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ABSTRACT. We consider an anisotropic Lévy operator Is of any order s ∈ (0, 1) and we consider the
homogenization properties of an evolution equation.

The scaling properties and the effective Hamiltonian that we obtain is different according to the
cases s < 1/2 and s > 1/2.

In the isotropic onedimensional case, we also prove a statement related to the so-called Orowan’s
law, that is an appropriate scaling of the effective Hamiltonian presents a linear behavior.

1. INTRODUCTION

In this paper we study an evolutionary problem run by a fractional and possibly anisotropic operator of
elliptic type.

These type of equations arise natural in crystallography, in which the solution of the equation has the
physical meaning of the atom dislocation inside the crystal structure, see e.g. the detailed discussion
of the Pierls-Nabarro crystal dislocation model in [12].

Due to their mathematical interest and in view of the concrete applications in physical models, these
problems have been extensively studied in the recent literature, also using new methods coming from
the analysis of fractional operators, see for instance [10, 11, 7, 5, 4] and references therein.

In particular, here we study an homogenization problem, related to long-time behaviors of the system
at a macroscopic scale. The scaling of the system and the results obtained will be different according
to the fractional parameter s ∈ (0, 1). Namely, when s > 1/2 the effective Hamiltonian “localizes” and
it only depends on a first order differential operator. Conversely, when s < 1/2, the non-local features
are predominant and the effective Hamiltonian will involve the fractional operator of order s. That is,
roughly speaking, for any s ∈ (0, 1), the effective Hamiltonian is an operator of order min{2s, 1},
which reveals the stronger non-local effects present in the case s < 1/2.

The strong non-local features of the case s < 1/2 are indeed quite typical in crystal dislocation
dynamics, see [5] and [4]. Nevertheless, for any s ∈ (0, 1), we will be able to show that a suitably
scaled effective Hamiltonian behaves linearly with respect to the leading operator, thus providing an
extension of the so-called Orowan’s law.

We now recall in further detail the state of the art for the homogenization of fractional problems in
crystal dislocation, then we introduce the formal setting that we deal with and present in details our
results.

In [10] Monneau and the first author study an homogenization problem for the evolutive Pierls-Nabarro
model, which is a phase field model describing dislocation dynamics. They consider the following
equation

(1.1)

{
∂tu

ε = I1[uε(t, ·)]−W ′ (uε
ε

)
+ σ

(
t
ε
, x
ε

)
in R+ × RN

uε(0, x) = u0(x) on RN ,

where W is a periodic potential and I1 is an anisotropic Lévy operator of order 1, which includes as
particular case the operator−(−∆)

1
2 , and they prove that the solution uε of (1.1) converges as ε→ 0

to the solution u0 of the following homogenized problem

(1.2)

{
∂tu = H(∇xu, I1[u(t, ·)]) in R+ × RN

u(0, x) = u0(x) on RN .
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For ε = 1, the solution uε has the physical meaning of an atom dislocation along a slip plane (the rest
position of the atom lies on the lattice that is prescribed by the periodicity of the potential W ). The
number ε describes the ratio between the microscopic scale and the macroscopic scale and then it is
a small number. After a suitable rescaling one gets equation (1.1). The limit u0 can be interpreted as
a macroscopic plastic strain satisfying the macroscopic plastic flow rule (1.2). The function H , usually
called effective Hamiltonian, is determined, as usual in homogenization, by a cell problem, which is in
this case, for p ∈ RN and L ∈ R, the following:

(1.3)

{
λ+ ∂τv = I1[v(τ, ·)] + L−W ′(v + λτ + p · y) + σ(τ, y) in R+ × RN

v(0, y) = 0 on RN .

For any p ∈ RN and L ∈ R, the quantity λ = λ(p, L) is the unique number for which there exists a
solution v of (1.3) which is bounded in R+ ×RN . Therefore, the function H(p, L) := λ(p, L) is well
defined, and, in addition, this function turns out to be continuous and non-decreasing in L.

In a second paper [11], the authors consider, as a particular case, the one in which N = 1, I1 =
−(−∆)

1
2 is the half Laplacian and σ ≡ 0, and they study the behavior of H(p, L) for small p and L.

In this regime they recover the Orowan’s law, which claims that

H(p, L) ∼ c0|p|L

for some constant of proportionality c0 > 0. To show this last result, estimates on the layer solution
associated to −(−∆)

1
2 , i.e. on the solution φ of

(1.4)


−(−∆)

1
2φ = W ′(φ) in R

φ′ > 0 in R

lim
x→−∞

φ(x) = 0, lim
x→+∞

φ(x) = 1, φ(0) =
1

2
,

are needed. Such estimates were proved in [7] under suitable assumptions on W , while the existence
of a unique solution φ of (1.4) was proved in [3].

Recently, these kind of estimates have been proved for layer solutions associated to the fractional
Laplacian −(−∆)s for s ∈ (0, 1) by Palatucci, Savin and the second author in [13]. More general
results on φ were obtained by Dipierro, Palatucci and the second author in [5] for the case s ∈

[
1
2
, 1
)
.

See also [2] for related results.

In this paper, in view of these new estimates, we want to extend the results of [10] and [11] to the case
where the non-local operator in (1.1) is an anisotropic Lévy operator of any order s ∈ (0, 1). Precisely,
given ϕ ∈ C2(RN) ∩ L∞(RN), let us define

(1.5) Is[ϕ](x) := PV

∫
RN

ϕ(x+ y)− ϕ(x)

|y|N+2s
g

(
y

|y|

)
dy,

where PV stands for the principal value of the integral and the function g satisfies

(H1) g ∈ C(SN−1), g > 0, g even.

When g ≡ C(N, s) with C(N, s) suitable constant depending on the dimension N and on the expo-
nent s, then (1.5) is the integral representation of −(−∆)s.

In addition to (H1) we make the following assumptions:

(H2) W ∈ C1,1(R) and W (v + 1) = W (v) for any v ∈ R;
(H3) σ ∈ C0,1(R+ × RN) and σ(t + 1, x) = σ(t, x), σ(t, x + k) = σ(t, x) for any k ∈ ZN and

(t, x) ∈ R+ × RN ;
(H4) u0 ∈ W 2,∞(RN).
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For s > 1
2

we consider the following homogenization problem:

(1.6)

{
∂tu

ε = ε2s−1Is[uε(t, ·)]−W ′ (uε
ε

)
+ σ

(
t
ε
, x
ε

)
in R+ × RN

uε(0, x) = u0(x) on RN ,

and for s < 1
2
:

(1.7)

{
∂tu

ε = Is[uε(t, ·)]−W ′ ( uε
ε2s

)
+ σ

(
t
ε2s
, x
ε

)
in R+ × RN

uε(0, x) = u0(x) on RN .

Remark that the scalings for s > 1
2

and s < 1
2

are different. They formally coincide when s = 1
2
. We

prove that the solution uε of (1.6) converges as ε→ 0 to the solution u0 of the homogenized problem

(1.8)

{
∂tu = H1(∇xu) in R+ × RN

u(0, x) = u0(x) on RN ,

with an effective Hamiltonian H1 which does not depend on Is anymore, while the solution uε of (1.7)
converges as ε→ 0 to u0 solution of the following

(1.9)

{
∂tu = H2(Is[u]) in R+ × RN

u(0, x) = u0(x) on RN ,

with an effective Hamiltonian H2 not depending on the gradient. As we will see, the functions H1 and
H2 are determined by the following cell problem:

(1.10)

{
λ+ ∂τv = Is[v(τ, ·)] + L−W ′(v + λτ + p · y) + σ(τ, y) in R+ × RN

v(0, y) = 0 on RN ,

that is H1 and H2 are determined by the unique λ for which (1.10) possesses a bounded solution
(according to the cases s > 1

2
and s < 1

2
, respectively). We observe that the solutions of (1.8) and

(1.9) may have quite different behaviors, since ∇u and Is[u] may be very different at a given point,
even in dimension 1 and when s is close to 1

2
(see for instance [6]). Following [10], in order to solve

(1.10), we show for any p ∈ RN and L ∈ R the existence of a unique solution of

(1.11)

{
∂τw = Is[w(τ, ·)] + L−W ′(w + p · y) + σ(τ, y) in R+ × RN

w(0, y) = 0 on RN ,

and we look for some λ such that w − λτ is bounded. Precisely we have:

Theorem 1.1 (Ergodicity). Assume (H1)-(H4). For L ∈ R and p ∈ RN , there exists a unique viscosity
solution w ∈ Cb(R+ × RN) of (1.11) and there exists a unique λ ∈ R such that w satisfies:

w(τ, y)

τ
converges towards λ as τ → +∞, locally uniformly in y.

The real number λ is denoted by H(p, L). The function H(p, L) is continuous on RN × R and
non-decreasing in L.

Once the cell problem is solved, we can prove the following convergence results:

Theorem 1.2 (Convergence for s > 1
2
). Assume (H1)-(H4). The solution uε of (1.6) converges to-

wards the solution u0 of (1.8) locally uniformly in (t, x), where

H1(p) := H(p, 0)
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and H(p, L) is defined in Theorem 1.1.

Theorem 1.3 (Convergence for s < 1
2
). Assume (H1)-(H4). The solution uε of (1.7) converges to-

wards the solution u0 of (1.9) locally uniformly in (t, x), where

H2(L) := H(0, L)

and H(p, L) is defined in Theorem 1.1.

We point out that the effective Hamiltonians H1 and H2 represent the speed of propagation of the
dislocation dynamics according to (1.8) and (1.9). In particular, due to Theorems 1.2 and 1.3, such
speed only depends on the slope of the dislocation in the weakly non-local setting s > 1

2
and only on

an operator of order s of the dislocation in the strongly non-local setting s < 1
2
.

We will next consider the case: N = 1, Is = −(−∆)s and σ ≡ 0, and we will make the further
following assumptions on the potential W :

(1.12)



W ∈ C4,β(R) for some 0 < β < 1

W (v + 1) = W (v) for any v ∈ R
W = 0 on Z
W > 0 on R \ Z
α = W ′′(0) > 0

W is even if s ∈
(
0, 1

2

)
.

Under assumption (1.12), it is known, see [2] and [13], that there exists a unique function φ solution of

(1.13)


Is[φ] = W ′(φ) in R
φ′ > 0 in R

lim
x→−∞

φ(x) = 0, lim
x→+∞

φ(x) = 1, φ(0) =
1

2
.

Then we can prove the following extension of the Orowan’s law:

Theorem 1.4. Assume (1.12) and let p0, L0 ∈ R with p0 6= 0. Then the function H defined in
Theorem 1.1 satisfies

(1.14)
H(δp0, δ

2sL0)

δ1+2s
→ c0|p0|L0 as δ → 0+ with c0 =

(∫
R
(φ′)2

)−1

.

We notice that (1.14) can be rephrased using the notation p := δp0 and L := δL0, by saying

H(p, L) = c0|p|L + higher order terms,

which in particular shows that H has a linear growth close to the origin. We observe that assumption
(1.12) is stronger than (H2), since it requires the minima to be non-degenerate, it assumes further
smoothness on the potential and the even property in the case s < 1

2
. This last property is natural for

physical applications, since typically the effect of a dislocation in a given direction compensates with
the one in the opposite direction (in particular it is satisfied in the classical Peierls-Nabarro model in
which W (u) = 1 − cos(2πu)). From the technical point of view, this property is needed only in the
strongly non-local case s < 1

2
since the first order asymptotic decay of the layer solution (1.13) lies

below a critical threshold (the even property allows us to deduce a useful second order approximation).

The rest of the paper is organized as follows. First we recall some definitions and basic fact about
viscosity solutions. Then, in Section 2 we imbed our problem into one in one dimension more, to
keep track of all the homogenized quantities, and we state the ansatz on the solution we look for.
The corrector equation will be studied in Section 3, where Theorem 1.1 will be proved. Thus, we will
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prove Theorems 1.2 and 1.3 in Sections 4 and 5, respectively. Then we present the extension of the
Orowan’s law and the proof of Theorem 1.4 in Section 6.

1.1. Notations and definition of viscosity solution. We denote by Br(x) the ball of radius r cen-
tered at x. The cylinder (t− τ, t+ τ)×Br(x) is denoted by Qτ,r(t, x).

bxc and dxe denote respectively the floor and the ceiling integer part functions of a real number x.

It is convenient to introduce the singular measure defined on RN \ {0} by

µ(dz) =
1

|z|N+2s
g

(
z

|z|

)
dz,

and to denote

I1,r
s [ϕ, x] =

∫
|z|6r

(ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z)µ(dz),

I2,r
s [ϕ, x] =

∫
|z|>r

(ϕ(x+ z)− ϕ(x))µ(dz).

For a function u defined on (0, T )× RN , 0 < T 6 +∞, for 0 < α < 1 we denote by < u >α
x the

seminorm defined by

< u >α
x := sup

(t,x′′), (t,x′)∈(0,T )×RN
x′′ 6=x′

|u(t, x′′)− u(t, x′)|
|x′′ − x′|α

and byCα
x ((0, T )×RN) the space of continuous functions defined on (0, T )×RN that are bounded

and with bounded seminorm < u >α
x .

Finally, we denote by USCb(R+ × RN) (resp., LSCb(R+ × RN)) the set of upper (resp., lower)
semicontinuous functions on R+ × RN which are bounded on (0, T ) × RN for any T > 0 and we
set Cb(R+ × RN) := USCb(R+ × RN) ∩ LSCb(R+ × RN).

