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1. INTRODUCTION

The recent financial crisis has led to paradigm shifting events in interest rate markets because sub-
stantial spreads have appeared between rates that used to be closely matched; see Figure 1.1 for
an illustration. We can observe, for example, that before the credit crunch the spread between the
three month LIBOR and the corresponding Overnight Indexed Swap (OIS) rate was non-zero, how-
ever it could be safely disregarded as negligible. The same is true for the three month vs six month
basis swap spread. However, since August 2007 these spreads have been evolving randomly over
time, are substantially too large to be neglected, and also depend on the tenor length. Therefore, the
assumption of a single interest rate curve that could be used both for discounting and for generating
future cash flows was seriously challenged, which led to the introduction of the so-called multiple curve
interest rate models.

In the multiple curve framework, one curve is used for discounting purposes, where the usual choice
is the OIS curve, and then as many LIBOR curves as market tenors (e.g. 1m, 3m, 6m and 1y) are
built for generating future cash flows. The difference between the OIS and each LIBOR rate is usually
called basis spread or simply spread. There are several ways of modeling the curves and different
definitions of the spread. One approach is to model the OIS and LIBOR rates directly which leads
to tractable pricing formulas, but the sign of the spread is more difficult to control and may become
negative. Another approach is to model the OIS and the spread directly and infer the dynamics of the
LIBOR; this grants the positivity of the spread, but pricing formulas are generally less tractable. We
refer to Mercurio (2010b, pp. 11-12) for a detailed discussion of the advantages and disadvantages
of each approach. Moreover, there exist various definitions of the spread: an additive spread is used
e.g. by Mercurio (2010a), a multiplicative spread was proposed by Henrard (2010), while an instanta-
neous spread was used by Andersen and Piterbarg (2010); we refer to Mercurio and Xie (2012) for a
discussion of the merits of each definition.

The literature on multiple curve models is growing rapidly and the different models proposed can be
classified in one of the categories described above. Moreover, depending on the modeling approach,
one can also distinguish between short rate models, Heath–Jarrow–Morton (HJM) models and LIBOR
market models (LMM) with multiple curves. The spreads appearing as modeling quantities in the short
rate and the HJM models are, by the very nature of these models, instantaneous and given in additive
form. We refer to Bianchetti and Morini (2013) for a detailed overview of several multiple curve models.
In the short rate framework, we mention Kenyon (2010), Kijima, Tanaka, and Wong (2009) and Morino
and Runggaldier (2014), where the additive short rate spread is modeled, which leads to multiplicative
adjustments for interest rate derivative prices. HJM-type models have been proposed e.g. by Fujii,
Shimada, and Takahashi (2011), Crépey, Grbac, and Nguyen (2012), Moreni and Pallavicini (2014)
and Cuchiero, Fontana, and Gnoatto (2014). The models by Mercurio (2009), Bianchetti (2010) (where
an analogy with the cross-currency market has been exploited) and Henrard (2010) are developed in
the LMM setup. Typically, multiple curve models address the issue of different interest rate curves
under the same currency, however, the paper by Fujii et al. (2011) studies a multiple curve model in a
cross-currency setup. Filipović and Trolle (2013) offer a thorough econometric analysis of the multiple
curve phenomena and decompose the spread into a credit risk and a liquidity risk component. In
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FIGURE 1.1. Spread Development from January 2004 to April 2014

recent work, Gallitschke, Müller, and Seifried (2014) construct a structural model for interbank rates,
which provides an endogenous explanation for the emergence of basis spreads.

Let us also mention that there exist various other frameworks in the literature where different curves
have been modeled simultaneously, for example when dealing with cross-currency markets (cf. e.g.
Amin and Jarrow 1991) or when considering credit risk (cf. e.g. the book by Bielecki and Rutkowski
2002). The models in the multiple curve world often draw inspiration from these frameworks.

The aim of this paper is to develop a multiple curve LIBOR model that combines tractable model dy-
namics and semi-analytic pricing formulas with positive interest rates and basis spreads. The frame-
work of the affine LIBOR models proposed by Keller-Ressel, Papapantoleon, and Teichmann (2013)
turns out to be tailor-made for this task, since it allows us to model directly LIBOR rates that are greater
than their OIS counterparts. In other words, the non-negativity of spreads is automatically ensured.
Simultaneously, the dynamics are driven by the wide and flexible class of affine processes. Similar
to the single curve case, the affine property is preserved under all forward measures, which leads to
semi-analytical pricing formulas for liquid interest rate derivatives. In particular, the pricing of caplets is
as easy as in the single curve setup, while the model structure allows to derive efficient and accurate
approximations for the pricing of swaptions and basis swaptions using a linearization of the exercise
boundary. In addition, the model offers adequate calibration results to a system of caplet prices for
various strikes and maturities.

The paper is organized as follows: in Section 2 we review the main properties of affine processes
and the construction of ordered martingales greater than one. Section 3 introduces the multiple curve
interest rate setting. The multiple curve affine LIBOR model is presented in Section 4 and its main
properties are discussed, in particular the ability to produce positive rates and spreads and the an-
alytical tractability (i.e. the preservation of the affine property). In Section 5 we study the connection
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between the class of affine LIBOR models and the class of LIBOR market models (driven by semi-
martingales). Sections 6 and 7 are devoted to the valuation of the most liquid interest rate derivatives
such as swaps, caps, swaptions and basis swaptions. In Section 8 we construct a multiple curve affine
LIBOR model where rates are driven by common and idiosyncratic factors and calibrate this to market
data. Moreover, we test numerically the accuracy of the swaption and basis swaption approximation
formulas. Finally, Appendix A provides an explicit formula for the terminal correlation between LIBOR
rates.

2. AFFINE PROCESSES

This section provides a brief review of the main properties of affine processes and the construction
of ordered martingales greater than one. More details and proofs can be found in Keller-Ressel et al.
(2013) and the references therein.

