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Abstract

We provide necessary and sufficient conditions for the validity of the inequality of Simes
(1986) in models with elliptical dependencies. Necessary conditions are presented in terms
of sufficient conditions for the reverse Simes inequality. One application of our main results
concerns the problem of model misspecification, in particular the case that the assumption
of Gaussianity of test statistics is violated. Since our sufficient conditions require non-
negativity of correlation coefficients between test statistics, we also develop exact tests for
vectors of correlation coefficients.

1 Introduction

It is fair to say that one of the major foundations of modern multiple test theory is Simes’ inequal-
ity. This inequality concerns the joint distribution of the order statistics ofm marginally uniformly
distributed random variables U1, . . . , Um. In its original form, it was proven (as an equality) by
Simes (1986) under joint independence of the Ui : 1 ≤ i ≤ m.

Proposition 1.1 (Simes (1986)). Let U1, . . . , Um denote stochastically independent, identically
UNI[0, 1]-distributed random variables and U1:m ≤ · · · ≤ Um:m their order statistics. Define
αi:m = iα/m, 1 ≤ i ≤ m, for α ∈ [0, 1]. Then it holds

P(U1:m > α1:m, . . . , Um:m > αm:m) = 1− α.

The constants (αi:m)1≤i≤m are referred to as Simes’ critical values in the multiple testing litera-
ture. Based on Proposition 1.1, they have been implemented into various stepwise rejective mul-
tiple tests for testing m null hypotheses H1, . . . , Hm against alternatives K1, . . . , Km. These
stepwise rejective tests uniformly improve single-step procedures like the Bonferroni correction
in terms of power. For example, the multiple test by Hommel (1988) is a powerful improvement
of the Bonferroni test. It keeps the family-wise error rate (FWER) at level α when applied to
marginal p-values P1, . . . , Pm which are under the corresponding null hypotheses distributed
as the Ui in Proposition 1.1. Moreover, Simes’ critical values also build the basis for the linear
step-up test ϕLSU by Benjamini and Hochberg (1995), and the authors proved that ϕLSU con-
trols the false discovery rate (FDR) under independence, again by making use of Proposition
1.1. Nowadays, ϕLSU is presumably the most widely applied multiple test procedure in practice,
with more than 22,000 citations according to Google Scholar.

Already in his original article, Simes (1986) argued that the inequality

P(P1:m > α1:m, . . . , Pm:m > αm:m) ≥ 1− α (1)
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(which is actually sufficient for type I error control of multiple tests based on Simes’ critical
values) is not valid in general, but “... may well be true for a large family of multivariate distribu-
tions as suggested by [...] simulation studies.“ This assertion is known as the Simes conjecture.
An important step towards the characterization of multivariate distributions for which the Simes
conjecture is true was the paper by Sarkar (1998). He proved that multivariate total positivity of
order 2 (MTP2 for short) among P1, . . . , Pm is sufficient for the validity of (1). This consider-
ably extends the applicability of ϕLSU to models with dependency, see Benjamini and Yekutieli
(2001) and Sarkar (2002).

Often, the p-values P1, . . . , Pm are constructed as distributional transforms (in the sense of
Rüschendorf (2009)) of real-valued test statistics T1, . . . , Tm, meaning that

Pi = F (Ti), 1 ≤ i ≤ m, (2)

where F denotes the (common) marginal cumulative distribution function (cdf) of each Ti un-
der Hi. This construction is reasonable if each Ti tends to smaller values under the alternative
Ki. A detailed discussion about the interrelation of test statistics and p-values in multiple hy-
potheses testing is provided in Chapter 2 of Dickhaus (2014). Assuming F as known, one may
equivalently analyze the dependency structure of the vector T = (T1, . . . , Tm)> of test statis-
tics instead of that of P = (P1, . . . , Pm)>, because the right-hand side of (2) is a deterministic
transformation of Ti. If, moreover, F is continuous and strictly increasing, Simes’ inequality can
equivalently be stated in terms of T as

P(T1:m > a1, . . . , Tm:m > am) ≥ 1− α = 1− F (am), (3)

where ai = F−1(αi:m), 1 ≤ i ≤ m.