Let us conclude by recalling the definition of viscosity solution for a general first order non-local equa-
tion with associated initial condition:

(1.15)

{
ut = F (t, x, u,Du, Is[u]) in R+ × RN

u(0, x) = u0(x) on RN ,

where F (t, x, u, p, L) is continuous and non-decreasing in L. The definition relies on the following
observation: if ϕ is a bounded C2 function, then for any r > 0

Is[ϕ, x] =

∫
|z|6r

(ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z)µ(dz) +

∫
|z|>r

(ϕ(x+ z)− ϕ(x))µ(dz)

= I1,r
s [ϕ, x] + I2,r

s [ϕ, x]

and this expression is independent of r because of the antisymmetry of∇ϕ(x) · zµ(dz).

Definition 1.1 (viscosity solution). A function u ∈ USCb(R+ ×RN) (resp., u ∈ LSCb(R+ ×RN))
is a viscosity subsolution (resp., supersolution) of (1.15) if u(0, x) 6 (u0)

∗(x) (resp., u(0, x) >
(u0)∗(x)) and for any (t0, x0) ∈ R+×RN , any τ ∈ (0, t0) and any test function ϕ ∈ C2(R+×RN)
such that u−ϕ attains a local maximum (resp., minimum) at the point (t0, x0) on Q(τ,r)(t0, x0), then
we have

∂tϕ(t0, x0)− F (t0, x0, u(t0, x0),∇xϕ(t0, x0), I1,r
s [ϕ(t0, ·), x0] + I2,r

s [u(t0, ·), x0]) 6 0

(resp., > 0),

for a positive number r. A function u ∈ Cb(R+×RN) is a viscosity solution of (1.15) if it is a viscosity
sub and supersolution of (1.15).
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One can prove that Definition 1.1 does not depend on r and if the inequality above is satisfied for a
given r > 0, then it is satisfied for any r > 0, see [10] and the references therein.

2. THE ANSATZ

As explained in [10], because of the presence of the term W ′ (uε
ε

)
in (1.6) and (1.7), in order to get

the homogenization results, we need to imbed our problems into higher dimensional ones. Let us first
assume s > 1

2
. Then we will consider:

(2.1)

{
∂tU

ε = ε2s−1Is[U ε(t, ·, xN+1)]−W ′ (Uε
ε

)
+ σ

(
t
ε
, x
ε

)
in R+ × RN+1

U ε(0, x, xN+1) = u0(x) + xN+1 on RN+1

and we will prove that U ε converges as ε→ 0 to the function

U0(t, x, xN+1) = u0(t, x) + xN+1

with u0 the solution of (1.8). We remark that U0 satisfies:

(2.2)

{
∂tU = H1(∇xU) in R+ × RN+1

U(0, x, xN+1) = u0(x) + xN+1 on RN+1.

The convergence of U ε to U0 will imply the converge of uε to u0. In order to prove this result, we
introduce the higher dimensional cell problem: for P = (p, 1) ∈ RN+1 and L ∈ R:
(2.3){

λ+ ∂τV = L+ Is[V (τ, ·, yN+1)]−W ′(V + P · Y + λτ) + σ(τ, y) in R+ × RN+1

V (0, Y ) = 0 on RN+1.

Here we use the notation Y = (y, yN+1). The right Ansatz for U ε solution of (2.1), turns out to be
(2.4)

U ε(t, x, xN+1) ' Ũ ε(t, x, xN+1) := U0(t, x, xN+1) + εV

(
t

ε
,
x

ε
,
U0(t, x, xN+1)− λt− p · x

ε

)
with V the bounded solution of (2.3), for suitable values of p and L. Let us verify it.

Fix P0 = (t0, x0, x
0
N+1) ∈ R+ × RN+1 and let Ũ ε(t, x, xN+1) be defined as in (2.4). Let us denote

(2.5) λ = ∂tU
0(P0), p = ∇xU

0(P0),

and

F (t, x, xN+1) = U0(t, x, xN+1)− λt− p · x, τ =
t

ε
, y =

x

ε
, yN+1 =

F (t, x, xN+1)

ε
.

We remark that P = (p, 1) = ∇(x,xN+1)U
0(P0) and

Ũ ε(t, x, xN+1)

ε
= V (τ, y, yN+1) + λτ + p · y + yN+1 = V (τ, Y ) + P · Y + λτ.

Here we assume for simplicity that U0 and V are smooth. The proof of convergence consists in
showing that Ũ ε is a solution of (2.1) in a cylinder (t0 − r, t0 + r) × Br(x0, x

0
N+1) for r > 0 small

enough, up to an error that goes to 0 as r → 0+. This will allow us to compare U ε with Ũ ε and, thanks
to the boundedness of V , to conclude that U ε converges to U0 as ε→ 0.

When we plug Ũ ε into (2.1), we find the equation

λ+ ∂τV (τ, Y ) = ε2s−1Is[U0(t, ·, xN+1), x] + Is[V (τ, ·, yN+1), y]

−W ′(V + PY + λτ) + σ(τ, y) + θr,
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where

θr = (∂tU
0(P0)− ∂tU0(t, x, xN+1))(∂yN+1

V (τ, Y ) + 1)

+ ε2sIs
[
V

(
t

ε
,
·
ε
,
F (t, ·, xN+1)

ε

)
, x

]
− Is[V (τ, ·, yN+1), y].

If V is solution of (2.3) with p as in (2.5) andL = 0, andU0 satisfies ∂tU0(P0) = λ = H(∇xU
0(P0),

0), then Ũ ε will be a solution of (2.1) up to small errors ε2s−1Is[U0(t, ·, xN+1), x] = oε(1) as ε→ 0
and θr = or(1) as r → 0+. As we will see in Section 4, this last property holds true if the corrector
V satisfies: |V |, |∂yN+1

V | 6 C in R+ × RN+1 for some C > 0, and

∂yN+1
V (τ, ·, ·) is Hölder continuous, uniformly in time.

Since in (2.3) the quantity Is[V (τ, ·, yN+1)] is computed only in the y variable, we cannot expect
this kind of regularity for the correctors. Nevertheless, following [10], we are able to construct regular
approximated sub and supercorrectors, i.e., sub and supersolutions of approximateN+1-dimensional
cell problems, and this is enough to conclude.

Similarly for s < 1
2
, we will consider:

(2.6)

{
∂tU

ε = Is[U ε(t, ·, xN+1)]−W ′ (Uε
ε2s

)
+ σ

(
t
ε2s
, x
ε

)
in R+ × RN+1

U ε(0, x, xN+1) = u0(x) + xN+1 on RN+1,

and we will show that U ε converges as ε→ 0 to the function

U0(t, x, xN+1) = u0(t, x) + xN+1

with u0 the solution of (1.9). Here U0 is solution of

(2.7)

{
∂tU = H2(Is[U(t, ·, xN+1)]) in R+ × RN+1

U(0, x, xN+1) = u0(x) + xN+1 on RN+1.

In this case, the right Ansatz turns out to be

U ε(t, x, xN+1) ' U0(t, x, xN+1) + ε2sV

(
t

ε2s
,
x

ε
,
U0(t, x, xN+1)− λt

ε2s

)
where V is the bounded solution of (2.3) for p = 0 and L = Is[U0(t, ·, xN+1), x].

3. CORRECTORS

In this section we prove Theorem 1.1 and the existence of smooth approximated sub and supersolu-
tions of the higher dimensional cell problem (2.3) introduced in Section 2 which are needed to show the
convergence Theorems 1.2 and 1.3. The proof of these results is given in [10] for the case s = 1 and
it is essentially based on the comparison principle and invariance under integer translations. There-
fore it can be easily extended to the case s ∈ (0, 1) and for this reason, here we only give a sketch of it.

Step 1: Lipschitz correctors.

One introduces the problem: for η > 0, a0, L ∈ R, p ∈ RN and P = (p, 1)

(3.1)

 ∂τU = L+ Is[U(τ, ·, yN+1)]−W ′(U + P · Y ) + σ(τ, y)
+η[a0 + infY ′ U(τ, Y ′)− U(τ, Y )]|∂yN+1

U + 1| in R+ × RN+1

U(0, Y ) = 0 on RN+1,
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and show the existence of the viscosity solution Uη ∈ Cb(R+ × RN+1). When η > 0 this solution
turns out to be Lipschitz continuous in the variable yN+1 with

−1 6 ∂yN+1
Uη(τ, Y ) 6

‖W ′′‖∞
η

.

See the proof of Propositions 6.2, 6.3 and 6.4 in [10] for details about the existence and regularity
of the solution of (3.1). As we will explain in Step 5, choosing conveniently the number a0 in (3.1),
we obtain sub and supersolutions of the N + 1-dimensional cell problem (2.3) which are Lipschitz
continuous in yN+1.

Step 2: Ergodicity.

Using the comparison principle, and the periodicity of σ and W , one can prove the following ergodic
result:

Proposition 3.1 (Ergodic properties). There exists a unique λη = λη(p, L) such that the viscosity
solution Uη ∈ Cb(R+ × RN+1) of (3.1) with η > 0, satisfies:

(3.2) |Uη(τ, Y )− λητ | 6 C for all τ > 0, Y ∈ RN+1,

with C independent of η. Moreover

(3.3) L− ‖W ′‖∞ − ‖σ‖∞ + ηa0 6 λη 6 L+ ‖W ′‖∞ + ‖σ‖∞ + ηa0.

Proposition 3.1 can be proved like Proposition 6.4 in [10].

Step 3: Proof of Theorem 1.1.

Let U be the solution of (3.1) with η = 0, then the function

w(τ, y) := U(τ, y, 0)

is the solution of (1.11) and by Proposition 3.1, there exists a unique λ such that

(3.4) |w(τ, y)− λτ | 6 C.

This property implies that λ is the unique number such that w(τ, y)/τ converges towards λ as τ →
+∞, and Theorem 1.1 is proved.

The next two steps are only needed in the proof of Theorems 1.2 and 1.3. We first state some proper-
ties of the effective Hamiltonian, then in Step 5, we construct approximate sub and supersolutions of
(2.3) which are smooth also in the additional variable yN+1. This further regularity property is needed
to control the error when we compare the solution U ε of (2.1) and (2.6) with the corresponding ansatz,
as explained in Section 2.

Step 4: Properties of the effective Hamiltonian

We have

Proposition 3.2 (Properties of the effective Hamiltonian). Let p ∈ RN and L ∈ R. Let H(p, L)
be the constant defined by Theorem 1.1, then H : RN × R → R is a continuous function with the
following properties:

(i) H(p, L)→ ±∞ as L→ ±∞ for any p ∈ RN ;
(ii) H(p, ·) is non-decreasing on R for any p ∈ RN ;
(iii) If σ(τ, y) = σ(τ,−y) then

H(p, L) = H(−p, L);
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(iv) If W ′(−s) = −W ′(s) and σ(τ,−y) = −σ(τ, y) then

H(p,−L) = −H(p, L).

For the proof of Proposition 3.2 see Proposition 5.4 in [10].

Step 5: Construction of smooth approximate sub and supercorrectors.

The ergodic property (3.1) of Uη implies that there exists C1 > 0 such that

C1 + inf
Y ′
Uη(τ, Y

′)− Uη(τ, Y ) > 0,

for any η > 0. Then, one take U+
η to be the solution of (3.1) with a0 = C1 and U−η to be the solution

of (3.1) with a0 = 0. We remark that U+
η and U−η are respectively super and subsolution of

∂τU = L+ Is[U(τ, ·, yN+1)]−W ′(U + P · Y ) + σ(τ, y).

Let λ+
η = lim

τ→+∞

U+
η (τ, Y )

τ
and λ−η = lim

τ→+∞

U−η (τ, Y )

τ
, whose the existence is guaranteed by

Proposition 3.1. Stability results and the ergodic property (3.2) imply that λ+
η , λ

−
η → λ as η → 0, with

λ given by Theorem 1.1.

Next, one set
W+
η (τ, Y ) := U+

η (τ, Y )− λ+
η τ

and
W−
η (τ, Y ) := U−η (τ, Y )− λ−η τ.

Then W+
η and W−

η are respectively super and subsolution of (2.3) with respectively λ = λ+
η and

λ = λ−η , and are Lipschitz continuous in the variable yN+1. One can in addition show that these
functions are of class Cα with respect to y uniformly in yN+1, for 0 < α < min{1, 2s}. This comes
from Proposition 4.7 in [10] that can be easily adapted to the case s ∈ (0, 1).

The regularity properties of W+
η and W−

η are not enough in order to prove the convergence results,
Theorems 1.2 and 1.3, as pointed out in Section 2. Therefore, one introduces a positive smooth func-
tion ρ : R → R, with support in B1(0) and mass 1 and defines a sequence of mollifiers (ρδ)δ by
ρδ(r) = 1

δ
ρ
(
r
δ

)
, r ∈ R. Then, one finally defines

V ±η,δ(t, y, yN+1) := W±
η (t, y, ·) ? ρδ(·) =

∫
R
W±
η (t, y, z)ρδ(yN+1 − z)dz.

Choosing properly δ = δ(η), one can prove the following result:

Proposition 3.3 (Smooth approximate correctors). Let λ be the constant defined by Theorem 1.1. For
any fixed p ∈ RN , P = (p, 1), L ∈ R and η > 0 small enough, there exist real numbers λ+

η (p, L),
λ−η (p, L), a constant C > 0 (independent of η, p and L) and bounded super and subcorrectors
V +
η , V

−
η , i.e. respectively a super and a subsolution of

(3.5)


λ±η + ∂τV

±
η = L+ Is[V ±η (τ, ·, yN+1)]
−W ′(V ±η + P · Y + λ±η τ) + σ(τ, y)∓oη(1) in R+ × RN+1

V ±η (0, Y ) = 0 on RN+1,

where 0 6 oη(1)→ 0 as η → 0+, such that

(3.6) lim
η→0+

λ+
η (p, L) = lim

η→0+
λ−η (p, L) = λ(p, L),

locally uniformly in (p, L), λ±η satisfy (i) and (ii) of Proposition 3.2 and for any (τ, Y ) ∈ R+ × RN+1

(3.7) |V ±η (τ, Y )| 6 C.
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Moreover V ±η are of class C2 w.r.t. yN+1, and for any 0 < α < min{1, 2s}

(3.8) −1 6 ∂yN+1
V ±η 6

‖W ′′‖∞
η

,

(3.9) ‖∂2
yN+1yN+1

V ±η ‖∞ 6 Cη, < ∂yN+1
V ±η >α

y , 6 Cη,α.