Let (Ω,F ,F, IP) denote a complete stochastic basis, where F = (Ft)t∈[0,T ] and T denotes some
finite time horizon. Consider a stochastic process X satisfying:

Assumption (A). Let X = (Xt)t∈[0,T ] be a conservative, time-homogeneous, stochastically contin-
uous Markov process with values in D = Rd

>0, and (IPx)x∈D a family of probability measures on
(Ω,F), such that X0 = x, IPx-almost surely for every x ∈ D. Setting

IT :=
{
u ∈ Rd : IEx

[
e〈u,XT 〉

]
<∞, for all x ∈ D

}
, (2.1)

we assume that

(i) 0 ∈ I◦T , where I◦T denotes the interior of IT ;
(ii) the conditional moment generating function of Xt under IPx has exponentially-affine depen-

dence on x; that is, there exist functions φt(u) : [0, T ]×IT → R and ψt(u) : [0, T ]×IT →
Rd such that

IEx

[
exp〈u,Xt〉

]
= exp

(
φt(u) + 〈ψt(u), x〉

)
, (2.2)

for all (t, u, x) ∈ [0, T ]× IT ×D.

Here 〈·, ·〉 denotes the inner product on Rd and IEx the expectation with respect to IPx.

The functions φ and ψ satisfy the following system of ODEs, known as generalized Riccati equations

∂

∂t
φt(u) = F (ψt(u)), φ0(u) = 0, (2.3a)

∂

∂t
ψt(u) = R(ψt(u)), ψ0(u) = u, (2.3b)

for (t, u) ∈ [0, T ]× IT . The functions F and R are of Lévy–Khintchine form:

F (u) = 〈b, u〉+

∫
D

(
e〈ξ,u〉 − 1〉

)
m(dξ), (2.4a)

Ri(u) = 〈βi, u〉+
〈αi

2
u, u
〉

+

∫
D

(
e〈ξ,u〉 − 1− 〈u, hi(ξ)〉

)
µi(dξ), (2.4b)
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where (b,m, αi, βi, µi)1≤i≤d are admissible parameters and hi : Rd
>0 → Rd are suitable truncation

functions. The functions φ and ψ also satisfy the semi-flow equations

φt+s(u) = φt(u) + φs(ψt(u)) (2.5a)

ψt+s(u) = ψs(ψt(u)) (2.5b)

for all 0 ≤ t+ s ≤ T and u ∈ IT , with initial condition

φ0(u) = 0 and ψ0(u) = u. (2.6)

We refer to Duffie, Filipović, and Schachermayer (2003) for all the details.

The following results and definitions will be used in the sequel. Inequalities involving vectors are inter-
preted componentwise and 1 := (1, 1, . . . , 1).

Lemma 2.1. The functions φ and ψ satisfy the following:

1 φt(0) = ψt(0) = 0 for all t ∈ [0, T ].
2 IT is a convex set. Moreover, for each t ∈ [0, T ], the functions IT 3 u 7→ φt(u) and IT 3
u 7→ ψt(u) are (componentwise) convex.

3 φt(·) and ψt(·) are order-preserving: let (t, u), (t, v) ∈ [0, T ]× IT , with u ≤ v. Then

φt(u) ≤ φt(v) and ψt(u) ≤ ψt(v). (2.7)

4 ψt(·) is strictly order-preserving: let (t, u), (t, v) ∈ [0, T ] × I◦T , with u < v. Then ψt(u) <
ψt(v).

Definition 2.2. Let X be a process satisfying Assumption (A). Define

γX := sup
u∈IT∩Rd

>0

IE1

[
e〈u,XT 〉

]
. (2.8)

An essential ingredient in affine LIBOR models is the construction of parametrized martingales which
are greater than or equal to one and increasing in this parameter (see also Papapantoleon 2010).

Lemma 2.3. Consider an affine process X satisfying Assumption (A) and let u ∈ IT ∩ Rd
>0. Then

the process Mu = (Mu
t )t∈[0,T ] with

Mu
t = exp

(
φT−t(u) + 〈ψT−t(u), Xt〉

)
, (2.9)

is a martingale, greater than or equal to one, and the mapping u 7→ Mu
t is increasing, for every

t ∈ [0, T ].

Proof. Consider the random variable Y u
T := e〈u,XT 〉. Since u ∈ IT ∩ Rd

>0 we have that Y u
T is

greater than one and integrable. Then, from the Markov property of X , (2.2) and the tower property of
conditional expectations we deduce that

Mu
t = IE

[
e〈u,XT 〉|Ft

]
= exp

(
φT−t(u) + 〈ψT−t(u), Xt〉

)
, (2.10)

is a martingale. Moreover, it is obvious that Mu
t ≥ 1 for all t ∈ [0, T ], while the ordering

u ≤ v =⇒ Mu
t ≤M v

t ∀t ∈ [0, T ], (2.11)

follows from the ordering of Y u
T and the representation Mu

t = IE[Y u
T |Ft]. �
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FIGURE 3.2. Illustration of different tenor structures.

3. A MULTIPLE CURVE LIBOR SETTING

We begin by introducing the notation and the main concepts of multiple curve LIBOR models. We will
follow the approach introduced in Mercurio (2010a), which has become the industry standard in the
meantime.

The fact that LIBOR-OIS spreads are now tenor-dependent means that we cannot work with a single
tenor structure any longer. Hence, we start with a discrete, equidistant time structure T = {0 = T0 <
T1 < · · · < TN}, where Tk, k ∈ K := {1, . . . , N}, denote the maturities of the assets traded in
the market. Next, we consider different subsets of T with equidistant time points, i.e. different tenor
structures T x = {0 = T x0 < T x1 < · · · < T xNx}, where x ∈ X := {x1, x2, . . . , xn} is a label
that indicates the tenor structure. Typically, we have X = {1, 3, 6, 12} months. We denote the tenor
length by δx = T xk − T xk−1, for every x ∈ X . Let Kx := {1, 2, . . . , Nx} denote the collection of all
subscripts related to the tenor structure T x. We assume that T x ⊆ T and T xNx = TN for all x ∈ X .
A graphical illustration of a possible relation between the different tenor structures appears in Figure
3.2.

Example 3.1. A natural construction of tenor structures is the following: Let T = {0 = T0 < T1 <
· · · < TN} denote a discrete time structure, where Tk = kδ for k = 1, . . . , N and δ > 0. Let
X = {1 = x1, x2, . . . , xn} ⊂ N, where we assume that

xk|N, for all k = 1, . . . , n.

Next, set for every x ∈ X

T xk = k · δ · x =: kδx, for k = 1, . . . , Nx := N/x,

where obviously T xk = Tkx. Then, we can consider different subsets of T , i.e. different tenor structures
T x = {0 = T x0 < T x1 < · · · < T xNx}, which satisfy by construction T x ⊂ T x1 = T and also
T xNx = Nx · δ · x = TN , for all x ∈ X .

