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Abstract

Consider the two-dimensional inverse elastic scattering problem of recovering a piecewise linear

rigid rough or periodic surface of rectangular type for which the neighboring line segments are always

perpendicular. We prove the global uniqueness with at most two incident elastic plane waves by using

near-field data. If the Lamé constants satisfy a certain condition, then the data of a single plane wave

is sufficient to imply the uniqueness. Our proof is based on a transcendental equation for the Navier

equation, which is derived from the expansion of analytic solutions to the Helmholtz equation. The

uniqueness results apply also to an inverse scattering problem for non-convex bounded rigid bodies

of rectangular type.

1 Introduction

This paper is concerned with the inverse scattering of time-harmonic elastic waves from rigid unbounded

periodic and rough surfaces of rectangular type (see Sections 2.1 and 3 for a precise description), which

has a wide field of applications, particularly in geophysics, seismology and nondestructive testing. For in-

stance, identifying fractures in sedimentary rocks has significant impact on the production of underground

gas and liquids by employing controlled explosions. The sedimentary rock under consideration can be re-

garded as a homogeneous transversely isotropic elastic medium with periodic vertical fractures which

can be extended to infinity in one of the horizontal directions. Using an elastic plane wave as an incoming

source, we thus obtain a two-dimensional inverse problem of recovering a rectangular interface from the

knowledge of near-field data measured above the periodic structure (diffraction grating); see [17]. The

associated direct scattering problem is formulated as a Dirichlet boundary value problem for the time-

harmonic Navier equation in the unbounded domain above the surface, which can be considered as a

simple model problem in linear elasticity.

We refer to [1] for the first uniqueness result in inverse elastic scattering from rigid periodic surfaces. It

was proved that a smooth (C2) surface can be uniquely determined from incident pressure waves for one

incident angle and an interval of wave numbers. Furthermore, a finite set of wave numbers is enough if

a priori information about the height of the grating curve is known. This extends the periodic version of

Schiffer’s theorem by Hettlich and Kirsch (see [11]) to the case of inverse elastic diffraction problems. The

application of the Kirsch-Kress optimization scheme with one or several incident elastic plane waves can

be found in [8], where the reconstruction of rectangular rigid surfaces was also treated. The factorization

method established in [13] gives rise to uniqueness results by utilizing only the compressional or shear

components of the scattered field corresponding to all quasi-periodic incident plane waves with a common

phase-shift.

Other studies on the uniqueness have been carried out within the class of piecewise linear periodic and

rough surfaces using a single plane or point source wave. Global uniqueness results for the Helmholtz

equation were first shown in [10] within the rectangular periodic structures under the Dirichlet or Neumann
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condition. Relying on the reflection principles for the Helmholtz, Navier and Maxwell equations, one can

find out and classify several extremely rare sets of unidentifiable polygonal or polyhedral periodic struc-

tures by one incident plane wave. Thus, the global uniqueness with one incoming wave holds within the

piecewise linear periodic structures excluding all unidentifiable sets; see [2, 6, 7]. In particular, sending a

single incident point source wave always leads to the uniqueness of the inverse problem within polygonal

periodic or rough surfaces; see [12] for the Helmholtz equation. However, such an argument applies so far

only to the third or fourth kind boundary value problems of the Navier equation, and it still remains a chal-

lenging problem to prove the uniqueness under the more practical Dirichlet or Neumann-type boundary

conditions, due to the lack of corresponding reflection principles.

In this paper, we restrict our discussions to the unbounded rigid periodic and rough surfaces of rectangular

type in R
2. Instead of using reflection principles, our approach to the uniqueness in the inverse scattering

problem is based on the expansion of analytic solutions to the Navier equation with zero Dirichlet data

on two perpendicular lines. A main ingredient in the uniqueness proof is the study of a transcendental

equation for the Navier equation, which has already been used in [3,14,18] to analyze corner singularities

of the Lamé equation (i.e., Navier equation without the zeroth order term) in a sector. We show the

uniqueness with a single incident plane wave in the case of no integer roots to the resulting transcendental

equation. If an integer root exists, then we further verify that the dimension of the solution space to the

Navier equation is at most one, giving rise to a uniqueness result with at most two incident angles for

both periodic and non-periodic scattering surfaces. We conjecture that non-rectangular piecewise linear

surfaces can be uniquely determined by sending a finite number of incident plane waves, provided some

a priori information on the angles of the interface is available. Moreover, our uniqueness results are

extended to non-convex bounded rigid bodies of rectangular type by using far-field measurements of at

most two incident directions.

The rest of the paper is organized as follows. In Section 2, we state and prove the uniqueness results for

diffraction gratings. The transcendental equation with a general angle is studied in Section 2.2, and the

equation in the case of the right angle is utilized for justifying our uniqueness with at most two incident

directions in Section 2.1. Finally in Section 3, the proof of the uniqueness in periodic structures is carried

over to the case of rough surfaces.

2 Uniqueness in periodic structures

2.1 Mathematical formulation and main result

Consider the elastic scattering problem from a rigid diffraction grating Λ in R
2. It is supposed that Λ

is of rectangular type, i.e., the neighboring line segments are always perpendicular. More precisely, we

assume that for some b > 0 the scattering surface Λ belongs to the following admissible class:

A =

{

Λ :
Λ is a piecewise linear curve in |x2| < b which is 2π-periodic in x1.

