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On Large Deviation Efficiency in Statistical 
Inference 

Puhalskii, A. and Spokoiny, V. 

November 8, 1995 

Abstract 

This paper presents a general approach to statistical problems with cri-
teria based on probabilities of large deviations. The underlying idea, which 
originates from similarity in the definitions of the large deviation principle 
and weak convergence, is to develop a large deviation analogue of asymptotic 
decision theory. 

We consider a sequence of statistical experiments over an arbitrary pa-
rameter set and introduce for it the concept of the large deviation principle 
(LDP) which parallels the concept of weak convergence of experiments. Our 
main. result, in analogy with Le Cam's minimax theorem, states that the 
LDP provides for an asymptotic lower bound· for the sequ.ence of appropri-
ately defined minimax risks. We show next that the bound is tight and give 
a method of constructing decisions whose asymptotic risk is arbitrarily close 
to the bound. The construction is further specified for hypotheses testing 
and estimation problems. 
· We apply the results to a number of standard statistical models: an i.i.d. 
sample, regression, the change-point model and others. For each model, we 
check the LDP; after that, considering first a hypotheses testing problem 
and then an estimation problem, we calculate asymptotic minimax risks and 
indicate corresponding decisions. 
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ON LD EFFICIENCY IN STATISTICAL INFERENCE 

1 Introduction 
The approach to statistical problems based on considering probabilities of large 
deviations has been in use in statistical inference since the papers by Chernoff, 
1952 and Bahadur, 1960. 

Chernoff, 1952 considering the problem of discriminating between two simple 
hypotheses showed that, if the hypotheses are fixed, the error probabilities de-
crease exponentially as the sample size tends to infinity; the corresponding optimal 
exponent is specified by what is now known as Chernoff's function. 

Basu, 1956 and Bahadur, 1960 proposed a criterion for comparing statistical 
estimators based on the view that the quality of an estimator is characterised by 
the probability that the true value of the parameter is covered by the confidence 
interval of given width 2c with centre at the estimate. If the width 2c is held fixed 
as the sample size grows, then the probabilities that the true value of the parameter 
is not covered are again exponentially small. The estimator giving the fastest decay 
is called now Bahadur efficient. It has been shown later that for the model with n 
i.i.d. observations from distribution Pe this optimal rate in the class of consistent 
estimators is specified by the Kullback-Leibler information between measures Pe-c 
and Pe+c whereas without the consistency requirement it is related to Chernoff's 
function. 

The ideas of Chernoff and Bahadur have been developed in various directions. 
Ibragimov and Radavichius, 1981, Kallenberg, 1981, Ibragimov and Khasminskii, 
1981, Radavichius, 1983 and Radavichius, 1991 studied the properties .of max-
imum likelihood estimators from the point of view of Bahadur's criterion. Fu, 
1982, Borovkov· and Mogulskii, 1992b and Borovkov and Mogulskii, 1992a anal-
ysed second and higher order terms of the asymptotic expansions of Bahadur risks. 
Kallenberg, 1983, Rao, 1963 and Wieand, 1976 considered intermediate criteria for 
statistical estimators when the width of the confidence interval goes to zero with 
certain rate. Sievers, 1978 and Rubin and Rukhin, 1983 evaluated Bahadur risks 
for particular statistical models. 

Lately this direction in mathematical statistics has received a new impetus, 
mostly in papers by Korostelev, 1993, Korostelev, 1995, see also Korostelev and 
Spokoiny, 1995, Korostelev and Leonov, 1995 where the classical large deviation 
set-up is considered in minimax nonparametric framework. 

Our aim here is to give a unified treatment of statistical problems using large 
deviation considerations. The idea is to capitalise on analogies between large de-
viation theory and weak convergence theory (see Lynch and Sethuraman, 1987; 
Vervaat, 1988; Puhalskii, 1991) and develop a large deviation analogue of asymp-
totic decision theory, Strasser, 1985. The approach of invoking methods of weak 
convergence theory to obtain results about large deviations has proved its worth 
in various set-ups, Puhalskii, 1991, 1993, 1994a, 1994b, 1994c, 1995a, 1995b. We 
show that it can successfully be applied to statistical problems too. 

We begin by defining in Section 2 the notion of the large deviation principle 
(LDP) for a sequence of statistical experiments. It is an analogue of the notion 
of weak convergence of statistical experiments and means, roughly, that the dis-
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tributions of likelihood processes satisfy the large deviation principle, Varadhan, 
1966; Varadhan, 1984. We illustrate the general definition on a number of standard 
statistical models (the Gaussian shift model, the model with i.i.d. observations, 
the "signal + white noise" model, the regression model with Gaussian and non-
Gaussian errors, with deterministic and random designs, and the change-point 
model). We next give a sufficient condition for the LDP to hold. This condition is 
analogous to the local asymptotic normality condition introduced by LeCam, 1960. 

The role played by the LD P for statistical experiments is revealed by an ana-
logue of Le Cam's minimax theorem (which states that if statistical experiments 
weakly converge, then the minimax risks are asymptotically bounded below by the 
corresponding risk for the limit model, see LeCam, 1972, LeCam, 1986, Strasser, 
1985). In Section 3, we show that the situation is similar in large deviation con-
text: if a sequence of statistical experiments obeys the LDP, there is an asymptotic 
lower bound for appropriately defined minimax risks. The problem of evaluating 
the bound is a minimax optimization problem. Further in Section 3, we study 
the question of the sharpness of the lower bound. We show that it is sharp under 
a strengthened version of the LDP. This allows us to define large deviation (LD) 
efficient decisions as the ones which attain the lower bound. We give· a method 
of obtaining nearly LD efficient decisions, i.e., those whose LD asymptotic risk is 
arbitrarily dose to the lower bound. 

Sections 4 and 5 deal with applications. Section 4 specifies the results of Sec-
tion 3 for the cases of hypotheses testing and estimation problems and presents 
explicit constructions of nearly LD efficient decisions. In Section 5, we apply the 
machinery to the models introduced in Section 2: we check the LDP, give condi-
tions when tlie lower bounds are attained,· calculate them for hypotheses testing 
and estimation problems and indicate nearly LD efficient decisions. An appendix 
contains extensions and auxiliary results. 

The results of the first four sections are new. The results we obtain for the 
models are partly new and partly cover or extend earlier results. 

2 The Large Deviation Principle for Statistical 
Experiments 

Let {t'n,n 2:: 1} beasequenceofstatisticalexperimentst'n = (!ln,Fn;Pn,e, BE 8) 
over a parameter set 8, Strasser, 1985. In this section, we give the definition of 
the large deviation principle for { t'n, n 2:: 1} and study some of its properties. We 
start with the case of dominated experiments. 

2.1 The dominated case 

Assume that each experiment t'n = (!ln, Fn; Pn,e, B E 8) is dominated by a prob-
ability measure Pn, i.e., Pn,B « Pn for all B E 8. We will also denote this by 
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{En, Pn, n ~ 1}. Denote 

(
dP ) 1/n 

Zn,B == d;~e , e Ee, (2.1) 

and let Zn,e == ( Zn,e , B E 8) . We submit R~ with Tihonov (product) topology 
so that Zn,e is a random element of R~; ..C(Zn,elPn) denotes the distribution of 
Zn,e on R~ under Pn. The large deviation principle for {En, Pn, n ~ 1} means, 
roughly, that the sequence of distributions { £ ( Zn,e IPn) , n ~ 1} satisfies the large 
deviation principle on R~. 

For a precise definition, we recall some basic notions of large deviation theory. 
We use Varadhan's original definitions of the rate function and the large deviation 
principle Varadhan, 1966; Varadhan, 1984. Let S be a Hausdorff topological space. 
We say that a function I: S-+ [O, oo] is a rate function on S if the sets 1-1([0, a]) 
are compact in S for all a ~ O; a sequence { Qn, n ~ 1} of probability measures on 
the Borel a-field of S is said to obey the large deviation principle (LDP) with the 
rate function I if 

1 . lim - log Q n ( G) ~ - mf I ( x), 
n-+oo n xEG 

for all open .G C S, and 

lim ~log Qn(F) ~ - inf I(x ), 
n-+oo n xEF 

for all closed F C S. 
We will also be saying that I is a probability rate function if infxes I(x) == 0. 

Obviously, if I appears in the LDP, it is a probability rate function. 
Next, we will say that the sequence {En, Pn, n ~ 1} satisfies condition (U) if 

(U) lim lim E;,_fn Z~ 8l(Zn;B > H) == 0, BE 8. 
H -Too n-+oo ' 

Here and below we use the notations 

Definition 2.1 We say that a sequence {En, Pn, n ~ 1} of dominated statistical 
experiments obeys the dominated large deviation principle {LDP) if 

1. the sequence { ..C ( Zn,e I Pn) , n ~ 1} obeys the LDP on R~ with some {proba-. 
bility) rate function I, 

2. condition ( U) holds. 

The critical part of the definition is condition 1. Condition (U) plays a subordinate 
though essential role. If we disregard condition (U), the definition is analogous to 
the definition of weak convergence of dominated statistical experiments (Strasser, 
1985) which states that likelihood ratios weakly converge. The role of condition (U) 
will become clear shortly: it provides for the compatibility of this definition with 

5 



6 A.PUHALSKII AND v .SPOKOINY 

a more general one which does not depend on the choice of dominating measures 
and incorporates the non dominated case too. This implies, in particular, that 
lower bounds we obtain in Section 3 for the sequence of so called large deviation 
risks do not depend on dominating measures either (see Remark 3.2 below). Note 
that an analogue of condition (U) in the theory of weak convergence of statistical 
experiments is a consequence of weak convergence of likelihood ratios and does not 
have to be singled out. 

Now we consider a number of statistical models which, on the one hand, show 
that the LDP for the likelihood ratios arises quite naturally and, on the other 
hand, motivate and illustrate theoretical developments below. For each model 
we calculate the log-likelihood ratio 2n,o = *log d:;,~e and give some heuristics 
explaining the LDP condition. The rigourous verification of the LDP for the models 
is deferred until Section 5. At this point we mention that if the 2n,o are well-defined, 
then, by the contraction principle, Varadhan, 1966; Varadhan, 1984, the LDP for 
the sequence {£(2n,elPn),n ~ l}, where 2n,e = (2n,o,B E 8) and £(2n,elPn) is 
the law of 2n,e on Re under Pn (where Re is submitted with Tihonov topology), 
implies the LDP for the sequence {£(Zn,elPn),n ~ l}. 

Example 2.1 Gaussian Observations 

Let us observe a sample of n i.i.d. r.v. Xn (X1,n, ... , Xn,n) which are nor-
mally distributed with N(B, 1), B E 8 c R. For this model, Dn = Rn and 
Pn,o = (N(B, l)r, B E 8. We take Pn,o as ·dominating measure Pn. Then the 
corresponding log-likelihood ratio is. of the form 

where 

The sequence{£ (YnlPn), n ~ 1} satisfies the LDP on R with rate function IN (y) = 
y2 /2, y E R (see, e.g., Freidlin and Wentzell, 1984). This yields by the contraction 
principle the LDP for the log-likelihood ratios :::.n,O· 

Example 2.2 An I.I.D. Sample 

Let us observe an i.i.d. sample Xn = (X1,n, ... , Xn,n) from distribution Po, B E 8. 
We do not specify the nature of the parameter set 8. It can be a subset of a 
finite-dimensional space; also the unknown distribution (or its proba~ility density 
function) can be taken as e. We assume that the family P is dominated by 
probability measure P, i.e., Po « P, B E 8. This model is described by the 
dominated experiments En =(On, Fn; Pn,o, BE 8) with Dn =Rn, Fn = B(Rn), 
Pn,o = Pl/ , B E 8 , Pn = pn . 
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VVe have 

where 
1 n 

Fn(x) = - L l(Xk,n ~ x), x ER, n 
k=l 

are empirical distribution functions. 
Let Y be the space of cumulative distribution functions on R endowed with the 

topology of weak convergence of corresponding probability measures. By Sanov's 
theorem, see Sanov, 1957, Deuschel and Stroock, 1989, 3.2.17, {£ (Fn!Pn), n 2 1} 
satisfies the LDP on Y with 15 (F) = I<(F, P), F E Y, where I<(F, P) is the 
Kullback-Leibler information: 

{ J ~~(x) log ~~(x) P(dx), if F « P, 
I<(F, P) = R 

oo, otherwise. 

Denote also for B E 8 and F E Y 

{ dPe 
(e(F) = JR log dP (x)F(dx). 

If the density functions ~1;% ( x) are bounded from ~hove·, bounded away from zero 
and are continuous in x for all B E 8, then, since 3n,B = (e(Fn), the contraction 
principle yields the LDP for the sequence {3n,e, n 2 l}. 

Example 2.3 "Signal + ivhite Noise" 

We observe the stochastic process Xn = (Xn(t), t E [O, 1]) obeying the stochastic 
differential equation 

1 
dXn(t) = B(t)dt + fo dW(t), 0 ~ t ~ 1, 

where W = (W(t), t E [O, 1]) is a standard Wiener process and B(·) is an unknown 
function which we assume to be continuous and belong to some set 8 of functions 
on [O, l]. 

This model is described by the statistical experiments En = (f2n, Fn; Pn,e, B E 
8) , where nn ·= C[O, 1], the space of continuous functions on [O, 1], and Pn,B is 
the distribution of Xn on C[O, l] for given B. We take Pn = Pn,o, where Pn,o 
corresponds to the zero function B( ·) = 0 . Then Pn,B « Pn and, moreover, by 
Girsanov's formula, Pn-a.s., , 

3n,o =~log d:;~o (Xn) = [ O(t)dXn(t) - ~ [ 02(t)dt. (2.2) 

7 



8 A.PUHALSKII AND V.SPOKOINY 

Let C[O, 1] be submitted with uniform metric and let C0 (0, 1] be its subset of func-
tions x(·) which are absolutely continuous w.r.t. Lebesgue measure and x(O) == 0. 
Then the sequence {£(XnlPn),n ?'.: 1} satisfies the LDP on C[0,1] with 

1w (x(·)) == { ~ [ (X(t))
2 

dt, 
oo, 

if x(·) E Co[O, 1] 
otherwise, 

where x(·) E C[0,1] and x(t) denotes the derivative of x(·) at t (see, e.g., Freidlin 
and Wentzell, 1984). 

Denote for a function B(·) E 8 and x(·) E C0 [0, 1] 

11 1 r1 
(e(x) == 

0 
B(t)dx(t) - 2 lo B2(t)dt 

where the integral is understood as a Lebesgue-Stiltjes integral. 
Again the log-likelihood ratio can formally be represented as 3n,e == (e(Xn). 

Note however that the first integral in (2.2) is an Ito integral, so the latter equality 
actually is valid for functions B( ·) of special sort (e.g., piecewise constant or differ-
entiable). For these functions, the contraction. principle again implies the LDP for 
{3n,e, n ?:: 1}. A general case is studied in Section 5. 

Example 2.4 Gaussian Regression 

We are considering the regression model 

k 
tk,n==-, k==l, ... ,n, 

n 
(2.3) 

where the errors ~k,n are i.i.d. standard normal and B( ·) is an unknown function 
which is.again assumed to be continuous. 

In this model, On == Rn, 8 c C[O, lj and Pn,e is the distribution of Xn -
(X1,n, ... , Xn,n) for B(·). As above, we take Pn == Pn,O· Then 

where 

=-n,e == ~ l dPn,e (X ) 
n og dPn n 
1 n 1 n -L B(tk,n)Xk,n - - L B2(tk,n) 
n k=I n k=I 

[1 1 n lo B(t) dXn(t) - ;:; L e2 (tk,n)' 
0 k=l 

l [nt] 

Xn(t) == - '"""Xk n' n6 ' O~t~l. 
k=l 

Let Y be the space of right continuous with left-hand limits functions on [O, 1] with 
uniform metric (for measurability of Xn, see Billingsley, 1968, §8). 
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Since the Xk,n are N(O, I)-distributed under Pn, the sequence{£ (XnlPn), n?:: 
l} satisfies the LDP on Y with JW (see, e.g., Puhalskii, 1994). 

Since the function B( ·) is continuous, we have, for large n, the approximate 
equality 

and hence Sn,B ~ (e(Xn) with the same function (e as in the previous example. In 
the case where the (e are moreover differentiable, integration by parts shows tha.t 
the Sn,B are continuous functions of Xn, and the LD P for {Sn,e, n ?:: 1} follows by 
the contraction principle. Again, the general case is deferred until Section 5. 

Example 2.5 Non-Gaussian Regression 

We consider the same regression model (2.3) but now assume that the i.i.d. errors 
~k,n have distribution P with positive probability density function p( x) w .r. t. 
Lebesgue measure on the real line. The unknown regression function B( ·) is as-
sumed to be continuous, so 8 c C[O, l]. 

As above, for a regression function e(.)' we denote by Pn,B the distribution of 
Xn = (X1,n, ... , Xn,n). We have, with Pn = Pn,O, 

'=' _ .!_ 1 dPn,B(X) _ .!_ ~l p(Xk,n -B(k/n)) 
'-'n,B - n og dP n - n L.t og (X ) . n . k=l P k,n 

Introducing empirical process Fn = Fn(x, t), x E R, t E (0, 1], by 

l [nt] 
Fn(x, t) = - L l(Xk,n :::=; x), n 

k=l 

we have that 
~ (1 f p(x - B(t)) 
==.n,B =Jo }R log p(x) Fn(dx,dt). (2.4) 

Define Y as the space of cumulative distribution functions F = F(x, t), x E R, t E 
(0, l], on Rx (0, 1] with weak topology. Let Yo be the subset of Y of absolutely 
continuous w.r.t. Lebesgue measure on R x [O, 1] functions F(x, t) satisfying the 
condition F( oo, t) = t for all t E (0, 1]. 

By Puhalskii, 1995c, the sequence {C(FnlPn),n ?:: l} obeys the LDP on Y 
with rate function J8K ( F) given by 

1sK(F) = { [ L log~(~? Pt(x) dx dt, if FE Yo, 
oo, otherwise. 

Here Pt(x) is the density of F so that F(dx, dt) = Pt(x) dx dt. 

9 
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Denote for F E Yo and e E e 
{1 f p(x - B(t)) 

(e(F) =Jo j R log p(x) F( dx, dt). 