We consider the OIS curve as discount curve, following the standard market practice of fully collateral-
ized contracts. The market prices for caps and swaptions considered in the sequel for model calibration
are indeed quoted under the assumption of full collateralization. A detailed discussion on the choice
of the discount curve in the multiple curve setting can be found e.g. in Mercurio (2010a) and in Hull
and White (2013). The discount factors B(0, T ) are stripped from market OIS rates and defined for
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every possible maturity T ∈ T via

T 7→ B(0, T ) = BOIS(0, T ).

We denote by B(t, T ) the discount factor, i.e. the price of a zero coupon bond, at time t for maturity
T , which is assumed to coincide with the corresponding OIS-based zero coupon bond for the same
maturity.

We also assume that all our modeling objects live on a complete stochastic basis (Ω,F ,F, IPN),
where IPN denotes the terminal forward measure, i.e. the martingale measure associated with the
numeraire B(·, TN). The corresponding expectation is denoted by IEN . Then, we introduce forward
measures IPx

k associated to the numeraireB(·, T xk ) for every pair (x, k) with x ∈ X and k ∈ Kx. The
corresponding expectation is denoted by IEx

k . The forward measures IPx
k are absolutely continuous

with respect to IPN , and defined in the usual way, i.e. via the Radon–Nikodym density

dIPx
k

dIPN

=
B(0, TN)

B(0, T xk )

1

B(T xk , TN)
. (3.1)

Remark 3.2. Since T x ⊆ T there exists an l ∈ K and a k ∈ Kx such that Tl = T xk . Therefore, the
corresponding numeraires and forward measures coincide, i.e. B(·, Tl) = B(·, T xk ) and IPl = IPx

k .
See again Figure 3.2.

Next, we define the two rates that are the main modeling objects in the multiple curve LIBOR setting:
the OIS forward rate and the LIBOR rate. We also define the additive and the multiplicative spread
between these two rates. Let us denote by L(T xk−1, T

x
k ) the spot LIBOR rate at time T xk−1 for the time

interval [T xk−1, T
x
k ], which is an FTx

k−1
-measurable random variable on the given stochastic basis.

Definition 3.3. The time-t OIS forward rate for the time interval [T xk−1, T
x
k ] is defined by

F x
k (t) :=

1

δx

(
B(t, T xk−1)

B(t, T xk )
− 1

)
. (3.2)

Definition 3.4. The time-t LIBOR rate for the time interval [T xk−1, T
x
k ] is defined by

Lxk(t) = IEx
k

[
L(T xk−1, T

x
k )|Ft

]
. (3.3)

The LIBOR rate is the fixed rate that should be exchanged for the future spot LIBOR rate so that the
forward rate agreement has zero initial value. Hence, this rate reflects the market expectations about
the value of the future spot LIBOR rate. Notice that at time t = T xk−1 we have that

Lxk(T
x
k−1) = IEx

k

[
L(T xk−1, T

x
k )|FTx

k−1

]
= L(T xk−1, T

x
k ), (3.4)

i.e. this rate coincides with the spot LIBOR rate at the corresponding tenor dates.

Remark 3.5. In the single curve setup, (3.2) is the definition of the forward LIBOR rate. However, in
the multiple curve setup we have that

L(T xk−1, T
x
k ) 6= 1

δx

(
1

B(T xk−1, T
x
k )
− 1

)
,

hence the OIS and the LIBOR rates are no longer equal.
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Definition 3.6. The spread between the LIBOR rate and the OIS forward rate is defined by

Sxk (t) := Lxk(t)− F x
k (t). (3.5)

Let us also provide an alternative definition of the spread based on a multiplicative, instead of an
additive, decomposition.

Definition 3.7. The multiplicative spread between the LIBOR rate and the OIS forward rate is defined
by

1 + δxR
x
k(t) :=

1 + δxL
x
k(t)

1 + δxF x
k (t)

. (3.6)

A model for the dynamic evolution of the OIS and LIBOR rates, and thus also of their spread, should
satisfy certain conditions which stem from economic reasoning, arbitrage requirements and their re-
spective definitions. These are, in general, consistent with market observations. We formulate them
below as model requirements:

(M1) F x
k (t) ≥ 0 and F x

k ∈M(IPx
k), for all x ∈ X , k ∈ Kx, t ∈ [0, T xk−1].

(M2) Lxk(t) ≥ 0 and Lxk ∈M(IPx
k), for all x ∈ X , k ∈ Kx, t ∈ [0, T xk−1].

(M3) Sxk (t) ≥ 0, for all x ∈ X , k ∈ Kx, t ∈ [0, T xk−1].

HereM(IPx
k) denotes the set of IPx

k-martingales.

Remark 3.8. If the additive spread is positive the multiplicative spread is also positive and vice versa.

4. THE MULTIPLE CURVE AFFINE LIBOR MODEL

We describe next the affine LIBOR model for the multiple curve interest rate setting and analyze its
main properties. In particular, we show that it satisfies the modeling requirements (M1)–(M3) pre-
sented above and that it is analytically tractable. In this framework, OIS forward rates and LIBOR rates
are modeled in the spirit of the affine LIBOR model introduced by Keller-Ressel et al. (2013).

Let X be an affine process defined on (Ω,F ,F, IPN), satisfying Assumption (A) and starting at the
canonical value 1. Consider a fixed x ∈ X and the associated tenor structure T x. We construct two
families of parametrized martingales following Lemma 2.3: take two sequences of vectors (uxk)k∈Kx

and (vxk)k∈Kx , and define the IPN -martingales Muxk and M vxk via

M
uxk
t = exp

(
φTN−t(u

x
k) + 〈ψTN−t(uxk), Xt〉

)
, (4.1)

and
M

vxk
t = exp

(
φTN−t(v

x
k) + 〈ψTN−t(vxk), Xt〉

)
. (4.2)

The multiple curve affine LIBOR model postulates that the OIS and the LIBOR rates associated with
the x-tenor evolve according to

1 + δxF
x
k (t) =

M
uxk−1

t

M
uxk
t

and 1 + δxL
x
k(t) =

M
vxk−1

t

M
uxk
t

, (4.3)

for every k = 2, . . . , Nx and t ∈ [0, T xk−1].
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In the following three propositions, we show how to construct a multiple curve affine LIBOR model
from any given initial term structure of OIS and LIBOR rates.

Proposition 4.1. Consider the time structure T , let B(0, Tl), l ∈ K, be the initial term structure of
non-negative OIS discount factors and assume that

B(0, T1) ≥ · · · ≥ B(0, TN).