Recently, Block et al. (2013) extended the work by Sarkar (1998) by considering the multivari-
ate Student’s t distribution. This distribution is highly relevant for many applications in multiple
testing (see, for instance, Hothorn et al. (2008)), but unfortunately does not exhibit MTP2 de-
pendence. Block et al. (2013) derived sufficient conditions for the validity of (3) in the case that
the random vector T = (T1, . . . , Tm)> follows a multivariate Student’s t distribution; see The-
orem 3.1.(i) in their paper. Since the multivariate Student’s t distribution belongs to the broad
class of elliptical distributions (see the monograph by Gupta et al. (2013) for a comprehensive
overview) and the dependence structure among the components of a random vector T which
follows an elliptical distribution is entirely captured by the covariance matrix Σ of T and the
density generator f of the elliptical distribution, the results by Block et al. (2013) provoke the
question if sufficient conditions on Σ, f , and a = (a1, . . . , am)> can be obtained such that (3)
is generally valid for such T. This issue is addressed in the present work.

Remark 1.1. If Ti tends to larger values under Ki, one typically considers Pi = 1 − F (Ti).
Then, the analogue of (3) is given by

P(T1:m ≤ b1, . . . , Tm:m ≤ bm) ≥ 1− α = F (b1), (4)

where bi = F−1(1−αm−i+1:m), 1 ≤ i ≤ m. This case has been treated in part (ii) of Theorem
3.1 by Block et al. (2013). However, as argued by Block et al. (2013), (4) directly follows from
(3) under respectively modified conditions on b = (b1, . . . , bm)>. Therefore, we will mainly
consider (3) in the present work.
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The rest of the paper is structured as follows. In Section 2, we formally define the class of ellipti-
cally contoured distributions and derive some sufficient and necessary conditions for the validity
of Simes’ inequality under such distributions of T. One application of our results concerns the
problem of model misspecification, i. e., the case that F = Φ is assumed, where Φ denotes the
cumulative distribution function (cdf) of the standard normal law, but the actual distribution of T1

is elliptical with F 6= Φ. It will turn out that non-negativity of the entries of Σ is crucial for all of
our main results. Thus, for practical purposes, we develop exact confidence regions for (vectors
of) correlation coefficients in Section 3. We conclude with a discussion in Section 4.

2 Simes’ inequality under elliptically contoured distributions

Throughout the work, we assume that the vector T of test statistics has an elliptically contoured
distribution. For a self-contained presentation, we start with the formal definition of this large
family of distributions and outline their basic properties which are needed in the remainder.
Further distributional results related to elliptically contoured distributions can be found in the
book of Gupta et al. (2013).

Definition 2.1. The random vector T = (T1, ..., Tm)> has an m-dimensional elliptically con-
toured distribution with zero location vector, dispersion matrix Σ, and density generator f , if the
probability density function (pdf) of T is given by

gT(t) = Cm(det Σ)−1/2f(t>Σ−1t) ,

where Cm stands for the normalizing constant which depends on m only. We denote this class
of distributions by Em(0,Σ, f).

We may remark that a more general definition of Em(0,Σ, f) can be provided in terms of
the characteristic function of T, such that the existence of a pdf of T does not have to be
assumed. For convenience, however, we restrict our attention to the subclass of elliptical dis-
tributions which are as in Definition 2.1. This subclass of elliptically contoured distributions is
known as the class of mixtures of normal distributions. It includes as special cases the multi-
variate t-distribution, the multivariate symmetric stable distribution, and the multivariate Laplace
distribution, among others. If T ∼ Em(0,Σ, f) in the sense of Definition 2.1 and f is such
that

∫∞
0
rk/2−1f(r)dr <∞ for all k ∈ N, then T possesses the stochastic representation

T
d
= RZ, (5)

where R and Z are stochastically independently, Z ∼ Nm(0,Σ), and R is a nonnega-
tive univariate random variable. We will therefore write T ∼ Em(0,Σ, R) instead of T ∼
Em(0,Σ, f) if T is as in (5).

In the class of multivariate normal distributions of T (R ≡ 1), non-negativity of all entries of Σ
is sufficient for the validity of Simes’ inequality, because it entails the MTP2 property; cf. Section
4.3.3. by Tong (1990). As mentioned in the introduction, Block et al. (2013) provided conditions
for the validity of Simes’ inequality for the class of multivariate t-distributions of T, where R
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follows an inverse gamma distribution. These conditions are stronger than the ones in case of
the multivariate normal distribution (see also Sarkar (2008)). Namely, it is required that all non-
diagonal elements of Σ are non-negative (as for the normal distribution) and, in addition, certain
restrictions on a are imposed.