The angle between any two neighboring line segments is π/2.

}

.

We emphasis that Λ is allowed to be a non-graph profile, and the line segments of Λ are not necessarily

parallel or perpendicular to the coordinate axes; see Figure 1 (right). We formulate the direct scattering

problem following the lines in [15] for the Helmholtz equation and [5] for the Navier equation. Denote by

ΩΛ the unbounded periodic region above Λ and assume, for simplicity, that ΩΛ is occupied by a linear
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Figure 1: Examples of rectangular diffraction gratings.

isotropic and homogeneous elastic material with mass density one. Suppose an incident pressure wave

(with the incident angle θ ∈ (−π/2, π/2)) given by

uin
p = uin

p (θ) = θ̂ exp(ikpx · θ̂), θ̂ := (sin θ,− cos θ)T , x = (x1, x2) ∈ R
2, (1)

is incident on Λ from the region above. Here, kp := ω/
√

2µ+ λ is the compressional wave number, λ
and µ denote the Lamé constants satisfying µ > 0 and λ + µ > 0, ω > 0 is the angular frequency

of the harmonic motion, and the symbol (·)T stands for the transpose of a vector in R
2. The shear wave

number is defined as ks := ω/
√
µ.

Recall that a function v is called quasi-periodic with phase-shift α (or α-quasi-periodic) in ΩΛ, if the

function exp(−iαx1) v(x1, x2) is 2π-periodic with respect to x1, or equivalently,

v(x1 + 2π, x2) = exp(2iαπ) v(x1, x2) , (x1, x2) ∈ ΩΛ. (2)

Obviously, the incident pressure wave uin
p is α-quasi-periodic with α = kp sin θ in ΩΛ. If the scattered

field usc is supposed to be quasi-periodic with the same phase-shift as that of uin, then the direct scat-

tering problem, due to the incident pressure wave (1), aims to find the quasi-periodic scattered field

usc ∈ H1
loc(ΩΛ)2 such that

(∆∗ + ω2)usc = 0 in ΩΛ, ∆∗ := µ∆ + (λ+ µ) grad div , (3)

usc = −uin
p on Λ, (4)

and that satisfies the Rayleigh expansion ( [5])

usc(x; θ) =
∑

n∈Z

{

Ap,n

(

αn

βn

)

eiαnx1+iβnx2 + As,n

(

γn

−αn

)

eiαnx1+iγnx2

}

(5)

for all x2 ≥ Λ+ := max(x1,x2)∈Λ x2. Here, the constants Ap,n, As,n ∈ C are called the Rayleigh

coefficients, αn := α+ n and

βn :=

{ √

k2
p − α2

n if |αn| ≤ kp ,
i
√

α2
n − k2

p if |αn| > kp,
γn :=

{
√

k2
s − α2

n if |αn| ≤ ks ,

i
√

α2
n − k2

s if |αn| > ks.
(6)

Since βn and γn are real for at most a finite number of indices n ∈ Z, only a finite number of plane waves

in (5) propagate into the far field, with the remaining evanescent waves (or surface waves) decaying
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exponentially as x2 → +∞. The above expansion (5) converges uniformly with all derivatives in the

half-plane {x ∈ R
2 : x2 ≥ Λ+} and the Rayleigh coefficients {Ap,n}n∈Z, {As,n}n∈Z ∈ `2.

The uniqueness and the existence of quasi-periodic solutions to (3)-(5) were verified in [5] by the varia-

tional argument for grating profiles given by step functions (see Figure 1 (Left)) or Lipschitz functions. If

the scattering surface is given by a general Lipschitz curve, existence can always be proved at arbitrary

incident frequencies, although there is no uniqueness in general. The solvability results for pressure wave

incidence extend directly to the incident shear wave

uin
s = uin

s (θ) = θ̂⊥ exp(iksx · θ̂), θ̂ := (sin θ,− cos θ)>, θ̂⊥ := (cos θ, sin θ)>, (7)

for which the phase-shift of the scattered field is α = ks sin θ. This differs from the case of pressure wave

incidence given in (1). The incident wave in our paper is also allowed to be a general elastic plane wave

of the form

uin(θ) = cpu
in
p (θ) + csu

in
s (θ), cp, cs ∈ C, (8)

for which the unique solution belongs to the sum of a kp sin θ and a ks sin θ-quasiperiodic Sobolev space,

since the scattered field depends linearly on the incident field.

In this paper we are interested in the inverse problem of recovering an unknown periodic scattering

surface Λ ∈ A from the knowledge of the scattered near-field measured on Γb := {(x1, x2) : x2 =
b, 0 < x1 < 2π}, where b > Λ+is given as in the definition of the admissible class A. We state the

uniqueness results with at most two incident angles as follows:

Theorem 2.1. Let the incident elastic wave be given by (8).

(i) If the Lamé constants satisfy

λ+ µ

λ+ 3µ
6= 1

n
for all odd numbers n ∈ N, (9)

then Λ can be uniquely determined by usc(x; θ)|Γb
with a single incident angle θ ∈ (−π/2, π/2).