Then the following statements hold:

1 If γX > B(0, T1)/B(0, TN), then there exists a decreasing sequence u1 ≥ u2 ≥ · · · ≥
uN = 0 in IT ∩ Rd

>0, such that

Mul
0 =

B(0, Tl)

B(0, TN)
for all l ∈ K. (4.4)

In particular, if γX =∞, the multiple curve affine LIBOR model can fit any initial term structure
of OIS rates.

2 If X is one-dimensional, the sequence (ul)l∈K is unique.
3 If all initial OIS rates are positive, the sequence (ul)l∈K is strictly decreasing.

Proof. See Proposition 6.1 in Keller-Ressel et al. (2013). �

After fitting the initial term structure of OIS discount factors, we want to fit the initial term structure of
LIBOR rates, which is now tenor-dependent. Thus, for each k ∈ Kx, we set

uxk := ul, (4.5)

where l ∈ K is such that Tl = T xk ; see Remark 3.2. In general, we have that l = kT x1 /T1, while in
the setting of Example 3.1 we simply have l = kx, i.e. uxk = ukx.

Proposition 4.2. Consider the setting of Proposition 4.1, the fixed x ∈ X and the corresponding
tenor structure T x. Let Lxk(0), k ∈ Kx, be the initial term structure of non-negative LIBOR rates and
assume that for every k ∈ Kx

Lxk(0) ≥ 1

δx

(
B(0, T xk−1)

B(0, T xk )
− 1

)
= F x

k (0). (4.6)

The following statements hold:

1 If γX > maxk∈Kx(1+δxL
x
k(0))B(0, T xk )/B(0, T xN), then there exists a sequence vx1 , v

x
2 , . . . , v

x
Nx =

0 in IT ∩ Rd
>0, such that vxk ≥ uxk and

M
vxk
0 = (1 + δxL

x
k+1(0))M

uxk+1

0 , for all k ∈ Kx\{Nx}. (4.7)

In particular, if γX = ∞, then the multiple curve affine LIBOR model can fit any initial term
structure of LIBOR rates.

2 If X is one-dimensional, the sequence (vxk)k∈Kx is unique.
3 If all initial spreads are positive, then vxk > uxk , for all k ∈ Kx\{Nx}.

Proof. Similarly to the previous proposition, by fitting the initial LIBOR rates we obtain a sequence
(vxk)k∈Kx which satisfies (1)–(3). The inequality vxk ≥ uxk follows directly from (4.6). �

Proposition 4.3. Consider the setting of the previous propositions. Then we have:
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-

0 = uxNx uxNx−1v
x
Nx−1 . . . uxk vxk uxk−1 . . . ux1 vx1

-

0 = uxNx uxNx−1 . . . uxk . . . ux1 vx1 . . . vxNx−1 . . . vxk

FIGURE 4.3. Two possible orderings of (uxk) and (vxk).

1 F x
k and Lxk are IPx

k-martingales, for every k ∈ Kx.
2 Lxk(t) ≥ F x

k (t) ≥ 0, for every k ∈ Kx, t ∈ [0, T xk−1].

Proof. Since Muxk and M vxk are IPN -martingales and the density process relating the measures IPN

and IPx
k is provided by

dIPx
k

dIPN

∣∣∣
Ft

=
B(0, TN)

B(0, T xk )

B(t, T xk )

B(t, TN)
=
M

uxk
t

M
uxk
0

, (4.8)

we get from (4.3)

1 + δxF
x
k ∈M(IPx

k) because (1 + δxF
x
k )Muxk = Muxk−1 ∈M(IPN). (4.9)

Similarly,

1 + δxL
x
k ∈M(IPx

k) because (1 + δxL
x
k)M

uxk = M vxk−1 ∈M(IPN). (4.10)

The monotonicity of the sequence (uxk) together with (2.11) yields that Muxk−1 ≥ Muxk . Moreover,
from the inequality vxk ≥ uxk together with (2.11) again, it follows that M vxk ≥ Muxk , for all k ∈ Kx.
Hence,

1 + δxL
x
k ≥ 1 + δxF

x
k ≥ 1.

Therefore, the OIS forward rates, the LIBOR rates and the corresponding spreads are non-negative
IPx
k-martingales. �

Remark 4.4. Let us now look more closely at the relationship between the sequences (vxk) and (uxk).
Propositions 4.1 and 4.2 imply that uxk−1 ≥ uxk and vxk ≥ uxk for all k ∈ Kx. However, we do not know
the ordering of vxk and uxk−1, or whether the sequence (vxk) is monotone or not. The market data for
LIBOR spreads indicate that in a ‘normal’ market situation vxk ∈ [uxk, u

x
k−1]. More precisely, on the one

side, we have vxk ≥ uxk because the LIBOR spreads are nonnegative. On the other side, if vxk > uxk−1,
then the LIBOR rate would be more than two times higher than the OIS rate spanning an interval twice
as long, starting at the same date. This contradicts normal market behavior, hence vxk ∈ [uxk, u

x
k−1]

and consequently the sequence (vxk) will also be decreasing. This ordering of the parameters (vxk)
and (uxk) is illustrated in Figure 4.3 (top graph). However, the ‘normal’ market situation alternates with
an ‘extreme’ situation, where the spread is higher than the OIS rate. In the bottom graph of Figure 4.3
we plot another possible ordering of the parameters (vxk) and (uxk) corresponding to such a case of
very high spreads. Intuitively speaking, the value of the corresponding model spread depends on the
distance between the parameters (vxk) and (uxk), although in a non-linear fashion.

The next result clarifies an important property of the multiple curve affine LIBOR model, namely its an-
alytical tractability in the sense that the model structure is preserved under different forward measures.
More precisely, the processX remains affine under any forward measure, although its ‘characteristics’
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are now time-dependent. We refer to Filipović (2005) for time-inhomogeneous affine processes. This
property plays a crucial role in the derivation of tractable pricing formulas for interest rate derivatives
in the forthcoming sections.

