR 

µ(IR), 

= (µ(IR)) 2 • 

(64) 

(65) 
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In fact, by projection as in (37), Zr of (60) coincides with (X~r)' 1). Thus, 
indeed we can use the time-homogeneity of the super-Brownian motion X K, in 
conjunction with Dynkin's special Markov property to see the equivalence of 
(63) with (64) and (65). 

Step 8 ° The expectation formula ( 64) directly follows from ( 42). Using this, 
the statement (65) is equivalent to 

- K Var0,µZT = 2 Tµ(IR). (66) 

But from the variance formula ( 43) we get 

Substituting s = O"(r) and recalling (59), we arrive at (66). 
This completes the proof of Theorem 24. 
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