The latter conditions have been derived by Block et al. (2013) by exploiting the identity

P(T1:m > a1, ..., Tm:m > am) = 1− F (am) +
m∑
i=1

m−1∑
j=1

∆i,j(T, a), (6)

where

∆i,j(T, a) = E
[(I(Ti ≤ aj+1)

j + 1
− I(Ti ≤ aj)

j

)
×

I(T
(−i)
j:m−1 > aj+1, ..., T

(−i)
m−1:m−1 > am)

]
, (7)

which was presented in Lemma 2.1 of their paper. In (7), I(A) denotes the indicator function

of set A, and T (−i)
1:m−1 ≤ T

(−i)
2:m−1 ≤ ... ≤ T

(−i)
m−1:m−1 are the order statistics obtained for

the vector T after removing Ti. The derivations by Block et al. (2013) depend on (6) and on
specific properties of the multivariate t-distribution, hence, they do not generalize to the class
Em(0,Σ, f).

In Theorem 2.1, we analyze (6) for broader classes of elliptically contoured distributions. This
leads to sufficient conditions on Σ, a, andR which imply that Simes’ inequality holds. Moreover,
we also provide related conditions under which the reverse Simes inequality holds, meaning that
the order relation in (3) is in the opposite direction. To this end, we define for any 1 ≤ j ≤ m−1
the function Gj : (0,∞)→ R by

Gj(r) =
P
(
Z1 ≤ aj+1

r

)
j + 1

−
P
(
Z1 ≤ aj

r

)
j

=
Φ
(aj+1

r

)
j + 1

−
Φ
(aj

r

)
j

. (8)

Theorem 2.1. Assume that T ∼ Em(0,Σ, R) and that a1 ≤ a2 ≤ .... ≤ am ≤ 0. Let

Aj(R,Σ, a) =

∫ ∞
0

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r
|Zi ≤

aj
r

]
Gj(r)fR(r)dr.

Then the following two assertions hold true.

(a) (Sufficient conditions for Simes’ inequality)
If Aj(R,Σ, a) ≥ 0 for all 1 ≤ j ≤ m and Σ is such that the positive dependent
through stochastic ordering (PDS) condition (see, e. g., Block et al. (1985)) is satisfied for
Z ∼ Nm(0,Σ), then Simes’ inequality holds for T.

(b) (Sufficient conditions for the reverse Simes inequality)
Assume that Σ is a diagonal matrix. If Aj(R,Σ, a) ≤ 0 for all 1 ≤ j ≤ m, then the
reverse Simes inequality holds for T. If, furthermore, at least one of the m inequalities is
strict, then the reverse Simes inequality for T is also strict.
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Proof. In order to prove the statement of the theorem, it suffices to show that each ∆i,j(T, a)
is non-negative (part (a)) or non-positive (part (b)), respectively. We note that

∆i,j(T, a) =
1

j + 1
P
[
T

(−i)
j:m−1 > aj+1, ..., T

(−i)
m−1:m−1 > am, Ti ≤ aj+1

]
− 1

j
P
[
T

(−i)
j:m−1 > aj+1, ..., T

(−i)
m−1:m−1 > am, Ti ≤ aj+1

]
=

∫ ∞
0

{
P
(
Zi ≤ aj+1

r

)
j + 1

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r
|Zi ≤

aj+1

r

]
−

P
(
Zi ≤ aj

r

)
j

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r
|Zi ≤

aj
r

]}
fR(r)dr. (9)

In order to prove part (a), we use that the PDS property for Z implies that (cf. Section 5 in Block
et al. (1985))

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r
|Zi ≤

aj+1

r

]
≥

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r
|Zi ≤

aj
r

]
.

Utilizing this relation in (9), we get that

∆i,j(T, a) ≥
∫ ∞

0

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r
|Zi ≤

aj
r

]
Gj(r)fR(r)dr

= Aj(R,Σ, a),

and our assumption on Aj(R,Σ, a) yields the assertion.

If Σ is a diagonal matrix, then the Zi are stochastically independent, leading to

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r
|Zi ≤

aj+1

r

]
= P

[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r

]
= P

[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r
|Zi ≤

aj
r

]
.