Proposition 4.5. The process X is a time-inhomogeneous affine process under the measure IPx
k , for

every x ∈ X and k ∈ Kx. In particular

IEx
k

[
e〈w,Xt〉

]
= exp

(
φk,xt (w) + 〈ψk,xt (w), X0〉

)
, (4.11)

where

φk,xt (w) := φt
(
ψTN−t(u

x
k) + w

)
− φt

(
ψTN−t(u

x
k)
)
, (4.12a)

ψk,xt (w) := ψt
(
ψTN−t(u

x
k) + w

)
− ψt

(
ψTN−t(u

x
k)
)
, (4.12b)

for every w ∈ Ik,x with

Ik,x :=
{
w ∈ Rd : ψTN−t(u

x
k) + w ∈ IT

}
. (4.13)

Proof. Using the density process between the forward measures, see (4.8), we have that

IEx
k

[
e〈w,Xt〉

∣∣Fs] = IEN

[
e〈w,Xt〉M

uxk
t /M

uxk
s

∣∣Fs]
= IEN

[
exp

(
φTN−t(u

x
k) + 〈ψTN−t(uxk) + w,Xt〉

)∣∣Fs]/Muxk
s

= exp
(
φTN−t(u

x
k)− φTN−s(uxk) + φt−s(ψTN−t(u

x
k) + w)

)
× exp

〈
ψt−s(ψTN−t(u

x
k) + w)− ψTN−s(uxk), Xs

〉
, (4.14)

where the above expectation is finite for every w ∈ Ik,x; recall (2.1). This shows that X is a time-
inhomogeneous affine process under IPx

k , while (4.11) follows by substituting s = 0 in (4.14) and
using the flow equations (2.5). �

Remark 4.6 (Single curve and deterministic spread). The multiple curve affine LIBOR model easily
reduces to its single curve counterpart (cf. Keller-Ressel et al. 2013) by setting vxk = uxk for all x ∈ X
and k ∈ Kx. Another interesting question is whether the spread can be deterministic or, similarly,
whether the LIBOR rate can be a deterministic transformation of the OIS rate.

Consider, for example, a 2-dimensional driving process X = (X1, X2) where X1 is an arbitrary
affine process and X2 the constant process (i.e. X2

t ≡ X2
0 ). Then, by setting

uxk−1 = (ux1,k−1, 0) and vxk = (ux1,k−1, v
x
2,k−1)

where ux1,k−1, v
x
2,k−1 > 0 we arrive at

1 + δxL
x
k(t) = (1 + δxF

x
k (t)) ev

x
2,k−1·X

2
0 .

Therefore, the LIBOR rate is a deterministic transformation of the OIS rate, although the spread Sxk
as defined in (3.5) is not deterministic. In that case, the multiplicative spread Rx

k defined in (3.6) is
obviously deterministic.
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Remark 4.7. The multiple curve affine LIBOR model fulfills requirements (M1)–(M3), which are con-
sistent with the typical market observations of nonnegative interest rates and nonnegative spreads.
However, negative rates and negative spreads have been observed for short time intervals, in partic-
ular when a tenor of one month is considered for the LIBOR. Since these occurrences are limited to
spot rates of the shortest available tenor and occur for periods of a single day usually, we consider
them to be of peripheral interest for our modeling framework. Nevertheless, negative interest rates and
spreads can be easily accommodated in this setup by considering, for example, affine processes on
Rd instead of Rd

>0 or ‘shifted’ positive affine processes where supp(X) ∈ [a,∞)d with a < 0.

5. CONNECTION TO LIBOR MARKET MODELS

In this section, we will clarify the relationship between the affine LIBOR models and the ‘classical’
LIBOR market models, cf. Sandmann, Sondermann, and Miltersen (1995) and Brace, Ga̧tarek, and
Musiela (1997). More precisely, we will embed the multiple curve affine LIBOR model in the framework
of Jamshidian (1997) and derive the dynamics of OIS forward rates and LIBOR rates. We will concen-
trate on affine diffusion processes for the sake of simplicity, in order to expose the ideas without too
many technical details. The generalization to affine processes with jumps is straightforward and left to
the interested reader.

An affine diffusion process on the state space D = Rd
>0 is the solution X = Xx of the SDE

dXt = (b+BXt)dt+ σ(Xt)dWt, X0 = x, (5.1)

whereW = WN is a d-dimensional IPN -Brownian motion. The coefficients b,B = (β1, . . . , βd) and
σ have to satisfy the admissibility conditions for affine diffusions on Rd

>0, see Filipović (2009, Ch. 10).
That is, the drift vectors satisfy

b ∈ Rd
>0, βi(i) ∈ R and βi(j) ∈ R>0 for all 1 ≤ i, j ≤ d, (5.2)

while the diffusion matrix σ(x) satisfies

σ(x)σ(x)T =
d∑
i=1

αixi, (5.3)

where αi are symmetric, positive semidefinite matrices for all 1 ≤ i ≤ d, such that

αi(ii) ∈ R>0 and αi(jk) = 0 for all 1 ≤ i, j, k ≤ d. (5.4)

Therefore, the affine diffusion process X is componentwise described by

dX i
t = (b+BXt)

idt+
√
X i
t σ

T
i dWt, (5.5)

for all i = 1, . . . , d, where σi =
√
αi(ii) · ei (with ei the unit vector).

5.1. OIS dynamics. We start by computing the dynamics of OIS forward rates. As in the previous
section, we consider a fixed x ∈ X and the associated tenor structure T x.

Using the structure of the IPN -martingale Muxk in (4.1), we have that

dM
uxk
t = M

uxk
t ψTN−t(u

x
k)

TdXt + . . . dt. (5.6)
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Hence, applying Itô’s product rule to (4.3) and using (5.6) yields that

dF x
k (t) =

1

δx
d
M

uxk−1

t

M
uxk
t

=
1

δx

M
uxk−1

t

M
uxk
t

(
ψTN−t(u

x
k−1)−ψTN−t(uxk)

)T
dXt + . . . dt

=
1

δx
(1 + δxF

x
k (t))

(
ψTN−t(u

x
k−1)− ψTN−t(uxk)

)T
dXt + . . . dt.