(ii) If

λ+ µ

λ+ 3µ
=

1

n0

for some odd number n0 ∈ N, (10)

then Λ can be uniquely determined by usc(x; θj)|Γb
(j = 1, 2) corresponding to two distinct

incident angles θ1, θ2 ∈ (−π/2, π/2).

We shall carry out the proof of Theorem 2.1 in Section 2.3, relying on some lemmas to be established in

Section 2.2.

2.2 Key lemmas

For x = (x1, x2), let (r, ϕ) be the polar coordinates of x in R
2. For notational convenience, we set

N0 := N∪{0}. We first derive the power series expansion of analytic solutions to the Helmholtz equation

around the origin.
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Lemma 2.2. Assume (∆ + k2)u = 0 in a neighborhood of the origin. Then we can expand u = u(r, ϕ)
into a convergent power series

u(r, ϕ) =
∑

n,m∈N0

rn+2m
(

u+
n,m cos(nϕ) + u−n,m sin(nϕ)

)

, (11)

around the origin, where u±n,m ∈ C satisfy the recurrence relations

u±n,m+1 = − k2

4(m+ 1)(n+m+ 1)
u±n,m, for all n,m ∈ N0. (12)

Remark 2.3. The expansion (11) is nothing else than the reformulation of the corresponding expansion

in terms of Bessel functions (see e.g., [4, Chapter 3.4]). Note that (11) reduces to the power series for

harmonic functions if k = 0.

Proof of Lemma 2.2. We begin with the Taylor expansion of u around the origin

u(x1, x2) =
∑

n,m∈N0

An,m xn
1 x

m
2 , An,m ∈ C.

Performing the change variables z1 = x1 + ix2 = reiϕ, z2 = x1 − ix2 = re−iϕ, the above expression

can be transformed into

u(x1, x2) =
∑

n,m∈N0

An,m

(

z1 + z2

2

)n (

z1 − z2

2i

)m

=
∑

n,m∈N0

Bn,m zn
1 z

m
2

=
∑

n,m∈N0

Bn,m rm+n ei(n−m)ϕ

=
∑

m∈N0,n∈Z:n+2m≥0

Bm+n,m r2m+n einϕ

for some Bn,m ∈ C. Moreover, u can be reformulated in the form (11) with some u±n,m ∈ C. Applying

the Laplace operator to u, we have

∆u =

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ

)

u

=
∑

n∈N0,m∈N

4m(n+m) rn+2m−2
(

u+
n,m cos(nϕ) + u−n,m sin(nϕ)

)

=
∑

n,m∈N0

4(m+ 1)(n+m+ 1) rn+2m
(

u+
n,m+1 cos(nϕ) + u−n,m+1 sin(nϕ)

)

.

Since u is a solution of the Helmholtz equation, the coefficients u±n,m have to satisfy the recurrence

relations (12). �

In the following we study a transcendental equation for the Navier equation with the Dirichlet boundary

condition. This equation has been used to compute corner singularities of solutions to the Lamé equation;

see e.g., [3,14,18].
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Lemma 2.4. Suppose (∆∗ + ω2)u = 0 in R
2 and u = 0 on ϕ = ϕ1, ϕ2, where −π < ϕ2 < ϕ1 ≤ π.

Suppose further that the transcendental equation in z ∈ C,

sin2(zψ) − z2 sin2 ψ

(

λ+ µ

λ+ 3µ

)2

= 0, ψ = ϕ1 − ϕ2, (13)

has no integer roots z = n ∈ N. Then it holds that u ≡ 0 in R
2.

Proof. Since the Navier equation is rotationally invariant, we may assume without loss of generality that

ϕ1 = ϕ0, ϕ2 = −ϕ0 for some ϕ0 ∈ (0, π/2) so that ψ = 2ϕ0. For x = r(cosϕ, sinϕ), set x̂ =
x/r = (cosϕ, sinϕ), and x̂⊥ = (− sinϕ, cosϕ). We decompose u into its compressional and shear

parts by

u = ∇v +
−−→
curlw, with v = − 1

k2
p

div u, w =
1

k2
s

curlu, (14)

where the two curl operators in R
2 are defined by

curlu := ∂1u2 − ∂2u1,
−−→
curlw := (∂2w,−∂1w)T ,

and the two scalar functions v and w satisfy the Helmholtz equations

(∆ + k2
p)v = 0, (∆ + k2

s)w = 0 in R
2. (15)

It is easy to check that

x̂ · ∇v =
∂v

∂r
, x̂⊥ · ∇v =

1

r

∂v

∂ϕ
, x̂ · −−→curlw =

1

r

∂w

∂ϕ
, x̂⊥ · −−→curlw = −∂w

∂r
.