Then by (2.4), 3n,e = (e(Fn) and if the log's in the integrals in the definition of the 
(e are bounded and continuous, the LDP for {3n,e, n ?: 1} holds, 

Example 2.6 The Change-Point Model 

Let us observe a sample Xn = (X1,n, ... , Xn,n) of real valued r.v., where, for some 
kn ?: 1, the observations X 1,n, ... , Xkn,n are i.i.d. with distribution Po and the 
observations Xkn+i,n, ... , Xn,n are i.i.d. with distribution P1 • We are assuming 
that P0 and P1 are known and kn is unknown. Assume also that kn = [nB], where 
e E 8 = [O, l]. Here nn = Rn, and Pn,e denotes the distribution of Xn for given e. 

Let probability measure P dominate P0 and PI, and let 

dPo dPI 
Po(x) = dP (x), PI(x) = dP (x), x ER, 

be corresponding densities. Assume that p0 ( x) and PI ( x) are positive and contin-
uous. Denoting Pn = pn, we have 

1 dP 1 [ne] 1 n · 
3n,e =;log d;,e (Xn) =; L logpo(Xi,n) +; L logpI(Xi,n), 
. n i=l i=[ne]+I 

so that defining an empirical proc~ss again by 
l [nt] 

Fn(x, t) = - L l(Xi,n :::=; X ), X E R, t E [O, l], 
n i=l 

we obtain the representation 

Sn,e =le L logpo(x) Fn(dx,dt) + 11 
L logp1(x) Fn(dx,dt). 

Let space Y be defined as for the preceding model and let YP consist of those 
F E Y which are absolutely continuous relative to measure P( dx) x dt and admit 
density Pt(x) such that fRPt(x)P(dx) = 1, t?: 0. As above, the Fn obey the LDP 
with rate function J~K of the form 

I$K(F) = { 11 

Lp,(x)logp,(x)P(dx) dt, if FE YP, 
oo, otherwise. 

Define next for F E YP 

(e(F) = l L logpo(x) F(dx,dt) + [ L logp1(x) F(dx,dt). 

Then again 3n,e = (e(Fn) and the LDP for {3n,e,n?: l} holds, e.g., if logpo(x) 
and log PI ( x) are bounded and continuous. 
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Example 2. 7 Regression with Random Design 

\Ve consider the model 

k=l, ... ,n, 
where errors ~k,n and design points tk,n are independent i.i.d. with respective 
distributions P admitting density p( x) and IT. \Ve assume also that the prior 
measure IT is compactly supported by set D and has positive continuous density 
7r(t) on the support. The unknown regression function B(·) is assumed to be 
continuous. 

In this model, Pn,fJ is the joint distribution of Xn = (X1,n, ... , Xn,n) and 
tn = ( i1,n, ... , tn,n) for B . Let Fn be the joint empirical distribution function of 
Xn and tn: 

1 n 

Fn(A, B) = -;;; L l(Xk,n E A, ik,n E B), 
k=l 

for Borel sets A C R, B C D, and let Y be the· space of probability distributions 
on Rx D submitted with weak topology. Set also Pn = Pn,o = (P x ITr. 

With these definitions, 

1 dPnB 
::.n,fJ = -;;; log dP~ (Xn, in) 

_ ~ t log p(Xk,n - B(tk,n)) 
n k=l p(Xk,n) 
{ { p(x-B(t)) · · 

} R} R log p(x) Fn( dx, dt). 

Let Y1 be the set of two-dimensional cumulative distribution functions on R2 

which are absolutely continu,ous w.r.t. Lebesgue measure on R2 and have support 
in Rx D. 

Under Pn, the random pairs (Xk,n, tk,n) are i.i.d. with distribution P x IT, 
and hence, by Sanov's theorem, the LDP holds for Fn with rate function J55 (F) 
given by 

{ 
r r p(x, t) ( ) 'f 

1ss(F) = JR Jn log p(x)7r(t) p x, t dx dt, i FE Y1, 

oo, otherwise. 

Here F( dx, dt) = p(x, t) dx dt. 
Further this model can be treated in a manner similar to the case of an i.i.d. 

sample. 

2.2 Sufficient conditions for the dominated LDP 
We next study properties of the LDP for statistical experiments and begin with a 
sufficient condition for the LDP to hold. The condition serves two purposes further: 

11 
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firstly, in particular statistical models it is easier to be checked than the definition of 
the LDP; secondly, this condition comes in handy when constructing asymptotically 
optimal decisions, see Section 4. The idea behind the condition is similar to the 
one used in the condition of local asymptotic normality by LeCam, 1960, or, more 
generally, in the condition of .A-convergence by Shiryaev and Spokoiny, 1995, for 
studying weak convergence of experiments. 

Assume that there exist statistics Yn on (Dn, .Fn) with values in a Hausdorff 
space Y such that the sequence {C(Yn IPn), n ~ 1} obeys the LDP and the Yn 
are asymptotically sufficient in the sense that Zn,e ~ Je(Yn) for some nonrandom 
functions Je on Y (later on we explain the meaning of this approximate equality). 

In the above examples, the Yn are easily identified: it is empirical mean (X1,n + 
... + Xn,n)/n in the case of a sample from normal distribution in Example 2.1, 
empirical distribution function Fn in the case of an i.i.d. sample in Example 2.2, 
observation process Xn in the "signal + white noise" model, empirical process Fn 
in the cases of the regression model with non-Gaussian errors and the change-point 
model, etc. 

If the functions Je are bounded and continuous, then, as we have seen, by the 
contraction principle, the LDP for the sequence {C(YnlPn), n 2:: l} implies the LDP 
for the sequence {C(Je(Yn)IPn), n 2:: l} and hence for {£ (Zn,elPn), n ~ l}. But, 
by contrast with the theory of weak convergence of experiments, in applications 
the functions Je typically are not continuous. For instance, the functions (e (y) = 
log Je(Y) generally are not continuous in the above examples for an i.i.d. sample, 
the "signal + white noise" model, the regression models, the change-point model. 
To cope with this, we invoke the idea of regularisation which makes the condition 
more complicated. · 

For the sequel, we need some more definitions and facts from large deviation 
theory. Recall, see Varadhan, 1966; Varadhan, 1984; Deuschel and Stroock, 1989; 
Brye, 1990, that if a sequence of probability measures { Qn, n 2:: 1} on the Borel 
o--field of a Hausdorff space S obeys the LDP with rate function I, then, for all 
nonnegative, bounded, continuous functions f on S, 

lim [ { (f(x))nQn(dx)] lfn = supf(x)V(x), 
n-roo } S xES 

(2.5) 

where V(x) = exp(-I(x)). If Sis a metric, or more generally, a Tihonov (i.e., 
completely regular) space, then (2.5) is also sufficient for the LDP, see Puhalskii, 
1993. 

Moreover, the LDP implies (2.5) for unbounded continuous nonnegative func-
tions f too under "the uniform exponential integrability condition", Varadhan, 
1984; Deuschel and Stroock, 1989, 

lim lim [ { (! ( x) t 1 (! ( x) > H) Q n ( dx )] 
1 

In = 0. ( 2. 6) 
H -roo n-roo } S 

Also, if f is a lower semicontinuous nonnegative function, then 

lim [ { (f(x))nQn(dx)] l/n :2:: sup f(x)V(x). 
n-roo Js xES 
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The function V(x) is further referred to as deviability. Equivalently, a deviability is 
defined as a function V : S --+ [O, 1] such that supxES V( x) == 1 and the sets v-1 [a, 1] 
are compact for all a > 0. Obviously, there is one-to-one correspondence between 
probability rate functions and deviabilities. We will be saying that { Qn, n ~ 1} 
large deviation (LD) converges to V and write Qn ~ V (n --+ oo) if (2.5) holds 
for all bounded continuous nonnegative functions f (Puhalskii, 1994). Below, we 
will be using the fact that, if S is metric, one can require that the functions f be 
even uniformly continuous (analogously to weak convergence theory, see Billingsley, 
1968, Theorem 2.1). By the above, if S is a Tihonov space, then Q n ~ V ( n --+ oo) 
if and only if { Qn} obeys the LDP with I = - log V. All the spaces we are 
considering below are Tihonov and we will mostly be using the formulation of the 
LDP as LD convergence as more convenient in theoretical considerations. 

Next, let Sand S' be Hausdorff spaces, and let V be a deviability on S. Denote 

<I>v(a) = {x ES: V(x) ~a}, a> 0. (2.7) 

As in Puhalskii, 1995b ( cf. Schwartz, 1973), we will say that a map <.p: S--+ S' is V-
Luzin measurable if it is continuous in restriction to each set <I>v( a), a> 0. Deviabil-
ities are preserved under Luzin measurable maps: for any V-Luzin measurable map 
<.p, the function V 01.p-1 on S' defined by V 01.p- 1(x') = supxE<p-1(x') V(x ), x' E S', 
is a deviability on S' (e.g., the argument of Puhalskii, 1991, Lemma 2.1 applies). 

Further, say that <.p : S --+ S' is V-almost everywhere (V-a.e.) continuous if it 
is continuous at any x E S such that V(x) > 0. Obviously, any V-a.e. co~tinuous 
fun et ion is V-L uzin measurable. 

We introduce more notational conventions .. A( 8) denotes further the family 
of all finite subsets of 8. The elements of R~ are denoted by ze = (ze, B E 8), 
and the elements of R~, where A E A(8), are denoted by ZA = (ze, e EA). Maps 
TIA and 7rA'A, where A E A(8), A' E A(8) and A CA', are natural projections of 
R~ onto Ri and of Ri' onto Ri, respectively: 7rA(ze, B E 8) = (ze, B E A) and 
TINA(ze, e E A') = (ze, e E A). Since R~ and Ri, A E A(8), are submitted with 
Tihonov topology, the projections are continuous. 

We now state and prove the sufficient condition for the LDP. In it we assume 
that the statistics Yn take values in a metric space which is enough for applications 
though this restriction can be relaxed. 

Lemma 2.1 Let {En, Pn, n ~ 1} be a sequence of dominated experiments and let 
Zn,e, B E 8J be defined by {2.1). 

Assume that the fallowing condition holds: 

(Y) there exist statistics Yn : nn --+ Y with values in a metric space Y with Borel 
a-field) functions Je : Y --+ R+ , B E 8 and Je,o : Y --+ R+ J B E 8 , 8 > 0, such 
that 

(Y.1) the sequence {£ (YnlPn), n ~ 1} of distributions on Y LD converges to devia-
bility V(y ), y E Y; 

(Y.2) for each 8 > 0 J the functions Je,o : Y --+ R+ J B E 8 J are Borel and V -a. e. 
continuous; 

13 



14 

(Y.3) 

(Y.4) 
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lim lim p~fn(IZn,e - Je,5(Yn)I > c) = 0 for all c > 0 and e E 8; 
8-+0 n-+oo 

lim sup 1Je,5(Y) - Je(Y)I = 0 for all a> 0 and e E 8. 
5-+0 yE<l>v(a) 

Then£ (Zn,elPn) ~Ve (n -too), where Ve= Vo391, Je = (Je, BE 8). 

Proof Conditions (Y.2) and (Y.4) obviously imply that Je : Y -t R~ is V-Luzin 
measurable, hence Ve is a deviability on R~. 

Let A E A( 8). We first prove that 

(2.8) 

where Zn,A = (Zn,B, e E A), VA = v 0 JA: 1 and JA = (Je, e E A). Let 
f : Ri -t R+ be bounded and uniformly continuous. Since, by the definition 
of VA, supzAERi f(zA)VA(zA) = supyEY f(JA(Y))V(y), we need to prove that 

(2.9) 

Condition (Y.3) implies in view of the boundedness and uniform continuity off 
that 

lim lim IE~fn fn(zn,A) - E~fn fn(JA,8(Yn))I = 0, (2.10) 
8-+0 n-too 

where JA,8 = (Je,5, e EA). . 
Since the sequence {£(YnlPn), n ~ 1} LD converges to V and JA,5 : Y -t Ri 

are V -a.e. continuous, the sequence {£(JA,8(Yn)IPn), n ~ 1} LD converges to 
Vo (JA,5 t 1, Puhalskii, 1991. Thus, since f is bounded and continuous, 

(2.11) 

Due to (2.10) and (2.11), for (2.9) it remains to show that 

lim sup f(JA,5(Y))V(y) =sup f(JA(Y))V(y), 
8-tO yEY yEY 

(2.12) 

which is an easy consequence of condition (Y.4). Convergence (2.8) is proved. The 
assertion of the lemma now follows by Dawson-Gartner's theorem on projective 
limits of large deviation systems, see Dawson and Gartner, 1987, if we note that 
.C(Zn,e IPn) is the projective limit of {.C(Zn,AIPn), A E A(8)} and Ve is the pro-
jective limit of {VA, A E A(8)}, the latter meaning that the corresponding rate 
function le is the projective limit of {h,A E A(8)}. D 

Remark 2.1 Since R~ is a Tihonov space, according to the lemma, the sequence 
{&n, Pn, n ~ 1} obeys the dominated LDP if conditions (Y) and (U) hold. 
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Remark 2.2 As we have seen) in applications it is more convenient to manipulate 
rate functions and log-likelihood ratios given by 

....... l 1 dPn B =..n B = og Zn B = - log dP, , B E 8. ' ' n n 

Assuming that the Sn,B are well-defined) condition (Y) is implied by the following 
condition 

(Y') there exist statistics Yn : !ln ~ Y with values in a metric space y with Borel 
O"-field, functions (B : Y ~ R, B E 8, and (B,8 : Y ~ R, B E 8, 8 > 0, such that 

(Y'.l) the sequence {C(YnlPn), n ~ l} of distributions on Y satisfies the LDP on 
Y with rate function I(y), y E Y)· 

(Y'.2) for each 8 > 0, the functions (B,8 : Y ~ R, B E 8, are Borel and continuous 
at each point y such that I (y) < oo; 

(Y'.3) lim lim p~fn(ISn,B - (B,8(Yn)I > c) = 0 for all c > 0 and e E 8; 
8-+0 n-+oo 

(Y'.4) lim sup . l(B,8(Y) - (B(Y)I = 0 for all a~ 0 and() E 8) 
8-+0 yE<P~(a) 

where <I>J.( a) = {y E Y : I(y) ::; a}. 

Condition ( U) takes the form 

(U') lim lim E~fn exp(n3n,B)1(3n,B > H) = 0, () E 8. 
H-+oo n-+oo 

By Lemma 2.1, conditions (Y') and (U') imply the dominated LDP. 

2.3 The general case 
The above definition of the large deviation principle for statistical experiments 
covers only the dominated case and depends on the choice of dominating measures. 
We present now another definition which is free of these defects. It is motivated by 
Le Cam's definition of weak convergence of experiments, see, e.g., Strasser, 1985. 

Let IAI denote the number of elements in A E A(8). For ZA = (zB, () E A) E 
Ri and ze = (zB, B E 8) E R~, we set llzAllA = maxzB and llzelle = maxzB, 

BEA BES 

respectively, and define SA = {zA E Ri : llzAllA = l} and Se = {ze E R~ : 
llzelle = l}. Not to overburden notation, we sometimes omit subscript A in 
II · llA if there is no risk of confusion. 

Next, given a sequence of experiments {t'n, n ~ l}, set, for each A E A(8), 

Pn,A = 
1 TAf L Pn,B, 

BEA 

(
dP ) i/n n,B 
dPn,A ' 

BE A, (2.13) Zn,B;A 

(Zn,B;A, () E A). 

15 
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The definitions immediately imply that, Pn,A-a.s., 

L z~.e;A = IAI (2.14) 
BEA 

and 
(2.15) 

Definition 2.2 A sequence {En, n ~ 1} of statistical experiments obeys the LDP 
if, for each A E A(8), the sequence of distributions {£(Zn,AIPn,A), n ~ 1} obeys 
the LDP on R~ with some rate function. 

Remark 2.3 Equivalently, {En, n ~ l} obeys the LDP if £(Zn,AIPn,A) ~ V AJ 

A E A( e) J where v A is a deviability on R~ . 

We next study consequences of the definition and prove, in particular, that the 
definitions of the LDP for the dominated and general cases are consistent. 

Lemma 2.2 Let A E A(8). If£ (Zn,AIPn,A) ~VA, then VA has support in SA) 
i.e.) V A(zA) = 0 if ZA ~SA. 

Proof We have, for c > 0, using the equivalence of LD convergence and LDP on 
R~, that 

Inequalities (2.15) imply that the left hand side is zero. Since c is arbitrary, 
v A(zA) == 0 if llzAll -;. 1. D 

We now give another characterisation of the LDP. Let 1-lA denote the set of all 
nonnegative, continuous and positively homogeneous functions on R~: h E 1-lA 
iff h(zA) ~ 0, h is continuous and h(>..zA) == >..h(zA) for all ZA E R~ and ).. ~ 0. 

Lemma 2.3 Let A E A(8). Then £ (Zn,AIPn,A) ~ VA if and only if VA has 
support in SA and 

lim E~'.;hn(zn,A) = sup h(zA)V A(zA), for any h E 1-lA. 
n-+oo ERA 

ZA + 

Pro~f Let £ (Zn,AIPn,A) ~ VA. VA has support in S>. by Lemma 2.2. The 
second claim follows by the definition of LD convergence since, by (2.15), h(Zn,A) = 
h(Zn,A) Pn,A-a.s., where h(zA) = h(zA)[(2-llzAll/A) /\ 1 VO] and the latter function 
is bounded and continuous. 

For the converse, pick a nonnegative continuous bounded function f on R~. 
We need to prove that 

(2.16) 
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We define the function J by 

Note that f and J coincide on SA and, since VA is supported by SA, we can 
change f to J on the right hand-side of (2.16). The continuity of f and the 
inequalities (2.15) easily imply that the random variables J(Zn,A) and ](Zn,A) 
are uniformly bounded and 

Since J E 1-lA, taking h = Jin the conditions of the lemina, we get 

which yields (2.16) as required. D 
We now show that if A c A' E A( e) ' then deviability v A is a sort of projection 

of deviability VA', the property being inherited from corresponding probabilities. 
Recall the notations 7rA'A and 7rA for projections from Ri' onto· Ri and R~ 
onto Ri, respectively, and let IIA'A and TIA stand for normalise~ projections: 

IIA'AZA1 = 7rNAZA1 /ll7rA1AzA'llA, ZA.1ERi',117rA.'AzA'llA > 0, 
ITAze = 7rAze/ll7rAzellA, ze ER~, 117rAzellA > 0. 

Lemma 2.4 Let Ac A' E A(8). If .C(Zn,AIPn,A) ~VA and .C(Zn.A'IPn,A') ~ 
VA' , then .the following conditions hold 

(C) sup h(zA)VA(zA) = sup h(7rAtAZA1)VA1(ZA1), h E 1-lA; 
ZJ\ERi ZA1ERf 

(S) V A(zA) = sup ll7rA'AZA1 llA V A'(zA' ), ZA E Ri, 
ZAI err;~)A ZJ\ 

where ITA:,~zA = {zA' E Ri' : IIA'AZA' = ZA}. 