Therefore, the OIS rates satisfy the following SDE

dF x
k (t)

F x
k (t)

=
1 + δxF

x
k (t)

δxF x
k (t)

(
ψTN−t(u

x
k−1)− ψTN−t(uxk)

)T
dXt + . . . dt (5.7)

for all k = 2, ..., Nx. Now, using the dynamics of the affine process X from (5.5) we arrive at

dF x
k (t)

F x
k (t)

=
1 + δxF

x
k (t)

δxF x
k (t)

d∑
i=1

(
ψiTN−t(u

x
k−1)− ψiTN−t(u

x
k)
)

dX i
t + . . . dt

=
1 + δxF

x
k (t)

δxF x
k (t)

d∑
i=1

(
ψiTN−t(u

x
k−1)− ψiTN−t(u

x
k)
)√

X i
t σ

T
i dWN

t + . . . dt

=: ΓT
x,k(t) dWN

t + . . . dt, (5.8)

where we define the volatility structure

Γx,k(t) =
1 + δxF

x
k (t)

δxF x
k (t)

d∑
i=1

(
ψiTN−t(u

x
k−1)− ψiTN−t(u

x
k)
)√

X i
t σi ∈ Rd

>0. (5.9)

On the other hand, we know from the general theory of discretely compounded forward rates (cf.
Jamshidian 1997) that the OIS forward rate should satisfy the following SDE under the terminal mea-
sure IPN

dF x
k (t)

F x
k (t)

= −
Nx∑

l=k+1

δxF
x
l (t)

1 + δxF x
l (t)

ΓT
x,l(t)Γx,k(t) dt+ ΓT

x,k(t) dWN
t , (5.10)

for the volatility structure Γx,k given in (5.9). Therefore, we get immediately that the IPx
k-Brownian

motion W x,k is related to the terminal Brownian motion WN via the equality

W x,k := WN −
Nx∑

l=k+1

·∫
0

δxF
x
l (t)

1 + δxF x
l (t)

Γx,l(t) dt

= WN −
Nx∑

l=k+1

d∑
i=1

·∫
0

(
ψiTN−t(u

x
l−1)− ψiTN−t(u

x
l )
)√

X i
t σi dt. (5.11)
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Moreover, the dynamics of X under IPx
k take the form

dX i
t = (b+BXt)

i dt+
√
X i
t σ

T
i dW x,k

t

+ σT
i

√
X i
t

Nx∑
l=k+1

d∑
j=1

(
ψjTN−t

(
uxl−1

)
− ψjTN−t (uxl )

)√
Xj
t σjdt

=

(
bi + (BXt)

i +
Nx∑

l=k+1

(
ψiTN−t(u

x
l−1)− ψiTN−t(u

x
l )
)
X i
t |σi|2

)
dt

+
√
X i
t σ

T
i dW x,k

t , (5.12)

for all i = 1, . . . , d. The last equation provides an alternative proof to Proposition 4.5 in this setting,
since it shows explicitly that X is a time-inhomogeneous affine diffusion process under IPx

k . One
should also note from (5.11), that the difference between the terminal and the forward Brownian motion
does not depend on other forward rates as in ‘classical’ LIBOR market models. The same property is
shared by forward price models, see e.g. Eberlein and Kluge (2007).

Thus, we arrive at the following IPx
k-dynamics for the OIS forward rates

dF x
k (t)

F x
k (t)

= ΓT
x,k(t) dW x,k

t (5.13)

with the volatility structure Γx,k provided by (5.9). The structure of Γx,k shows that there is a built-in
shift in the model, whereas the volatility structure is determined by ψ and σ.

5.2. LIBOR dynamics. Next, we derive the dynamics of the LIBOR rates associated to the same
tenor. Using (4.3), (4.2) and repeating the same steps as above, we obtain the following

dLxk(t)

Lxk(t)
=

1

δxLxk(t)
d
M

vxk−1

t

M
uxk
t

=
1

δxLxk(t)

M
vxk−1

t

M
uxk
t

(
ψTN−t(v

x
k−1)− ψTN−t(uxk)

)T
dXt + . . . dt

=
1 + δxL

x
k(t)

δxLxk(t)

d∑
i=1

(
ψiTN−t(v

x
k−1)−ψiTN−t(u

x
k)
)√

X i
t σ

T
i dWN

t + . . . dt,

for all k = 2, ..., Nx. Similarly to (5.9) we introduce the volatility structure

Λx,k(t) :=
1 + δxL

x
k(t)

δxLxk(t)

d∑
i=1

(
ψiTN−t(v

x
k−1)−ψiTN−t(u

x
k)
)√

X i
t σi ∈ Rd

>0, (5.14)

and then obtain for Lxk the following IPx
k-dynamics

dLxk(t)

Lxk(t)
= ΛT

x,k(t) dW x,k
t , (5.15)

where W x,k is the IPx
k-Brownian motion given by (5.11), while the dynamics of X are provided by

(5.12).
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5.3. Spread dynamics. Using that Sxk = Lxk − F x
k , the dynamics of LIBOR and OIS rates under the

forward measure IPx
k in (5.13) and (5.15), as well as the structure of the volatilities in (5.9) and (5.14),

after some straightforward calculations we arrive at

dSxk (t) =

{
Sxk (t)ΥT

t (vxk−1, u
x
k) +

1 + δxF
x
k (t)

δx
ΥT
t (vxk−1, u

x
k−1)

}
dW x,k

t ,

where

Υt(w, y) :=
d∑
i=1

(
ψiTN−t(w)−ψiTN−t(y)

)√
X i
t σi. (5.16)

5.4. Instantaneous correlations. The derivation of the SDEs that OIS and LIBOR rates satisfy al-
lows to provide quickly formulas for various quantities of interest, such as the instantaneous corre-
lations between OIS and LIBOR rates or LIBOR rates with different maturities or tenors. We have,
for example, that the instantaneous correlation between the LIBOR rates maturing at T xk and T xl is
heuristically described by

Corrt
[
Lxk, L

x
l

]
=

dLx
k(t)

Lx
k(t)
· dLx

l (t)

Lx
l (t)√

dLx
k(t)

Lx
k(t)
· dLx

k(t)

Lx
k(t)

√
dLx

l (t)

Lx
l (t)
· dLx

l (t)

Lx
l (t)

therefore we get that

Corrt
[
Lxk, L

x
l

] (5.15)
=

ΛT
x,kΛx,l

|Λx,k||Λx,l|

=

∑d
i=1

(
ψiTN−t

(
vxk−1

)
− ψiTN−t (uxk)

) (
ψiTN−t

(
vxl−1

)
− ψiTN−t (uxl )

)
X i|σi|2√∑d

i=1

(
ψiTN−t

(
vxk−1

)
− ψiTN−t (uxk)

)2
X i|σi|2

× 1√∑d
i=1

(
ψiTN−t

(
vxl−1

)
− ψiTN−t (uxl )

)2
X i|σi|2

.

Similar expressions can be derived for other instantaneous correlations, e.g.

Corrt
[
F x
k , L

x
k

]
or Corrt

[
Lx1k , L

x2
k

]
.