Consequently,

∆i,j(T, a) =

∫ ∞
0

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r

]
Gj(r)fR(r)dr

= Aj(R,Σ, a),

and our assumption on Aj(R,Σ, a) entails the first assertion of part (b). The second assertion
of part (b) follows immediately. �

Theorem 2.1 has several interesting applications. First, we recover the previously mentioned
result by Sarkar (2008) and Block et al. (2013).
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Corollary 2.1 (Sarkar (2008); Block et al. (2013)). Assume that T follows a centered multivari-
ate t-distribution with dispersion matrix Σ. Let all non-diagonal elements of Σ be nonnegative
and let a1 ≤ a2 ≤ .... ≤ am ≤ 0. If j−1F (aj) is non-decreasing in j = 1, . . . ,m, then
Simes’ inequality holds for T.

Proof. The assertion follows from Theorem 2.1 by analyzingAj(R,Σ, a) in an analogous man-
ner as done by Sarkar (2008) in the proof of his Theorem 3.1. �

Next, we consider another class of elliptically contoured distributions for which Simes’ inequality
or the reverse Simes inequality, respectively, hold. In this class, the support of R is restricted.
To this end, we need the following auxiliary result.

Lemma 2.1. For each 1 ≤ j ≤ m − 1, the equation Gj(r) = 0 has a unique solution on
(0,∞), which we denote by rj .

Proof. The first derivative of Gj defined in (8) is given by

∂Gj(r)

∂r
=

φ
(aj+1

r

)
j + 1

(
−aj+1

r2

)
−
φ
(aj

r

)
j

(
−aj
r2

)
= − 1

r2

(
φ
(aj+1

r

) aj+1

j + 1
− φ

(aj
r

) aj
j

)
,

where φ denotes the pdf of the standard normal distribution. Setting this derivative to zero and
solving the equation, we get only one extremal point of Gj with abscissa

rj,max =

√√√√ a2
j − a2

j+1

2 log
(

−aj/j

−aj+1/(j+1)

) .
Moreover, it holds that ∂Gj(r)

∂r
> 0 for r ∈ (0, rj,max) and ∂Gj(r)

∂r
< 0 for r ∈ (rj,max,∞),

implying that the extremum is a maximum. Finally, we note that Gj(r)→ 0 as r → 0 and

Gj(r)→
1

2(j + 1)
− 1

2j
< 0 as r →∞.

This completes the proof. �

Corollary 2.2. Let T ∼ Em(0,Σ, R) and assume that a1 ≤ a2 ≤ .... ≤ am ≤ 0. Let
(rj)1≤j≤m−1 be as in Lemma 2.1. Define r̄ = min1≤j≤m−1{rj} and r = max1≤j≤m−1{rj}.

(a) (Sufficient conditions for Simes’ inequality)
If all non-diagonal elements of Σ are nonnegative and P(0 ≤ R ≤ r̄) = 1, then Simes’
inequality holds for T.

(b) (Sufficient conditions for the reverse Simes inequality)
If Σ is a diagonal matrix and P(r ≤ R ≤ ∞) = 1, then the reverse Simes inequality
holds for T.
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Proof. To prove part (a), we notice that our assumptions and the curvature of the functions Gj

which we have discussed in Lemma 2.1 imply that

∆i,j(T, a) =

∫ r̄

0

P
[
T

(−i)
j:m−1 >

aj+1

r
, ..., T

(−i)
m−1:m−1 >

am
r
|Ti ≤

aj
r

]
Gj(r)fR(r)dr ≥ 0.

Furthermore, recall from the proof of Theorem 2.1 that under the conditions of part (b) we have

∆i,j(T, a) =

∫ ∞
r

P
[
Z

(−i)
j:m−1 >

aj+1

r
, ..., Z

(−i)
m−1:m−1 >

am
r

]
Gj(r)fR(r)dr.

Now, the curvature of Gj leads to Gj(r) ≤ 0 for all 1 ≤ j ≤ m− 1 under the assumptions of
part (b), completing the proof. �

Corollary 2.2 can be used to analyze the effect of model misspecification on the validity of Simes’
inequality or the reverse Simes inequality, respectively. Namely, consider aj = Φ−1 (jα/m)
for 1 ≤ j ≤ m. In view of the discussion around (3), these constants correspond to the
assumption that F = Φ. Corollary 2.3 analyzes the effect of making this assumption, while the
true distribution of T is elliptical, but non-Gaussian.

Corollary 2.3. Assume that T ∼ Em(0,Σ, R) and let aj = Φ−1 (jα/m), j = 1, . . . ,m.

(a) (Sufficient conditions for Simes’ inequality)
If all non-diagonal elements of Σ are nonnegative and P(0 ≤ R ≤ 1) = 1, then Simes’
inequality holds for T.