Proof Define 

( 
dP ) i/n 

Zn,A;A' = dP:.:, · 
Then obviously 

and, since h E 1-lA , we have that 

E~;:hn(zn,A) = E!;:, [h(Zn,A')Zn,A;A'r = E!;:,hn(7rA',AZn,A')· 

17 
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Applying Lemma 2.3 to the leftmost and rightmost sides and using that ho7r A' A E 
1-lA' , we obtain ( C). 

Now, (S), for given ZA E SA, can formally be obtained by substituting h(zA) = 
l(zA = llzAllzA)llzAll in (C) and using that VA has support in SA. However the 
function h is not continuous, so we approximate it by a sequence of continuous 
functions hk E 1-lA, k ~ 1, as follows. Let 

hk(zA) = (llzAll - kllzA - zAllzAll 11)+ · 
Since the hk are from 1-lA, we can apply (C).Also hk(zA)-!- h(zA) ask--+ oo. 
Using that h(zA) is upper semicontinuous, and VA and VA' are deviabilities, it 
is not difficult to see (see also Puhalskii, 1995b) that one can take limit as k --+ oo 
in ( C) for the hk 's, as required. D 

. Remark 2.4 We have actually proved that ( C) holds for non continuous positively 
homogeneous nonnegative functions too. 

We further call a family of deviabilities {VA, A E A(8)}, where VA is defined on 
Ri, conical if it satisfies (C). If, in addition, VA(zA) = 0 for all ZA t/:. SA, the 
family is called standard. By the above, a family is standard if it meets ( S). 

The next result is of particular importance for the minimax theorem below. It 
states that any standard family of deviabilities admits an extension on R~ which 
preserves the conical property. 

Lemma 2.5 For any standard family of deviabilities {VA, A E A(8)} J there exists 
a function Ve on R~ such that the following conditions hold: . 

(i) Ve is upper semicontinuous on R~J assumes ;alues in [O, 1L supzeER~ Ve(ze) = 
1 and Ve ( ze) = 0 if ze t/:. Se ; 

(ii) for any A E A(8) and h E 1-lA, 

sup h(zA)VA(zA) = sup h(7rAze)Ve(ze); 
~E~ ~E~ 

(iii) for any ZA E Ri , 
V A(zA) = sup 117rAzellA Ve(ze), 

ze Eil;\ 1 
ZJ\. 

where IIA:1 ZA = { ze E R~ : IIAze = zA} . 
A proof is deferred to the appendix. 

We conclude the section by showing the consistency of the above definitions of 
the LDP. 

Lemma 2.6 Let {t'n, Pn, n ~ 1} be a sequence of dominated statistical experi-
ments. If {t'n, Pn, n ~ 1} obeys the dominated LDP, then it obeys the LDP. More 
specifically, if deviability Ve on R~ is the LD limit of .C (Zn,elPn) as n--+ oo, then 
.C (Zn,AIPn,A) ~VA, A E A(8), where 

V ( ) { 
supz_ err-1z 117rAzellVe(ze), ZA E SA, 

A ZA = e A A 
0, ZAf/:.SA. 
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Proof Let £ (Zn,e IPn) ~ Ve. It is easy to see that the VA defined in the 
statement are deviabilities with support in SA. 

By Lemma 2.3, it suffices then to prove that, for any A E A( 8) and h E 1-lA , 

lim E~'.;hn(zn,A) = sup h(zA)V A(zA)· 
n-too ER/\. 

Zfl. + 

Denote 
n,A 

(
dP ) i/n 

an,A = dPn . 

We have, in earlier notation, 

n dPn,A 1 '"""' dPn,B 1 '"""' n 
an,A = ~ = -IAI Lt dP = -IAI Lt zn,B' 

n BEA n BEA 

and 

Hence 
(2.17) 

Now we are using the LD convergence L(Zn,elPn) ~ Ve. However, ~e cannot 
apply at t.his point property (2.5) to the function h(zA) since it is not bounded on 
Ri. So we check (2.6). This is where condition (U) comes in. 

Let h* = supz11.ES11. h(zA). Since h is continuous, it is bounded on SA and 
· h* < oo. Since h E 1-lA, h(Zn,A):::; h*llZn,All and, in view of co'ndition (U), 

lim E~fnhn(zn,A)l(h(Zn,A) > H) :::; lim L E~fnh*n z~ Bl(h* Zn,B > H) 
n-too n-too ' BEA 

:::; lim h* '°' P~~n(h* Zn,B > H) -+ 0 as H-+ oo. 
n-too Lt ' BEA 

Property (2.6) is checked and we obtain, by (2.17), (2.5) and the LD convergence 
of £ (Zn,e IPn) to Ve, that 

lim E~fnhn(7rAZn,e) 
n-too 

sup h( 7r Aze) Ve ( ze ). 
zeER~ 

Since the definition of VA obviously implies that 

sup h(zA)VA(zA) = sup h(7rAze)Ve(ze), 
~E~ ~E~ 

the lemma is proved. D 
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3 A minimax theorem 
vVe start the section by showing that, in analogy with the classical asymptotic 
theory of statistical experiments, see Strasser, 1985, the LDP allows us to obtain 
asymptotic lower bounds for appropriately defined risks which, in fact, has been 
the motivation for introducing the concept of the LDP for sequences of statistical 
experiments. In the second part of the section we show that, under additional 
conditions, the bounds are tight and study the problem of constructing sequences 
of decisions attaining the bounds. . 

vVe consider a sequence {En,n 2:: 1}, where En= (Dn,Fn;Pn,e,B E 8), of 
statistical experiments and assume that it satisfies the LDP. The corresponding 
deviabilities are denoted by v A 'A E A( e) ' and v e denotes the extension defined 
in Lemma 2.5. 

We introduce some more notation common for statistical decision theory, see, 
e.g., Strasser, 1985. We denote by 1J a Hausdorff topological space with Borel 
o--field which we take as a decision space; We = (We(r ), r E 'D), B E 8, are, for 
each B, nonnegative and lower semicontinuous functions on 1J which play the part 
of loss functions. Rn denotes the set of all measurable mappings Pn : Dn --+ 1J, 
i.e., Rn is the set of all decision functions with values in 'D. We define the large 
deviation (LD) risk of a decision Pn E Rn in the experiment En by 

Rn(Pn) = sup E~/enW;(Pn)· (3.1) 
eEe ' 

Obviously, this is an analogue of the risk in minimax decision theory, cf. Strasser, 
1985. 

Recall, Strasser, 1985, Definition 6.3, that a function f: U--+ Ron a topological 
space U is level compact if it is bounded below and the sets { u E U : f ( u) ~ a} 
are compact for all a< supuEU f(u). Obviously, if U is Hausdorff, a level compact 
function is lower semicontinuous. 

Theorem 3.1 Let the sequence {En , n 2:: 1} obey the LDP. Assume that the func-
tions We, B E 8, are level compact. Then 

where 

lim inf Rn (Pn) 2:: R*, 
ri=+OO PnE'Rn 

R* = sup inf sup We(r )ze Ve (ze ). 
ze ER~ rEV eEe 

In particular} if {En, Pn, n 2:: 1} obeys the dominated LDP and Ve is the corre-
sponding deviability, then 

R* = sup inf sup We(r)ze Ve(ze). (3.2) 
ERe rEV eEe ze + 

If, moreover} conditions (Y) and ( U) holdJ then 

R* =sup inf sup We(r) Je(y)V(y). 
yEY rE'D eEe 



ON LD EFFICIENCY IN STATISTICAL INFERENCE 

Proof Let A E A(8). We prove first that 

Iim inf sup E!'.enWe(Pn) ~ sup inf sup We(r)zeVA(zA)· (3.3) 
n-rco Pn BEA Zfl.. ERi rED BEA 

Let {pn, n ~ 1} be an arbitrary sequence of decisions. We have, by the definition 
of Zn,A (see (2.13)), that 

lim sup E~18nW8(Pn) == 
n-rco BEA , 

> lim 
n-rco [ l~I En,A L WO(Pn)Z~,B;A] I/n > 

BEA 

where 
w(zA) == inf sup We(r)ze, ZA == (ze, e EA) ER~. 

rED BEA 

Since the set A is finite and the functions We are lower semicontinuous and level 
compact, the function w( ·) is lower semicontinuous ( cf. Aubin, 1984, Proposition 
1.7). Using the LD convergence of £(Zn,AIPn,A) to VA, we get (3.3). 

Since the function w( ·) belongs to 1-lA, an application of Lemma 2.5,ii yields, 
by (3.3), 

Now ~he proof is completed by observing that, for every ze == (ze, B E 8) E R~, 

sup inf sup We(r)ze == inf sup We(r)ze. 
AEA(e) rED BEA rED BEe 

(for a proof see Lemma A.3 in the appendix or Aubin and Ekeland, 1984, Theorem 
6, Section 2, Chapter 6) D 

Remark 3.1 Note that the proof uses only what is known as a lower bound in the 
LDP. 

Remark 3.2 We are in a position now to explain why we consider condition (U) 
to be important in the definition of the dominated LDP. Assume that {En , n ~ 1} 
is a dominated family with dominating measures Pn such that, for deviability Ve on 
R~, we have that £(Zn,elPn) ~Ve. The proof of Theorem 3.1 with Ve replaced 
by Ve and VA replaced by Veo7rA1 {which would not use condition (U)) would still 
give the right-hand side of {3.2) as a lower bound. However these lower bounds can 
generally be different for different sequences of dominating measures. The role of 
condition (U) is to exclude this possibility by making sure that equality (3.2) holds 
so that lower bounds do not depend on the choice of dominating measures. 
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In applications, as we will see, the assumption that the loss functions are level 
compact is normally met. However, in the appendix we give a variant of Theorem 
3.1 for arbitrary loss functions. This requires, as in the classical theory introducing 
generalised decisions, cf. Strasser, 1985. 

vVe now turn our attention to the question of the tightness of the above lower 
bound and start with defining the concept of large deviation efficiency. Say that a 
sequence of decisions {p~, n 2: 1} large deviation (LD) efficient, if for any other 
sequence of decisions {Pn} 

lim 
n-too 

Due to Theorem 3.1, to construct LD efficient decisions, one can apply an approach 
similar to the one used in the classical asymptotic decision theory. Indeed, by 
Theorem 3.1, if the We , B E 8, are level compact, then, for any sequence of decisions 
{pn, n 2: 1}, 

Now if a sequence {p~, n 2: 1} is such that Rn(P~) -+ R* as n -+ oo, it is 
obviously LD efficient. 

Further, having in mind applications, we will be assuming that the sequence 
{En , n 2: 1} is dominated and conditions (Y) and ( U) hold. Then, by Theorem 3.1, 
the asymptotic minimax risk can be written as 

R* =sup inf sup vVe(r)Je(y)V(y) .. 
YEY rE'D eee 

(3.4) 

Representation (3.4) prompts considering for each y E Y .the subproblem 

(Q) Q*(y) = inf sup We(r)Je(Y). 
rE'D eee 

Since the functions We are level compact for each BE 8, there exist r*(y) ED, y E 
Y, which attain-the inf. The value r*(y) can be viewed as "the best decision if the 
value of Yn is y". Hence, provided the function r* (y) : Y -+ Vis Borel, the decisions 
r*(Yn) are natural candidates for LD efficient decisions. Unfortunately, we cannot 
prove this without requiring that Q* (y) be continuous (or upper semi continuous) 
which is not usually the case in applications. The reason for the latter is that, as 
we have seen, Je (y) typically are not continuous as maps from Y into R+. So we 
introduce continuous functions Q 8(y) approximating Q*(y ). Specifically, we define 
the subproblems 

Q8(y) = inf sup We(r)5e,o(Y), y E Y, 
rE'D eee 

where Je,0(y) are, on the one hand, close to Je(Y) and, on the other hand, such that 
Q 8(y) is continuous. We achieve this through a stronger version of condition (Y) 
which we denote by (sup Y) and which requires, roughly, that (Y) hold uniformly in 
B E 8. This way of handling the technical difficulties does not allow us, however, 
to get LD efficient decisions: as the next theorem shows, we are able to obtain 
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only decisions whose asymptotic risk, in general, is arbitrarily close to the lower 
bound. Still we succeed in proving that the lower bound of Theorem 3.1 is tight 
and LD efficient decisions exist. We next state the condition. Recall that Zn 8 = 
(dPn,a/dPn)lfn. ' 

(sup Y) There exist statistics Yn : Dn -+ Y with values in a metric space y with 
Borel o--field, functions Ja : Y-+ R+, 8 E 8, and Ja,.s : Y-+ R+, 8 E 8, 8 > 0, such 
that 

(Y.l) the sequence{£ (YnlPn), n 2:: 1} LD converges to deviability V(y), y E Y; 
(sup Y.2) for uniform topology on R~, the functions Je,.s = (Ja,.s, 8 E 8) : y -+ 
R~, 8 > 0 , are Borel and continuous V-a.e.; 

(sup Y.3) lim lim sup p;/n (IZn,B - Je,.s(Yn)I > c:) = 0, c > O; 
o-+0 n-+oo BE8 

(sup Y.4) limsup sup IJa,.s(y) - JB(Y)I = 0 for all a> 0. 
o-+O BE8 yE<l>v(a) 

In the next theorem, condition (sup Y) is used together with condition (sup U) 
which strengthens (U): 

(sup U) lim lim sup E~fn z: 8l(Zn,B > H) = 0. 
H-+oo n-+oo BE8 ' 

Theorem 3.2 Let a sequence of dominated experiments {En, Pn, n 2:: 1} satisfy 
conditions (sup Y) and (sup U) ' and the function We ( T) be bounded in ( e' T) and 
level compact in T for each e E. e. Assume that there exist Borel functions r,s(Y) : 
y-+ 'D such that the inf in (Q.s) is attained at r8(y), and let Pn 8 = r8(Yn). 

' Then 

so that 
lim inf Rn(Pn) = R* · 

n-+oo Pn E'R.n 

In particular, 
lim Rn(P~) = R* 

n-+oo 

for some sequence p~. 

Proof Since (sup Y) implies (Y), by Lemma 2.1, £(Zn,elPn) ~Ve= Vo3E;1, so 
by Theorem 3.1, for each 8, 

Proof of the first set of equalities would be over if 

(3.5) 
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Let C be an upper bound for W: WB(r) :::; C. Since 

we have that, for any H > 0, 

The second term on the right tends to 0 as n -+ oo and H -+ oo by condition 
(sup U), so the required would follow by 

(3.6) 

Since 

I sup E~fnwBn(Pn,5 )(Zn,B /\ Hr - sup E~fnwBn(Pn,0 )(JB,s(Yn) /\ Hrl 
Bee Bee 

:::; C supB~fn(IZn,B - JB,s(Yn)I /\ Hr, 
Bee 

condition (sup Y.2) implies that 

lim lim I sup E~fnwBn(Pn,0 )(Zn,B /\ Ht - sup E~fnwBn(Pn,s)(JB,o(Yn) /\ Htl = 0. 
o-TO n-Too Bee Bee 

. . . (3. 7) 
Next, using the definitions of Q0 and Pn,o' and the inequality WB(r):::; C, we get 

sup E~fnW8(Pn,o)(JB,o(Yn) /\ Ht 
Bee 

:::; E~fn (sup(We(Pn,o(Y) )JB,o(Yn)) /\CH) n 
Bee 

= E~fn (Q 0(Yn) /\ CHf. (3.8) 

The last two expectations in (3.8) are well defined since, by assumptions, Q 5(y) = 
supBee WB(r5(y))JB,o(Y) is Borel. 

By (Q0) and (sup Y.2), the function Q0(y) is V-a.e. continuous. Since 
£ (YnlPn) ~ V, we get 

lim E~fn (Q 0(Yn) /\ CHf = sup(Q0(y) /\CH) V(y). (3.9) 
n-Too yeY 

By (Q), (Q 0) and the inequality WB(r) :::; C, we have that 

I sup(Q5(y) /\CH) V(y) - sup(Q*(y) /\CH) V(y)I 
yeY yeY 

:::; C supsup(IJB,o(Y) - JB(Y)I /\ H) V(y), 
yeY Bee 
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and (sup Y.4) easily implies that the right-hand side tends to 0 as J--+ 0. Thus 

limsup ( Q8(y) /\CH) V(y) =sup ( Q*(y) /\CH) V(y) 
o-tO yEY yEY 

~sup Q*(y)V(y) = R*, (3.10) 
yEY 

where for the last equality we used (3.4) and ( Q). Putting together (3. 7)-(3.10) 
proves (3.6) and hence (3.5). 

The last claim of the theorem follows by (3.5) and a string of inequalities the 
first of which is Theorem 3.1 

R* ~ lim inf Rn (Pn) ~ lim inf Rn (Pn) ~ lim Rn (Pn,o). 
n-too Pn n-too Pn n-too 

D 

Remark 3.3 Obviously, r0(y) chosen so that 

where €0 --+ 0 as J --+ 0 would work too. 

Remark 3.4 If condition (sup Y) holds with Je,o(Y) = Je(y)) then the r8(y) do not 
depend on J and the decisions p~ := Pn,o are LIJ_ efficient. 

Remark 3. 5 Assume that 8 is a topological space and denote by C ( 8, R) the sub-
space of R~ of continuous functions endowed with uniform topology. Then condition 
(sup Y.2) is implied by the following condition. 

(sup Y.2.1) 8 is a compact metric space, the functions Je, 0(y), 6 > 0, are continuous 
in e for each y E Y and condition (Y.2) holds. 

For a proof, note that under the assumptions e and C ( 8, R) are separable {see, 
e.g., Engelking, 1977) chapter 4) so that Borel (}"-fields on C(e, R) for Tihonov and 
uniform topologies coincide. 