Instantaneous correlations are important for describing the (instantaneous) interdependencies be-
tween different LIBOR rates. In the LIBOR market model for instance, the rank of the instantaneous
correlation matrix determines the number of factors (e.g. Brownian motions) that is needed to drive the
model. Explicit expressions for terminal correlations between LIBOR rates are provided in Appendix
A.

6. VALUATION OF SWAPS AND CAPS

6.1. Interest rate and basis swaps. We start by presenting a fixed-for-floating payer interest rate
swap on a notional amount normalized to 1, where fixed payments are exchanged for floating pay-
ments linked to the LIBOR rate. The LIBOR rate is set in advance and the payments are made in
arrears. The swap is initiated at time T xp ≥ 0, where x ∈ X and p ∈ Kx. The collection of payment
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dates is denoted by T xpq := {T xp+1 < · · · < T xq }, and the fixed rate is denoted byK . Then, the time-t
value of the swap, for t ≤ T xp , is given by

St(K, T xpq) =

q∑
k=p+1

δxB(t, T xk ) IEx
k

[
L(T xk−1, T

x
k )−K|Ft

]
= δx

q∑
k=p+1

B(t, T xk ) (Lxk(t)−K) . (6.1)

Thus, the fair swap rate Kt(T xpq) is given by

Kt(T xpq) =

∑q
k=p+1B(t, T xk )Lxk(t)∑q

k=p+1B(t, T xk )
. (6.2)

Basis swaps are new products in interest rate markets, whose value reflects the discrepancy between
the LIBOR rates of different tenors. A basis swap is a swap where two streams of floating payments
linked to the LIBOR rates of different tenors are exchanged. For example, in a 3m–6m basis swap, a
3m-LIBOR is paid (received) quarterly and a 6m-LIBOR is received (paid) semiannually. We assume in
the sequel that both rates are set in advance and paid in arrears; of course, other conventions regard-
ing the payments on the two legs of a basis swap also exist. A more detailed account on basis swaps
can be found in Mercurio (2010b, Section 5.2) or in Filipović and Trolle (2013, Section 2.4 and Appen-
dix F). Note that in the pre-crisis setup the value of such a product would have been zero at any time
point, due to the no-arbitrage relation between the LIBOR rates of different tenors; see e.g. Crépey,
Grbac, and Nguyen (2012).

Let us consider a basis swap associated with two tenor structures denoted by T x1pq := {T x1p1 < . . . <
T x1q1 } and T x2pq := {T x2p2 < . . . < T x2q2 }, where T x1p1 = T x2p2 ≥ 0, T x1q1 = T x2q2 and T x2pq ⊂ T x1pq . The
notional amount is again assumed to be 1 and the swap is initiated at time T x1p1 , while the first payments
are due at times T x1p1+1 and T x2p2+1 respectively. The basis swap spread is a fixed rate S, which is added
to the payments on the shorter tenor length. More precisely, for the x1-tenor, the floating interest rate
L(T x1i−1, T

x1
i ) at tenor date T x1i is replaced by L(T x1i−1, T

x1
i ) + S, for every i ∈ {p1 + 1, . . . , q1}.

The time-t value of such an agreement is given, for 0 ≤ t ≤ T x1p1 = T x2p2 , by

BSt(S, T x1pq , T x2pq ) =

q2∑
i=p2+1

δx2B(t, T x2i ) IEx2
i

[
L(T x2i−1, T

x2
i )|Ft

]
−

q1∑
i=p1+1

δx1B(t, T x1i ) IEx1
i

[
L(T x1i−1, T

x1
i ) + S|Ft

]
=

q2∑
i=p2+1

δx2B(t, T x2i )Lx2i (t) −
q1∑

i=p1+1

δx1B(t, T x1i )
(
Lx1i (t) + S

)
. (6.3)

We also want to compute the fair basis swap spread St(T x1pq , T x2pq ). This is the spread that makes the
value of the basis swap equal zero at time t, i.e. it is obtained by solving BSt(S, T x1pq , T x2pq ) = 0. We
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get that

St(T x1pq , T x2pq ) =

∑q2
i=p2+1 δx2B(t, T x2i )Lx2i (t)−

∑q1
i=p1+1 δx1B(t, T x1i )Lx1i (t)∑q1

i=p1+1 δx1B(t, T x1i )
. (6.4)

The formulas for the fair swap rate and basis spread can be used to bootstrap the initial values of
LIBOR rates from market data, see Mercurio (2010b, §2.4).

6.2. Caps. The valuation of caplets, and thus caps, in the multiple curve affine LIBOR model is an
easy task, which has complexity equal to the complexity of the valuation of caplets in the single-curve
affine LIBOR model. There are two reasons for this: on the one hand, the LIBOR rate is modeled
directly—compare e.g. with Mercurio (2010a) where the LIBOR rate is modeled implicitly as the sum of
the OIS rate and the spread. On the other hand, the driving process remains affine under any forward
measure, cf. Proposition 4.5, which allows the application of Fourier methods for option pricing.

Proposition 6.1. Consider an x-tenor caplet with strike K that pays out δx(L(T xk−1, T
x
k ) −K)+ at

T xk . The time-0 price is provided by

C0(K,T xk ) =
B(0, T xk )

2π

∫
R

K1−R+iw
x

ΘWx
k−1

(R− iw)

(R− iw)(R− 1− iw)
dw, (6.5)

for R ∈ (1,∞) ∩ Ĩk,x, where Kx = 1 + δxK , ΘWx
k−1

is given by (6.7), while the set Ĩk,x is defined
as

Ĩk,x =
{
z ∈ R : (1− z)ψTN−Tx

k−1
(uxk) + zψTN−Tx

k−1
(vxk−1) ∈ IT

}
.