This, together with (14), enables us to define the functions

F (r, ϕ) := x̂ · u =
∂v

∂r
+

1

r

∂w

∂ϕ
, G(r, ϕ) := x̂⊥ · u =

1

r

∂v

∂ϕ
− ∂w

∂r
, (16)

with the vanishing data

F (r,±ϕ0) = G(r,±ϕ0) = 0, (17)

since u = 0 on ϕ = ±ϕ0. Observing that v andw are solutions to the homogeneous Helmholtz equation

in R
2, by Lemma 2.2 we may expand them into the series

v(r, ϕ) =
∑

n,m∈N0

rn+2m
(

v+
n,m cos(nϕ) + v−n,m sin(nϕ)

)

,

w(r, ϕ) =
∑

n,m∈N0

rn+2m
(

w+
n,m cos(nϕ) + w−

n,m sin(nϕ)
)

,
(18)

in a small neighborhood of the origin, where v±n,m, w
±
n,m ∈ C satisfy the recurrence relations

v±n,m+1 = −
k2

p

4(m+ 1)(n+m+ 1)
v±n,m, w±

n,m+1 = − k2
s

4(m+ 1)(n+m+ 1)
w±

n,m, (19)
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for all n,m ∈ N0. By unique continuation, it is now sufficient to prove v±n,m = w±
n,m = 0 for all n,m ∈

N0, if the transcendental equation (13) has no integer roots.

Inserting (18) into the definitions of F and G in (16) yields

F (r, ϕ) =
∑

n∈N,m∈N0

rn+2m−1
(

f+
n,m cos(nϕ) + f−

n,m sin(nϕ)
)

=:
∑

N∈N0

rNFN(ϕ),

G(r, ϕ) =
∑

n∈N,m∈N0

rn+2m−1
(

g+
n,m cos(nϕ) + g−n,m sin(nϕ)

)

=:
∑

N∈N0

rNGN(ϕ),
(20)

with

f+
n,m = (n+ 2m) v+

n,m + nw−
n,m, f−

n,m = (n+ 2m) v−n,m − nw+
n,m,

g−n,m = −n v+
n,m − (n+ 2m)w−

n,m, g+
n,m = n v−n,m − (n+ 2m)w+

n,m

(21)

and

FN(ϕ) =
∑

n≥1,m≥0:n+2m−1=N

(

f+
n,m cos(nϕ) + f−

n,m sin(nϕ)
)

,

GN(ϕ) =
∑

n≥1,m≥0:n+2m−1=N

(

g+
n,m cos(nϕ) + g−n,m sin(nϕ)

)

.

Obviously, f+
n,0 = −g−n,0, f−

n,0 = g+
n,0 for all n ≥ 1. Taking into account the Dirichlet condition (17), we

deduce from FN(±ϕ0) = GN(±ϕ0) = 0 that

∑

n≥1,m≥0:n+2m−1=N

f+
n,m cos(nϕ0) =

∑

n≥1,m≥0:n+2m−1=N

f−
n,m sin(nϕ0) = 0,

∑

n≥1,m≥0:n+2m−1=N

g−n,m sin(nϕ0) =
∑

n≥1,m≥0:n+2m−1=N

g+
n,m cos(nϕ0) = 0,

(22)

for all N ∈ N0.

We proceed by equating coefficients of rN in (20). If N = 0, then we have the indexes n = 1,m = 0.

Hence, it follows from (22) and (21) that

0 = f+
1,0 = −g−1,0 = v+

1,0 + w−
1,0, 0 = f−

1,0 = g+
1,0 = v−1,0 − w+

1,0,

implying that v+
1,0 = −w−

1,0, v−1,0 = w+
1,0.

If N = 1, then n = 2 and m = 0. By arguing as the previous case we find

0 = f+
2,0 = −g−2,0 = 2

(

v+
2,0 + w−

2,0

)

, 0 = f−
2,0 = g+

2,0 = 2
(

v−2,0 − w+
2,0

)

,

leading to v+
2,0 = −w−

2,0, v−2,0 = w+
2,0.

When N = 2, it holds that n = 3,m = 0 or n = 1,m = 1. Consequently, it is seen from (22) that

{

f+
3,0 cos(3ϕ0) + f+

1,1 cosϕ0 = 0,
g−3,0 sin(3ϕ0) + g−1,1 sinϕ0 = 0,

{

f−
3,0 sin(3ϕ0) + f−

1,1 sinϕ0 = 0,
g+
3,0 cos(3ϕ0) + g+

1,1 cosϕ0 = 0.
(23)
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Making use of the recurrence relations (19), v±1,0 = ∓w∓
1,0 and the definitions of f±

1,1 and g±1,1 (see (21)),

we represent f±
1,1 and g∓1,1 in terms of v±1,0 as (see also (28) with j = 0 )

f±
1,1 = v±1,0 (k2

s − 3k2
p)/8, g∓1,1 = v±1,0 (k2

p − 3k2
s)/8. (24)

Combining (23) and (24), and using the fact that g−3,0 = −f+
3,0, g

+
3,0 = f−

3,0, we may transform the

equations in (23) into

0 =

(

cos(3ϕ0) (k2
s − 3k2

p) cosϕ0

− sin(3ϕ0) (k2
p − 3k2

s) sinϕ0

) (

f+
3,0

v+
1,0/8

)

=: A+
0

(

f+
3,0

v+
1,0/8

)

,

0 =

(

sin(3ϕ0) (k2
s − 3k2

p) sinϕ0

cos(3ϕ0) −(k2
p − 3k2

s) sinϕ0

) (

f−
3,0

v−1,0/8

)

=: A−
0

(

f−
3,0

v−1,0/8

)

.