Remark 3.6 As with condition (Y), in applications) it is more convenient to deal 
with a logarithmic form of condition (sup Y). Namely, defining 2n,e and <I>]( a) as 
in. Remark 2.2, introduce condition (sup Y'): 

(sup Y') there exist statistics Yn : Dn --+ Y with values in a metric space Y with 
Borel (}"-field, functions (e : Y--+ R, B E 8, and (e,o : Y--+ R, B E 8, J > 0, such 
that 

(Y'.l) the sequence {£ (YnlPn), n ~ l} satisfies the LDP on Y with rate function 
I(y), y E Y; 

(supY'.2) for uniform topology on Re, the functions (e,o = ((e,o,B E 8): Y--+ 
Re, J > 0, are Borel and continuous at each pointy such that I(y) < oo; 
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(sup Y'.3) 

(sup Y'.4) 

A.PUHALSKII AND V .SPOKOINY 

lim lim sup p;fn(l2n,e - (e,8(Yn)I > c) = 0 for all c > O)· 
8-+0 n-+oo 8E8 

lim sup sup l(e,8(Y) - (e(Y) I = 0 for all a ~ 0. 
8-+0 8E8 yE<P~(a) 

Then (sup Y) is implied by (sup Y'). Similarly (sup U) follows from 

(sup U') lim lim sup E~fn exp(n3n,e)l(3n,e > H) = 0. 
H-+oo n-+oo 8E8 

Also (sup Y'.2) is implied by 

(sup Y' .2.1) 8 is a compact metric space7 the functions (e,8 (y) , c5 > 0, are continuous 
in B for each y E Y and condition (Y'.2) holds. 

We will further be referring to the decisions Pn,8 as nearly LD efficient. 

4 Asymptotic LD risks and efficient decisions for 
hypotheses testing and estimation problems 

This section specifies the above asymptotic minimax bound and (nearly) LD effi-
cient decisions for typical statistical set-ups which are hypotheses testing and es-
timation with Bahadur-type criteria. We ar~ considering indica.tor loss functions, 
i.e., 

We(r) = l(r rj. Ae), r E 'D, B E 8, 

where Ae are closed subsets of 'D. Then the LD risk of a decision Pn in the n-th 
experiment is 

For applications, it is handy to introduce the logarithmic risk 

R~(Pn) =sup 2:_ log Pn,e(Pn rJ. Ae). 
8E8 n 

Accordingly, we consider the logarithm of the lower bound R*: 

R'* = sup inf sup ( (e - le( (e) ), 
(eERe rE1J 8E8:Ae~fr 

where Ie((e) = -logVe(ze) for ze = (exp((e),B E 8), (e = ((e,B E 8). 
Theorem 3.1 then yields 

( 4.1) 

Theorem 4.1 Assume that the Ae, BE 8, are compact. If the sequ·ence {En, n ~ 
1} obeys the LDP7 then 

lim inf R~ (Pn) ~ R'*. 
n-+co Pn E'R.n · 
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Further, we will be assuming that the sequence {En, n 2 l} is dominated, and 
conditions (Y') and (U') hold. According to Remark 2.2 and Theorem :3.1, we then 
have 

R'* ==sup inf sup ((e(y) - l(y)). 
yEY rETJ eEe: Ae 15r 

(4.2) 

Subproblems (Q) and (Q 0) defined in Section 3 take the form 

( Q') Q'* (y) == inf sup (e (y) , y E Y , 
rE7J eE8: Ae15r 

and 

Q'0(y) = inf sup (e,o(Y), y E Y. 
rETJ eE8: Ae~r 

Obviously, 
R'* = sup(Q'*(y) - I(y)). 

yEY 

Let the inf in ( Q8) be attained at points r8(y) which is the case, e.g., if the 
Ae, e E G, are compact. We denote p~ 5 == r8(Yn). 

Combining Theorem 4.1 and Theore~ 3.2, and taking into account Theorem 3.1, 
Remarks 2.2 and 3.6, we obtain 

Theorem 4.2 Assume that {En, Pn, n 2 l} is a dominated sequence of statistical 
experiments and the Ae, e E G, are compact. . 

1. If conditions (Y') and ( U') ·hold, then 

lim inf R~ (Pn) 2 R'*. n--roo PnEnn 

2. Assume that the functions r8, o > 0, mapping Y into 1J, are Borel. If 
conditions (sup Y') and (sup U') hold,. then 

lim lim R~ (p~ 5) == lim lim R~ (p~ 5) == R'*, o--ro n--roo ' o--ro n--roo ' 

so that 
lim inf R~ (Pn) = R'*. n--roo Pn Enn 

4.1 Hypotheses Testing 
Let Go and G1 be nonintersecting subsets of the parameter set G: Go c G, G1 c 
G, Go n G1 == 0. We wish to test the hypothesis Ho : e E 8 0 versus the alternative 
Hi: BE 81. 

The decision space 1J consists of two points: 1J == {O, 1}, we endow it with 
discrete topology, and, for any decision (test) p , we treat the event {p == 0} 
(respectively, {p == 1}) as accepting (respectively, rejecting) the null hypothesis. 

The corresponding loss function We( r) is the indicator. of the wrong choice: 

We ( r) = 1 ( e rt 8 r), r = 0, 1, ( 4.3) 
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and the logarithmic risk R'(pn) of decision Pn from ( 4.1) takes the form 

R~(Pn) =max{sup ~logPn,e(Pn = 1), sup ~logPn,e(Pn = O)}. (4.4) 
BE8o n BE81 n 

Denoting the asymptotic minimax risk R'* by T*, we have by ( 4.2) that 

T* =sup min{ sup((e(y)- I(y)), sup((e(y)- l(y))}. (4.5) 
yEY BE8o BE81 

In applications, it is more convenient to use another representation for T*, i.e., 

T* = sup S(B, B'), (4.6) 
BE8o, B'E81 

where 
S(B,B') =sup min{(e(y)- I(y),(e1(y)- I(y)}. (4.7) 

yEY 

Further, subproblem ( Q8) is then 

T~(y) = min sup (e,cS(Y), y E Y. 
r=0,1 BE81-r 

It has a solution 
rf (y) = 1 (sup (e,cS(Y) < sup (e,cS(Y )) , 

BE8o BE81 

which leads to tests p~ 8 of the form 
' 

P~,s = 1 (sup (e,cS(Yn) < sup (e,cS(Yn)) . 
BE8o BE81 

(4.8) 

In the case of two simple hypotheses B0 and B1 , the tests reduce to a regularised 
version of the Neyman-Pearson test: 

Thus Theorem 4.2 yields 

Theorem 4.3 Let 8 0 and 8 1 be nonintersecting subsets of 8. If a sequence of 
dominated experiments {En, Pn, n 2:: l} satisfies conditions (Y') and (U'), then 

lim inf R~ (Pn) 2:: T*. 
n-roo PnE'Rn 

If conditions (sup Y') and (sup U') hold, then 

lim inf R~ (Pn) = T*, 
n-roo PnE'Rn 

and the tests p~ 8 are nearly LD efficient: 
' 

lim lim R~(p~ 8) = lim lim R~(p~ 8 ) = T*. 
8-ro n-roo ' 8-ro n-roo ' 
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4.2 Parameter Estimation 

Let 8 be a subset of a normed space B with norm II · II· We are interested in 
estimating parameter e under the Bahadur-type loss function 

We ( r) == 1 (II r - e 11 > c) (4.9) 

for given positive c. The logarithmic risk of estimator Pn IS 

E 1 Rn (Pn) ==sup -log Pn,e(llPn - Bll > c). 
eee n 

(4.10) 

We assume that the decision space Vis either a compact subset of B with induced 
topology, or a closed convex subset of B with weak topology (e.g., V == B); in the 
latter case, B is assumed to be a reflexive Banach space. The We, B E 8, are then 
level compact on V. 

In this set-up, we denote the asymptotic minimax risk R'* from ( 4.2) by E*: 

E* == sup inf sup ( (e(y) - I(y ).) 
yEY rED eee: ilr-e!l>e 

( 4.11) 

and the corresponding subproblem ( Q~) is 

. (Eo) E0(y) == inf sup (e,o(Y ), y E Y . 
rED eee: llr-ejj>e 

We next describe solutions to (E0). Consider a real-valued function J(B), () E 8, 
and let 

A( h) == { e E e : f ( B) > h} ' h E R, 
r(h) == inf sup llr-Bll, h ER, 

rE'D eeA(h) 

he== inf(h: r(h) ::; c). 

( 4.12) 
( 4.13) 

We assume that he < oo (e.g., f ( B) .is bounded). Note that for both definitions of 
V infrED in ( 4.13) is attained (for the case of weak topology, see, e.g., Baiocchi and 
Capelo, 1984, Theorem 2.2). 

Lemma 4.1 The set De == {r E v : SUPeeA(hc) llr - e11 ::; c} is nonempty and 
consists of all re E V such that 

sup f ( B) == inf sup f ( B), 
eee:jlrc-ell>e rED eee:llr-eji>e 

where both sides are equal to he. 
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Proo{ It is not difficult to see that r( h) is decreasing and right continuous. Hence 
r(he) ::; c and, since infre1J SUPeeA(hc) llr - BI! = r(he) and the inf is attained, the 
set De is nonempty. 

Now let re E De. By definition, lire - Bll::; c for all BE 8 such that f(B) >he. 
Hence 

sup f(B)::; he. (4.14) 
eee: llrc-Bll>e 

On the other hand, if h < he, then r(h) > c which implies that, for any r E V, 
SUPeeA(h) llr - Bll > c or, equivalently, there exists e such that f(B) > h .and 
llr - Oii > c, so that infre'D SUPeee:!lr-Bll>e f(B) ?: h. Since h is arbitrarily close to 
he, we conclude that 

inf sup f ( B) ?: he, 
rE1J BE8:llr-Bl!>e 

which by ( 4.14) proves that re has the required property. 
Finally, if r ~ De, then SUPeeA(hc) llr - Bll > c, i.e., there exists e such that 

llr - Bll > c and f(B) >he which yields SUPee8:llr-Bll>e f(B) >he. D 

Remark 4.1 Informally, r( h) is the smallest radius of the balls which contain all 
the B with J(B) > h, and he is the lowest level h for which there exists a ball of 
radius c with this property. The lemma states that he is the inf over all the balls of 
radii c of the largest values off ( B) outside the balls. 

If we consider the case of one-dimensional parameter B, the construction in 
the lemma chooses the lowest level set of the function f which is contained in an 
interval of length· 2c, and the re are centres of the intervals. lvfotivated by this 
interpretation, this type of estimators could be called interval-median. 

For given f, let re(!) denote an element of the set De in the lemma and, 
taking f(B) = (e,0(y), let rf.e(Y) = re((e,o(Y)). We assume that the functions 
rf.e(Y) : Y -+ 1J are Borel. We can then define the estimators 

P~,8 = rf,e(Yn)· ( 4.15) 

A version of Theorem 4.2 for this case is 

Theorem 4.4 Assume that either B is a normed space and 1J is its compact subset 
with induced topology, or B is a reflexive Banach space and 1J is a closed convex 
subset of B with weak topology. Let 8 c B. 
If a sequence of dominated experiments { fn, Pn, n ?: 1} satisfies conditions (Y') 
and ( U'), then 

lim inf R~ (Pn) ?: E*. 
n--1-oo PnE'Rn 

If conditions (sup Y') and (sup U') hold, then 

lim inf R~(Pn) = E*, 
n--1-oo PnE'Rn 

and the interval-median estimators p~ 8 = rfe(Yn) are nearly LD efficient, 
' ' 
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Remark 4.2 If B is a separable reflexive Banach space, then Borel a-fields for 
strong and weak topologies coincide, hence the condition of the measurability of rfc 
does not depend on a topology on B. 

4.3 Estimation of Linear Functionals 

Let 8 be a vector space and let L( ·) be a linear functional on 8. Consider the 
problem of estimating L( B). We take 1) = R, the real line. As above, we consider 
Bahadur-type criteria: the loss function is 

We(r) == l(lr - L(B)I > c), BE 8,r ER, 

where c > 0 is fixed, and the risk of estimator Pn is given by 

F 1 Rn (Pn) =sup -log Pn,e (IPn - L(B)I > c). 
BEe n 

(4.16) 

The asymptotic minimax lower bound R'* takes the form 

F* == sup inf sup ( (e(Y) - I(y) ), 
yEY rE'D BE8: !r-L(B)!>c 

( 4.17) 

. and su bpro.blem ( Q'o) is 

(Fs) F0(y) == inf sup (e,s(y ), y E Y. 
rE'D BE8: lr-L(B)!>c . 

Corresponding solutions P'o(Y) can be constructed along the same lines as for the 
parameter estimation problem above. Namely, fixing y and 8, denote J(B) = (8,0(y) 
and let, for h E R, 

LoA(h) == {L(B) : BE A(h)}, 

where A(h) is from (4.12), be the image of A(h) on the real line for the mapping 
L. Let B(h) be the minimal closed interval in R containing LoA(h). Set further, 
denoting by d(B(h)) the length of B(h), 

hc,L = inf {h: d(B(h))::; 2c}. 

Finally, consider intervals Bc,L of length 2c which contain B(hc,L) (note that 
d(B(hc,L)) ::; 2c), and let Dc,L be the set of the centres of all such intervals. The 
argument of Lemma 4.1 yields the following result. 

Lemma 4.2 The set Dc,L is nonempty and consists of all rc,L E 1) such that 

sup f ( B) == inf sup f ( B), 
BE8:lrc,L-L(B)l>c rE'D BE8:!r-L(B)l>c 

where both sides equal hc,L. 
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To emphasise dependence on f, let us denote the elements of Dc,L by rc,L(J). By 
the lemma, rf,c(Y) = rc,L((e,s(y)) solves (Fs). Assuming that the rf,c(Y) are Borel 
functions from Y into R, we introduce the estimators p~ 8 of L( B) by 

' 

P~s = r c,L( (e,s(Yn) ), (4.18) 

and call them also interval-median. Theorem 4.2 then yields 

Theorem 4.5 If a sequence of dominated experiments { &n, Pn, n 2:: 1} satisfies 
conditions (Y') and ( U'), then 

lim inf R~ (Pn) 2:: F*. 
n-1-oo Pn E'Rn 

If conditions (sup Y') and (sup U') hold, then 

lim inf R1;: (Pn) = F*, 
n-1-oo PnE'Rn 

and the interval-median estimators p~8 = r c,L( (e,s (Yn)) are nearly LD efficient, 

We conclude the section by giving a more explicit representation for F*. 

Lemma 4.3 Under the above notation and conditions, 

F*= sup S(B,B'), 
B,B': IL(B-B')l>2c 

where S ( (), B') is defined by { 4. 7): 

S(B, B') =sup min {(e(y) - I(y), (e1(y) - I(y)}. 
yEY 

Proof We fix y E Y with I(y) < oo, set f(B) = (e(Y) and define hc,L as above. 
We show that 

hc,L = sup min {f( B), f( B')}. 
B,B': IL(B-B')l>2c 

By ( 4.17) and Lemma 4.2, this implies the claim. 
Since d(B(h)) :::; 2c for h > hc,L, we have that, if B,0' E 8 are such that 

IL(B - B')I > 2c, then min(J(B),f(O')) :::; hc,L· Conversely, if h < hc,L, then 
d(B(h)) > 2c, hence there exist 0, ()' E 8 such that L(B - B') > 2c and f(B) > 
h, f(O') > h which, by the arbitrariness of h < hc,L, ends the proof. D 

Remark 4.3 The latter case of functional estimation includes the case of estimat-
ing one-dimensional parameter() with L( B) = (), so the result of Lemma 4. 3 applies 
to evaluating E* too. 
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5 Statistical Applications 
In this section, we go back to the statistical models we introduced in Section 2 and 
apply to them the above general results. We first verify the LDP for the models 
by checking conditions (Y') and ( U'). This is done under more general hypotheses 
than those of Section 2. After that, we present conditions which imply (sup Y') 
and (sup U'). Next, considering certain hypotheses testing and estimation problems 
for the models, we calculate asymptotic minimax risks and indicate (nearly) LD 
efficient decisions. 

Each of the subsections below uses its own notation. We mention it if certain 
symbols are used in different subsections for the same objects. For reader's conve-
nience, we repeat the main points of the analysis we gave for the models in Section 
2 and recall the models themselves. Also we implicitly assume that the functions 
we choose as estimators are properly measurable. 

5.1 Gaussian Observations 
We observe a sample of n i.i.d. r.v. Xn = (X1,n, ... , Xn,n) which are normally 
distributed with N(e, 1), () E e c R. For this model, nn = Rn and Pn,B = 
(N(e, l)r, BE 8. We take Pn,o as dominating measure Pn. Then 

1 dPn,B ( ) 1 ~( 1 2) ( ) n -log-d- X = - L.J BXk- -28 , X = X 1, ... ,Xn ER. 
n Pn n k=l 

Thus it is natural to take 

so that 
....., 1 dPn,e ( ) 1 2 =..n,B = ;;: log dPn Xn = BYn - 2 (} . 

Then { £ (Yn IPn) , n ~ 1} satisfies the LDP on R with rate function JN (y) = 
y2 /2, y E R (see, e.g., Freidlin and Wentzell, 1984). This checks condition (Y'.l). 

We next take 
1 2 (e(Y) = (e,o(Y) =By - 2 () · (5.1) 

Conditions (Y'.2)--:(Y'.4) are then obvious. Condition (U') follows by Chebyshev's 
inequality, since 

By Remark 2.2, the sequence { &n , n ~ 1} obeys the LDP. 
Let us assume further that 8 is bounded. It is then readily seen that conditions 

(sup Y') and (sup U') are met. We turn now to hypotheses testing and estimation 
problems and begin with calculating, for(),()' E 8, the value S(e,e') from (4.7). 
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Lemma 5.1 For any 0, 0' E 8, 

(0-0')2 
S(O,O') :=sup min{(e(y)- IN(y),(8,(y)-IN(y)} = - . 

yER 8 

Proof By (5.1) and the definition of JN, (e(y) - l(y) = -(y - 0)2 /2, so 

S(o O') _ . {- (y - 0) 2 
_ (y - 01

)
2

} __ ( o - 01
)

2 

, - sup mm 
2 

, 
2 

- . 
yER 8 

D 

5.1.1 Testing 0 = 0 versus IOI 2:': 2c 

Assume that 8 contains 0 as an internal point. We are testing the simple hypothe-
sis Ho : 0 = 0 versus the two-sided alternative H1 : IOI 2:': 2c with some prescribed 
2c > 0 such that the interval [-2c, 2c] is contained in 8 . 

The corresponding logarithmic risk of test Pn is given by (see ( 4.4)) 

R'!: (Pn) = max {!log Pn,o(Pn = 1), ! sup log Pn,o(Pn = 0)} . 
n n IBl~2c 

Now, using (4.6) with 8 0 = {O} and 8 1 ={OE 8: IOI 2:': 2c}, and Lemma 5.1, we 
readily get 

2 
T* = sup S(O, O') = - c

2 
. 

IB'l~2c 

Next, by Theorem 4.3 and Remark 3.4 to Theorem 3.2, LD efficient tests p; can 
be taken in the form 

P'!: 1 ( sup (e(Yn) > (o(Yn)) 
IBl~2c 

- 1 (sup (OYn -
02

) > o) 
IBl~2c 2 

- l(IYnl > c). 
Applying Theorem 4.2, we arrive at the following result. 