4. PROOF OF THEOREM 1.2

To prove Theorem 1.2, as explained in Section 2, we introduce the higher dimensional problem (2.1)
and we prove the convergence of the solution U ε to the solution U0 of (2.2). Let us first state the
following

Proposition 4.1. For ε > 0 there exists U ε ∈ Cb(R+ × RN+1) (unique) viscosity solution of (2.1).
Moreover, there exists a constant C > 0 independent of ε such that

(4.1) |U ε(t, x, xN+1)− u0(x)− xN+1| 6 Ct.

Proposition 4.1 as well as the existence of a unique solution of problems (1.6), (1.8) and (2.2) is a
consequence of the Perron’s method and the comparison principle for these equations, see [10] and
references therein. Let us exhibit the link between the problem in RN and the problem in RN+1.

Lemma 4.2 (Link between the problems on RN and on RN+1). If uε and U ε denote respectively the
solution of (1.6) and (2.1), then we have∣∣∣U ε(t, x, xN+1)− uε(t, x)− ε

⌊xN+1

ε

⌋∣∣∣ 6 ε,

(4.2) U ε
(
t, x, xN+1 + ε

⌊a
ε

⌋)
= U ε(t, x, xN+1) + ε

⌊a
ε

⌋
for any a ∈ R.

This lemma follows from the comparison principle for (2.1) and the invariance by ε-translations w.r.t.
xN+1.

Lemma 4.3. Let u0 and U0 be respectively the solutions of (1.8) and (2.2). Then, we have

U0(t, x, xN+1) = u0(t, x) + xN+1.

Lemma 4.3 is a consequence of the comparison principle for (2.2) and the invariance by translations
w.r.t. xN+1.

Let us proceed with the proof of Theorem 1.2. In what follows we will use the notationX = (x, xN+1).
By (4.1), we know that the family of functions {U ε}ε>0 is locally bounded, then

U+(t,X) := lim sup
ε→0

∗ U ε(t,X) := lim sup
ε→0

(t′,X′)→(t,X)

U ε(t′, X ′)

is everywhere finite, so it becomes classical to prove that U+ is a subsolution of (2.2).

Similarly, we can prove that

U−(t,X) := lim inf
ε→0

∗ U
ε(t,X) := lim inf

ε→0
(t′,X′)→(t,X)

U ε(t′, X ′)

is a supersolution of (2.2). Moreover U+(0, X) = U−(0, X) = u0(x) + xN+1. The comparison
principle for (2.2) then implies that U+ 6 U−. Since the reverse inequality U− 6 U+ always holds
true, we conclude that the two functions coincide with U0, the unique viscosity solution of (2.2).

By Lemmata 4.2 and 4.3, the convergence of U ε to U0 proves in particular that uε converges towards
u0 viscosity solution of (1.8).
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To prove that U+ is a subsolution of (2.2), we argue by contradiction. We consider a test function φ
such that U+ − φ attains a zero maximum at (t0, X0) with t0 > 0 and X0 = (x0, x

0
N+1). Without

loss of generality we may assume that the maximum is strict and global. Suppose that there exists
θ > 0 such that

∂tφ(t0, X0) = H1(∇xφ(t0, X0)) + θ.

By Proposition 3.2, we know that there exists L1 > 0 (that we take minimal) such that

H1(∇xφ(t0, X0)) + θ = H(∇xφ(t0, X0), 0) + θ = H(∇xφ(t0, X0), L1).

By Propositions 3.3 and 3.2, we can consider a sequence Lη → L1 as η → 0+, such that
λ+
η (∇xφ(t0, X0), Lη) = λ(∇xφ(t0, X0), L1). We choose η so small that Lη− oη(1) > L1/2 > 0,

where oη(1) is defined in Proposition 3.3. Let V +
η be the approximate supercorrector given by Propo-

sition 3.3 with
p = ∇xφ(t0, X0), L = Lη

and
λ+
η = λ+

η (p, Lη) = λ(p, L1) = ∂tφ(t0, X0).

For simplicity of notations, in the following we denote V = V +
η . We consider the function

F (t,X) = φ(t,X)− p · x− λ+
η t,

and as in [10] we introduce the “xN+1-twisted perturbed test function” φε defined by:

(4.3) φε(t,X) :=

{
φ(t,X) + εV

(
t
ε
, x
ε
, F (t,X)

ε

)
+ εkε in ( t0

2
, 2t0)×B 1

2
(X0)

U ε(t,X) outside,

where kε ∈ Z will be chosen later.

We are going to prove that φε is a supersolution of (2.1) in Qr,r(t0, X0) for some r < 1
2

properly
chosen and such that Qr,r(t0, X0) ⊂ ( t0

2
, 2t0) × B 1

2
(X0). First, we observe that since U+ − φ

attains a strict maximum at (t0, X0) with U+ − φ = 0 at (t0, X0) and V is bounded, we can ensure
that there exists ε0 = ε0(r) > 0 such that for ε 6 ε0

(4.4) U ε(t,X) 6 φ(t,X)+εV

(
t

ε
,
x

ε
,
F (t,X)

ε

)
−γr, in

(
t0
3
, 3t0

)
×B1(X0)\Qr,r(t0, X0)

for some γr = or(1) > 0. Hence choosing kε = d−γr
ε
e we get

U ε 6 φε outside Qr,r(t0, X0).

Let us next study the equation satisfied by φε. For this, we observe that
a

ε
− 1 6

⌊a
ε

⌋
6
a

ε

and so, from (4.2), we deduce that

U ε(t, x, xN+1) + a− ε 6 U ε
(
t, x, xN+1 + ε

⌊a
ε

⌋)
6 U ε(t, x, xN+1) + a.

Consequently, passing to the limit, we obtain that U+(t, x, xN+1 + a) = U+(t, x, xN+1) + a for any
a ∈ R.

From this, we derive that ∂xN+1
F (t0, X0) = ∂xN+1

φ(t0, X0) = 1. Then, there exists r0 > 0 such
that the map



12

Id× F : Qr0,r0(t0, X0) −→ Ur0
(t, x, xN+1) 7−→ (t, x, F (t, x, xN+1))

is a C1-diffeomorphism from Qr0,r0(t0, X0) onto its range Ur0 . Let G : Ur0 → R be the map such
that

Id×G : Ur0 −→ Qr0,r0(t0, X0)
(t, x, ξN+1) 7−→ (t, x,G(t, x, ξN+1))

is the inverse of Id × F . Let us introduce the variables τ = t/ε, Y = (y, yN+1) with y = x/ε and
yN+1 = F (t,X)/ε. Let us consider a test function ψ such that φε−ψ attains a global zero minimum
at (t,X) ∈ Qr0,r0(t0, X0) and define

Γε(τ, Y ) =
1

ε
[ψ(ετ, εy,G(ετ, εy, εyN+1))− φ(ετ, εy,G(ετ, εy, εyN+1))]− kε.

Then

ψ(t,X) = φ(t,X) + εΓε
(
t

ε
,
x

ε
,
F (t,X)

ε

)
+ εkε

and Γε is a test function for V :

(4.5) Γε(τ , Y ) = V (τ , Y ) and Γε(τ, Y ) 6 V (τ, Y ) for all (ετ, εY ) ∈ Qr0,r0(t0, X0),

where τ = t/ε, y = x/ε, yN+1 = F (t,X)/ε, Y = (y, yN+1). From Proposition 3.3, we know that
V is Lipschitz continuous w.r.t. yN+1 with Lipschitz constant Mη depending on η. This implies that

(4.6) |∂yN+1
Γε(τ , Y )| 6Mη.

Simple computations yield with P = (p, 1) ∈ RN+1:

(4.7)

{
λ+
η + ∂τΓ

ε(τ , Y ) = ∂tψ(t,X) +
(
1 + ∂yN+1

Γε(τ , Y )
)

(∂tφ(t0, X0)− ∂tφ(t,X)),

λ+
η τ + P · Y + V (τ , Y ) = φε(t,X)

ε
− kε.

Using (4.7) and (4.6), equation (3.5) yields for any ρ > 0

∂tψ(t,X) + or(1) > Lη + I1,ρ
s [Γε(τ , ·, yN+1), y] + I2,ρ

s [V (τ , ·, yN+1), y]

−W ′
(
φε(t,X)

ε

)
+ σ

(
t

ε
,
x

ε

)
− oη(1).

(4.8)

Now, to complete the proof of Theorem 1.2, we state the following lemma (which will be proved in the
next subsection):

Lemma 4.4. (Supersolution property for φε)
For ε 6 ε0(r) < r 6 r0, we have

∂tψ(t,X) > ε2s−1
(
I1,1
s

[
ψ(t, ·, xN+1), x

]
+ I2,1

s

[
φε(t, ·, xN+1), x

])
−W ′

(
φε(t,X)

ε

)
+ σ

(
t

ε
,
x

ε

)
− oη(1) + or(1) + Lη.

(4.9)

The proof of Lemma 4.4 is postponed to the next subsection, for the convenience of the reader, so we
complete now the proof of Theorem 1.2. For this, let r 6 r0 be so small that or(1) > −L1/4. Then,
recalling that Lη − oη(1) > L1/2, for ε 6 ε0(r) we have

∂tψ(t,X) > ε2s−1
(
I1,1
s

[
ψ(t, ·, xN+1), x

]
+ I2,1

s

[
φε(t, ·, xN+1), x

])
−W ′

(
φε(t,X)

ε

)
+ σ

(
t

ε
,
x

ε

)
+
L1

4
,



13

and therefore φε is a supersolution of (2.1) in Qr,r(t0, X0).
Since U ε 6 φε outside Qr,r(t0, X0), by the comparison principle, we conclude that

U ε(t,X) 6 φ(t,X) + εV

(
t

ε
,
x

ε
,
F (t,X)

ε

)
+ εkε in Qr,r(t0, X0)

and we obtain the desired contradiction by passing to the upper limit as ε → 0 at (t0, X0) using the
fact that U+(t0, X0) = φ(t0, X0): 0 6 −γr.
This ends the proof of Theorem 1.2.

4.1. Proof of Lemma 4.4. The result will follow from (4.8) and the following inequality

(4.10)
I1,ρ
s [Γε(τ , ·, yN+1), y] + I2,ρ

s [V (τ , ·, yN+1), y]

> ε2s−1
(
I1,1
s

[
ψ(t, ·, xN+1), x

]
+ I2,1

s

[
φε(t, ·, xN+1), x

])
+ or(1)

Keep in mind that yN+1 = F (t,X)
ε

. Since ψ(t,X) = φ(t,X) + εΓε
(
t
ε
, x
ε
, F (t,X)

ε

)
+ εkε, we have

I1,1
s

[
ψ(t, ·, xN+1), x

]
= I1 + I2,(4.11)

where
I1 =

∫
|x|61

ε

(
Γε
(
t
ε
, x+x

ε
, F (t,x+x,xN+1)

ε

)
− Γε(τ , Y )

−∇yΓ
ε(τ , Y ) · x

ε
− ∂yN+1

Γε(τ , Y )∇xF (t,X) · x
ε

)
µ(dx),

I2 =

∫
|x|61

(
φ(t, x+ x, xN+1)− φ(t,X)−∇φ(t,X) · x

)
µ(dx).

In order to show (4.10), we show successively in Steps 1, 2 and 3:
ε2s−1I1 6 I1,ρ

s [Γε(τ , ·, yN+1), y] + I2,ρ
s [V (τ , ·, yN+1), y] + or(1) + Cερ

2−2s

ε2s−1I2 6 or(1)

ε2s−1I2,1
s

[
φε(t, ·, xN+1), x

]
6 or(1)

Because the expressions are non linear and non-local and with a singular kernel, there is no simple
computation and we have to carefully check those inequalities sometimes splitting terms in easier
parts to estimate.

Step 1: We can choose ε0 so small that for any ε 6 ε0 and any ρ > 0 small enough

ε2s−1I1 6 I1,ρ
s [Γε(τ , ·, yN+1), y] + I2,ρ

s [V (τ , ·, yN+1), y] + or(1) + Cερ
2−2s.

Take ρ > 0, δ > ρ small and R > 0 large and such that εR < 1. Since g is even, we can write

I1 = I0
1 + I1

1 + I2
1 + I3

1 ,

where

I0
1 =

∫
|x|6ερ

ε

(
Γε
(
t

ε
,
x+ x

ε
,
F (t, x+ x, xN+1)

ε

)
− Γε(τ , Y )−∇yΓ

ε(τ , Y ) · x
ε

−∂yN+1
Γε(τ , Y )∇xF (t,X) · x

ε

)
µ(dx),
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I1
1 =

∫
ερ6|x|6εδ

ε

(
Γε
(
t

ε
,
x+ x

ε
,
F (t, x+ x, xN+1)

ε

)
− Γε(τ , Y )

)
µ(dx),

I2
1 =

∫
εδ6|x|6εR

ε

(
Γε
(
t

ε
,
x+ x

ε
,
F (t, x+ x, xN+1)

ε

)
− Γε(τ , Y )

)
µ(dx),

I3
1 =

∫
εR6|x|61

ε

(
Γε
(
t

ε
,
x+ x

ε
,
F (t, x+ x, xN+1)

ε

)
− Γε(τ , Y )

)
µ(dx).