Simple calculations yield that the determinant of A±
0 takes the form

Det(A±
0 ) = ∓(k2

p + k2
s) sin(4ϕ0) ± 2(k2

s − k2
p) sin(2ϕ0).

Thus, Det(A±
0 ) 6= 0 if and only if

± sin(2ψ) 6= 2
k2

s − k2
p

k2
s + k2

p

sinψ = 2
λ+ µ

λ+ 3µ
sinψ, with ψ = 2ϕ0.

This can be guaranteed by assuming that the number z = 2 is not an integer root of (13). Therefore, we

obtain v±1,0 = f±
3,0 = 0. Consequently, it holds that w±

1,0 = g±3,0 = 0, and thus w±
1,m = v±1,m = 0 for all

m ∈ N0, v+
3,0 = −w−

3,0, v−3,0 = w+
3,0. In summary, we have proved that for j = 1,

w±
n,m = v±n,m = 0 for all 1 ≤ n ≤ j, m ∈ N0,

v+
n,0 = −w−

n,0, v−n,0 = w+
n,0, n = j + 1, j + 2.

(25)

Now, assuming that (25) is valid for some fixed j ∈ N, we show that (25) also holds with j replaced by

j + 1.

Consider N = j + 2. From (21) and (25), we see f±
n,m = g±n,m = 0 for all n ≤ j, m ∈ N0. Hence, it

follows from (22) with N = j + 2 that

{

f+
j+3,0 cos((j + 3)ϕ0) + f+

j+1,1 cos((j + 1)ϕ0) = 0,
g−j+3,0 sin((j + 3)ϕ0) + g−j+1,1 sin((j + 1)ϕ0) = 0,

(26)

{

f−
j+3,0 sin((j + 3)ϕ0) + f−

j+1,1 sin((j + 1)ϕ0) = 0,
g+

j+3,0 cos((j + 3)ϕ0) + g+
j+1,1 cos((j + 1)ϕ0) = 0.

(27)

By the definition of f+
n,m and the recurrence relations (19) with n = j + 1,m = 0, it follows that

f+
j+1,1 = (j + 3) v+

j+1,1 + (j + 1)w−
j+1,1

=
1

4(j + 2)

[

−(j + 3) k2
p v

+
j+1,0 − (j + 1) k2

s w
−
j+1,0

]

=
v+

j+1,0

4(j + 2)

[

(j + 1) k2
s − (j + 3) k2

p

]

, (28)
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where in the last equality we have used the relation v+
j+1,0 = −w−

j+1,0 from (25). Analogously, we have

g−j+1,1 =
v+

j+1,0

4(j + 2)

[

(j + 1) k2
p − (j + 3) k2

s

]

.

Arguing in the same manner with the relation v−j+1,0 = w−
j+1,0, we find

f−
j+1,1 =

v−j+1,0

4(j + 2)

[

(j + 1) k2
s − (j + 3) k2

p

]

,

g+
j+1,1 =

v−j+1,0

4(j + 2)

[

−(j + 1) k2
p + (j + 3) k2

s

]

.

Inserting the previous expressions of f±
j+1,1, g±j+1,1 into (26) and (27) yields the algebraic equations

0 =

(

cos((j + 3)ϕ0) [(j + 1)k2
s − (j + 3)k2

p] cos((j + 1)ϕ0)
− sin((j + 3)ϕ0) [(j + 1)k2

p − (j + 3)k2
s ] sin((j + 1)ϕ0)

) (

f+
j+3,0

v+
j+1,0/[4(j + 2)]

)

, (29)

0 =

(

sin((j + 3)ϕ0) [(j + 1)k2
s − (j + 3)k2

p] sin((j + 1)ϕ0)
cos((j + 3)ϕ0) −[(j + 1)k2

p − (j + 3)k2
s ] cos((j + 1)ϕ0)

) (

f−
j+3,0

v−j+1,0/[4(j + 2)]

)

. (30)

Note that f+
j+3,0 = −g−j+3,0, f−

j+3,0 = g+
j+3,0 by definition. Denote by A±

j the matrices appearing in (29)

and (30), respectively. It can be readily checked that Det(A±
j ) 6= 0 if and only if

± sin((j + 2)ψ) 6= (j + 2)
λ+ µ

λ+ 3µ
sinψ.

By the assumption of the lemma, we obtain v±j+1,0 = f±
j+3,0 = 0, which in turn proves the relations in

(25) with j replaced by j + 1. Thus, by induction (25) is true for any j ≥ 1. The proof of the lemma is

complete.

Based on the proof of Lemma 2.4, we now present the corresponding results when ϕ1 − ϕ2 = π/2,

which will be used subsequently to prove our uniqueness results in inverse diffraction by rectangular rigid

surfaces.

Lemma 2.5. Suppose (∆∗ +ω2)u = 0 in R
2 and u = 0 on ϕ = ϕ1, ϕ2, where ϕ1 −ϕ2 = π/2. Then,

we have either (i) u ≡ 0 under the condition (9), or (ii) u = c u0 for some c ∈ C if (10) holds, where u0

is some fixed real-analytic function.

Remark 2.6. Lemma 2.5 implies that the dimension of the solution space to the Navier equation in R
2

with vanishing data on two perpendicular straight lines is at most one.