Proposition 5.1 Let [-2c, 2c] c 8. Then 
2 

lim inf R'!: (Pn) 2:': - c
2 

. 
n-too Pn 

If 8 is bounded, then 
2 

lim inf R'!: (Pn) = - c
2 

, 
n-too Pn 

and the above tests p; are LD efficient: 
2 T( T c lim Rn Pn) = --2 . 

n-too 
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5.1.2 Parameter Estimation 

Now we consider the problem of estimating parameter (). Recall (see (4.10)) that, 
given c > 0, the risk of estimator Pn is 

E 1 Rn (Pn) =sup -log Pn,e(IPn - ()I > c). 
eee n 

The value E* of the asymptotic minimax risk is given by Lemma 4.3 (see Remark 
4.3), 

E* = sup S(B, B'). 
e,e1ee: IB-B'l>2c 

By Lemma 5.1, we have that E* = -c2 /2 if 8 contains an interval of length 2c. 
An application of Theorem 4.4 and Remark 3.4'yields the following result. 

Proposition 5.2 Let 8 contain an interval of length 2c. Then 

2 

lim inf R~(Pn) ~ -~. 
n-+oo Pn 2 

If 8 is bounded, then 
2 

lim inf R~(Pn) = - c
2

, 
n-+oo Pn 

and the interval-median estimators p~ = rc((e(Yn)) {see Section 4.2) are LD 
efficient: 

. 2 
lim R~(p~) = - c

2
. 

n-+oo 

Remark 5.1 It is easy to see that the estimator p~ = rc((n(Yn)) coincides with Yn 
if Yn - c E 8 and Yn + c E 8. Direct calculations show that the estimators Pn = Y~ 
are also LD efficient, i.e., limn R~(Pn) = -c2 /2. The latter estimator is of simpler 
structure and does not depend on c and 8 . But the p~ seem to perform better at 
points outside or close to the boundary of 8. In particular, if Yn tj:. 8 and 8 is 
convex, then Pn tj:. 8 whereas p~ E 8. 

5.2 An 1.1.D. Sample 
We observe an i.i.d. sample Xn = (X1,n, ... , Xn,n) from distribution Pe, B E 8. 
We assume that the family P is dominated by probability measure P, i.e.,· 
Pe « P, B E 8,. This model is described by the dominated experiments 
En = (On, Fn; Pn,e, B E 8) with On = Rn, :Fn = B(Rn), Pn,e = P'!), B E 8, 
Pn = pn. 

Assume that the family P = { Pe, B E 8} satisfies the following regularity 
conditions. 

(R.l) the densities dPe/dP(x), () E 8, are continuous and positive functions of 
x ER; 
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( R.2) an analogue of Cramer 's condition holds: 

L (~~(x)}' P(dx) < oo, e E 0, for all 1 ER. 

where 
1 n 

Fn(x) = - L l(Xk,n::; x), n 
k=l 

x ER, (5.2) 

are empirical distribution functions. 
We take the latter as statistics Yn· Then Y is the space of cumulative distribu-

tion functions on R which we denote by :F and endow with the topology of weak 
convergence of corresponding probability measures. By Sanov's theorem, Sanov, 
1957, Deuschel and Stroock, 1989, 3.2.17, {£ (YnlPn), n ~ l} satisfies the LDP with 
I5 (F) = K(F, P), FE :F, where K(F, P) is the Kullback-Leibler information: 

{ J dF dF . 
dp (x)log dP(x) P(dx), if F « P, 

K(F, P) = R · . 

oo, otherwise. 
(5.3) 

This checks condition (Y'.l ). The verification of the rest of condition (Y') is more 
intricate than in the previous example. 

Denote for e E 8, x E R and 8 > 0, 

and define 

Le(x) 

Le,8(x) 

(e,o(F) = L Le,o(x)F(dx), FE :F. 

By (R.l), the functions (e,8 are continuous on :F, so (Y'.2) holds. 
We check (Y'.3). Condition (R.2) implies that, for all 1 > 0, 

lim {[exp (1 ILe(x) - Le,8(x)I) -1] P(dx) = 0. 
8--tO} R 

Then, for I> 0, c > 0, with the use of Chebyshev's inequality, 

p;fn(l2:n,B - (e,o(Fn)I > e)::; p;/n (L ILe(x)- Le,o(x)I Fn(dx) > e) 
::; exp(-1e )E~fn exp ( n1 L I Le( x) - Le,o( x) I Fn( dx)) 

= exp(-1e) L exp(! ILe(x) - Le,o(x)I) P(dx). 

(5.4) 
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By (5.4), it then follows that 

. lim lim p~fn(l3n,B - (e,8(Fn)I > c) ~ exp(-1c). 
8-+0 n-+oo 

Since / is arbitrary, (Y'.3) follows. 
vVe next check (Y'.4) with 

{ J Le(x)F(dx), if ! 5 (F) < oo, 
(e(F) = R 

0, otherwise. 
(5.5) 

To begin with, we show that the (e are well defined. Since the functions x log x -
x + 1 and exp x-1 are convex conjugates (Rockafellar, 1970), by Young's inequality 
(see, e.g., Krasnoselskii and Rutickii, 1961), for F « P, 

l ILe(x) ~~(x)I P(dx):::; l [exp (JLe(x)I) - 1] P(dx) 

f (dF dF dF ) + }R dP (x) log dP (x) - 4p (x) + 1 P(dx) 

r (dP. )-l :::; l+ }R d; (x) P(dx) + ! 5(F). 

In view of ( R.2) , this proves that the (e are well defined. 
Now, for F with ! 5 (F) < oo, we have, for I > 0, using Young's inequality 

again, that · 

1J(e,o(F) - (e(F)J :::; l 1 ILe,o(x) - Le(x )J F( dx) 

:::; l [exp (I ILe,o(x) ~ Le(x )J) - 1] P( dx) 

{ (dF dF dF ) +} R dP ( x) log dP ( x) - dP ( x) + 1 P( dx) 

= l [exp (I JLe,o(x) - Le(x)J) - 1] P(dx) + I 5 (F). 

Hence by (5.4), 
~ a 
lim sup l(e,8(F) - (e(F)I ~ -, 
8-+0 FE<I>~5 (a) I 

and taking I -t oo, we arrive at (Y'.4). Lemma 2.1 then implies that the LDP 
holds for{£ (3n,elPn), n ~ l}. 

It remains to check (U'). Using once again Chebyshev's inequality, we obtain, 
for H > 0, 

E!ln exp(n3n,e)1(3n,B > H) < exp(-H)E!ln exp(2n3n,B) 

exp(-H) l ( ~~ (x)r P(dx) 
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and the assertion follows by condition ( R.2). 
Conditions (Y') and (U') have been checked and thus the LDP holds. 

Remark 5.2 It is possible to do without condition ( R. l). Then bounded continuous 
functions Le,o = ( Le,s( x ), x E R), J > 0, B E 8, should be chosen so that (5.4) holds. 
The existence of such functions follows from ( R.2). 

To check (sup Y') and (sup U'), we assume that stronger versions of conditions 
(R.l) and (R.2) hold: 

(sup R. l) the functions dPe / dP( x) are positive and equicontinuous at each x E R; 

(sup R.2) ~~~ L ( ~~ (x)r P(dx) < 00 for all 1 ER. 

Defining (e, (e,0, Le and Le,o as above, we have, by (sup R.2), that for all / > 0 

limsup r [exp(! ILe(x) - Le,s(x)I) - 1] P(dx) = 0. 
o-ro BE9 J R 

Using this, conditions (sup Y' .3) and (sup Y' .4) are checked as conditions (Y' .3) 
and (Y'.4) above. Condition (sup U') is also checked analogously to condition (U'), 
with the use of (sup R.2). Condition (Y'.l) h~s already been checked. 

It remains to check (sup Y'.2). We show that the functions ((e,s(F), BE 8) are 
continuous in F for uniform topology on R~ which obviously implies (sup Y'.2). 
Since weak topology on :Fis metrisable, it is enough to check sequential continuity. 
Let p(n) weakly converge to F as n -+ oo. Then the definiti0n of the Le,o and 
(sup R.l) imply that the Le,s(x), 8 E 8, for J fixed; are uniformly bounded and 
equicontinuous at each x E R, so that (see, e.g., Billingsley, 1968, Problem 8, §2) 

sup I r Le,s(x)F(n)(dx) - r Le,s(x)F(dx)I-+ 0 
BE9 JR JR 

checking (sup Y'.2). Conditions (sup Y') and (sup U') have been checked. 

Remark 5.3 The condition of equicontinuity in (sup R.l) holds if 8 is a compact 
topological space and the functions dPe I dP( x) 'a E e' are continuous in a for each 
x and continuous in x for each a. 

We now proceed to considering concrete statistical problems for the model. For 
this we need the following result by Chernoff, 1952. 

Lemma 5.2 {Chernoff, 1952). Let :F be the space of all distribution functions on 
a Polish space E with Borel O"-field and let P, Q E :F be dominated by measure µ 
and have densities p( x) and q( x). Then 

inf max {I<(F, P), I<(F, Q)} = C(P, Q) 
FE:F 

where I<(F, P) is the Kullback-Leibler information {5.3) and C(P, Q) is Chernoff 's 
function 

C(P, Q) = - inf log jp'Y(x) q1-'Y(x) µ(dx). 
'YE[0,1] 
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vVe next apply Lemma 5.2 to calculate the function S( (), B') from ( 4. 7) which 
appears in expressions for minimax risks in hypotheses testing and estimation prob-
lems, see ( 4.6) and 'Lemma 4.3. 

Lemma 5.3 .For (), ()' E 8, 

Proof Letl3 (F) < oo. Then F« P,and,sincethedensitiesdPe/dP(x), BE 8, 
are positive, we also have that F « Pe and, P-a.e., ~ 

dF dF dPe 
dP dPe dP. 

Therefore, by the definitions of (e and 13 , 

(e(F) - I5(F) = L log~~ (x)F(dx)- L log ~~F(dx) 
f dF - }R log dPe F(dx) = -K(F, Pe) 

and the result follows by Lemma 5.2. D 
As a consequence of Theorem 4.3 and Lemma 5.3, we obtain the follow!ng result 

for a hyp~theses testing problem. Consider the tests from ( 4.8): 

·P~,o = 1 (sup (o,o(Fn) < sup (e,o(Fn)) . 
eEGo eee1 

As above, risk R~ (Pn) of test Pn is defined by ( 4.4). By ( 4.5) and Lemma 5.3, 

T* = - inf C(Pe, Pei), 
· 8E8o, ~'E81 

so Theorem 4.3 yields 

Proposition 5.3 Let 8 1 and 8 2 be nonintersecting subsets of 8. 
If conditions ( R. l) and ( R.2) hold, then 

lim inf R~ (Pn) 2:: - inf C ( Pe, Pei). 
n-too Pn eeGo, e1E81 

If conditions (sup R.l) and (sup R.2) hold, then 

lim inf R~ (Pn) = - inf C( Pe, Pe' ), 
n-too Pn BEGo, 81E81 

and tests p~ 8 are nearly LD efficient, i. e., 
' 

In a similar manner one can tackle estimation problems for parameter () or linear 
functionals of () . 
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5.3 "Signal + White Noise" 
vVe observe the stochastic process Xn = (Xn(t), t E [O, l]) obeying the stochastic 
differential equation 

dXn(t) = O(t)dt + )n dW(t), 0 ::; t ::; 1, (5.6) 

where W = (W(t), t E [O, l]) is a standard vViener process and B(·) is an unknown 
function which we assume to be continuous. 
This model is described by the statistical experiments En = (Dn, Fn; Pn,B, B e 8), 
where Dn = C[O, l], the space of continuous functions on [O, l], 8 c C[O, l] and 
Pn,B is the distribution of Xn on C[O, l] for given B. We take Pn = Pn,o, where Pn,o 
corresponds to the zero function B( ·) = 0. Then Pn,B « Pn and, moreover, by 
Girsanov's formula, Pn-a.s., 

3n,B = _!._log ddP;,B (Xn) = 11 

B(t)dXn(t) - ~ 11 

82(t)dt. (5.7) 
n .Ln 0 2 0 

So, to check condition (Y'), we take Yn ·= Xn and Y = C[O, l] with uniform metric. 
Let C0 [0, 1] be the subset in C[O, 1] of functions x( ·) which are abso-

lutely continuous w.r.t. Lebesgue measure and x(O) ::;::: 0. Since the sequence 
{£ (XnlPn), n 2: l} satisfies the LDP on C[O, l] with 

1w(x(·)) = { ~[(X(t))2 dt, ifx(·) E Co[O,l] (5.S) 
oo, otherwise, 

where x(·) E C[O,l] and x(t) denotes the derivative of x(·) at t (see, e.g., Freidlin 
and Wentzell, 1984), condition (Y'.l) holds. 

We next take 

1
1 111 (e,o(x(·)) = 

0 
85(t) dx(t) - 2° 

0 
B2(t) dt, x(·) E C[O, 1], (5.9) 

where 
[1/5] 

85(t) = L B(k8)l(t E [k8, (k + 1)8)), t E [O, 1], (5.10) 
k=O 

and the first integral on the right of (5.9) is understood as a finite sum. 
By the continuity of 8( · ), 

lim1
1

(B(t) - 85(t))2 dt = 0. (5.11) 
5--tO o 

The (e,5 are obviously continuous in x(·) E C[O, 1], so (Y'.2) holds. Next, by (5.7) 
and (5.9), we have, for c > 0 and I > 0, in view of Chebyshev's inequality, that 

p~1nusn,B - co.o(Xnll > e):::: p~1n (I[ (e(t) - e,(t)) )n dW(t)I > e) 
::; 2e--r• exp ( ~ [ (O(t) - Oo(t))2 dt), 
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and by (5.11) 

which proves (Y'.3) by the arbitrariness of I· 
For condition (Y'.4), we take 

(e(x(·)) = { [ O(t)X(t) dt - ~ [ 02 (t) dt, if JW(x(·)) < oo, 
0, otherwise. 

The (e are well defined, since by the Cauchy-Schwarz inequality and (5.8), if x(.) 
is absolutely continuous, 

r1 ( 1 ) 1/2 lo IO(t)X(t)i dt:::; 1 02(t) dt (2Iw (x(· )))112
• 

Moreover, if JW(x(·)) < oo, then 

i(o,s(x(·))- (o(x(·))I :'.S [ IOs(t) - O(t)ii±(t)I dt 

( 

1 ) 1/2 ( 1 ) 1/2 
:'.S 1 (Os(t) - O(t)) 2 dt 1 (X(t)) 2 dt 

so 

sup l(e,s(x(·)) - (e(x(·))I ~ (2a) 1!2 (1 1 

(B8(t)-'- B(t)) 2 dt)
112

, 
x(·)E<I>~w(a) 0 

and tµe latter goes to 0 as 6-+ 0 by (5.11). Condition (Y') has been verified. 
It remains to check (U'). Using the model equation (5.6), (5. 7) and Chebyshev's 

inequality again, we have that 

E~/n exp( n3n,B) 1 (3n,B > H) :::; exp( -H)E~ln exp(2n3n,B) 

= exp(-H)exp (1 1

02(t)dt) -+ 0 as H-+ oo. 

Conditions (Y') and (U') have been checked. 

Remark 5.4 The condition of the continuity of the B( ·) can be weakened to the 
condition 11 

e2 (t) dt < oo. 

Functions Bs should then be chosen as step functions for which (5.11) holds. 

For conditions (sup Y') and (sup U'), we assume that the B( ·) belong to a compact 
~ in C[O, 1], more specifically, ~ = ~0 (/3, M) which is a subset of the Holder class 

~(/3, M) = {B(·): IB(t) - B(s)I:::; Mjt - sj 13 , 'is, t E [O, 1]}, (5.12) 
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for some /3 E (0, 1] and NI > 0, with the property that 

sup IB(O) I < oo. 
B(·)EEo(,G,M) 

The compactness of :E0 (/3, M) in C[O, 1] is an obvious consequence of Arzela-
Ascoli's theorem. The conditions on :E0 (/3, M) easily imply that 

sup r1 B2(t) dt < 00 
B(·)EEo(/3,M) lo (5.13) 

and 
lim sup [1 (B(t) - B0(t)) 2 dt = 0. 
o-tO B(·)EEo(/3,M) lo (5.14) 

Now conditions (sup Y'.3) and (sup Y'.4) are checked as conditions (Y'.3) and 
(Y'.4), respectively, with the use of (5.14) in place of (5.11). Condition (sup Y'.2) 
is checked as for the i.i.d. sample model since the (e,0(x(·)), B E :E0 (/3, M), are 
equicontinuous at each x which easily follows from the compactness of :E0 (/3, M). 
Finally, condition (sup U') follows in analogy with condition ( U') with the use of 
(5.13). This completes the verification of conditions (sup Y') and (sup U'). 

We now calculate the function S(B, B') from (4.7) for the model. 

Lemma 5.4 For any B, B' E C[O, 1] J 

S(B, B') := sup min{(e(x(·)) - Iw(x(·)), (e1(x(·)) - Iw(x(·))} 
x(·)EC(0,1] 

-~ [ [l!(t) - l!'(t)]2dt. 

Proof Since by the definitions of Iw and (e, for x( ·) with Iw ( x( ·)) < oo, 

(e(x(·)) - Iw(x(·)) = -~ [1 (x(t) - B(t))2 dt, 
2 lo 

we get, using the inequality max( a 2 , b2 ) 2:: (a - b )2 / 4, 

S(I!, Ii') ~ - max { ~ [ [:i:(t) - li(t)]2dt, ~ [ [:i:(t) - l!'(t)]2dt} 

2:: -~ (1 [B( t) - B' ( t)] 2dt. 
8 lo -

But for x(·) with x(t) = [B(t) + B'(t)]/2, we have that 

~ [ [:i:(t) - l!(t)]2dt = ~ [ [:i:(t) - l!'(t)]2dt = -~ [ [l!(t) - l!'(t)]2dt 

and the required follows. D 
Now we apply these formulae and the general results from Section 4 to two 

statistical problems concerning the value of the function B( ·) at an internal point 
to of [O, 1] . 
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5.3.1 Testing e(to) == 0 versus IB(to)I ~ 2c 

Given c > 0' denote 80 == {e E 8: fJ(to) == O}' 81 == {fJ E 8: IB(to)I ~ 2c} 'and 
define the risk R~ (Pn) of test Pn by ( 4.4). 