Moreover

I2,ρ
s [V (τ , ·, yN+1), y] = J1 + J2 + J3,

where

J1 =

∫
ρ<|z|6δ

(V (τ , y + z, yN+1)− V (τ , Y ))µ(dz),

J2 =

∫
δ<|z|6R

(V (τ , y + z, yN+1)− V (τ , Y ))µ(dz),

J3 =

∫
|z|>R

(V (τ , y + z, yN+1)− V (τ , Y ))µ(dz).

STEP 1.1: Estimate of ε2s−1I0
1 and I1,ρ

s [Γε(τ , ·, yN+1), y].

Since Γε is of class C2, we have

(4.12) |ε2s−1I0
1 |, |I1,ρ

s [Γε(τ , ·, yN+1), y]| 6 Cερ
2−2s,

where Cε depends on the second derivatives of Γε. Notice that if we knew that V is smooth in y too,
we could choose ρ = 0.

STEP 1.2 Estimate of ε2s−1I1
1 − J1.

Using (4.5) and the fact that g is even, we can estimate ε2s−1I1
1 − J1 as follows

ε2s−1I1
1 − J1 6

∫
ρ<|z|6δ

[
V

(
τ , y + z,

F (t, x+ εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t,X)

ε

)]
µ(dz)

=

∫
ρ<|z|6δ

{[
V

(
τ , y + z,

F (t, x+ εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t,X)

ε

)
−∂yN+1

V

(
τ , y + z,

F (t,X)

ε

)
∇xF (t,X) · z

]
+
[
∂yN+1

V (τ , y + z, yN+1)− ∂yN+1
V (τ , Y )

]
∇xF (t,X) · z

}
µ(dz).

Next, using (3.9), we get

(4.13) ε2s−1I1
1 − J1 6 C

∫
|z|6δ

(|z|2 + |z|1+α)µ(dz) 6 Cδα+1−2s,

for 2s− 1 < α < 1.

STEP 1.3 Estimate of ε2s−1I2
1 − J2.

If Mη is the Lipschitz constant of V w.r.t. yN+1, then
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ε2s−1I2
1 − J2 6

∫
δ<|z|6R

(
V

(
τ , y + z,

F (t, x+ εz, xN+1)

ε

)
− V

(
τ , y + z,

F (t,X)

ε

))
µ(dz)

6Mη

∫
δ<|z|6R

∣∣∣∣F (t, x+ εz, xN+1)

ε
− F (t,X)

ε

∣∣∣∣µ(dz)

6Mη

∫
δ<|z|6R

sup
|z|6R

|∇xF (t, x+ εz, xN+1)||z|µ(dz).

Then

(4.14) ε2s−1I2
1 − J2 6 C sup

|z|6R
|∇xF (t, x+ εz, xN+1)|

(
1

δ2s−1
− 1

R2s−1

)
.

STEP 1.4: Estimate of ε2s−1I3
1 and J3.

Since V is uniformly bounded on R+ × RN+1, we have

ε2s−1I3
1 6

∫
R<|z|6 1

ε

(
V

(
τ , y + z,

F (t, x+ εz, xN+1)

ε

)
− V (τ , Y )

)
µ(dz)

6
∫
|z|>R

2‖V ‖∞µ(dz) 6
C

R2s
.

(4.15)

Similarly

(4.16) |J3| 6
C

R2s
.

Now, from (4.12), (4.13), (4.14), (4.15) and (4.16), we infer that

ε2s−1I1 6 I1,ρ
s [Γε(τ , ·, yN+1), y] + I2,ρ

s [V (τ , ·, yN+1), y] + 2Cερ
2−2s + Cδα+1−2s

+ C sup
|z|6R

|∇xF (t, x+ εz, xN+1)|
(

1

δ2s−1
− 1

R2s−1

)
+

C

R2s
.

We remark that, from the definition of F , we have

sup
|z|6R

|∇xF (t, x+ εz, xN+1)| 6 sup
|z|6R

|∇φ(t, x+ εz, xN+1)−∇φ(t0, X0)|

6 sup
|z|6R

|∇φ(t, x+ εz, xN+1)−∇φ(t,X)|

+ |∇φ(t,X)−∇φ(t0, X0)|
6 C(εR + r).

Now, we choose R = R(r) such R → +∞ as r → 0+, ε0 = ε0(r) such that Rε0(r) 6 r and
δ = δ(r) > 0 such that δ → 0 as r → 0+ and r/δ2s−1 → 0 as r → 0+. With this choice, for any
ε 6 ε0 and any ρ < δ

Cδα+1−2s + C sup
|z|6R

|∇xF (t, x+ εz, xN+1)|
(

1

δ2s−1
− 1

R2s−1

)
+

C

R2s
= or(1) as r → 0+,

and Step 1 is proved.

The next two steps are trivial.

Step 2: ε2s−1I2 6 Cε2s−1.
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Step 3: ε2s−1I2,1
s

[
φε(t, ·, xN+1), x

]
6 Cε2s−1.

Finally Steps 1, 2 and 3 give

ε2s−1I1,1
s

[
ψ(t, ·, xN+1), x

]
+ ε2s−1I2,1

s

[
φε(t, ·, xN+1), x

]
6 I1,ρ

s [Γε(τ , ·, yN+1), y] + I2,ρ
s [V (τ , ·, yN+1), y] + or(1) + Cερ

2−2s.

from which, using inequality (4.8) and letting ρ→ 0+, we get (4.9).

5. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 is similar to the proof of Theorem 1.2, therefore we only give a sketch of
it. As in Theorem 1.2, we argue by contradiction, assuming that there is a test function φ such that
U+ − φ attains a strict zero maximum at (t0, X0) with t0 > 0 and X0 = (x0, x

0
N+1), and

∂tφ(t0, X0) = H2(L0) + θ

for some θ > 0, where

L0 =

∫
|x|61

(φ(t0, x0 + x, x0
N+1)− φ(t0, X0)−∇xφ(t0, X0) · x)µ(dx)

+

∫
|x|>1

(U+(t0, x0 + x, x0
N+1)− U+(t0, X0))µ(dx).

(5.1)

Then, we choose L1 > 0 and a sequence Lη → L1 as η → 0+, such that

λ+
η (0, Lη + L0) = λ(0, L1 + L0) = λ(0, L0) + θ = H2(L0) + θ.

Let V be the approximate supercorrector given by Proposition 3.3 with

p = 0, L = L0 + Lη

and

λ+
η = λ+

η (0, L0 + Lη) = ∂tφ(t0, X0).

Let us introduce the “xN+1-twisted perturbed test function” φε defined by:

φε(t,X) :=

{
φ(t,X) + ε2sV

(
t
ε2s
, x
ε
, F (t,X)

ε2s

)
+ ε2skε in ( t0

2
, 2t0)×B 1

2
(X0)

U ε(t,X) outside,

where F (t,X) = φ(t,X)− λ+
η t and kε ∈ Z is opportunely chosen. As in Section 4, we can prove

that φε is a supersolution of (2.6) in a neighborhoodQr,r(t0, X0) of (t0, X0), for some small r properly
chosen. Moreover

U ε 6 φε outside Qr,r(t0, X0).

The contradiction follows by comparison.

6. PROOF OF THEOREM 1.4

In this section we restrict ourself to the case: N = 1, Is = −(−∆)s and σ ≡ 0. For fixed p, L ∈ R,
let us introduce the corrector

u(τ, y) := w(τ, y) + py

where w is the solution of (1.11) given by Theorem 1.1. Then u is solution of
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(6.1)

{
∂τu = L+ Is[u(τ, ·)]−W ′(u) in R+ × R
u(0, y) = py on R,

and by the ergodic property (3.4) it satisfies

(6.2) |u(τ, y)− py − λτ | 6 C.

The idea underlying the proof of Theorem 1.4 is related to a fine asymptotics of equation (6.1). We
want to show that if u solves (6.1) with p = δ|p0| and L = δ2sL0, i.e.

(6.3) ∂τu = δ2sL0 + Is[u(τ, ·)]−W ′(u)

and u(0, y) = δp0y, then

u(τ, y) ∼ δp0y + λτ + bounded with λ ∼ δ1+2sc0|p0|L0.

We deduce that we should have

u(τ, y)

τ
→ λ = δ1+2sc0|p0|L0 as τ → +∞.

We see that this λ = H(δp0, δ
2sL0) is exactly the one we expect asymptotically in Theorem 1.4.

Following the idea of [11], one may expect to find particular solutions u of (6.3) that we can write

u(τ, y) = h(δp0y + λτ)

for some λ ∈ R and a function h (called hull function) satisfying

|h(z)− z| 6 C.

This means that h solves

λh′ = δ2sL0 + δ2s|p0|2sIs[h]−W ′(h).

Then it is natural to introduce the non-linear operator:

(6.4) NLλL0
[h] := λh′ − δ2sL0 − δ2s|p0|2sIs[h] +W ′(h)

and for the ansatz for λ:
λ
L0

δ = δ1+2sc0|p0|L0

it is natural to look for an ansatz hL0
δ for h. We define (see Proposition 6.1)

hL0
δ (x) = lim

n→+∞
sL0
δ,n(x)

where for s > 1
2

and for all p0 6= 0, L0 ∈ R, δ > 0 and n ∈ N we define the sequence of functions

{sL0
δ,n(x)}n by

(6.5) sL0
δ,n(x) =

δ2sL0

α
+

n∑
i=−n

φ

(
x− i
δ|p0|

)
− n+ δ2s

n∑
i=−n

ψ

(
x− i
δ|p0|

)
where α = W ′′(0) > 0 and φ is the solution of (1.13). The corrector ψ is the solution of the following
problem

(6.6)


Is[ψ] = W ′′(φ)ψ + L0

W ′′(0)
(W ′′(φ)−W ′′(0)) + cφ′ in R

lim
x→+
−∞

ψ(x) = 0

c = L0R
R(φ′)2

.
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For s < 1
2
, the function ψ defined above may not decay fast enough so that the sequence

n∑
i=−n

ψ

(
x− i
δ|p0|

)
converges. Therefore, in this case we define

(6.7) sL0
δ,n(x) =

δ2sL0

α
+

n∑
i=−n

φ

(
x− i
δ|p0|

)
− n+ δ2s

n∑
i=−n

ψ

(
x− i
δ|p0|

)
τ

(
x− i
δ|p0|

)
where τ = τR, is a smooth function satisfying

(6.8)


0 6 τ(x) 6 1 for any x ∈ R
τR(x) = 1 if |x| 6 R

τR(x) = 0 if |x| > 2R.

The number R is a large parameter that will be chosen depending on δ.

Proposition 6.1. (Good ansatz)
Assume (1.12) and R = 1

2δ|p0| in (6.8). Then, for any L ∈ R, δ > 0 and x ∈ R, there exists the finite
limit

hLδ (x) = lim
n→+∞

sLδ,n(x).

Moreover hLδ has the following properties:

(i) hLδ ∈ C2(R) and satisfies

(6.9) NL
λ
L
δ
L [hLδ ](x) = o(δ2s),

where lim
δ→0

o(δ2s)

δ2s
= 0, uniformly for x ∈ R and locally uniformly in L ∈ R; Here

λ
L

δ = δ1+2sc0|p0|L

and NLλL is defined in (6.4).
(ii) There exists a constant C > 0 such that |hLδ (x)− x| 6 C for any x ∈ R.

6.1. Proof of Theorem 1.4. We will show that Theorem 1.4 follows from Proposition 6.1 and the
comparison principle.

Fix η > 0 and let L = L0 − η. By (i) of Proposition 6.1, there exists δ0 = δ0(η) > 0 such that for
any δ ∈ (0, δ0) we have

(6.10) NL
λ
L
δ
L0

[hLδ ] = NL
λ
L
δ
L [hLδ ]− δ2sη < 0 in R.

Let us consider the function ũ(τ, y), defined by

ũ(τ, y) = hLδ (δp0y + λ
L

δ τ).

By (ii) of Proposition 6.1, we have

(6.11) |ũ(τ, y)− δp0y − λ
L

δ τ | 6 dCe,

where dCe is the ceil integer part of C . Moreover, by (6.10) and (6.11), ũ satisfies{
ũτ 6 δ2sL0 + Is[ũ]−W ′(ũ) in R+ × R
ũ(0, y) 6 δp0y + dCe on R.



19

Let u(τ, y) be the solution of (6.1), with p = δp0 and L = δ2sL0, whose existence is ensured by
Theorem 1.1. Then from the comparison principle and the periodicity of W , we deduce that

ũ(τ, y) 6 u(τ, y) + dCe.
By the previous inequality and (6.11), we get

λ
L

δ τ 6 u(τ, y)− δp0y + 2dCe,
and dividing by τ and letting τ go to +∞, we finally obtain

δ1+2sc0|p0|(L0 − η) = λ
L

δ 6 H(δp0, δ
2sL0).

Similarly, it is possible to show that

H(δp0, δ
2sL0) 6 δ1+2sc0|p0|(L0 + η).

We have proved that for any η > 0 there exists δ0 = δ0(η) > 0 such that for any δ ∈ (0, δ0) we have∣∣∣∣H(δp0, δ
2sL0)

δ1+2s
− c0|p0|L0

∣∣∣∣ 6 c0|p0|η,

i.e. (1.14), as desired.

6.2. Preliminary results.

Under the assumptions (1.12) on W , there exists a unique solution of (1.13) which is of class C2,β ,
as shown in [2], see also [13]. When s < 1

2
we suppose in addition that W is even. This implies that

the function

φ− 1

2

is odd. The existence of a solution of class C1,β
loc (R) ∩ L∞(R) of the problem (6.6) is proved in [13].