Proof of Lemma 2.5 (i) In the case of ψ = ϕ1 − ϕ2 = π/2, the positive integer roots to (13) must be

odd numbers satisfying the condition (10). Hence, the transcendental equation (13) has no integer roots

under the condition (9). Applying Lemma 2.4 gives u ≡ 0.

(ii) If (10) holds, then n0 ∈ N is the unique integer root to (13) with ψ = π/2. Let the matrices A±
j be

defined as in the proof of Lemma 2.4 with ϕ0 = π/4. Set j = n0 − 2. Without loss of generality, we may

suppose sin(n0π/2) = 1 so that

Det(A+
j ) = 0, Det(A−

j ) 6= 0, and Det(A±
n ) 6= 0 for all n 6= j.
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The case sin(n0π/2) = −1 can be treated analogously. In view of the proof of Lemma 2.4, we see that

the relations in (25) hold with the selected j = n0 − 2. Consider again the coefficient of rN in (20) and

(22), where ϕ0 = π/4. For clarity we divide our proof into three steps.

Step 1: Prove v±n,m = w±
n,m = 0 for all n = j + 2, j + 4, · · · , and m ∈ N0.

By (25), it holds that

w±
n,m = v±n,m = 0, n = j, j − 2, · · · , m ∈ N0, (31)

v+
j+2,0 = −w−

j+2,0, v−j+2,0 = w+
j+2,0. (32)

Hence, f±
n,m = g±n,m = 0 for all n = j, j − 2, · · · ,m ∈ N0. Consider N = j + 3. It follows from (22)

that (cf. (29), (30) in the case N = j + 2 )

A±
j+1

(

f±
j+4,0

v±j+2,0/[4(j + 3)]

)

= 0.

Since Det(A±
j+1) 6= 0, we get f±

j+4,0 = v±j+2,0 = 0. This implies that (31) and (32) are valid with j
replaced by j + 2. By induction we finish the proof in Step 1.

Step 2: Prove v−n,m = w+
n,m = 0 for all n = j + 1, j + 3, · · · , and m ∈ N0.

Again using (25), we see

w+
n,m = v−n,m = 0, for all n = j − 1, j − 3, · · · , m ∈ N0, and v−j+1,0 = w+

j+1,0. (33)

Then, the relations (27) and (30) can be proved again following the lines in the proof of Lemma 2.4. Since

Det(A−
j ) 6= 0, one can verify that f+

j+3,0 = v−j+1,0 = 0, leading to the relations in (33) with j replaced by

j + 2. This implies the desired results in Step 2.

Step 3: Prove that v+
n,m, w

−
n,m depend linearly on some constant c ∈ C for all n = j+1, j+3, · · · , and

m ∈ N0.

Since j = n0 − 2, sin(n0π/2) = 1, there holds

sin((j + 3)π/4) = cos((j + 1)π/4) 6= 0, (j + 1)k2
s = (j + 3)k2

p,

where the second equality follows from (10). While (30) is only trivially solvable, the equation (29) has

non-trivial solutions given by

f+
j+3,0 = 0, v+

j+1,0 = c, (34)

for some constant c ∈ C. By (34), we have

v+
j+3,0 = −w−

j+3,0, w−
j+1,0 = −v+

j+1,0 = −c, (35)

The second equality in (35), together with (19) and the definition of f+
j+1,m, implies

v+
j+1,m = ṽ+

j+1,m c, w−
j+1,m = w̃−

j+1,0 c, f+
j+1,m = f̃+

j+1,m c, m ≥ 0,

with some ṽ+
j+1,m, w̃

−
j+1,0, f̃

+
j+1,m ∈ C. Now, set N = j + 4. Making use of the first equality in (35), one

can derive from Fj+4(±ϕ0) = Gj+4(±ϕ0) = 0 that (cf. (26) and (29) in the case N = j + 2)

A+
j+2

(

f+
j+5,0

v+
j+3,0/[4(j + 4)]

)

= −
(

f̃+
j+1,3 cos((j + 1)π/4)
g̃−j+1,3 sin((j + 1)π/4)

)

c.
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The above equation is uniquely solvable, with the solution pair (f+
j+5,0, v

+
j+3,0) depending linearly on c.

This in turn implies that v+
j+3,m, m ∈ N0, depend linearly on c. Since f+

j+3,0 = 0, we also get the linear

dependence of w−
j+3,0 and that of w−

j+3,m, m ∈ N0 on c. Repeating the above procedure, we finally

conclude that

v+
n,m = ṽ+

n,m c, w−
n,m = w̃−

n,m c, for all m ∈ N0, n = n0 − 1, n0 + 1, n0 + 3, · · · .

In order to prove Lemma 2.5, we need to introduce the function u0 = ∇v0 +
−−→
curlw0, where

v0(r, ϕ) :=
∑

n=n0−1,n0+1,··· ,m∈N0

[

rn+2m ṽ+
n,m cos(nϕ)

]

,

w0(r, ϕ) :=
∑

n=n0−1,n0+1,··· ,m∈N0

[

rn+2m w̃−
n,m sin(nϕ)

]

.