Proposition 5.4 Let c, M and t0 be such that [to - t*, t0 + t*] ~ [O, 1] ) where 
t* == ( c/ iVI) 11 f3 • 
If 8 == ~(~,M)) then 

. T 2~2 c2 ( c ) 1//3 
!~1! 1!f Rn (Pn) ~ - (~ + 1)(2~ + 1) M . 

If 8 == ~o(~, M)) then 

. . T 2~2 c2 (c)l//3 
!~1! 1!f Rn (Pn) == - (~ + 1)(2~ + 1) M ' 

and the tests p; 8 from (4.8} are nearly LD efficient) i.e., 
' 

· 2a2 2 l//3 
1• -1· RT( T ) i· i· RT( T ) /.J c ( c ) im im n Pn a == im im n Pn a == - (a ) ( a ) - . . 
a-+o n-+oo ' o-+o n-+oo ' J.J + 1 2/.J + 1 M 

Proof We need only calculate T* from ( 4.6). Denote 

B*(t) == [c - Mlt - tol 13 ]+. (5.15) 

If now e E 80, e' E 81' then the inequality IB(to) - B'(to)I ~ 2c and Holder 
constraints (5.12) imply that W(t) - 8'(t)1 ~ 2[c :- Mlt- t0 1f3]+ == 2B*(t) and hence 

[ (B(t) - B'(t))2dt :2:: [ 4(8.*(t)) 2dt. 

This yields by Lemma 5.15 

S( B, B') :::; -~ 4 [ (B*(t)) 2 dt = - l· ( c - Mtf3) 2dt 

2~2c2 ( c ) 1//3 
= (~ + 1)(2~ + 1) M . 

On the other hand, evidently, c - 8* E 8 0 , c + 8* E 8 1 and S( c - 8*, c + 8*) = 
1 - ~ J ( fJ* ( t)) 2 dt . This proves the assertion. D 

0 

5.3.2 Estimating 8(t0 ) 

Treating the value 8( t0 ) as a linear functional of 8( ·) , we define the risk of esti-
mator Pn of 8(to) by 

R1:i (Pn) = sup .!_log Pn,e ( IPn - 8( to) I > c). 
eee n 
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Proposition 5.5 Let c, M and t0 be such that [to - t*, t0 + t*] ~ [O, 1]. 
If 8==~(fi,M), then 

2fi2c2 ( c ) 1//3 Ji1! i~f R;(Pn) 2:: - (fi + 1)(2fi + 1) M . 

If 8 == ~o(fi, M), then 

and the interval-median estimators p; 8 from (4.18) are nearly LD efficient, i.e., , 

. -.- T F . . T F 2fi2c2 (c)l//3 
hm hm Rn (Pn 5) == hm hm Rn (Pn 5) == - (fi l)(2fi 1) ilf1 • 8-+0 n-+oo ' 8-+0 n-+oo ' + + lVJ 

Proof By Theorem 4.5 and Lemma 4.3, 

lim inf R; (Pn) 2:: F* == sup S( e, B'). 
n-+oo Pn B,B': IB(to)-B'(to)l>2c 

Repeating the above calculation for the testing problem, we obtain, for B*(t) == 
[c - Mlt - tol 13]+, 

F* == S( B*, -B*) = 2fi2c2 ( c ) 1//3 
(fi + 1)(2fi + 1) M . 

D 

Remark 5.5 The latter problem has been studied by Korostelev, 1993 who suggests 
different upper estimators, namely, the kernel estimators 

f>n = J I<(to - t)dXn(t) 

with the kernel K(t) == (fi + 1)/(2cfi) (M/c) 1!f3 [c- Mlt - t0 1]+. These estimators 
have proved to be asymptotically efficient in the sense that R~ (Pn) --+ F* as n --+ oo. 

5.4 Gaussian Regression 

We are considering the regression model 

k 
tk n = -, k = 1, ... 'n, , n (5.16) 

where the errors ~k,n are i.i.d. standard normal and B( ·) is an unknown function 
which is again assumed to be continuous. 
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In this model, On == Rn, 8 C C[O, 1] and Pn,B is the distribution of Xn 
(X1,n, ... , Xn,n) for B(·). As above, we take Pn == Pn,O· Then 

=..n,B = 

(5.17) 

where 
l [nt] 

Xn(t) = ;; L Xk,n, o::;t:::;i. 
k=l 

This prompts taking the process Xn = (Xn(t), t E [O, 1]) as statistic Yn in condition 
(Y'). Y is the space of right continuous with left-hand limits functions on [O, 1] 
with uniform metric (for :measurability of Xn, see Billingsley, 1968, §8). 

Since the Xk,n are N(O, 1)-distributed under Pn, the sequence{£ (XnlPn), n 2:: 
1} satisfies the LDP with JW from (5.8) (see, e.g., Puhalskii, 1994). This checks 
condition (Y'.l). 

Next, we define (a,c>(x(·)) and B0(t) as in Subsection 5.3, i.e., 

(a,c>(x(·)) = (1 B0(t)dx(t) - ! f
1 

e·2 (t)dt, x(·) E Y, lo . 2 lo (5.18). 

[1/0] 

Bo(t) == L B(ko)l(t E [ko, (k + 1)0)), t E [o, 1]. 
k=O 

Note that the (a,c> are measurable w.r.t. the Borel a-field on Y and continuous 
vw -a.e. since they are continuous at continuous functions and vw ( x( ·)) = 0 if 
x( ·) is not absolutely continuous. This checks condition (Y'.2). 

Now, by (5.17) and (5.18), 

p;fn(ISn,9 - (e,o(Xn)I > c):::; 1 ( [ B2(t) dt - ~ ~ B2(k/n) > c/2) 

+P;tn (I[ (B(t) - Bo(t)) dXn(t)I > c/2) . 

The first term on the right is zero for all n large enough by the continuity of B( · ). 
The second is not greater than 

e--ye/2 E!fnexp ( n1 [[ (O(t) - Bo(t)) dXn(t)I) 

::; 2e-1e/2 exp ('
2 t (B(k/n)) - Bo(k/n))2

) • 
2n k=I 
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By the continuity of B( ·) and since 'the 80( ·) are step functions, 

1 n 111 lim - L (B(k/n) - B0(k/n)) 2 ==- -
2 

(B(t) - B0(t)) 2 dt, 
~oon o 

k=l 

and the latter goes to 0 as fJ --+ 0 by the continuity of B( · ). Since I is arbitrary, 
condition (Y'.3) checked. 

Conditions (Y'.4) and (U') are checked as for the "signal+ white noise" model 
(with the same choice of (e). 

Remark 5.6 As in the preceding model) instead of the continuity of B( ·)) we could 
require that it be square integrable on [O, 1] . 

To get nearly LD efficient decisions, we assume that the B( ·) belong to the class 
~0 (/3, M) defined above. Conditions (sup Y'.3), (sup Y'.4) and (sup U') are again 
checked as for the ~'signal + white noise" model if we take into account that 

lirri sup f\e([nt]/n) - B(t)) 2 dt ==- 0. 
n-+oo B(·)EEo(,6,M) Jo 

Condition (sup Y'.2) is obvious. 
Since here we have the same functions JW ( x) and (e ( x) as for the "signal 

+ white noise" model, the statistical probl~ms of Subsection 5.3 have the same 
solution.· 

5.5 Non-Gaussian Regression 
We consider the same regression model (5.16) but now assume that the i.i.d. errors 
ek,n have distribution p with posjtive probability density function p(x) w.r.t. 
Lebesgue measure on the real line. The unknown regression function B( ·) is again 
assumed to be continuous, so 8 c C[O, l]. 

Next, we assume that the density p(x) obeys the following condition, cf. con-
ditions (R.l) and (R.2) for an i.i.d. sample: 

( P) The density p( x) is positive) continuous and the function 

is bounded and continuous in s E R for all r E R . 

Again, for a regression function B( ·) , we denote by Pn,B the distribution of 
Xn ==- (X1,n, ... , Xn,n). We have, with Pn ==- Pn,o, 

= _ 2_ l dPn,e (X ) _ 2_ ~ l p(Xk,n - B(kjn)) 
'-'n,B - og dP n - L.J og (X ) . n n n k=l p k,n 
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This representation suggests, as in the case of an i.i.d. sample, taking for Yn the 
empirical process Fn = Fn(x, t), x ER, t E [O, l], defined by 

l [nt] 
Fn(x, t) = - L l(Xk,n::; x). 

n k=l 
(5.19) 

Then 
~ f1 f p(x - B(t)) 
=.,n,B = Jo } R log p( x) Fn( dx, dt). (5.20) 

We define Y as the space of cumulative distribution functions F = F(x, t), x E 
R, t E [O, l], on R x [O, l] with weak topology. Let Yo be the subset of Y of 
absolutely continuous w.r.t. Lebesgue measure on Rx [O, l] functions F(x, t) with 
densities Pt(x) satisfying the condition fRPt(x) dx = 1, Vt E [O, l]. By Puhalskii, 
1995c, the sequence {..C(FnlPn), n 2 l} obeys the LDP on Y with rate function 
JSK ( F) given by 

1sK ( F) -. { 
00

[' L log ~(~; Pt( x) dx dt, if F E Yo, 
otherwise. 

This checks (Y'.l). 
To define (8,0(F), introduce the functions 

Le(x, t) log p(x - B(t)) 
- p(x) ' 

Le,a(x, t) Le(x, t) V (-8- 1) /\ 8-1 , x ER, t E [O, l]. 

The functions Le,o are bounded, continuous and are such that 

lim t r [exp(! ILe(x, t) - Le,a(x, t) I) ___:_ l] p(x) dx dt = 0, I > 0. (5.21) o-+oJo }R 
We set 

Co,o(F) = [ L Lo,o(x, t) F(dx, dt). (5.22) 

Then condition (Y'.2) holds by the definition of topology on Y and the choice of 
the Le,o· 

For condition (Y'.3), write, for;> 0, using Chebyshev's inequality, and (5.19), 
(5.20) and (5.22), 

~log Pn(l3n,8 - (o,o(Fn)I > c:) 

::; ~log Pn ([ L ILo(x, t) - Lo,o(x, t)I Fn( dx, dt) > c) 

1 n 1 ::; -;e + - Llog exp(; ILe(x,k/n)- Le,a(x,k/n)j)p(x) dx. 
n k=l R 
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By condition ( P), the continuity of B( ·), and the boundedness and continuity of 
Le,s, the second term on the right converges, as n -+ oo, to 

[log L exp (I ILe(x, t) - Le,o(x, t)[) p(x) dx dt. 

Since ( 5.21) implies, by Jensen's inequality, that the latter goes to 0 as n -+ oo, we 
conclude that 

which proves (Y' .3) since I is arbitrary. 
For condition (Y'.4), we take 

(e(F)= { fo1

LLe(x,t)F(dx,dt), ifI5K(F)<oo, 
0, otherwise. 

The (e are well defined since by Young's inequality, if F(x, t) = J; J~00 pt(x)dx dt, 
then 

f 1 r ILe(x, t)I Pt((x)) p(x) dx dt . . lo jR P x ::; [ L [exp (ILe(x, t)[) - l] p(x) dx dt 

+ (1 { (Pt(x)logPt(x) _Pt(x) +l)p(x)dxdt 
j o j R p( X) p( X) p( X) 

::; 1 + [ Lp2(x)(p(x - O(t)))-1 dx dt + J5K(F), 

which is finite, if J8K ( F) < oo, by condition ( P). 
Next, with the use of Young's inequality, we have, for I> 0, if JSK (F) < oo, 

'Yl(e,o(F) - (e(F)I::; [ L 'Y ILe,o(x, t) - Le(x, t)I F(dx, dt) 

::; [ L [exp (I ILe,o(x, t) - Le(x, t)[) - l] p(x) dx dt + J5K (F), 

so by (5.21), 
a 

lim sup l(e,s(F) - (e(F)I ~ -, 
S--ro FE<P~sK (a) I 

which proves (Y'.4) since I is arbitrary. 
Condition (U') is checked as in the case of an i.i.d. sample. 
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Remark 5. 7 We could weaken condition ( P) to the condition 

[ L [p(x )]''[p(x - e(t) )] 1--r dx dt < 00 for all 1 E R. 

Then Le,o should be chosen so that (5.21) holds. 

We now check conditions (sup Y') and (sup U'). For this, we assume that the 8(-) 
are again from the set f;0 (/3, M) defined in Subsection 5.3. Then (5.21) can be 
strengthened to · 

lim sup r1 r (exp (t ILe(x, t) - Le,o(x, t)I) - 1) p(x) dx dt = 0, "'( > 0, 
0-+0 B(·)EL:o(t',M) lo J R 

' (5.23) 
which allows us to check (sup Y'.3), (sup Y'.4) and (sup U') as (Y'.3), (Y'.4) and 
(U'), respectively. Condition (sup Y'.2) follows from the fact that the Le,8(x, t), e E 
f;0 (/3, M), are equicontinuous at each (x, t), so the ((e,0, () E 8) : Y --+ R~ are 
continuous for uniform topology on R~. 

We now calculate the function S( fJ, fJ'), 8, ()' E 8 from ( 4. 7). This is done with 
the use of a generalisation of Cherno:ff's result in Lemma 5.2 which we ~tate and 
prove next. Let (E, £) be a Polish space with Borel o--field and let P(E) be the 
space of probability measures on (E, £). As above, for F, PE P(E), we denote by 
K( F, P) the Kullhack-Leibler information: 

K(F, P) = { L log~~ (x)F(dx), 
oo, 

if F « P, 
otherwise. 

Recall that K(F, P), for P fixed, is convex and is a rate function in F for weak 
topology on P(E), Deuschel and Stroock, 1989, 3.2.17. 

Obviously we can consider E x [O, 1] with product topology in place of E. In 
this case, for a Borel measure v on [O, 1], denote by Pv(E x (0, 1]) the subset of 
P(E x (0, 1]) of measures F such that F(E x [O, t]) = v([O, t]), t E [O, l]. 

Our version of Cherno:ff's result is the following lemma. 

Lemma 5.5 Let Ebe a Polish space. Let probability measures P, Q E P(E x [O, 1]) 
be dominated by the product measure µ x v, where µ and v are Borel measures on 
E and [O, 1] respectively. 

Then 

inf max {K(F, P), K(F, Q)} 
FEPv(Ex[0,1]) 

= - inf 11 

log [ r pi(x) qi-'(x) µ(dx)] v(dt), 
1E[O,l] o J E 

where Pt( x) and qt( x) are the respective densities of P and Q relative to µ x v. 
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Proof Obviously, 

max{I<(F, P), I<(F, Q)} = sup (rK(F, P) + (1 -1)K(F, Q)). (5.24) 
'YE[0,1] 

Let P(E x [O, 1]) be endowed with weak topology. Since K(F, P) is convex and is 
a rate function in F, we deduce that the function 1K(F, P) + (l ·-1)K(F, Q), / E 
[O, 1], F E Pv([O, l] x E), meets the conditions of a minimax theorem (see, e.g., 
Aubin and Ekeland, 1984, Theorem 7, Section 2, Chapter 6). Hence 

inf . sup (rK(F, P) + (1 -1)K(F, Q)) 
FE'Pv(Ex[0,1]) /'E[0,1] 

= sup inf (rK(F, P) + (1 -1)K(F, Q)). 
'YE[0,1] FE'Pv(Ex[0,1]) 

(5.25) 

The latter inf can equivalently be taken over F which are dominated by P and Q, 
and hence byµ xv. Denote by ft(x) density of F «µxv. Since, by the definition 
of Pv(E x [O, 1]), 

F(E x [O, t]) = [ L J,(x) µ(dx) v(dt) = v([O, t]), t E [O, 1], 

we have that L f,(x) µ(dx) = 1 v-a.e. 

Next, by the definition of the Kullback-Leibler information, 

1K(F, P) + (1 -1)K(F, Q} 

= r1 flog " M:J-, J,(x) µ(dx) v(dt), 
j o j E Pt ( x) qt ( x) 

(5.26) 

( 5.27) 

where 0/0 = 0. Since the function x log x, x 2:: 0, is convex, an application of 
Jensen's unequality and (5.26) gives that v-a.e. in t E [O, 1] 

r log ft(~] !t(x)µ(dx) 2:: -log r pJ(x)qi-')'(x)µ(dx). JE pJ(x)qt "Y(x) JE 
On the other hand, taking 

J,(x) = pi(x )qf-"(x) (L pi(x )q:-"(x) µ(dx) )-
1 

(5.28) 

we obviously get an equality above. Since the measure F with the density defined 
by (5.28) belongs to Pv(E x [O, 1]), we obtain by (5.27) that 

inf [tK(F, P) + (1 -1)K(F, Q)] 
FE'Pv(Ex[0,1]) 

= - [log [L pj(x )qf-"(x) µ(dx)] v( dt), 

which, by (5.24) and (5.25), concludes the proof. D 



ON LD EFFICIENCY IN STATISTICAL INFERENCE 

Remark 5.8 Obviously, the inf in the statement can equivalently be taken over 
FE Pv(E x [O, l]) such that K(F, P) <co, K(F, Q) <co. 

Remark 5.9 Chernoff 's result follows if v is a Dirac measure. 

Now we apply Lemma 5.5 for evaluating the function S(B, fJ'). 

Lemma 5.6 For any fJ, fJ' E 8, 

S(fJ, fJ') = inf f
1 

log H-y(fJ'(t) - fJ(t)) dt. 
-yE[O,l]} o 

Proof We have, for F E Yo with JSK ( F) < co, that 

(e(F) - I 5K(F) = -K(F, Pe), 

where P 8(dx,dt) = p(x -fJ(t))dxdt, and the claim follows by Lemma 5.5 and 
Remark 5.8 with E = R,µ(dx) = dx,v(dt) = dt ,P = Pe ,Q =Pe1. D 

The latter result enables us to calculate the value of minimax risks for various 
statistical problems. To compare with the Gaussian case, let us consider the same 
statistical problems dealing with the value of fJ(to) for given t0 • 

5.5.1 Testing fJ(to) = 0 versus IB(to)I 2:: 2c . 

Given c > 0, denote 80 ={BE 8: fJ(to) = O}, 81={BE8: lfJ(to)l 2:: 2c} and 
define risk R; (Pn) of test Pn by ( 4.4). 