(b) (Sufficient conditions for the reverse Simes inequality)
If Σ is a diagonal matrix and P(1 ≤ R ≤ ∞) = 1, then the reverse Simes inequality
holds for T.

Proof. For the vector a = (a1, . . . , am)>, we have rj = 1 for all j ∈ {1, 2, ...,m−1}. Hence,
r̄ = r = 1 and the assertion follows from Corollary 2.2. �

Remark 2.1. The reasoning of Theorem 2.1 and Corollaries 2.1 - 2.3 can also be applied to the
analogue of Simes’ inequality considered in Remark 1.1. For example, we get that

P(T1:m < b1, ..., Tm:m < bm) ≥ F (b1)

if 0 ≤ b1 ≤ b2 ≤ ... ≤ bm, all elements of Σ are nonnegative, and P(0 ≤ R ≤ r̄b) = 1,
where r̄b = min1≤j≤m−1{rj,b} and rj,b is the unique solution of

1− Φ
(
bm−j

r

)
j + 1

−
1− Φ

(
bm−j+1

r

)
j

= 0.

7



3 Exact tests on vectors of correlation coefficients

In practical applications of multiple testing, the joint distribution of test statistics is often not
known exactly, even under the global hypothesis. As mentioned in Section 1, we make the
general assumption that the common marginal cdf F of each test statistic under the respective
null hypothesis is specified. This implies that conditions imposed on the quantile function F−1

(as in the case of the multivariate t-distribution; see Corollary 2.1) as well as conditions imposed
on the support of the distribution of R (cf. Corollary 2.2) can be checked straightforwardly.
However, the correlation (or covariance) matrix is often an unknown nuisance parameter. As a
result, the non-negativity of its non-diagonal elements (a sufficient condition for Simes’ inequality
which appeared throughout Section 2) cannot be checked analytically and has to be tested. This
is the motivation to deal with the latter problem in this section.

First, we derive a test under the assumption of normality. To this end, we assume that a data
matrix X = (X1, ...,Xn) ∈ Rm×n is available from which the vector T of test statistics is
computed. Let X ∼ Nm,n(µ1>n ,Σ⊗In) (m×n-dimensional matrix-variate normal distribution
with mean matrix µ1>n and covariance matrix Σ ⊗ In), where 1n denotes the n-dimensional
vector of ones and In is the n × n-dimensional identity matrix. The following assumption is
needed which connects Σ with the covariance matrix of T.

Assumption 3.1. There exists a constant γ ∈ (0,∞) such that Cov(T) = γΣ.

Assumption 3.1 justifies our slight abuse of notation (the symbol Σ was used to denote the
covariance matrix of T in Section 2). It is for instance fulfilled if T is the vector of row-wise
means of X (with γ = 1/n).

Remark 3.1. In asymptotic considerations (n → ∞), one can relax Assumption 3.1 and only
assume that Cov(T) = h(Σ), where h : Rm×m → Rm×m is a known deterministic function.
Application of the Delta method then leads to asymptotic analogues of our proposed tests.

The covariance matrix Σ is estimated by its empirical counterpart

S̃ =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)> with X̄ =
1

n

n∑
i=1

Xi.

It holds that S = (n − 1)S̃ ∼ Wm(n − 1,Σ) (cf. Muirhead (1982)), where the symbol
Wm(n− 1,Σ) denotes the m-dimensional Wishart distribution with n− 1 degrees of freedom
and covariance matrix Σ. Moreover, it holds that S and X̄ are stochastically independent; see,
e. g., Theorem 3.1.2 in Muirhead (1982). Our proposed tests rely on S.

Let us consider the problem of simultaneous testing for non-negativity of all non-diagonal ele-
ments of Σ in a given column i. This condition ensures positive regression dependency of X1

on the subset (PRDS) I0 = {i} in the sense of Benjamini and Yekutieli (2001). If Z in the
stochastic representation of T in (5) is PRDS on {i} for any 1 ≤ i ≤ m, then Z fulfills the PDS
property used in the proof of Theorem 2.1. This is indicated in the discussion on page 1173
in Benjamini and Yekutieli (2001), see also Condition 1.1 by Sarkar (2008). The advantage of

8



column-wise testing is that exact tests can be derived which do not depend on unknown model
parameters and can be applied to any matrix-variate elliptical distribution of X.