Actually, the regularity of W implies that φ ∈ C4,β(R) and ψ ∈ C3,β(R).

To prove Proposition 6.1 we need several preliminary results. We first state the following two lemmata
about the behavior of the functions φ and ψ at infinity. We denote by H(x) the Heaviside function
defined by

H(x) =

{
1 for x > 0

0 for x < 0.

Then we have

Lemma 6.2 (Behavior of φ). Assume (1.12). Let φ be the solution of (1.13), then there exists a
constant K1 > 0 such that

(6.12)

∣∣∣∣φ(x)−H(x) +
1

2sα

x

|x|1+2s

∣∣∣∣ 6 K1

|x|1+2s
, for |x| > 1, if s >

1

2
,

(6.13) |φ(x)−H(x)| 6 K1

|x|2s
, for |x| > 1, if s <

1

2
,

and for any x ∈ R, s ∈ (0, 1),

(6.14) 0 < φ′(x) 6
K1

1 + |x|1+2s
,

(6.15) |φ′′(x)| 6 K1

1 + |x|1+2s
,
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(6.16) |φ′′′(x)| 6 K1

1 + |x|1+2s
.

Proof. Estimate (6.12) is proved in [5], while estimates (6.13) and (6.14) are proved in [13].

Since the proof of (6.15) and (6.16) is an adaptation of the one given in [11] for the same estimates in
the case s = 1

2
, we only sketch it.

To get (6.15), as in the proof of Lemma 3.1 in [11] one looks to the equations satisfied by φ :=
φ′′ − Cφ′a(x), where φ′a(x) := φ′

(
x
a

)
, a > 0:

Is[φ]−W ′′(φ)φ = Cφ′a

(
W ′′(φ)− 1

a2s
W ′′(φa)

)
+W ′′′(φ)(φ′)2.

For a and R1 large enough, we can prove that in R \ [−R1, R1] we have

Is[φ]−W ′′(φ)φ > 0 and W ′′(φ) > 0.

Choosing C so large that φ 6 0 on [−R1, R1], the comparison principle implies φ 6 0 in R,
therefore φ′′ 6 Cφ′a(x) in R. Similarly one can prove that φ′′ > −Cφ′a(x) in R, and using (6.14),
(6.15) follows.

In the same way, comparing φ′′′ with Cφ′a(x), we get estimate (6.16). �

Lemma 6.3 (Behavior of ψ). Assume (1.12). Let ψ be the solution of (6.6), then for any L ∈ R there
exist K2 and K3 > 0, depending on L such that

(6.17)

∣∣∣∣ψ(x)−K2
x

|x|1+2s

∣∣∣∣ 6 K3

|x|1+2s
, for |x| > 1, if s >

1

2

and for any s ∈ (0, 1) and x ∈ R

(6.18) |ψ′(x)| 6 K3

1 + |x|1+2s
,

(6.19) |ψ′′(x)| 6 K3

1 + |x|1+2s
.

Proof. We follow the proof of Lemma 3.2 in [11]. Let us start with the proof of (6.17). Since we want to
point out where we use s > 1

2
, we give it in the details. For a > 0 we denote φa(x) := φ

(
x
a

)
, which

is solution of

Is[φa] =
1

a2s
W ′(φa) in R.

In what follows, we denote φ̃(x) = φ(x) − H(x). Let a and b be positive numbers, then making a
Taylor expansion of the derivatives of W (remind W ′(0) = 0), we get

Is[ψ − (φa − φb)] = W ′′(φ)ψ +
L

α
(W ′′(φ)−W ′′(0)) + cφ′ +

(
1

b2s
W ′(φb)−

1

a2s
W ′(φa)

)
= W ′′(φ)(ψ − (φa − φb)) +W ′′(φ̃)(φa − φb) +

L

α
(W ′′(φ̃)−W ′′(0))

+ cφ′ +

(
1

b2s
W ′(φ̃b)−

1

a2s
W ′(φ̃a)

)
= W ′′(φ)(ψ − (φa − φb)) +W ′′(0)(φa − φb) +

L

α
W ′′′(0)φ̃+ cφ′

+W ′′(0)

(
1

b2s
φ̃b −

1

a2s
φ̃a

)
+ (φa − φb)O(φ̃) +O(φ̃)2 +O(φ̃a)

2 +O(φ̃b)
2.
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Then the function ψ = ψ − (φa − φb) satisfies

Is[ψ]−W ′′(φ)ψ = α(φa − φb) +
L

α
W ′′′(0)φ̃+ cφ′ + α

(
1

b2s
φ̃b −

1

a2s
φ̃a

)
+ (φa − φb)O(φ̃) +O(φ̃)2 +O(φ̃a)

2 +O(φ̃b)
2.

We want to estimate the right-hand side of the last equality. By Lemma 6.2, for |x| > max{1, |a|, |b|}
we have

α(φa − φb) +
L

α
W ′′′(0)φ̃ > − x

2s|x|1+2s

[
(a2s − b2s) +

L

α2
W ′′′(0)

]
− K1α

|x|1+2s

(
a1+2s + b1+2s +

|L|
α2
|W ′′′(0)|

)
.

Choose a, b > 0 such that (a2s − b2s) + L
α2W

′′′(0) = 0, then

α(φa − φb) +
L

α
W ′′′(0)φ̃ > − C

|x|1+2s
,

for |x| > max{1, |a|, |b|}. Here and in what follows, as usual C denotes various positive constants.
From Lemma 6.2 we also derive that

α

(
1

b2s
φ̃b −

1

a2s
φ̃a

)
> − C

|x|1+2s
,

and cφ′ > − C

1 + |x|1+2s
.

Moreover, since s > 1
2
, we have

(φa − φb)O(φ̃) +O(φ̃)2 +O(φ̃a)
2 +O(φ̃b)

2 > − C

1 + |x|4s
> − C

1 + |x|1+2s
,

for |x| > max{1, |a|, |b|}. Then we conclude that there exists R1 > 0 such that for |x| > R1 we
have

Is[ψ]−W ′′(φ)ψ > − C

1 + |x|1+2s
.

Now, let us consider the function φ′d(x) = φ′
(
x
d

)
, d > 0, which is solution of

Is[φ′d] =
1

d2s
W ′′(φd)φ

′
d in R,

and denote
ψ = ψ − C̃φ′d,

with C̃ > 0. Then, for |x| > R1 we have

Is[ψ] > W ′′(φ)ψ − C̃

d2s
W ′′(φd)φ

′
d −

C

1 + |x|1+2s

= W ′′(φ)ψ + C̃φ′d

(
W ′′(φ)− 1

d2s
W ′′(φd)

)
− C

1 + |x|1+2s
.

Let us choose d > 0 and R2 > R1 such that{
W ′′(φ)− 1

d2s
W ′′(φd) >

1
2
W ′′(0) > 0 in R \ [−R2, R2];

W ′′(φ) > 0 on R \ [−R2, R2],

then from (6.14), for C̃ large enough we get

Is[ψ]−W ′′(φ)ψ > 0 on R \ [−R2, R2].
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Choosing C̃ such that moreover

ψ < 0 on [−R2, R2],

we can ensure thatψ 6 0 on R. Indeed, assume by contradiction that there exists x0 ∈ R\[−R2, R2]
such that

ψ(x0) = sup
R
ψ > 0.

Then 
Is[ψ, x0] 6 0;

Is[ψ, x0]−W ′′(φ(x0))ψ(x0) > 0;
W ′′(φ(x0)) > 0,

from which

ψ(x0) 6 0,

a contradiction. Therefore, ψ 6 0 on R which implies, with together (6.12) and (6.14),

ψ 6
K2x

|x|1+2s
+

K3

|x|1+2s
for |x| > 1.

Looking at the function ψ − (φa − φb) + C̃φ′d, we conclude similarly that

ψ >
K2x

|x|1+2s
− K3

|x|1+2s
for |x| > 1,

and (6.17) is proved.

Now let us turn to (6.18). By deriving the first equation in (6.6), we see that the function ψ′ which is
bounded and of class C2,β , is a solution of

Is[ψ′] = W ′′(φ)ψ′ +W ′′′(φ)φ′ψ +
L

α
W ′′′(φ)φ′ + cφ′′ in R.

Then the function ψ
′
= ψ′ − Cφ′a, satisfies

Is[ψ
′
]−W ′′(φ)ψ

′
= Cφ′a

(
W ′′(φ)− 1

a2s
W ′′(φa)

)
+W ′′′(φ)φ′ψ +

L

α
W ′′′(φ)φ′ + cφ′′

= Cφ′a

(
W ′′(φ)− 1

a2s
W ′′(φa)

)
+O

(
1

1 + |x|1+2s

)
,

by (6.14) and (6.15) and as before we deduce that for C and a large enough ψ
′
6 0 on R, which

implies that ψ′ 6 K3

1+|x|1+2s . The inequality ψ′ > − K3

1+|x|1+2s is obtained similarly by proving that

ψ
′
+ Cφ′a > 0 on R.

Similarly, estimate (6.19) is obtained by comparing ψ′′ with Cφ′a for some large a and C and using
(6.14), (6.15) and (6.16). �

6.3. Proof of Proposition 6.1.

For simplicity of notation we denote (for the rest of the paper)

xi =
x− i
δ|p0|

, φ̃(z) = φ(z)−H(z).

Then we have the following six claims (whose proofs are postponed to the end of the section).
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Claim 1: Let x = i0 + γ, with i0 ∈ Z and γ ∈
(
−1

2
, 1

2

]
, then there exist numbers θi ∈ (−1, 1) such

that
n∑

i=−n
i6=i0

x− i
|x− i|1+2s

→ −4sγ
+∞∑
i=1

(i− θiγ)2s−1

(i+ γ)2s(i− γ)2s
as n→ +∞,

i0−1∑
i=−n

1

|x− i|1+2s
→

+∞∑
i=1

1

(i+ γ)1+2s
as n→ +∞,

n∑
i=i0+1

1

|x− i|1+2s
→

+∞∑
i=1

1

(i− γ)1+2s
as n→ +∞.

We remark that the three series on the right hand side above converge uniformly for γ ∈
(
−1

2
, 1

2

]
and

θi ∈ (−1, 1) since behave like the series
+∞∑
i=1

1

i1+2s
.

Claim 2: Assume s < 1
2
. Let x = i0 + γ, with i0 ∈ Z and γ ∈

(
−1

2
, 1

2

]
, then

(6.20) lim
n→∞

∣∣∣∣∣∣∣
n∑

i=−n
i 6=i0

[φ̃(xi)]
2k−1

∣∣∣∣∣∣∣ 6 Ckδ2s(2k−1)|γ|

and

(6.21)
n∑

i=−n
i6=i0,i0±1

|Is[τ, xi]| 6 Cδ2s.

Claim 3: For any x ∈ R the sequence {sLδ,n(x)}n converges as n→ +∞.

Claim 4: The sequence {(sLδ,n)′}n converges on R as n→ +∞, uniformly on compact sets.

Claim 5: The sequence {(sLδ,n)′′}n converges on R as n→ +∞, uniformly on compact sets.

Claim 6: For any x ∈ R the sequence
n∑

i=−n

Is[sLδ,n, xi] converges as n→ +∞.

With these claims, we are in the position of completing the proof of Proposition 6.1, by arguing as
follows.

Proof of ii)
When s > 1

2
, (ii) is a consequence of (6.50) in the proof of Claim 3.
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Next, let us assume s < 1
2
. Let x = i0 + γ with i0 ∈ Z and γ ∈

(
−1

2
, 1

2

]
. For n > |i0|, we have

i=n∑
i=−n

φ(xi)− n− x =
i=n∑
i=−n

φ(xi)− n− i0 − γ

=

i0−1∑
i=−n

(φ(xi)− 1) + φ(xi0) +
n∑

i=i0+1

φ(xi)− γ

=
i=n∑
i=−n
i 6=i0

φ̃(xi) + φ(xi0)− γ.

Then by (6.20) with k = 1

(6.22)

∣∣∣∣∣
i=n∑
i=−n

φ(xi)− n− x

∣∣∣∣∣ 6 C,

with C independent of x. Finally, for i 6= i0 − 1, i0, i0 + 1 and R = 1
2δ|p0|

|xi| =
|i0 + γ − i|

δ|p0|
>

3

2δ|p0|
> 2R,

therefore τ(xi) = 0. This implies that
n∑

i=−n

ψ(xi)τ(xi) is actually the sum of only three terms and

therefore

(6.23)

∣∣∣∣∣
i=n∑
i=−n

ψ(xi)τ(xi)

∣∣∣∣∣ 6 3‖ψ‖∞.

Estimates (6.22) and (6.23) imply (ii).

Proof of i)
The function hLδ (x) = lim

n→+∞
sLδ,n(x) is well defined for any x ∈ R by Claim 3. Moreover, by Claims

4 and 5 and classical analysis results, it is of class C2 on R with

(hLδ )′(x) = lim
n→+∞

(sLδ,n)′(x),

(hLδ )′′(x) = lim
n→+∞

(sLδ,n)′′(x),

and the convergence of {sLδ,n}n, {(sLδ,n)′}n and {(sLδ,n)′′}n is uniform on compact sets.

Finally, as in [11] (see Section 4), we have for any x ∈ R

(6.24) Is[hLδ , x] = lim
n→+∞

Is[sLδ,n, x].

To conclude the proof of Proposition 6.1, we only have to prove (6.9), which is a consequence of the
estimates above and the following lemma.