Since ṽ+
n,m and w̃−

n,m satisfy the recurrence relation (19), v0 and w0 are solutions to the Helmholtz

equations in (15). Hence u0 satisfies the Navier equation and u = cu0. The proof of Lemma 2.5 is

complete. �

2.3 Proof of Theorem 2.1

Relying on the properties of the Navier equation shown in Lemma 2.5, we prove the uniqueness results

in Theorem 2.1 for diffraction gratings by contradiction. Let the incident elastic plane wave be given as in

(8) with the incident angle θ. Assume there are two distinct scattering surfaces Λ1,Λ2 ∈ A generating

the same near-field data on Γb:

u1(x; θ) = u2(x; θ), x ∈ Γb.

By the well-posedness of the direct scattering problem for a flat profile, we get the coincidence of u1 and

u2 in x2 > b, and the unique continuation of solutions to the Navier equation leads to

u1(x; θ) = u2(x; θ) =: u(x), x ∈ Ω, (36)

where Ω denotes the unbounded connected component of ΩΛ1
∩ ΩΛ2

. We consider two cases.

Case 1: The corners of Λ1 and Λ2 coincide.

Since the convex hull of the corner points coincides with a strip and both profiles are bounded in the x2-

direction, the line segments lying on them must be parallel to the coordinate axes in Case 1. Therefore,

the horizontal line segments of Λj (j = 1, 2) lie on two straight lines Γb1 and Γb2 for some −b < b2 <
b1 < b, whereas the vertical segments are identical (see Figure 2 ).

Without loss of generality, we suppose Γb1 to be the x1-axis, i.e., b1 = 0. Recalling the Dirichlet boundary

conditions on Λ1 and Λ2, we get u = 0 on Γ0. This suggests that u is the total field corresponding to the

rigid scattering surface x2 = 0 due to the incident plane wave (8). By linear supposition, it is not difficult

to get the explicit expression of u in x2 ≥ 0 as follows: u = (cp/kp)Up + (cs/ks)Us, where cp and cs
are the coefficients attached to the incident plane pressure and shear waves, respectively, and

Up =

(

αp

−βp

)

ei(αpx1−βpx2) −
α2

p − βpγp

α2
p + βpγp

(

αp

βp

)

ei(αpx1+βpx2) − 2αpβp

α2
p + βpγp

(

γp

−αp

)

ei(αpx1+γpx2)

Us =

(

γs

αs

)

ei(αsx1−γsx2) − 2αsγs

α2
s + βsγs

(

αs

βs

)

ei(αsx1+βsx2) − βsγs − α2
s

α2
s + βsγs

(

γs

−αs

)

ei(αsx1+γsx2),

(37)
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Figure 2: Examples of rectangular diffraction gratings sharing the same corners.

with

αp = kp sin θ, βp = kp cos θ, γp =
√

k2
s − α2

p,

αs = ks sin θ, γs = ks cos θ, βs =
√

k2
p − α2

s.

Since u consists of finitely many terms only, it extends analytically to the whole space R
2. Hence, u must

also vanish on at least one vertical straight line, for instance {x1 = 0}, which can be extended to infinity

in the x2-direction. This implies that cp = cs = 0, which is a contradiction. Hence, Λ1 = Λ2.

Case 2: The corners of Λ1 and Λ2 do not coincide.

First we consider Case (a): there exists a corner point Oj of Λj in ΩΛj+1
for j = 1 or j = 2, where

ΩΛ3
= ΩΛ1

. Without loss of generality, we suppose that Case (a) occurs with j = 1; see Figure 3

(left). It follows from (36) and the Dirichlet boundary condition of u1 on Λ1 that u2 vanishes on the two

perpendicular line segments of Λ1 meeting at O1 in ΩΛ2
. Moreover, u2 satisfies the Navier equation in a

small neighborhood D1 ⊂ ΩΛ2
of O1. Applying Lemma 2.5 to u2 yields:

(i) u2(x; θ) ≡ 0 under the condition (9). This contradiction implies Λ1 = Λ2, and thus uniqueness with

a single incident plane wave holds.

(ii) u2(x; θ) = c u0(x), x ∈ D1, under the condition (10). By arguing in the same manner we get

u2(x; θ
′) = c′ u0(x), x ∈ D1, if u2(x; θ

′) = u1(x; θ
′) on Γb, where θ′ 6= θ is another incident

angle. Hence, u2(x; θ) = c/c′ u2(x; θ
′) in D1 and by unique continuation also in x2 > b. This

contradicts the linear independence of u2(x; θ) and u2(x; θ
′) in x2 > b2 which can be readily

justified using the Rayleigh expansions of usc
2 (x; θ) and usc

2 (x; θ′). Now we conclude that Λ1 = Λ2

if the near-field data coincide for two distinct incident angles.

If Case (a) is excluded, we may suppose the existence of a corner point O1 of Λ1 lying on a certain

line segment l ⊂ Λ2; see Figure 3 (right). In this case, l must be perpendicular to a line segment of

Λ1 passing through O1, and l coincides partly with another line segment of Λ1. Since l is an analytic

boundary part of ΩΛ2
and u2 = 0 on l, u2 is analytic in ΩΛ2

up to l (see [16, Theorem A]) and thus

u2 has analytic Cauchy data on l. Applying the CauchyâĂŞKowalewski theorem, we can extend u2 to a

small neighborhood of O1 as a solution to the Navier equation. Repeating the arguments in Case (a), we

complete the proof of Theorem 2.1. �

12



Figure 3: Two rectangular diffraction gratings whose corners are not identical.