For given index 1 ≤ i ≤ m, we are thus interested in testing

H<
i : σij < 0 for at least one 1 ≤ j ≤ m, j 6= i versus K<

i : σi ≥ 0, (10)

where σi = (σi1, . . . , σi,i−1, σi,i+1, . . . , σim)>. The test problem in (10) can be solved by
constructing a confidence region in Rm−1 for the standardized version ofσi. Following Aitchison
(1964), we exploit the duality of tests and confidence regions and consider the (auxiliary) family
of point hypotheses

H
(δ)
i : σ−1

ii σi = δ versus K
(δ)
i : σ−1

ii σi 6= δ, δ ∈ Rm−1. (11)

Let sii be the ith diagonal element of S, let si denote the ith column of S without sii, and let
S(ii) stand for S without its ith row and ith column. We denote Vi = S(ii) − sis

>
i /sii. For

testing (11) we consider the test statistic

Q
(δ)
i = Q

(δ)
i (X) =

n−m
m− 1

(
si
sii
− δ
)>

V−1
i

(
si
sii
− δ
)
sii.

Let Σ(ii) be obtained from Σ by deleting its ith row and ith column and let Ωi = Σ(ii) −
σiσ

>
i /σii. In Theorem 3.1 we derive the distribution of Q(δ)

i both under H(δ)
i and under K(δ)

i .

Theorem 3.1. Let X ∼ Nm,n(µ1>n ,Σ⊗ In).

(a) Under H(δ)
i it holds that Q(δ)

i ∼ Fm−1,n−m.

(b) Let ϑi ∈ K(δ)
i . Then the pdf of Q(δ)

i under ϑi is given by

f
Q

(δ)
i

(x) =
fm−1,n−m(x)

(1 + λi)(n−1)/2 2F1

(
n− 1

2
,
n− 1

2
;
m− 1

2
;

λi
(1 + λi)

m−1
n−mx

1 + m−1
n−mx

)
,

where
λi = σii(ϑi − δ)>Ω−1

i (ϑi − δ) . (12)

Proof. Applying Theorem 3.2.10 by Muirhead (1982), we get that sii ∼ W1(n − 1, σii) (i. e.,
sii/σii ∼ χ2

n−1), Vi ∼ Wm−1(n− 2,Ωi),

si|sii ∼ Nm−1

(
σi
sii
σii
, siiΩi

)
,

and that Vi is stochastically independent of sii and si.

Now, we consider the representation

Q
(δ)
i =

n−m
m− 1

(
si
sii
− δ
)>

V−1
i

(
si
sii
− δ
)

(
si
sii
− δ
)>

Ω−1
i

(
si
sii
− δ
) ( si

sii
− δ
)>

Ω−1
i

(
si
sii
− δ
)
sii.
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Because Vi is stochastically independent of sii and si, application of Theorem 3.2.12 of Muir-
head (1982) leads to (

si
sii
− δ
)>

Ω−1
i

(
si
sii
− δ
)

(
si
sii
− δ
)>

V−1
i

(
si
sii
− δ
) ∼ χ2

n−m , (13)

where the latter statistic is stochastically independent of sii and si.

Since σ−1
ii σi = δ under H(δ)

i , we have(
si
sii
− δ
)>

Ω−1
i

(
si
sii
− δ
)
sii ∼ χ2

m−1 (14)

in this case. Noticing that the statistic in (14) depends only on sii and si, the assertion of part
(a) follows by combining (13) and (14).

For proving part (b), we use that(
si
sii
− δ
)>

Ω−1
i

(
si
sii
− δ
)
sii|sii = y ∼ χ2

m−1(yλ̃i), (15)

where λ̃i = σ−1
ii λi with λi defined in (12). Hence, from (13) and (15) we get

Q
(δ)
i |sii = y ∼ Fm−1,n−m(yλ̃i) .

Making use of sii/σii ∼ χ2
n−1 yields that

f
Q

(δ)
i

(x) =
1

2(n−1)/2σ
(n−1)/2
ii Γ

(
n−1

2

)
×

∫ ∞
0

y(n−1)/2−1 exp

(
−1

2

(
y

σii

))
fFm−1,n−m(yλ̃i)

(x)dy .