Lemma 6.4. (First asymptotics) We have

lim
n→+∞

NL
λ
L
δ
L [sLδ,n](x) = o(δ2s) as δ → 0

where lim
δ→0

o(δ2s)

δ2s
= 0, uniformly for x ∈ R.
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Now we can conclude the proof of (i). Indeed, by Claim 3, Claim 4 and (6.24), for any x ∈ R

NL
λ
L
δ
L [hLδ ](x) = lim

n→+∞
NL

λ
L
δ
L [sLδ,n](x),

and Lemma 6.4 implies that

NL
λ
L
δ
L [hLδ ](x) = o(δ2s), as δ → 0,

where lim
δ→0

o(δ2s)

δ2s
= 0, uniformly for x ∈ R.

Proof of Lemma 6.4.

Let us first assume s > 1
2
.

Step 1: First computation
Fix x ∈ R, let i0 ∈ Z and γ ∈

(
−1

2
, 1

2

]
be such that x = i0 + γ, let 1

δ|p0| > 2 and n > |i0|. Then
we have

A := NL
λ
L
δ
L [sLδ,n](x)

=
λ
L

δ

δ|p0|

n∑
i=−n

[
φ′(xi) + δ2sψ′(xi)

]
−

n∑
i=−n

[
Is[φ, xi] + δ2sIs[ψ, xi]

]
+W ′

(
Lδ2s

α
+

n∑
i=−n

[
φ(xi) + δ2sψ(xi)

])
− δ2sL

where we have used the definitions and the periodicity of W . Using the equation (1.13) satisfied by φ,
we can rewrite it as

A =
λ
L

δ

δ|p0|

φ′(xi0) + δ2sψ′(xi0) +
n∑

i=−n
i 6=i0

[
φ′(xi) + δ2sψ′(xi)

]−
n∑

i=−n
i 6=i0

W ′(φ̃(xi))

− δ2s

n∑
i=−n
i6=i0

Is[ψ, xi]− δ2sIs[ψ, xi0 ]

+W ′

(
Lδ2s

α
+

n∑
i=−n

[
φ̃(xi) + δ2sψ(xi)

])
−W ′(φ̃(xi0))− δ2sL.
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Using the Taylor expansion of W ′ (remind that W ′(0) = 0) and the definition of λ
L

δ , we get

A = δ2sc0L

φ′(xi0) + δ2sψ′(xi0) +
n∑

i=−n
i 6=i0

[
φ′(xi) + δ2sψ′(xi)

]
−W ′′(0)

n∑
i=−n
i6=i0

φ̃(xi)− δ2s

n∑
i=−n
i 6=i0

Is[ψ, xi]− δ2sIs[ψ, xi0 ]

+W ′′(φ(xi0))

Lδ2s

α
+ δ2sψ(xi0) +

n∑
i=−n
i6=i0

[
φ̃(xi) + δ2sψ(xi)

]− δ2sL+ E

with the error term

E = E1 + E2,

where

E1 = −
n∑

i=−n
i 6=i0

W ′(φ̃(xi)) +W ′′(0)
n∑

i=−n
i 6=i0

φ̃(xi)

and

E2 = O

Lδ2s

α
+ δ2sψ(xi0) +

n∑
i=−n
i 6=i0

[
φ̃(xi) + δ2sψ(xi)

]
2

.

Simply reorganizing the terms, we get with c = c0L:

A = δ2sc

δ2sψ′(xi0) +
n∑

i=−n
i 6=i0

[
φ′(xi) + δ2sψ′(xi)

]−W ′′(0)
n∑

i=−n
i 6=i0

φ̃(xi)− δ2s

n∑
i=−n
i6=i0

Is[ψ, xi]

+W ′′(φ(xi0))

 n∑
i=−n
i6=i0

[
φ̃(xi) + δ2sψ(xi)

]
+ δ2s

(
− Is[ψ, xi0 ] +W ′′(φ(xi0))ψ(xi0) +

L

α
W ′′(φ(xi0))− L+ cφ′(xi0)

)
+ E.

Using equation (6.6) satisfied by ψ, we get

A = δ2sc

δ2sψ′(xi0) +
n∑

i=−n
i 6=i0

[
φ′(xi) + δ2sψ′(xi)

]+ (W ′′(φ(xi0))−W ′′(0))
n∑

i=−n
i6=i0

φ̃(xi)

− δ2s

n∑
i=−n
i6=i0

Is[ψ, xi] +W ′′(φ(xi0))δ
2s

n∑
i=−n
i6=i0

ψ(xi) + E.

Let us bound the second term of the last equality, uniformly in x.
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Step 2: Bound on
n∑

i=−n
i 6=i0

[
φ′(xi) + δ2sψ′(xi)

]
From (6.14) and (6.18) it follows that

− δ1+4s|p0|1+2sK3

n∑
i=−n
i6=i0

1

|x− i|1+2s
6

n∑
i=−n
i 6=i0

[
φ′(xi) + δ2sψ′(xi)

]

6 δ1+2s|p0|1+2s(K1 + δ2sK3)
n∑

i=−n
i 6=i0

1

|x− i|1+2s
,

and then by Claim 1 we get

(6.25) −Cδ1+4s 6 lim
n→+∞

n∑
i=−n
i6=i0

[
φ′(xi) + δ2sψ′(xi)

]
6 Cδ1+2s.

Here and henceforth, C denotes various positive constants independent of x.

Step 3: Bound on (W ′′(φ(xi0))−W ′′(0))
n∑

i=−n
i 6=i0

φ̃(xi)

Let us prove that

(6.26) lim
n→+∞

∣∣∣∣∣∣∣(W ′′(φ(xi0))−W ′′(0))
n∑

i=−n
i 6=i0

φ̃(xi)

∣∣∣∣∣∣∣ 6 Cδ1+2s.

By (6.12) we have∣∣∣∣∣∣∣
n∑

i=−n
i 6=i0

φ̃(xi) +
δ2s|p0|2s

2sα

n∑
i=−n
i6=i0

x− i
|x− i|1+2s

∣∣∣∣∣∣∣ 6 K1δ
1+2s|p0|1+2s

n∑
i=−n
i 6=i0

1

|x− i|1+2s
.(6.27)

If |γ| > δ|p0| then |xi0| =
|γ|
δ|p0| > 1 and again from (6.12),

|φ̃(xi0) +
δ2s|p0|2s

2sα

γ

|γ|1+2s
| 6 K1

δ1+2s|p0|1+2s

|γ|1+2s

which implies that

|W ′′(φ̃(xi0))−W ′′(0)| 6 |W ′′′(0)φ̃(xi0)|+O(φ̃(xi0))
2 6 C

δ2s

|γ|2s
+ C

δ1+2s

|γ|1+2s
.

By the previous inequality, (6.27) and Claim 1 we deduce that

lim
n→+∞

∣∣∣∣∣∣∣(W ′′(φ(xi0))−W ′′(0))
n∑

i=−n
i 6=i0

φ̃(xi)

∣∣∣∣∣∣∣ 6 C

(
δ2s

|γ|2s
+

δ1+2s

|γ|1+2s

)
(δ2s|γ|+ δ1+2s)

6 Cδ1+2s

where C is independent of γ.
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Finally, if |γ| < δ|p0|, from (6.27) and Claim 1 we conclude that∣∣∣∣∣∣∣ lim
n→+∞

(W ′′(φ(xi0))−W ′′(0))
n∑

i=−n
i 6=i0

φ̃(xi)

∣∣∣∣∣∣∣ 6 Cδ2s|γ|+ Cδ1+2s 6 Cδ1+2s,

and (6.26) is proved.

Step 4: Bound on δ2s

n∑
i=−n
i 6=i0

Is[ψ, xi]

We compute

Is[ψ] = W ′′(φ̃)ψ +
L

α
(W ′′(φ̃)−W ′′(0)) + cφ′

= W ′′(0)ψ +
L

α
W ′′′(0)φ̃+O(φ̃)ψ +O(φ̃)2 + cφ′.

(6.28)

Estimates (6.12) and (6.17) implies that the sequences

n∑
i=−n
i 6=i0

O(φ̃(xi))ψ(xi),
n∑

i=−n
i6=i0

O(φ̃(xi))
2

behave like the series
∞∑
i=1

1

i4s
, therefore they are convergent since s > 1

2
. Moreover, by (6.28), (6.12),

(6.14), (6.17) and Claim 1, we have

(6.29)

∣∣∣∣∣∣∣ lim
n→+∞

δ2s

n∑
i=−n
i6=i0

Is[ψ, xi]

∣∣∣∣∣∣∣ 6 C(δ4s + δ1+2s) 6 Cδ1+2s.

Step 5: Bound on W ′′(φ(xi0))δ
2s

n∑
i=−n
i6=i0

ψ(xi)

Similarly, from (6.17) and Claim 1 we get

(6.30)

∣∣∣∣∣∣∣ lim
n→+∞

W ′′(φ(xi0))δ
2s

n∑
i=−n
i 6=i0

ψ(xi)

∣∣∣∣∣∣∣ 6 Cδ1+2s.

Step 6: Bound on the error E
Finally, again from (6.12), (6.17) and Claim 1 it follows that
(6.31)∣∣∣∣ lim
n→+∞

E2

∣∣∣∣ =

∣∣∣∣∣∣∣ lim
n→+∞

O

Lδ2s

α
+ δ2sψ(xi0) +

n∑
i=−n
i 6=i0

[
φ̃(xi) + δ2sψ(xi)

]
2∣∣∣∣∣∣∣ 6 Cδ4s 6 Cδ1+2s.
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Next, let us estimate E1. From (6.12) and using s > 1
2
, we have

(6.32) |E1| 6
n∑

i=−n
i 6=i0

|W ′(φ̃(xi))−W ′′(0)φ̃(xi)| =
n∑

i=−n
i 6=i0

|O(φ̃(xi))
2| 6 Cδ4s 6 Cδ1+2s.

Step 7: Conclusion
Therefore, from (6.25), (6.26), (6.29), (6.30), (6.31) and (6.32) we conclude that

−Cδ1+2s 6 lim
n→+∞

NL
λ
L
δ
L [sLδ,n] 6 Cδ1+2s

with C independent of x and Lemma 6.4 for s > 1
2

is proved.

Now, let us turn to the case s < 1
2
.

Step 1’: First computation

Making computations like in Step 1, we get

A := NL
λ
L
δ
L [sLδ,n](x)

= δ2sc

δ2s(ψτ)′(xi0) +
n∑

i=−n
i6=i0

[
φ′(xi) + δ2s(ψτ)′(xi)

]
+ (W ′′(φ(xi0))−W ′′(0))

n∑
i=−n
i 6=i0

φ̃(xi)

− δ2s

n∑
i=−n
i 6=i0

Is[ψτ, xi] +W ′′(φ(xi0))δ
2s

n∑
i=−n
i6=i0

(ψτ)(xi)

+ δ2s
(
− Is[ψτ, xi0 ] +W ′′(φ(xi0))(ψτ)(xi0) +

L

α
W ′′(φ(xi0))− L+ cφ′(xi0)

)
+ E,

where againE = E1+E2 withE1 the error term coming from in the approximation of
n∑

i=−n
i6=i0

W ′(φ̃(xi))

with W ′′(0)
n∑

i=−n
i 6=i0

φ̃(xi), and

E2 = O

Lδ2s

α
+ δ2sψ(xi0) +

n∑
i=−n
i 6=i0

[
φ̃(xi) + δ2sψ(xi)τ(xi)

]
2

.

To control the term Is[ψτ, xi], we use the following formula which can be found for instance in [1]
page 7:

(6.33) Is[ψτ, xi] = τ(xi)Is[ψ, xi] + ψ(xi)Is[τ, xi]−B(ψ, τ)(xi),

where

B(ψ, τ)(xi) = C(s)

∫
R

(ψ(y)− ψ(xi))(τ(y)− τ(xi))

|xi − y|1+2s
dy.
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Therefore the quantity A can be rewritten in the following way:

A = δ2sc

δ2s(ψτ)′(xi0) +
n∑

i=−n
i 6=i0

[
φ′(xi) + δ2s(ψτ)′(xi)

]
+ (W ′′(φ(xi0))−W ′′(0))

n∑
i=−n
i6=i0

φ̃(xi)

− δ2s

n∑
i=−n
i 6=i0

Is[ψτ, xi] +W ′′(φ(xi0))δ
2s

n∑
i=−n
i6=i0

(ψτ)(xi)

+ δ2s
(
− τ(xi0)Is[ψ, xi0 ] +W ′′(φ(xi0))(ψτ)(xi0) +

L

α
W ′′(φ(xi0))− L+ cφ′(xi0)

)
+ δ2sB(ψ, τ)(xi0)− δ2sψ(xi0)Is[τ, xi0 ] + E.

Now, we remark that

|xi0| =
|γ|
δ|p0|

6
1

2δ|p0|
= R,

then by (6.8) τ(xi0) = 1. Therefore, using the equation satisfied by ψ (6.6), we get

−τ(xi0)Is[ψ, xi0 ] +W ′′(φ(xi0))(ψτ)(xi0) +
L

α
W ′′(φ(xi0))− L+ cφ′(xi0) = 0

and consequently

A = δ2sc

δ2s(ψτ)′(xi0) +
n∑

i=−n
i 6=i0

[
φ′(xi) + δ2s(ψτ)′(xi)

]
+ (W ′′(φ(xi0))−W ′′(0))

n∑
i=−n
i 6=i0

φ̃(xi)

− δ2s

n∑
i=−n
i6=i0

Is[ψτ, xi] +W ′′(φ(xi0))δ
2s

n∑
i=−n
i 6=i0

(ψτ)(xi)

+ δ2sB(ψ, τ)(xi0)− δ2sψ(xi0)Is[τ, xi0 ] + E.

Let us proceed to the estimate of A.

Step 2’: Bound on
n∑

i=−n
i 6=i0

[
φ′(xi) + δ2s(ψτ)′(xi)

]
As in Step 2, using (6.14) and Claim 1, we get

(6.34) 0 6 lim
n→+∞

n∑
i=−n
i6=i0

φ′(xi) 6 Cδ1+2s.