3 Uniqueness for non-periodic rough surfaces

The aim of this section is to remove the periodicity assumption imposed on the rectangular grating profiles

from the admissible class A. Define a new admissible class Ã by

Ã =

{

Λ :
Λ is a piecewise linear curve in |x2| < b. Any two

neighboring line segments of Λ are perpendicular.

}

.

Before carrying over the proof of Theorem 2.1 to the non-periodic case, we give a brief sketch of the

well-posedness of the forward elastic scattering from rigid rough surfaces for incident plane waves in 2D.

Instead of the Rayleigh expansion radiation condition (5), the scattered field is now required to satisfy a

more general upward radiation condition (which is usually referred to as the upward angular spectrum

representation):

usc(x) =
1√
2π

∫

R

(

eiγp(ξ) (x2−b)Mp(ξ) + eiγs(ξ) (x2−b)Ms(ξ)
)

ûsc
b (ξ) eix1ξ dξ (38)

for x2 > b, where Mp and Ms are two matrices given by

Mp(ξ) =
1

ξ2 + γpγs

(

ξ2 ξγs

ξγp γpγs

)

, Ms(ξ) =
1

ξ2 + γpγs

(

γpγs −ξγs

−ξγp ξ2

)

,

respectively, with γp(ξ) :=
√

k2
p − ξ2, γs(ξ) :=

√

k2
s − ξ2. The notation ûsc

b (ξ) in (38) stands for the

Fourier transform of usc(x1, b), given by

ûsc
b (ξ) = (2π)−1/2

∫

R

exp(−it ξ) usc(t, b) dt , ξ ∈ R ,

Let the incident plane wave be given as in (8), and define Sh := ΩΛ\{x2 ≥ h} . It was shown in [9] that

the forward two-dimensional scattering problem admits a unique total field u = uin + usc in the following

weighted Sobolev space

Vh,% := (1 + x2
1)

−%/2H1
0 (Sh)

2
for all h ≥ b, −1 < % < −1/2, (39)

provided the scattering surface Λ is given by the graph of a bounded and uniformly Lipschitz continuous

function. Note that the space H1
0 (Sh) denotes the functions in the standard Sobolev space H1(Sh) with
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vanishing trace on Λ, and that Vh,% is defined as the closure of {u|Sh
: u ∈ C∞

0 (Sh)} in the norm

||u||Vh,%
:=

(
∫

Sh

(1 + x2
1)

%

(

∣

∣u
∣

∣

2
+

∣

∣∇u|2
)

dx

)1/2

, u ∈ Vh,%.

Since the above mentioned uniqueness and existence results do not cover the non-graph rectangular

surfaces from Ã, we suppose the forward scattering problem for any Λ ∈ Ã is always solvable in the

weighted Sobolev space (39). In particular, if Λ = {x2 = 0}, the explicit solution takes the same form

as that constructed in the proof of Theorem 2.1 for diffraction gratings (see (37)). Below we state the

uniqueness result for the inverse scattering problem.

Theorem 3.1. Let the incident elastic plane wave uin(x; θ) be given by (8), and set I = {(x1, b) : x1 ∈
(c1, c2)} for some c1 < c2. Then, Λ ∈ Ã can be uniquely determined by the scattered near field data

{usc(x; θ) : x ∈ I} with a single angle θ under the condition (9), whereas the data from two distinct

incident angles are sufficient if the condition (10) holds.

Proof. Assume there are two scattering surfaces Λ1,Λ2 ∈ Ã generating the same near-field data on

I , i.e., usc
1 (x) = usc

2 (x) for x ∈ I . From the analyticity of usc
1 , usc

2 in x2 ≥ b, we see usc
1 = usc

2 on

x2 = b. To adapt the proof of Theorem 2.1 to the non-periodic case, we only need to verify the linear

independence of the total fields u(x; θ) and u(x; θ′) in x2 > b for different incident angles θ and θ′.
Here, u(x; θ) = uin(x; θ) + usc

j (x; θ) for j = 1, 2. Assume u(x; θ) = au(x; θ′) with some a ∈ C. We

then obtain

w(x) := uin(x; θ) − a uin(x; θ′) = −
(

usc
j (x; θ) − a usc

j (x; θ′)
)

, for all x2 ≥ b, (40)

which satisfies the upward radiation condition. From (40), we conclude that w(x) can be regarded as the

scattered field reflected from the rigid surface {x2 = b} with the incident field U in = −(uin(x; θ) −
a uin(x; θ′)). We observe that U in cannot vanish identically, because uin(x; θ) and uin(x; θ′) are lin-

early independent. The explicit form ofw can be computed analogously to (37). On the other hand,w is a

linear combination of scattered waves travelling upwards. Therefore, it is a contradiction that w = −U in

is an incoming wave for x2 > b, as shown in the first relation of (40). Hence, u(x; θ) and u(x; θ′) are

linearly independent in x2 > b. Arguing analogously to the proof of Theorem 2.1, we complete the proof

of Theorem 3.1.
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