Let fm−1,n−m denote the pdf of the Fm−1,n−m-distribution. Application of the identity (see The-
orem 1.3.6 in Muirhead (1982))

fFm−1,n−m(yλ̃i)
(x) = fm−1,n−m(x) exp

(
−1

2
λ̃iy

)
× 1F1

(
n− 1

2
;
m− 1

2
;
1

2

m−1
n−mx

1 + m−1
n−mx

λ̃iy

)
leads to

f
Q

(δ)
i

(x) =
fm−1,n−m(x)

2(n−1)/2σ
(n−1)/2
ii Γ

(
n−1

2

)
×

∫ ∞
0

y(n−1)/2−1 exp

(
−1

2
(σ−1

ii + λ̃i)y

)
× 1F1

(
n− 1

2
;
m− 1

2
;
1

2

m−1
n−mx

1 + m−1
n−mx

λ̃iy

)
dy .
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The last integral can be evaluated by using Lemma 1.3.3 of Muirhead (1982) and is equal to

f
Q

(δ)
i

(x) =
fm−1,n−m(x)

2(n−1)/2σ
(n−1)/2
ii Γ

(
n−1

2

)Γ

(
n− 1

2

)
2(n−1)/2

(σ−1
ii + λ̃i)(n−1)/2

× 2F1

(
n− 1

2
,
n− 1

2
;
m− 1

2
;

λ̃i

(σ−1
ii + λ̃i)

m−1
n−mx

1 + m−1
n−mx

)

=
fm−1,n−m(x)

(1 + σiiλ̃i)(n−1)/2

× 2F1

(
n− 1

2
,
n− 1

2
;
m− 1

2
;

λ̃i

(σ−1
ii + λ̃i)

m−1
n−mx

1 + m−1
n−mx

)
.

Noting that λi = σiiλ̃i completes the proof of Theorem 3.1. �

Corollary 3.1. For each 1 ≤ i ≤ m, the following assertions hold true.

(a) The test ϕ(δ)
i = I{Q(δ)

i > cα} is a level α test for H(δ)
i versus K(δ)

i , where cα =
Fm−1,n−m;1−α.

(b) The set Cα = {δ ∈ Rm−1 : Q
(δ)
i ≤ cα} constitutes a (1 − α)-confidence region for

σ−1
ii σi.

(c) The hypothesis H<
i can be rejected at significance level α if H<

i ∩ Cα = ∅.

Proof. Part (a) is an immediate consequence of part (a) in Theorem 3.1. Parts (b) and (c) follow
from Section 1 by Aitchison (1964). �

Next, we extend the results obtained for the normal distribution of X to the family of elliptically
contoured distributions.

Theorem 3.2. Assume that X ∼ Em,n(µ1>n ,Σ⊗ In, f) (matrix-variate elliptically contoured
distributed with location matrixµ1>, scale matrix Σ⊗In and density generator f ) with P(X =
µ1>n ) = 0. Let n > m and Y ∼ Nm,n(µ1>n ,Σ ⊗ In). Then, for any 1 ≤ i ≤ m and any

δ ∈ Rm−1, the distribution of Q(δ)
i (X) is the same as the distribution of Q(δ)

i (Y), i. e., these
distributions do not depend on f .

Proof. We only provide the proof of part (a) and note that the results of part (b) are obtained in
the same way.

Let A = In − 1n1
>
n . Then the sample covariance matrix for a data matrix Y is calculated by

S(Y) = 1
n−1

YAY>. First, note that S(Y) = S(Y − µ1>n ) and therefore, without loss of
generality, we can assume µ = 0.

Clearly, if Y ∈ Rm×n and a > 0, then aY ∈ Rm×n as well. Furthermore, if Y ∈ Rm×n and
a > 0, then obviously, Q(δ)

i (aY) = Q
(δ)
i (Y). Now, applying Theorem 5.12 of Gupta et al.

(2013) with K = Q
(δ)
i , we obtain the assertion of Theorem 3.2. �
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Finally, consider the problem of testing all non-diagonal elements in Σ simultaneously for non-
negativity. This condition entails the MTP2 property for the distribution of Z which in turn implies
the PDS property of Z. The alternative hypothesis that all non-diagonal elements in Σ are
simultaneously non-negative can be expressed as K< =

⋂m−1
i=1 K<

i , with corresponding null
hypothesis given by H< =

⋃m−1
i=1 H<

i . Let for each 1 ≤ i ≤ m− 1 the test ϕ<i be defined via
the decision rule given in part (c) of Corollary 3.1. Then, a test for H< versus K< is defined by

ϕ< =
m−1∏
i=1

ϕ<i , (16)

meaning that we reject H< iff all H<
i are rejected for 1 ≤ i ≤ m− 1.