31

Next, for i 6= i0 − 1, i0, i0 + 1, and R = 1
2δ|p0|

|xi| =
|i0 + γ − i|

δ|p0|
>

3

2δ|p0|
> 2R,

therefore τ(xi) = τ ′(xi) = 0. Then, using (6.18) and the fact that lim
x→±∞

ψ(x) = 0, we get

δ2s

n∑
i=−n
i 6=i0

(ψτ)′(xi) = δ2s(ψτ)′(xi0−1) + δ2s(ψτ)′(xi0+1)

= δ2s(ψτ)′
(
−1 + γ

δ|p0|

)
+ δ2s(ψτ)′

(
1 + γ

δ|p0|

)
= o(δ2s).

(6.35)

Step 3’: Bound on (W ′′(φ(xi0))−W ′′(0))
n∑

i=−n
i 6=i0

φ̃(xi)

From (6.20) with k = 1 we know that

lim
n→+∞

∣∣∣∣∣∣∣
n∑

i=−n
i6=i0

φ̃(xi)

∣∣∣∣∣∣∣ 6 Cδ2s|γ|.

As in Step 3 if |γ| > δ|p0|, then (6.13) implies

|φ̃(xi0)| 6 C
δ2s

|γ|2s
,

and so, using that W ′′′(0) = 0

|W ′′(φ̃(xi0))−W ′′(0)| 6 C
δ4s

|γ|4s
.

Then we have

lim
n→+∞

∣∣∣∣∣∣∣(W ′′(φ(xi0))−W ′′(0))
n∑

i=−n
i 6=i0

φ̃(xi)

∣∣∣∣∣∣∣ 6 C
δ4s

|γ|4s
δ2s|γ| 6 Cδ4s.

Finally, if |γ| < δ|p0|, then

lim
n→∞

∣∣∣∣∣∣∣
n∑

i=−n
i6=i0

φ̃(xi)

∣∣∣∣∣∣∣ 6 Cδ2s|γ| 6 Cδ1+2s.

We conclude that

(6.36) lim
n→+∞

∣∣∣∣∣∣∣(W ′′(φ(xi0))−W ′′(0))
n∑

i=−n
i 6=i0

φ̃(xi)

∣∣∣∣∣∣∣ 6 Cδ4s.
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Step 4’: Bound on δ2s

n∑
i=−n
i 6=i0

Is[ψτ, xi]

Using formula (6.33), we see that

(6.37) δ2s

n∑
i=−n
i 6=i0

Is[ψτ, xi] = δ2s

n∑
i=−n
i6=i0

{τ(xi)Is[ψ, xi] + ψ(xi)Is[τ, xi]−B(ψ, τ)(xi)} .

As we have already pointed out in Step 2’, for i 6= i0 − 1, i0, i0 + 1, τ(xi) = 0, therefore

δ2s

n∑
i=−n
i 6=i0

τ(xi)Is[ψ, xi] = δ2sτ(xi0−1)Is[ψ, xi0−1] + δ2sτ(xi0+1)Is[ψ, xi0+1].

We point out that

xi0−1 =
−1 + γ

δ|p0|
→ −∞ as δ → 0

and

xi0+1 =
1 + γ

δ|p0|
→ +∞ as δ → 0.

Then from the equation (6.6), estimates (6.12), (6.14) and lim
x→±∞

ψ(x) = 0, we deduce that Is[ψ, xi0−1]

and Is[ψ, xi0+1] are o(1) as δ → 0, this implies that

(6.38) δ2s

n∑
i=−n
i 6=i0

τ(xi)Is[ψ, xi] = o(δ2s) as δ → 0.

Similarly, from the behavior of ψ at infinity we infer that

δ2sψ(xi0−1)Is[τ, xi0−1], δ
2sψ(xi0+1)Is[τ, xi0+1] are o(δ2s) as δ → 0.

This and (6.21) imply that

(6.39) δ2s

n∑
i=−n
i6=i0

ψ(xi)Is[τ, xi] = o(δ2s) as δ → 0.

Let us now consider the term δ2s

n∑
i=−n
i6=i0

B(ψ, τ)(xi). For i 6= i0 − 1, i0, i0 + 1, using that τ(xi) = 0,

we have

|B(ψ, τ)(xi)| 6 C(s)

∫
R

|ψ(y)− ψ(xi)|τ(y)

|xi − y|1+2s
dy 6 C

∫
R

τ(y)

|xi − y|1+2s
dy = CIs[τ, xi].

Therefore, from (6.21) we infer that

(6.40) δ2s

n∑
i=−n

i6=i0,i0±1

|B(ψ, τ)(xi)| 6 Cδ4s.

Next, we remark that for γ ∈
(
−1

2
, 1

2

]
and R = 1

2δ|p0| , either xi0−1 ∈ [−2R,−R] or xi0+1 ∈
(R, 2R]. Suppose for instance that xi0−1 ∈ [−2R,−R] (i.e. 0 6 γ 6 1

2
). We have
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B(ψ, τ)(xi0−1) = C(s)

∫
R

(ψ(y)− ψ(xi0−1))(τ(y)− τ(xi0−1))

|xi0−1 − y|1+2s
dy

= C(s)

∫ 2R

−2R

(ψ(y)− ψ(xi0−1))τ(y)

|xi0−1 − y|1+2s
dy − Cτ(xi0−1))Is[ψ, xi0−1].

We have already pointed out that Is[ψ, xi0−1] = o(1) as δ → 0. Let us consider the first term of the
right-hand side of the last equality. Using that R = 1

2δ|p0| , xi0−1 = −1+γ
2δ|p0| ∈ [−2R,−R] and estimate

(6.18), we get∣∣∣∣∫ 2R

−2R

(ψ(y)− ψ(xi0−1))τ(y)

|xi0−1 − y|1+2s
dy

∣∣∣∣ 6 max
[−2R,−R/2]

ψ′
∫ −R

2

−2R

1

|xi0−1 − y|2s
dy

+ C

∫ 2R

−R
2

1

|xi0−1 − y|1+2s
dy

= C max
[−2R,−R/2]

ψ′

[
(xi0−1 + 2R)1−2s +

(
−R

2
− xi0−1

)1−2s
]

+ C

[
1

(2R− xi0−1)2s
− 1

(−R
2
− xi0−1)2s

]
6 Cδ2s.

We conclude that

(6.41) δ2sB(ψ, τ)(xi0−1) = o(δ2s) as δ → 0.

Similarly we can prove that

(6.42) δ2sB(ψ, τ)(xi0+1) = o(δ2s) as δ → 0.

Estimates (6.40), (6.41) and (6.42) imply

(6.43) δ2s

n∑
i=−n
i 6=i0

B(ψ, τ)(xi) = o(δ2s) as δ → 0.

In conclusion, putting together (6.37), (6.38), (6.39) and (6.43) we get

(6.44) δ2s

n∑
i=−n
i6=i0

Is[ψτ, xi] = o(δ2s) as δ → 0.

Step 5’: Bound on W ′′(φ(xi0))δ
2s

n∑
i=−n
i6=i0

(ψτ)(xi)

As in Step 2’, using that τ(xi) = 0 for i 6= i0 − 1, i0, i0 + 1 and that lim
x→±∞

ψ(x) = 0, we get

(6.45) δ2s

n∑
i=−n
i 6=i0

(ψτ)(xi) = δ2s(ψτ)(xi0−1) + δ2s(ψτ)(xi0+1) = o(δ2s) as δ → 0.
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Step 6’: Bound on δ2sB(ψ, τ)(xi0)− δ2sψ(xi0)Is[τ, xi0 ] Remember that

xi0 =
γ

δ|p0|
, |γ| 6 1

2
.

Let us first assume |γ| 6 1
4
, then

|xi0| 6
1

4δ|p0|
=
R

2
,

and

|Is[τ, xi0 ]| = C

∣∣∣∣∫
R

τ(y)− 1

|y − xi0|1+2s
dy

∣∣∣∣
= C

∣∣∣∣∫
|y|>R

τ(y)− 1

|y − xi0|1+2s
dy

∣∣∣∣
6 C

∫
|y|>R

1

|y − xi0|1+2s
dy

=
C

(xi0 +R)2s
+

C

(R− xi0)2s

6
C

R2s

= Cδ2s.

Then

δ2s|ψ(xi0)Is[τ, xi0 ]| 6 Cδ4s.

Now let us assume |γ| > 1
4
. In this case ψ(xi0) = o(1) as δ → 0, with o(1) independent of γ and

then δ2sψ(xi0)Is[τ, xi0 ] = o(δ2s) as δ → 0. We conclude that for any γ ∈
(
−1

2
, 1

2

]
we have

(6.46) δ2sψ(xi0)Is[τ, xi0 ] = o(δ2s) as δ → 0.

Finally, let us consider the term δ2sB(ψ, τ)(xi0). Again, if |γ| 6 1
4
, then

δ2s|B(ψ, τ)(xi0)| = δ2sC(s)

∣∣∣∣∫
R

(ψ(y)− ψ(xi0))(τ(y)− 1)

|y − xi0−1|1+2s
dy

∣∣∣∣
6 δ2sC

∫
|y|>R

1

|y − xi0|1+2s
dy

6 Cδ4s.

If |γ| > 1
4
, then either xi0 ∈

[
−R,−R

2

]
or xi0 ∈

[
R
2
, R
]
. Suppose for instance xi0 ∈

[
−R,−R

2

]
,

then computations similar to those done in Step 5’ for B(ψ, τ)(xi0−1), show that B(ψ, τ)(xi0) =
o(1) as δ → 0. We conclude that for any γ ∈

(
−1

2
, 1

2

]
we have

(6.47) δ2sB(ψ, τ)(xi0) = o(δ2s) as δ → 0.

Step 6”: Bound on the error E

From (6.20) with k = 1, and the fact that τ(xi) = 0 for i 6= i0 − 1, i0, i0 + 1 it follows that
(6.48)∣∣∣∣ lim

n→+∞
E2

∣∣∣∣ =

∣∣∣∣∣∣∣ lim
n→+∞

O

Lδ2s

α
+ δ2sψ(xi0) +

n∑
i=−n
i 6=i0

[
φ̃(xi) + δ2sψ(xi)τ(xi)

]
2∣∣∣∣∣∣∣ 6 Cδ4s.
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Next, let us estimate E1. Remember that for s < 1
2

we assume W even, this implies W 2k−1(0) = 0
for any integer k > 1. Therefore

−E1 =
n∑

i=−n
i 6=i0

W ′(φ̃(xi))−W ′′(0)φ̃(xi)

= W IV (0)
n∑

i=−n
i 6=i0

(φ̃(xi))
3 +W V I(0)

n∑
i=−n
i 6=i0

(φ̃(xi))
5 + ...+W 2k0(0)

n∑
i=−n
i 6=i0

(φ̃(xi))
2k0−1

+
n∑

i=−n
i 6=i0

O((φ̃(xi))
2k0+1).

Fix k0 such that 2s(2k0 + 1) > 1, then by (6.13) the sequence
n∑

i=−n
i 6=i0

O((φ̃(xi))
2k0+1) is convergent

since behaves like the series
∞∑
i=1

1

i2s(2k0+1)
and

n∑
i=−n
i 6=i0

|O((φ̃)2k0+1)| 6 Cδ2s(2k0+1).

This estimate, together with (6.20) imply that

(6.49) |E1| 6 Cδ4s.

Step 7’: Conclusion
Therefore, from (6.34), (6.35), (6.36), (6.44), (6.45), (6.46), (6.47), (6.48) and (6.49) we conclude that

lim
n→+∞

NL
λ
L
δ
L [sLδ,n] = o(δ2s) as δ → 0

where lim
δ→0

o(δ2s)

δ2s
= 0, uniformly for x ∈ R and Lemma 6.4 for s < 1

2
is proved.

6.4. Proof of Claims 1-6.

Proof of Claim 1.
We have for n > |i0|

n∑
i=−n
i6=i0

x− i
|x− i|1+2s

=

i0−1∑
i=−n

i0 + γ − i
(i0 + γ − i)1+2s

+
n∑

i=i0+1

i0 + γ − i
(i− i0 − γ)1+2s

=

n+i0∑
i=1

1

(i+ γ)2s
−

n−i0∑
i=1

1

(i− γ)2s

Using that, for some θi ∈ (−1, 1)

(i− γ)2s − (i+ γ)2s

(i+ γ)2s(i− γ)2s
=

4sγ(i− θiγ)2s−1

(i+ γ)2s(i− γ)2s
,
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we get

n∑
i=−n
i 6=i0

x− i
|x− i|1+2s

=



n∑
i=1

4sγ(i− θiγ)2s−1

(i+ γ)2s(i− γ)2s
, if i0 = 0

n−i0∑
i=1

4sγ(i− θiγ)2s−1

(i+ γ)2s(i− γ)2s
+

n+i0∑
i=n−i0+1

1

(i+ γ)2s
, if i0 > 0

n+i0∑
i=1

4sγ(i− θiγ)2s−1

(i+ γ)2s(i− γ)2s
−

n−i0∑
i=n+i0+1

1

(i− γ)2s
, if i0 < 0

→ −
+∞∑
i=1

4sγ(i− θiγ)2s−1

(i+ γ)2s(i− γ)2s
as n→ +∞.

Let us prove the second limit of the claim.

i0−1∑
i=−n

1

|x− i|1+2s
=

n+i0∑
i=1

1

(i+ γ)1+2s
→

+∞∑
i=1

1

(i+ γ)1+2s
as n→ +∞.