Prop<;>sition 5.6 Let c, M and t0 be such that [to - t*, to+ t*] ~ [O, 1] where 
t* = (c/NJ) 1ff3. Let measure P satisfy condition (P) and let the function H-y(s) 
monotonously increase in s 2:: 0 . 
If 8 = ~(/3, M), then 

lim inf R; (pn) 2:: inf 2 (*log H-y(2( c - Mtf3)) dt. 
n-+oo Pn -yE(0,1] } 0 

If 8 = ~o(/3, M), then 

t* 

lim inf R;(Pn) = inf 2 { log H-y(2(c - Mtf3)) dt, 
n-+oo Pn -yE(0,1] Jo 

and the tests p; 8 from (4.8) are nearly LD efficient, i.e., 
' 

lim lim R; (p; 8) = lim lim R; (p; 8) 
o-+0 n-+oo ' o-+0 n-+oo ' 

= inf 2 (*log H-y(2(c - Mtf3)) dt. 
-yE(0,1] } o 
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Proof The result follows from Theorem 4.3 and we have only to evaluate T* 
from ( 4.6). A straightforward calculation using Lemma 5.6 and the monotonicity 
of H'Y ( s) shows that 

T* := sup S(B, B') = inf 2 [1 log H"l(2B*(t)) dt, 
BE80,B'E81 'YE[0,1] lo 

where B*(t) = [c- Mlt-t0 1P]+. This obviously yields the assertion by Lemma 5.6. 
D 

5.5.2 Estimating B(t0 ) 

For the problem of the estimation of B(to), the risk of estimator Pn is defined by 

F 1 Rn (Pn) =sup -log Pn,e(IPn - B(to)I > c). 
BE8 n 

Proposition 5. 7 Let the conditions of Proposition 5. 6 hold. 
If 8 = Li(f3, M)) then 

lim inf R;: (Pn) 2: inf 2 t* log H'Y(2( c - Mt,6)) dt. 
n-+oo Pn 'YE[0,1] lo 

If 8 = Lio ({3, Af)) then 

. t* 

lim inf R;: (pn) = inf 21 log H~(2( c -· MtP)) dt, n-+oo Pn 'YE[0,1] 0 

and the interval-median estimators P;:,8 from_ (4.18) are nearly LD efficient) z.e.J 

lim lim R;: (p;: 8) = lim lim R;: (p;: 8) 8-+0 n-+oo ' 8-+0 n-+oo ' 

= inf 2 t* log H'Y (2( c - M tP) )dt. 
'YE[0,1] lo 

Proof Again it suffices to calculate the value of the asymptotic minimax risk 
given by Lemma 4.3, 

F*= sup S(B,B'), 
B,B1ee: IB(to)-B'(to)l>2c 

which is done as for the "signal + white noise" model. D 

Remark 5.10 The latter problem of estimating B(t0 ) has been considered by Ko-
rostelev and Spokoiny) 1995 under the assumption that log p( x) is concave upward) 
and by Korostelev and Leonov) 1995 who study the double asymptotics as n ~ oo 
and then c ~ 0 . 
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5.6 The Change-Point Model 
· Let us observe a sample Xn = (X1,n, ... , Xn,n) of real valued r.v., where, for s~me 

kn 2:: 1, the observations X1,n, ... , Xkn,n are i.i.d. with distribution Po and the 
observations Xkn+i,n, . .. , Xn,n are i.i.d. with distribution P1. We are assuming 
that Po and P1 are known and kn is unknown. Assume also that kn = [nB], where 
B E 8 = [O, 1]. Here On = Rn, and Pn,e denotes the distribution of Xn for given B. 

Let a probability measure P dominate P0 and P1, and let 

dPo dP1 
Po(x) = dP (x), P1(x) = dP (x), x ER, 

be respective densities. We are assuming that p0 ( x) and p1 ( x) are positive and 
continuous, and 

L pJ(x) P(dx) < oo, l pj(x) P(dx) < oo for all/ER. 

Denoting Pn = pn, we have 

dP 1 [nB] 1 n 
3n,B = ]:_log dPn,B (Xn) = - L logpo(Xi,n) + - L logp1(Xi,n), 

n n n. n 
i=l i=[nB]+l 

so that defining an empirical process again by 

l [nt] 
. Fn(x, t) = - L l(Xi,n:::; x), X ER, t E [O, l], 

n i=I · 

we obtain the representation 

3n,B = 18 L log Po( x) Fn( dx, dt) + [ L log Pt ( x) Fn( dx, dt). 

(5.29) 

We define statistics Yn and space Y as for the preceding model. Let YP consist of 
those F E Y which are absolutely continuous relative to the measure P( dx) x dt 
and admit density Pt(x) such that fRPt(x)P(dx) = 1, t 2:: 0. As above, condition 
(Y'.l) holds with 

I$K (F) = { 11 l Pt(x) logp,(x)P( dx) dt, if FE yp, 
oo, otherwise. 

We next take, for F(·, ·) E Y, 

(o,o(F) = l L Lo,o(x) F(dx,dt) + [ l Lo,1(x) F(dx, dt), 

where 

53 



54 A.PUHALSKII AND V.SPOKOINY 

The Ls,i are bounded, continuous and 

l~ L [exp ('Yl!ogp;(x) - Lo,;(x)I) - 1] P(dx) = 0, i = 0, 1, I> 0. (5.30) 

The (e,s are easily seen to be Borel; also the continuity of F(x, t) in t, if VftK (F) > 0, 
implies that the (e,s are VftK-a.e. continuous. This checks (Y'.2). 

so 

For (Y'.3), write, by Chebyshev's inequality, 

p~fn( IBn,e - (e,s( Fn) I > c) 

~ p)-.fn ([LI logpo(x) - Lo,o(x)IFn(dx, dt) > n 
+P)-.fn ([ l I logp1(x) - Lo,1(x)IFn(dx, dt) > ~) 

:::; exp(-ic:/2) [ E~nB]/n exp( 11 log Po(X1,n) - Ls,o(X1,n) I) 
+ E~-[nB]/n exp( 11 log P1 (X1,n) - Ls,1 (X1,n) I)] , 

l~m p~fn(ISn,e - (e,s(Fn)I > c) 
n-.oo 

~ exp(-1£/2) [ (L exp(ll logpo(x) - Lo,o(x)l)P(dx)Y 

+ (L exp(ll logp1(x)-: Lo,1(x)l)P(dx) y-e] , 
and, by (5.30), this goes to 2 exp(-1c:/2) as S-+ 0. Condition (Y'.3) is checked. 

To check (Y'.4), we take 

(e(F) = { lLiogpo(x)F(dx, dt) + [Llogp1(x)F(dx, dt), if J$K(F) < oo, 
0, otherwise. 

The fact that the (e are well defined and (Y' .4) holds, is proved as for the non-
Gaussian regression model. Condition ( U') is also easily checked. 

Remark 5.11 The conditions on p0 (x) and p1(x) can be weakened to the require-
ment that only (5.29) hold. One should then choose Ls,i bounded, continuous and 
satisfying (5.30). 

Next, the argument used for (Y') and (U') checks also conditions (sup Y') and 
(sup U') (for (sup Y'.2) use condition (sup Y'.2.1) in Remark 3.6 ). 

The next step is evaluating S(B, B') for B, ()' E [O, 1]. 

Lemma 5. 7 For any B, ()' E [O, 1] J 

S(B, B') = -IB - B'I C(Po, P1). 
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Proof In a manner similar to the case of non-Gaussian regression, we have, for 
any FE YP, I$K(F) < oo with F(dx, dt) = Pt(x) P(dx) dt, that 

SK 181 Pt(x) (e(F) - Ip (F) = - log -(-)Pt(x) P(dx) dt 
o R Po X 

11 11 Pt ( x) ( ) ( ,, -- og-(-)Pt x P dx) dt =-A (F, Pe), 
B R P1 x 

where Pe(dx, dt) = (po(x)l(t ~ 0) + P1(x)l(t > 0)) P(dx) dt and the claim follows 
by Lemma 5.5 and Remark 5.8 with E = R,µ(dx) = P(dx), v(dt) = dt, P = P 8 , 

Q = Pe1. D 
We apply this result and the general theorems from Section 4 to the problem of 

the estimation of parameter 0 . The risk of estimator Pn is defined in a standard 
way, 

F 1 Rn (Pn) = sup - log Pn,e(IPn - Oj > c). 
BE(0,1] n 

(5.31) 

Proposition 5.8 For any c < 1/2, 

lim inf R;(Pn) = -2cC(Po, P1). 
n--too Pn 

If P~,8 are the interval-median estimators from (4.18), then 

lim lim R; (p; 8 ) = lim lim R; (p~ 8) = - 2c C (Po, Pi). 
8--tO n--too ' 8--tO n--too ' 

Proof We apply Theorem 4.5. One needs only calculate the value of the minimax 
risk F*. Using Lemmas 4.3 and 5.7, we obtain 

F* = sup S(O, O') = -2cC(Po, P1). 
B,B' :IB-B'l>2c 

D 

Remark 5.12 The same result has been obtained by I<orostelev, 1995 who uses 
another kind of upper estimator. The construction is based on considering the 
concave hull of a sample path of the likelihood process. By Lemma 4.2 this estimator 
is a particular case of interval-median estimators p~ 8 • ' 

5. 7 Regression with Random Design 
We consider the model 

k=l, ... ,n, (5.32) 

where real-valued errors ~k,n are i.i.d. with common distribution P having density 
p( x) which obeys condition ( P) of Subsection 5.5, and design points tk,n are also 
real-valued, i.i.d. with common distribution II and are independent of the ~k,n· 
We impose a standard condition on the design measure II. 
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(II) The measure II is compactly supported and has positive density w. r. t. Lebesgue 
measure on the support. 

vVe denote the support by D. The unknown regression function B(-) is as-
sumed to be continuous. In this model, Pn,B is the joint distribution of Xn = 
(X1,n, ... , Xn,n) and tn = ( t1,n, ... , tn,n) for B. 

Let us take for Yn the joint empirical distribution function Fn of Xn and in : 
1 n 

Fn(A, B) = -:;;: L l(Xk,n E A, ik,n E B), (5.33) 
k=l 

for Borel sets AC R, B C D. Y is the space of probability distributions on Rx D 
submitted with weak topology. Set also Pn = Pn,o = (P x IIr. 

With these definitions, 
,......., 
=..n,B = 

Let Y1 be the subset of the set Y of two dimensional distribution functions on R2 

which are absolutely continuous w.r.t. Lebesgue measure on R2 and have support 
in Rx D~ 

Under Pn, the random pairs (Xk,n, tk,n) are i.i.d. with distribution P x II, 
and hence, by Sanov's theorem, the LDP holds for Fn with rate function I 88 (F) 
defined by 

Here F(dx, dt)-_ p(x, t)dxdt. This checks (Y'.1). 
Set next, for F E Y, 

{ 
r j 1og p(x - B(t)) F(dx, dt), if I 58(F) < oo, JR D p(x) 

0, otherwise, 
Ce(F) = 

(e,o(F) = { 1 [log p(x - B(t))] /\ 0--1 V (-0-1) F(dx, dt). jR D p(x) 
With this notation, conditions (Y') and (U') are checked as for non-Gaussian re-
gression. This proves the LD P for the model. 

For conditions (sup Y') and (sup U'), we again assume, for the unJmown regres-
sion function B(·), that BE "£0 (/3, 1\11) with the same subset "£0 (/3, M) of "£(/3, M) 
as above. The conditions are then checked as for non-Gaussian regression. 

Now we are calculating function S(B,B') from (4.7). Recall that function H-y(s) 
is defined in condition ( P). 
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Lemma 5.8 Under conditions ( P) and (IT)) 

S(B, B') = inf log f H~(B'(t) - B(t))7r(t) dt. 
~E[0,1] Jn 

Proof Given F E Y1 with I 55 ( F) < oo, we easily get 

(e(F) - I55(F) = -I<(F, P), 

where Pa(dx, dt) = p(x -B(t))-rr(t) dx dt, and the claim follows by Lemma 5.2 with 
E=RxD,µ(dx,dt)=dxdt,P=Pe,Q=Pe1. D 

Now we consider again the same two statistical problems as above and compare 
the results for the cases of random and nonrandom designs. 

5.7.1 Testing B(to) = 0 versus IB(ta)I 2:: 2c 

Given t0 E D and c > 0 , consider the hypotheses testing problem B( t0 ) = 0 
versus I B ( t0 ) I 2:: 2c . The risk R; (Pn) of test Pn is defined as above. 

Proposition 5.9 Let D.= [O, l]. Let c, M and t 0 be such that [to - t*, t0 + t*] ~ 
[O, 1 L where t* = ( c/ M) 1lf3 . Let conditions ( P) and (IT) hold and the function 
H~ ( s) monotonously increase in s 2:: 0 . 
If 8 = ~(/3, M)) then 

li~ inf R~ (Pn) 2:: T*, 
n-+oo Pn 

where 

( 

to+t* ) 
T*= inf log 1+1. [H~(2(c-Mlt-talf3))-1]7r(t)dt . 

~E[0,1] to-t* 

If 8 = ~0 (/3, M)) then 
lim inf R~ (Pn) = T* 

n-+oo Pn 

and the tests p; 8 from (4.8) are nearly LD efficient) i.e.) 
I 

Proof Theorem 4.3 reduces proof to calculating the value of T* from ( 4.6). Using 
the result of Lemma 5.8 and proceeding in anlogy with the case of deterministic 
design, we conclude that 

T* = S( c - ()*, c + B*) 

inf log (t!o-t'7r(t)dt+ 
1f0+t"H..,(2(c-Mlt-tolfl))7r(t)dt+ f1 

7r(t)dt) · 
~E[0,1] 

O to-t* to+t* 

Now the claim follows by the equality Jn 7r(t)dt = 1. D 
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5. 7.2 Estimating ()(to) 

In estimating ()(to) the risk of estimator Pn is defined by 

R~(Pn) = sup .!_log Pn,e(IPn - ()(to)I > c). 
BEL:o ({3,M) n 

Proposition 5.10 Let the conditions and notation of Proposition 5.9 hold. 
If 8 = ~({3, M)J then 

lim inf R~ (Pn) ~ F*, n-+oo Pn 

where 

. ( 1to+t* ) F*= inf log 1+ [Hy(2(c-Mjt-t0 lf3))-1]7r(t)dt . 
'YE[0,1] to-t* 

If 8 = ~o(f3, M)J then 
lim inf R~ (Pn) = F* n-+oo Pn 

and the interval-median estimators p~ 8 from -(4.18) are nearly LD efficient) z.e.J 
' 

Proof Again it suffices to ca~culate the value of the asymptotk minimax risk F* 
which is done as above. D 

Remark 5.13 If we consider uniform design on [O, lL i.e.J take 7r(t) = lJ Jensen's 
inequality easily implies that the asymptotic minimax risk for regression with ran-
dom design is not greater that the one for regression with deterministic design (see 
Subsection 5.5). This also follows from Le.mma 5.5. 

Remark 5.14 The problem of estimating ()(to) for uniform random design has 
been considered by KorostelevJ 1995 who studies the double asymptotics as n--+ oo 
and then c --+ 0 
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A Appendix 

A.1 Proof of Lemma 2.5 
Let {VA' A E A( e)} be a family of deviabilities satisfying property ( S) : for any 
A CA' and ZA E SA 

(A.l) 

Recall that IIA:,~zA = {zA' E SA': IIA'AZA' = zA}. 
We define 

(A.2) 

where we set V A(IIAze) = 1 and 117rAzellA:1V A(IIAze) = oo if 117rAzellA = 0. 
The functions 117rAzellA:1VA(IIAze) ,A E A(8), are easily seen to be upper 

semicontinuous on Se, so (Ve(ze), ze E R~) is upper semicontinuous as the inf of 
a family of upper semi continuous functions. Further, since, for every ze E Se and 
c > 0, there exists A E A(8) such that 117rAzellA > 1 - c and since V A(IIAze) ::; 1, 
we conclude that Ve ( ze) ::; 1. Since (ii) obviously follows by (iii), we are left to 
prove ( iiQ and 

sup Ve(ze) = 1. (A.3) 
zeESe 

·We begin with (iii). Let us fix A and ZA. Definition ( A.2) obviously implies that 

VA(zA) ~ sup 117rAzellAVe(ze). 
zeEIT;:\1 

z11. 

So we need to prove that 

VA(zA)::; sup 117rAzellAVe(ze). (A.4) 
zeEIT;:\ 1 

z11. 

We, first, note that (A.2) and (A.l) imply that 

Ve(ze) = inf 117r~zellA:,1V A'(IIA'ze), ze E Se. (A.5) 
. A'EA(e) 

A'-:>A 

Indeed, by (A.l), if AC A' E A(8) and ze E Se is such that 117rAzellA > 0, then 

v A(IIAze) ~ ll71"A1AIIA'zellA v A1 (IIA1ze)' 

which, in view of (A.2), proves (A.5). 
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Next, we can obviously assume that a:= V A(zA) > 0. For A'::> A, A' E A(8), 
introduce the sets 

We show that AA' is nonempty. Since V A'(zA') ::=; 1, the sup on the right of (A.l) 
can be taken over the set Il_A,1AzA n {llnA'AZA'llA 2:: a/2}. This set is closed since 
the projection TIA'A is continuous on the set {zA': llnA'AzA'llA 2:: a/2}. Since VA' 
is a deviability, it attains sups on closed sets, so the sup on the right of (A. l) is 
attained which is equivalent to AA' being nonempty. Next, AA' is closed and Hence 
compact since VA' is upper semicontinuous and, by (A.1) and the definition of a, 
llnNAZA'"A v A'(zA') =a if and only if llnA'AZA'llA v A'(zA') 2:: a. 

Now we introduce for each A' E A(8), AC A', 

These sets are easily seen to be nonempty (e.g., if zA' E AA', then ze = (ze, e E 8) 
defined by (ze, e E A') = ZN and ze = 0, e t/:. A', belongs to AA') and compact 
for Tihonov topology on [O, 1 ]8 (the latter because TIA' is continuous on the set 
{ ze : lln A'ze !IA' 2:: a}). 

We next show that for any A' and A" from A( 8) containing ·A, the sets 
AA' and AA" have nonempty intersection. Indeed, let A111 = A' U A" and let 
ze E ro, 1] 8 be such that ze E AA"' and llnA"'zell = 1 (such a ze obviously 
exists). We prove that ze E AA' and ze E AA" . 