Theorem 3.3. Let X be distributed as in Theorem 3.2. Then the test ϕ< has level α.

Proof. Assume that Σ is such that H< holds true. This means that at least one H<
i must hold

true. Let i∗ denote one of the indices for which H<
i∗ is true. Then, the rejection probability of ϕ<i∗

under this Σ is bounded by α due to Corollary 3.1. But, the rejection event of the test ϕ< is a
subset of the rejection event of ϕ<i∗ . Thus, its probability under the considered Σ is bounded by
α. �

Remark 3.2. If one is only interested in testing H< versus K<, one may consider the modified
pairs of hypotheses

H̃<
i : σji < 0 for at least one i < j ≤ m versus

K̃<
i : σji ≥ 0 for all i < j ≤ m, (17)

where 1 ≤ i ≤ m− 1, because it still holds that K< =
⋂m−1
i=1 K̃<

i .

Let L = [0 Im−i] be a (m− i)× (m− 1) matrix of zeros and ones. Then the (auxiliary) family
of point hypotheses pertaining to (17) is given by

H̃
(δ)
i : σ−1

ii Lσi = δ versus K̃
(δ)
i : σ−1

ii Lσi 6= δ, δ ∈ Rm−i (18)

for i = 1, ...,m− 1. For testing (18), we construct the test statistic

Q̃
(δ)
i =

n−m
m− i

(
Lsi
sii
− δ
)>

(LViL)−1

(
Lsi
sii
− δ
)
sii . (19)

In analogy to the proof of Theorem 3.1, the distribution of Q̃(δ)
i can be derived both under H̃(δ)

i

and under K̃(δ)
i . In particular, under H̃(δ)

i , it holds that Q̃(δ)
i ∼ Fm−i,n−m. Consequently, the

test ϕ̃(δ)
i = I{Q̃(δ)

i > Fm−i,n−m;1−α} is a level α test for H̃(δ)
i versus K̃(δ)

i . Exploiting again
the duality of tests and confidence regions, the test for H̃<

i versus K̃<
i is defined according to

the decision rule in part (c) of Corollary 3.1. Finally, a test ϕ̃< for H< versus K< is obtained
as in (16), i. e., H< is rejected iff all H̃<

i are rejected. This procedure ϕ̃< may be slightly more
powerful than ϕ< for testing H< versus K<.

12



4 Discussion

We have provided necessary and sufficient conditions for the validity of Simes’ inequality in the
broad class of elliptically contoured distributions. Our sufficient conditions can be checked in
practice by means of the cdf F of T1 under the null, together with the tests on Σ that we have
derived in Section 3. Our necessary conditions (i. e., the sufficient conditions for the validity of
the reverse Simes inequality) contribute to a characterization of classes of multivariate probabil-
ity distributions for which the Simes conjecture is true. The latter problem is still an active area
of multiple test theory, not least because of its practical relevance due to the popularity of ϕLSU .
For example, Läuter (2013) conjectured, based on extensive computer simulations, that Simes’
inequality may generally be true for T ∼ Nm(0,Σ), without any conditions on Σ. In contrast,
part (b) of our Theorem 2.1 shows that conditions on Σ are necessary for the validity of Simes’
inequality in the broader classEm(0,Σ, R). Further counterexamples (in non-elliptical models)
have been presented by Finner and Strassburger (2014).

Furthermore, our tests on non-negativity of correlation coefficients are contributions to multi-
variate analysis of independent value. It is well known (see, e. g., Theorem 5.1.8 in Muirhead
(1982)) that a uniformly most powerful test for the one-sided hypothesis about a single popu-
lation correlation coefficient ρij (say) with corresponding pair of indices (i, j) in the vector X1

can be based on the test statistic

Qij =
√
n− 2

rji√
1− r2

ji

,

where rji = sji/
√
siisjj is the corresponding sample correlation coefficient. Under ρij = 0,

Qij follows a central univariate Student’s t-distribution. However, the joint distribution of sev-
eral of the Qij , which is needed for multiple test problems regarding several ρij simultaneously,
is not pivotal, because the dependency structure among the Qij depends on unknown model
parameters. Therefore, Westfall and Young (1993), pp. 194-199, have considered resampling-
based approaches which reproduce this unknown dependency structure at least asymptoti-
cally as n → ∞. In contrast, the exact tests developed in Section 3 are non-asymptotic and
distribution-free for any sample size n.
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