Finally

n∑
i=i0+1

1

|x− i|1+2s
=

n−i0∑
i=1

1

(i− γ)1+2s
→

+∞∑
i=1

1

(i− γ)1+2s
as n→ +∞,

and the claim is proved.

Proof of Claim 2.

When s < 1
2
, we assume that W is even and this implies that the function

φ(x)− 1

2

is odd, which means that φ satisfies

φ(−x) = −φ(x) + 1,

and therefore for any integer k > 1

[φ(−x)]2k−1 = [−φ(x) + 1]2k−1 = −[φ(x)− 1]2k−1.
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For simplicity, let us assume i0 > 0. We have

n∑
i=−n
i6=i0

[φ̃(xi)]
2k−1 =

i0−1∑
i=−n

[φ(xi)− 1]2k−1 +
n∑

i=i0+1

[φ(xi)]
2k−1

=

n+i0∑
i=1

[
φ

(
i+ γ

δ|p0|

)
− 1

]2k−1

+

n−i0∑
i=1

[
φ

(
−i− γ
δ|p0|

)]2k−1

=

n+i0∑
i=1

[
φ

(
i+ γ

δ|p0|

)
− 1

]2k−1

−
n−i0∑
i=1

[
φ

(
i− γ
δ|p0|

)
− 1

]2k−1

=

n−i0∑
i=1

{[
φ

(
i+ γ

δ|p0|

)
− 1

]2k−1

−
[
φ

(
i− γ
δ|p0|

)
− 1

]2k−1
}

+

n+i0∑
i=n−i0+1

[
φ

(
i+ γ

δ|p0|

)
− 1

]2k−1

=

n−i0∑
i=1

{[
φ

(
i+ γ

δ|p0|

)
− φ

(
i− γ
δ|p0|

)]

·
2k−2∑
l=0

(
φ

(
i+ γ

δ|p0|

)
− 1

)l(
φ

(
i− γ
δ|p0|

)
− 1

)2k−2−l
}

+

n+i0∑
i=n−i0+1

[
φ

(
i+ γ

δ|p0|

)
− 1

]2k−1

=

n−i0∑
i=1

φ′
(
i+ θiγ

δ|p0|

)
2γ

δ|p0|

2k−2∑
l=0

(
φ

(
i+ γ

δ|p0|

)
− 1

)l(
φ

(
i− γ
δ|p0|

)
− 1

)2k−2−l

+

n+i0∑
i=n−i0+1

[
φ

(
i+ γ

δ|p0|

)
− 1

]2k−1

for some θi ∈ (−1, 1). Therefore, using (6.14) and (6.13), we get∣∣∣∣∣∣∣
n∑

i=−n
i6=i0

[φ̃(xi)]
2k−1

∣∣∣∣∣∣∣ 6 Cδ2s(2k−1)|γ|
n−i0∑
i=1

1

(i− |γ|)1+2s

2k−2∑
l=0

1

(i− |γ|)2s(2k−2)

+ C

n+i0∑
i=n−i0+1

1

|i+ γ|2s(2k−1)

6 Ckδ2s(2k−1)|γ|
n−i0∑
i=1

1

(i− |γ|)1+2s(2k−1)
+ C

n+i0∑
i=n−i0+1

1

|i+ γ|2s(2k−1)
.

Passing to the limit as n→ +∞, we get (6.20)

Next, let us turn to the proof of (6.21). For i 6= i0 − 1, i0, i0 + 1, and R = 1
2δ|p0|

|xi| =
|i0 + γ − i|

δ|p0|
>

3

2δ|p0|
> 2R,
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therefore τ(xi) = 0 and

0 6 Is[τ, xi] =

∫
R

τ(y)

|xi − y|1+2s
dy

=

∫ 2R

−2R

τ(y)

|xi − y|1+2s
dy

6
∫ 2R

−2R

1

|xi − y|1+2s
dy

=

∫ |xi|+2R

|xi|−2R

1

y1+2s
dy

= 2s

[
1

(|xi| − 2R)2s
− 1

(|xi|+ 2R)2s

]
= 16s2R

(|xi|+ 2Rθi)
2s−1

(|xi| − 2R)2s(|xi|+ 2R)2s
,

for some θi ∈ (−1, 1). Therefore, for R = 1
2δ|p0| we have

0 6
n∑

i=−n
i6=i0,i0±1

Is[τ, xi] 6 8s2δ2s|p0|2s
i0−2∑
i=−n

(i0 + γ − i+ θi)
2s−1

(i0 + γ − i− 1)2s(i0 + γ − i+ 1)2s

+ 8s2δ2s|p0|2s
n∑

i=i0+2

(−i0 − γ + i+ θi)
2s−1

(−i0 − γ + i− 1)2s(−i0 − γ + i+ 1)2s

= Cδ2s

n+i0∑
i=2

(i+ γ + θi)
2s−1

(i+ γ − 1)2s(i+ γ + 1)2s

+ Cδ2s

n−i0∑
i=2

(i− γ + θi)
2s−1

(i− γ − 1)2s(i− γ + 1)2s

6 Cδ2s

n+|i0|∑
i=2

1(
i+ 1

2

)2s (
i− 3

2

) ,

which implies (6.20).

Proof of Claim 3.
Fix x ∈ R and let i0 ∈ Z be the closest integer to x such that x = i0 + γ, with γ ∈

(
−1

2
, 1

2

]
and

|x− i| > 1
2

for i 6= i0. Let δ be so small that 1
δ|p0| > 2, then |x−i|

δ|p0| > 1 for i 6= i0. Let us first assume
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s > 1
2
. Then, for n > |i0| using (6.12) and (6.17) we get

sLδ,n(x) = φ(xi0) + δ2sψ(xi0) + i0 +

i0−1∑
i=−n

[
φ(xi)− 1 + δ2sψ(xi)

]
+

n∑
i=i0+1

[
φ(xi) + δ2sψ(xi)

]
6 C + i0 −

(
1

2sα
− δ2sK2

)
δ2s|p0|2s

n∑
i=−n
i6=i0

x− i
|x− i|1+2s

+ (K1 + δ2sK3)δ
1+2s|p0|1+2s

n∑
i=−n
i 6=i0

1

|x− i|1+2s
,

and

sLδ,n(x) > C + i0 −
(

1

2sα
− δ2sK2

)
δ2s|p0|2s

n∑
i=−n
i 6=i0

x− i
|x− i|1+2s

− (K1 + δ2sK3)δ
1+2s|p0|1+2s

n∑
i=−n
i 6=i0

1

|x− i|1+2s
.

Then from Claim 1 we conclude that the sequence {sLδ,n(x)}n is convergent as n→ +∞, moreover
for x = i0 + γ, we have

(6.50) |sLδ,n(x)− x| 6 C.

When s < 1
2
, the convergence of

n∑
i=−n

φ(xi)−n follows from (6.20) for k = 1. The sum
n∑

i=−n

ψ(xi)τ(xi)

is actually the sum of only three terms, since as we have seen in the proof of Claim 2, τ(xi) = 0 for
i 6= i0 − 1, i0, i0 + 1. This concludes the proof of Claim 3.

Proof of Claim 4.
To prove the uniform convergence, it suffices to show that {(sLδ,n)′(x)}n is a Cauchy sequence uni-
formly on compact sets. Let us consider a bounded interval [a, b] and let x ∈ [a, b]. Let us first assume
s > 1

2
. For 1

δ|p0| > 2 and k > m > 1/2 + max{|a|, |b|}, by (6.14) and (6.18) we have

(sLδ,k)
′(x)− (sLδ,m)′(x) =

1

δ|p0|

−m−1∑
i=−k

[
φ′(xi) + δ2sψ′(xi)

]
+

1

δ|p0|

k∑
i=m+1

[
φ′(xi) + δ2sψ′(xi)

]
6 (K1 + δ2sK3)δ

2s|p0|2s
[
−m−1∑
i=−k

1

|x− i|1+2s
+

k∑
i=m+1

1

|x− i|1+2s

]

6 (K1 + δ2sK3)δ
2s|p0|2s

[
−m−1∑
i=−k

1

|a− i|1+2s
+

k∑
i=m+1

1

|b− i|1+2s

]
,

and

(sLδ,k)
′(x)− (sLδ,m)′(x) > −K3δ

4s|p0|2s
[
−m−1∑
i=−k

1

|a− i|1+2s
+

k∑
i=m+1

1

|b− i|1+2s

]
.
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Then by Claim 1

sup
x∈[a,b]

|(sLδ,k)′(x)− (sLδ,m)′(x)| → 0 as k,m→ +∞.

When s < 1
2
, the convergence of

n∑
i=−n
i 6=i0

φ′(xi) is again consequence of estimate (6.14), and the

convergence of
n∑

i=−n
i 6=i0

(ψτ)′(xi) comes from the fact that this is actually the sum of three terms, being

τ(xi) = τ ′(xi) = 0 for i 6= i0 − 1, i0, i0 + 1. Claim 4 is therefore proved.

Proof of Claim 5.
Claim 5 can be proved like Claim 4, using (6.15), (6.19) and the properties of τ .

Proof of Claim 6.
Let us first assume s > 1

2
. We have

Is[φ] = W ′(φ) = W ′(φ̃) = W ′′(0)φ̃+O(φ̃)2.

We note that, since s > 1
2
, if |x| > 1 then

(φ(x))2 6
C

|x|4s
6

C

|x|1+2s
.

Let x = i0 + γ with γ ∈
(
−1

2
, 1

2

]
, and n > |i0|. From (6.12) we get

n∑
i=−n

Is[φ, xi] = I[φ, xi0 ] +
n∑

i=−n
i 6=i0

Is[φ, xi]

= I[φ, xi0 ] +
n∑

i=−n
i 6=i0

[αφ̃(xi) +O(φ̃(xi))
2]

6 I[φ, xi0 ]−
δ2s|p0|2s

2s

n∑
i=−n
i 6=i0

x− i
|x− i|1+2s

+ C
n∑

i=−n
i6=i0

1

|x− i|1+2s
,

for some C > 0 and
n∑

i=−n

Is[φ, xi] > I[φ, xi0 ]−
δ2s|p0|2s

2s

n∑
i=−n
i 6=i0

x− i
|x− i|1+2s

− C
n∑

i=−n
i6=i0

1

|x− i|1+2s
.

Then, by Claim 1
n∑

i=−n

Is[φ, xi] converges as n→ +∞.

Let us consider now
n∑

i=−n

Is[ψ, xi]. From the following estimate

Is[ψ] = W ′′(φ̃)ψ +
L

α
(W ′′(φ̃)−W ′′(0)) + cφ′

= W ′′(0)ψ +
L

α
W ′′′(0)φ̃+O(φ̃)ψ +O(φ̃)2 + cφ′,
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(6.12), (6.14) and (6.17) we get
n∑

i=−n

Is[ψ, xi] 6 I[ψ, xi0 ] + C̃

n∑
i=−n
i 6=i0

x− i
|x− i|1+2s

+ C
n∑

i=−n
i6=i0

1

|x− i|1+2s
,

and

n∑
i=−n

Is[ψ, xi] > I[ψ, xi0 ] + C̃
n∑

i=−n
i6=i0

x− i
|x− i|1+2s

− C
n∑

i=−n
i6=i0

1

|x− i|1+2s
,

for some C̃ ∈ R and C > 0, which ensures the convergence of
n∑

i=−n

Is[ψ, xi].

Now, let us assume s < 1
2
. Fix k0 such that 2s(2k0 + 1) > 1. Since W is even, W 2k+1(0) = 0 for

any integer k > 1. Then

Is[φ] = W ′(φ̃) = W ′′(0)φ̃+W IV (0)(φ̃)3 + ...+W 2k0(0)(φ̃)2k0−1 +O((φ̃)2k0+1).

Therefore, for x = i0 + γ
n∑

i=−n

Is[φ, xi] = Is[φ, xi0 ] +
n∑

i=−n
i6=i0

Is[φ, xi]

= Is[φ, xi0 ] +W ′′(0)
n∑

i=−n
i 6=i0

φ̃(xi) +W IV (0)
n∑

i=−n
i 6=i0

(φ̃(xi))
3 + ...

+W 2k0(0)
n∑

i=−n
i 6=i0

(φ̃(xi))
2k0−1 +

n∑
i=−n
i 6=i0

O((φ̃(xi))
2k0+1).

The sequence
n∑

i=−n
i 6=i0

O((φ̃(xi))
2k0+1) is convergent since, by (6.13) behaves like

n∑
i=1

1

i2s(2k0+1)
which

is convergent being the exponent 2s(2k0 + 1) greater than 1. The convergence of the remaining
sequences is assured by (6.20).

Finally, let us consider
n∑

i=−n

Is[ψτ, xi]. The following formula, which can be found for instance in [1]

page 7, holds true

Is[ψτ, xi] = τ(xi)Is[ψ, xi] + ψ(xi)Is[τ, xi]−B(ψ, τ)(xi),

where

B(ψ, τ)(xi) = C(s)

∫
R

(ψ(y)− ψ(xi))(τ(y)− τ(xi))

|x− y|1+2s
dy.

We remark that

|B(ψ, τ)(xi)| 6 C

∫
R

|τ(y)− τ(xi)|
|x− y|1+2s

dy = C

∫
R

τ(y)

|x− y|1+2s
dy = CIs[τ, xi],

for i 6= i0−1, i0, i0+1. Indeed, as we have already pointed out τ(xi) = 0 for these indices. Therefore

the sequences
n∑

i=−n

ψ(xi)Is[τ, xi] and
n∑

i=−n

B(ψ, τ)(xi) converge by (6.21). Also
n∑

i=−n

τ(xi)Is[ψ, xi]
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is the sum of only three terms and then we can conclude that
n∑

i=−n

Is[ψτ, xi] is convergent as

n→ +∞. This concludes the proof of Claim 6.
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