Denote ZA"' = IIA"'ze, ZA' = ·rrA,ze. First note that, since ZA'" E AA"'' 

Then using also the equality IIA"'A'ZA"' = zA', we have by (A.l) that 

VA(zA) > 117rA'AzA'llA VA'(zA,), 
VA' ( ZA') > lln A"' A' ZA"' llA' VA"' ( ZA"') · 

Next, by the definitions of ZA"' and zA,, 

so that, by (A.8) and (A.9), 

(A.7) 

(A.8) 
(A.9) 

Since ZA"' E AA"', we actually have equality here and hence in (A.8) and (A.9). The 
first of them and (A.7) prove that zA' E AA'. Equalities in (A.8) and (A.9) together 
imply, since VA"' ( ZA"') :::; 1, lln A' AZA' A !IA :::; 1, that 11 n A"' A' ZA"' !IA' 2:: v A' (zA') 2:: 
V A(zA) =a; since also llnA"'zellA'" = 1, we get 
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This concludes the proof of the inclusion ze E AA' . The inclusion ze E AA" is 
proved similarly. 

Thus the finite intersections of the compacts AA', A' :> A, are nonempty, hence 
nA':>AAA' # 0. It remains to check that, for any ze from this intersection, 

(A.10) 

and 
(A.11) 

which obviously yields (A.4). Let A' E A(8) with A CA'. Since Ih,ze E AA', it 
follows that Ihze = IIA'AIIA'ze = ZA, checking (A.10), also 

so 
117rAZe llA:1V A(zA) = ll7rA1zellA:11V A1 (IIA 1ze). 

In view of (A.5), this implies (A.11) and (A.4) follows. 
Finally, according to (iii), 

1 = sup V A(zA) = sup 117rAzellA Ve(ze) ~ sup Ve(ze), 
~E~ ~E~ ~E~ 

· proving (A~3). D 

Remark A.1 It is not difficult to see that (A.2) is equivalent to 

where the limit is with respect to the partial ordering by inclusion: A ~ A' if A C A'. 

A.2 A minimax theorem for non-level compact loss func-
tions 

This subsection contains a minimax theorem for generalised risks and non-level 
compact loss functions. We assume the setting described at the beginning of Section 
3 and start by introducing an extension of the space of decisions, cf. Strasser, 1985. 

Denote by C+ (V) the set of all nonnegative, bounded continuous functions on 
V, and let B(V) be the set of all functionals b : C+('D) ---+ R+ with the following 
properties: 

( 1) b( 0) = 0, b( 1) ·- 1, where 0 (respectively, 1) denotes the element of C+ ( V) 
identically equal to 0 (respectively, 1 ); 

(2) b(f) ~ b(g) if f ~ g, f, g E C+('D); 
(3) b(>-.J) = )..b(j), f E C+('D),).. E R+; 
( 4) b(f + g) ~ b(f) + b(g), f, g E C+('D). 
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Let also B 1 ('D) be the subset of those b E B0 ('D) for which, in addition, 

(5) b(f V g) = b(f) V b(g), f,g E C+('D), 

where f V g denotes the maximum off and g. 
vVe endow B('D) with weak topology which is the topology induced by Tihonov 

(product) topology on R~+('D), i.e., a net {ba, O" E :E}, where :Eis a directed set, of 
elements of B('D) converges to b E B('D) if, for all f E C+('D), limaEE ba(f) = b(f). 

With each r E 'D, we associate the element br of B 1 ('D) defined by 

br(f) = f(r), f E C+('D). (A.12) 

vVe extend the domain of the functionals b to the set 4 ('D) of lower semicontinuous 
nonnegative functions on 'D by letting 

b(g) = sup{b(f): J ~ g,f E C+('D)}, g E ~+('D). (A.13) 

It is easily seen that the map b--+ b(g), for any g E k+('D), is lower semicontinuous 
on B('D). Note also that, under extension (A.13), equality (A.12) carries over to 
functions g from k+('D) if and only if g = sup{f: f ~ g, f E C+('D)}, which holds 
in particular if 'Dis locally compact. Generally, however, br(g) ~ g(r). 

Finally, denote by Bn the set of all random elements on (Dn, Fn) with values 
in B('D). We call the elements of Bn generalised decision functions (or generalised 
decisions). Note that if Pn E Rn, then bPn E Bn. 

Given loss functions We, B E 8, the LD risk Bn(f3n) ~f a generalised decision 
f3n E Bn in the experiment En = (Dn, Fn; Pn,e, B E 8) is defined by 

(A.14) 

Theorem A.1 Let {En, n 2:: l} satisfy the LDP. Then 

where 
B* = sup inf supb(We)zeVe(ze). 

ze ER~ bEB1 ('D) BE9 

For a proof, we need to study properties of B('D) and B1('D). 

Lemma A.1 For any finite number of functions Ji, f 2 , ••• , fk E C+('D) and any 
sequence {bn, n 2:: l} of elements of B('D), there exists b E B1('D) such that b(fi) 
is an accumulation point of the sequence {b;/n(f?), n 2:: l} for i = 1, ... , k. 
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Proof Let 11 ·I I denote the uniform norm on C+('.D). Define C1,+('D) as the subset of 
C+(D) of functions f with llfJI ::; 1. Introduce the functionals bn(f) == b~/n(fn); f E 
C1,+('D). Then the set B == {bn, n 2:: 1} belongs to the set [O, l]Ci,+('D). By Tihonov's 
theorem, [O, lf1·+('D) submitted with product topology is compact, and hence B is 
relatively compact. Let b denote some its ac_cumulation point. Since bn E B('D) 
and by the definition of product topology, b has properties ( 1), ( 2) and ( 4) of 
!3('D). We extend b to C+('D) by letting b(>.f) == >.b(f),).. > 0, f E C1,+('D). Then 
b E B('D). Also, since the topology on B(D) is the restriction of product topology 
on R~+ ('D), b is an accumulation point of {bn, n 2:: 1 }, where bn are extended to 
C+('D) by bn(>.f) == >.bn(f),).. > 0, f E C1,+('D). This implies, by the definition of 
the bn, that h(fi) is an accumulation point of {b~/n(f?), n 2:: l} for i == 1, ... , k. 

We end the proof by showing that b E B1('D). Let f,g E C+('D). Then, 
since b is an accumulation point of {bn, n 2:: 1}, b(f), b(g) and b(f V g) are the 
respective accumulation points of {bn(f), n 2:: l}, {bn(g), n 2:: l} and {bn(JV g), n 2:: 
l}. Hence, by the definition of the bn, for a subsequence (n'), b~{n'(Jn') -t b(f), 
b~{n' (gn') -t h(g) and b~{n' ((f V gr') -t·h(JV g). By properties (2) ·and (4) of B('D), 

b~fn(Jn) V b~fn(gn) ::; b~fn((f V gt) ::; 21/n [b~fn(Jn) V b~fn(gn)] , 

and we conclude that b(f V g) == h(f) V b(g). D 

Lemma A.2 The set B 1 ('D) is compact. 

Proof An argtJ.ment similar tq the one used in Lemma A.I shows that the set of 
functionals {(b(f), f E C1,+('D)), b E B 1('D)} is closed in [O, l]Ci.+('D) and hence it is 
compact which is obviously equivalent to the compactness of B 1('D). DThe next 
lemma is motivated by and extends Aubin, 1984, Proposition 8.2. 

Lemma A.3 Let T be an arbitrary set and let U be a topological space. Assume 
that a real-valued function g( t, u ), t E T, u E U, has the properties: 

(a) for any t E T, g( t, u) is level compact in u E U, 

(b) for any t 1 , t2 E T, there exists t3 E T such that g( t3, u) 2:: g( ti, u) V g( t2, u) for 
all u EU. 

Then 
sup inf g(t,u) == inf supg(t,u). 
tET uEU uEU tET 

Remark A.2 Condition (a) holds if g(t,u) is lower semicontinuous in u and U is 
a compact topological space. 

Remark A.3 If T is a directed set, condition (b) holds if g( t, u) is increasing in t 
for all u, i.e., g(t1 ,u)::; g(t2,u), u EU, each time as ti::; t2 (the latter relation is 
with respect to the order on T). 
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Proof We proceed as in Aubin, 1984. Pick a> SUPtETinfuEU g(t, u). We need to 
prove that 

o: 2 inf sup g(t, u). 
uEU tET 

(A.15) 

Let To = {t E T : supuEU g(t, u) > o:}. If To is empty, the proof is over. So we 
assume that T0 =/= 0. By the definition of o:, the sets At = { u E U : g( t, u) ::; o:} 
are nonempty for all t E T, and they are, moreover, compact for all t E T0 , since 
g(t, u), u E U, are level compact. Condition (b) implies that, for every t 1 , t2 E T, 
there exists t3 E T such that At1 n At2 :J At3 =/= 0, which shows that the finite 
intersections of the compacts At, t E To, are nonempty, and hence ntETo At =I= 0. 
The latter is equivalent to 

o: 2 inf sup g(t, u). 
uEU tETo 

Since by the definition of T0 , o: 2 suptET\To g(t, u), u E U, (A.15) is proved. D 
Proof of Theorem A.1 We need to prove that, for an arbitrary sequence 

f3n, n 2 1, of generalised decisions, 

(A.16) 

The argument is similar to the one in the proof of Theorem 3.1. Let fB(r), BE 8, 
be some nonnegative, bounded and continuous in r E TJ functions. Fix a nonempty 
A E A(8). We have, by the definition of Zn,A (see (2.13)), that 

lim sup E!1Bnf3n(f8) = 
n-too BEA ' 

· · 1/n . 

> !~~ [ [~[ En,A L /3n(JO)Z~,B;A] 2 
BEA 

where 
Un(zA) = inf sup b1fn(J;)zB, ZA = (zB, e EA) E R!. 

bEB('D) BEA 
(A.18) 

Note that the un(zA), n = 1, 2, ... , are upper semicontinuous (recall that A is 
finite) and hence measurable, so that the expectations on the right most side of 
(A.17) are well defined. 

Introduce 
u( ZA) = inf sup b(JB )zB, ZA E R~. 

bEB1 ('D) BEA 
(A.19) 

We prove that 
(A.20) 

for any sequence ZA(n)--+ ZA. 
Let bn E B(TJ) be such that 

lim un(zA( n )) = lim sup b~fn(J0 )zB( n ). 
n-too n-too BEA 
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By Lemma A. l and since A is finite, there exists b E 8 1 (D) such that b(fe) is an 
accumulation point of {b~/n(f; ), n ~ 1} for all 0 E A. Therefore we have that, for 
a subsequence ( n'), 

· 1/n' n' -hmbn, Ue ) = b(fe), e EA, 
n' 

limsup b~~n' (f';')ze( n') = lim sup b;fn(J;)ze( n ). 
n' BEA n-too BEA 

Since A is finite and zA(n') -+ ZA, we conclude that 

lim sup b;fn(J;)ze(n) =sup b(fe)ze 
n-too BEA BEA 

which, in view of (A.19), proves (A.20). 
By (A.20) and the LD convergence of {£(Zn,AIPn,A),n ~ 1} to VA, we have 

that (see Varadhan, 1966; Chaganty, 1993; Puhalskii, 199.Sa) 

Since by (A.19) u E 1-lA, property (ii) of Ve in Lemma 2.5 yields 

sup u(zA)VA(zA) = sup u(7rAze)Ve(ze). 
~E~ ~E~ 

Relations (A.17) and (A.2l) imply then that 

lim sup E!1;f3n(f;) ~ sup u(7rAze)Ve(ze), 
n-too BEA ' z0 ER~ 

so, by the definition of the function u in (A.19), 

lim supE!1;f3n(f8) ~ sup inf supb(fe)zeVe(ze) 
n-too BEA ' z0 ER~ bEB1 (V) BEA 

(A.21) 

and hence, since A E A(8) and fe ::; We, fe E C+(D), e E 8, are otherwise 
arbitrary, 

lim supE!1enfJn(We) ~ sup sup inf supb(fe)zeVe(ze), 
n-too BE8 ' z0 ER~ AEA(8) bEB1(V) BEA 

feECw 

where Cw = {fe = (fe, 0 E 8) E C+(D)8 : fe ::; We, 0 E 8}. Thus (A.16) and the· 
theorem would follow if, for every ze = (ze, 0 E 8) E R~, 

sup inf sup b(fe)ze = inf sup b(We )ze. 
AEA(e) bEBi(V) BEA bEB1(V) BEB 
feECw 

Fixing ze, introduce, for A E A(8), fe E C+(D)8 , b E B1(D), 

g((A,fe),b) = supb(fe)ze. 
BEA 

(A.22) 
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We check that g((A, fe), b) satisfies the conditions of Lemma A.3. Submit the set 
A(8) x Cw with natural order: (A, fe) :::; (A', f~) if A c A' and fe :::; f~, e E 8. 
It is easily seen that A( 8) x Cw is a directed set and g( (A, f e), b) is increasing 
for each b. Also g((A, fe), b) is continuous in b for each (A, fe) by the definition 
of topology on B(V) and since A is finite; since 8 1 (V) is compact by Lemma A.2, 
g( (A, f e), b) is level compact in b. Thus by Lemma A.3, 

sup inf g((A,fe),b) = inf sup g((A,fe),b). 
{A,Je)EA(8) xCw bEB1 ('D) bEB1 ('D) {A,Je)EA(8) xCw 

Recalling the definition of g and using that by (A.13) 

b(We) = sup{b(fe) : fe :::; We, fe E C+('D)}, B E 8, 

we get (A.22). D 
It is interesting to understand how Theorem A.l relates to Theorem 3.1. Above 

definitions easily imply that inf PnE'Rn Rn(Pn) ~ inf/3EBn Bn(f3) and R* ~ B*. The 
next lemma shows, in particular, that if Vis locally compact, then Theorem 3.1 is 
a consequence of Theorem A.l. 

Lemma A.4 If the loss functions We are sue~ that 

lVe = sup{fe : fe :::; vVe, fe E C+(V), fe are level compact}, B E 8, 

then 
R* = B*. 

Remark A.4 The conditions of the lemma hold if the We are level compact and 
1J is locally compact (cf. Strasser) 1985, Theorem 6.4). 

A proof is preceded by two lemmas. We first derive a maxitive analogue of the 
partition of the unity ( cf. again Strasser, 1985, Lemma 6.6). 

Lemma A.5 Let Ji, ... , fk E C+(V). For any c > 0, there exist hi, ... , hm E 
C+ (D) with the properties: 

1° max1::;i::;m hj(r) = 1,r ED, 

2° for every j = 1, ... , m, max1<i<k lfi(r1) - fi(r2)I :::; c for any ri and r2 such that 
hj(r1) > 0, hj(r2) > 0. 

Proof It is similar to that in Strasser, 1985. Assume first that k 
suprE1J fi(r) = 1. Choose m such that 3/m:::; c and define, for x ~ 0, 

gi(x) = (x - (j - 2))+ /\ (j + 1 - x)+ /\ 1, 1:::; j:::; m. 

Let 

1 and 
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It is readily seen, since 9i(x) = 1 if j-1 :S x :S j and suprevmfi(r) = m, that 
max1::;j::;m hj(r) = 1, r E 'D. 

Next, since, for j = 1, ... , m, 9i(x) = 0 if x ~ [(j - 2)+,j + 1], we have that if 
hj(ri) > 0 and hj(r2) > 0, then lmf1(r1) - mf1(r2)I :S 3, i.e., lf1(r1) - fi(r2)I :S 
3/m :::; c as required. 

Now if suprElJ fi(r) = a > 0, then the hj chosen as above for Ji/a and c/a 
satisfy 1° and 2°. -

Finally, if k > 1, choose, for each i = 1, ... , k, functions hi,j, 1 ::=; j ::=;mi, which 
satisfy 1° and 2°. Then the functions 

k 

hj1 , ... ,jk(r) =IT hi,ji(r), 1 :S ji :S mi, r E 'D, 
i=l 

meet the required for all i with m = m1 ... mk. D 
Denote by T1 the set of nonnegative (upper semicontinuous) functions of finite 

support (t(r), r E 'D) such that suprElJ t(r) = 1. Define B2('D) as the set of those 
b E B1('D) which can be represented as b(f) = suprevf(r)t(r), f E C+('D), for 
some (t(r), r E 'D) E T1. The next lemma paralle~s Strasser, 1985, Theorem 42.5. 

Lemma A.6 The set B2('D) is dense in B1('D) for the weak topology. 

Proof We proceed as in the proof of Strasser, 1985, Theorem 42.5. Fix b E B 1('D) 
and Ji, ... , fk E C+('D). We have to check that for any c > 0 there exists b E B 2('D) 
such that lb(fi) - b(fi)I ~ s, 1 ~ .i ~ k. . . 

Let functions hj, 1 :::; j :::; m, be as in Lemma A.5. Obviously we can assume 
that they are not identically equal to 0. For each j = 1, ... , m, choose rj such that 
hj(rj) > 0. By the definition of the hj, 

on the one hand, and 

on the other hand. Hence 

I fi ( r) - m.ax fi ( r j) h j ( r) I :S m.ax I fi ( r) h j ( r) - fi ( r j) h j ( r) I :S c, 1::;J::;m 1::;J::;m 
1 :S i :S k, r E 'D. 

Properties (1), (3) and ( 4) of B('D) then yield 

I b(fi) - b( m.ax fi ( r j) h j) I :S c, 1 :S i :S k. 1::;J::;m 
(A.23) 

Now since b E B 1 ('D) and by property (3) again, 

b( m.ax fi(rj)hj) = m.ax fi(rj)b(hj), 1 :Si :S k. 
1::;J::;m 1::;J::;m 

(A.24) 
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Define 
t(r) = { maxz:rz=rj b(hz), if r = rj for some j = 1, ... , m, 

0, otherwise, 

and let 
h(f) =sup f(r)t(r), f E C+(V). 

rE7J 
By properties (1) a.nd (5) of B 1(1J), and the choice of the hj, 

so ( t ( r)) E T1. 
Also by the definitions of t(r) and b, the right hand side of (A.24) equals b(fi), 

and (A.24) and (A.23) yield the required. DProof of Lemma A.4 Since R* ~ B*, 
we prove the converse inequality. Let fe, B E 8, be level compact, belong to C+(V) 
and fe ~ We, BE 8. By the definition of B*, 

B* ~ sup inf sup b(fe)zeVe(ze), A E A(8). 
ze ER~ bEB1 ('D) BEA 

(A.25) 

. e By Lemma A.6, for ze E R+,A E A(8), 

inf sup b(fe )ze = inf sup b(f e )ze 
bEB1 (7J) BEA bEB2 (7J) BEA 

= inf sup-sup t(r)fe(r)ze = inf sup fe(r)ze. 
(t(r))ET1 rE7J BEA 7'E1J BEA 

Since the fe are level compact, an application of Lemma A.3 shows, in analogy, 
with the end of the proof of Theorem A.l, that the sup of the latter quantity over 
the fe and A E A(8) equals infrE1JSUPeee We(r)ze which by (A.25) proves that 
B* ~ R*. o 
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