Proof. Using (3.3) and (4.3) the time-0 price of the caplet equals

C0(K,T xk ) = δxB(0, T xk ) IEx
k

[
(L(T xk−1, T

x
k )−K)+

]
= δxB(0, T xk ) IEx

k

[
(Lxk(T

x
k−1)−K)+

]
= B(0, T xk ) IEx

k

[(
M

vxk−1

Tx
k−1
/M

uxk
Tx
k−1
−Kx

)+]
= B(0, T xk ) IEx

k

[(
eW

x
k−1 −Kx

)+]
,

where

Wx
k−1 = log

(
M

vxk−1

Tx
k−1
/M

uxk
Tx
k−1

)
= φTN−Tx

k−1
(vxk−1)− φTN−Tx

k−1
(uxk)

+
〈
ψTN−Tx

k−1
(vxk−1)− ψTN−Tx

k−1
(uxk), XTx

k−1

〉
=: A+ 〈B,XTx

k−1
〉. (6.6)

Now, using Eberlein, Glau, and Papapantoleon (2010, Thm 2.2, Ex. 5.1), we arrive directly at (6.5),
where ΘWx

k−1
denotes the IPx

k-moment generating function of the random variable Wx
k−1, i.e. for
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z ∈ Ĩk,x,

ΘWx
k−1

(z) = IEx
k

[
ezW

x
k−1

]
= IEx

k

[
exp

(
z(A+ 〈B,XTx

k−1
〉)
)]

= exp
(
zA+ φk,xTx

k−1
(zB) +

〈
ψk,xTx

k−1
(zB), X0

〉)
. (6.7)

The last equality follows from Proposition 4.5, noting that z ∈ Ĩk,x implies zB ∈ Ik,x. �

7. VALUATION OF SWAPTIONS AND BASIS SWAPTIONS

This section is devoted to the pricing of options on interest rate and basis swaps, in other words, to
the pricing of swaptions and basis swaptions. In the first part, we provide general expressions for the
valuation of swaptions and basis swaptions making use of the structure of multiple curve affine LIBOR
models. In the following two parts, we derive efficient and accurate approximations for the pricing of
swaptions and basis swaptions by further utilizing the model properties—in particular, the preserva-
tion of the affine structure under forward measures—and applying the linear boundary approximation
developed by Singleton and Umantsev (2002).

Let us consider first a payer swaption with strike rate K and exercise date T xp on a fixed-for-floating
interest rate swap starting at T xp and maturing at T xq ; this was defined in Section 6.1. A swaption can
be regarded as a sequence of fixed payments δx(KTx

p
(T xpq)−K)+ that are received at the payment

dates T xp+1, . . . , T
x
q ; see Musiela and Rutkowski (2005, Section 13.1.2, p. 524). HereKTx

p
(T xpq) is the

swap rate of the underlying swap at time T xp , cf. (6.2). Note that the classical transformation of a payer
(resp. receiver) swaption into a put (resp. call) option on a coupon bond is not valid in the multiple
curve setup, since LIBOR rates cannot be expressed in terms of zero coupon bonds; see Remark 3.5.

The value of the swaption at time t ≤ T xp is given by

S+
t (K, T xpq) = B(t, T xp )

q∑
i=p+1

δx IEx
p

[
B(T xp , T

x
i )
(
KTx

p
(T xpq)−K

)+ ∣∣Ft] .
Therefore, at time t = 0 we have

S+
0 (K, T xpq) = B(0, T xp ) IEx

p

[
q∑

i=p+1

δxB(T xp , T
x
i )
(
KTx

p
(T xpq)−K

)+

]

= B(0, T xp ) IEx
p

[(
q∑

i=p+1

δxL
x
i (T

x
p )B(T xp , T

x
i )−

q∑
i=p+1

δxKB(T xp , T
x
i )

)+]

since the swap rate KTx
p
(T xpq) is given by (6.2) for t = T xp . Using (3.2), (4.3) and a telescoping

product, we get that

B(T xp , T
x
i ) = M

uxi
Tx
p

/
M

uxp
Tx
p
.
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Moreover, using (4.3) and (4.8), we obtain that

S+
0 (K, T xpq) = B(0, T xp ) IEx

p

 q∑
i=p+1

M
vxi−1

Tx
p

M
uxp
Tx
p

−
q∑

i=p+1

Kx

M
uxi
Tx
p

M
uxp
Tx
p

+
= B(0, TN) IEN

[(
q∑

i=p+1

M
vxi−1

Tx
p
−

q∑
i=p+1

KxM
uxi
Tx
p

)+]
, (7.1)

where Kx := 1 + δxK .

Next, we move on to the pricing of basis swaptions. A basis swaption is an option to enter a basis
swap with spread S. We consider a basis swap as defined in section 6.1, which starts at T x1p1 = T x2p2
and ends at T x1q1 = T x2q2 , while we assume that the exercise date is T x1p1 . The payoff of a basis swap
at time T x1p1 is given by (6.3) for t = T x1p1 . Therefore, the price of a basis swaption at time t = 0 is
provided by

BS+
0 (S, T x1pq , T x2pq ) = B(0, T x1p1 ) IEx1

p1

[(
q2∑

i=p2+1

δx2L
x2
i (T x2p2 )B(T x2p2 , T

x2
i )

−
q1∑

i=p1+1

δx1
(
Lx1i (T x1p1 ) + S

)
B(T x1p1 , T

x1
i )

)+]
.

Along the lines of the derivation for swaptions and using M
u
x2
p2

T
x2
p2

= M
u
x1
p1

T
x1
p1

(cf. (4.5)), we arrive at

BS+
0 (S, T x1pq , T x2pq ) =

= B(0, T x1p1 ) IEx1
p1

[(
q2∑

i=p2+1

(
M

v
x2
i−1

T
x2
p2

/M
u
x2
p2

T
x2
p2

−Mu
x2
i

T
x2
p2

/M
u
x2
p2

T
x2
p2

)

−
q1∑

i=p1+1

(
M

v
x1
i−1

T
x1
p1

/M
u
x1
p1

T
x1
p1

− Sx1M
u
x1
i

T
x1
p1

/M
u
x1
p1

T
x1
p1

))+]

= B(0, TN) IEN

[(
q2∑

i=p2+1

(
M

v
x2
i−1

T
x2
p2

−Mu
x2
i

T
x2
p2

)
−

q1∑
i=p1+1

(
M

v
x1
i−1

T
x1
p1

−Sx1M
u
x1
i

T
x1
p1

))+]
, (7.2)

where Sx1 := 1− δx1S.

7.1. Approximation formula for swaptions. We will now derive an efficient approximation formula
for the pricing of swaptions. The main ingredients in this formula are the affine property of the driving
process under forward measures and the linearization of the exercise boundary. Numerical results for
this approximation will be reported in Section 8.3.
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We start by presenting some technical tools and assumptions that will be used in the sequel. We
define the probability measures IP

x

k , for every k ∈ Kx, via the Radon–Nikodym density

dIP
x

k

dIPN

∣∣∣
Ft

=
M

vxk
t

M
vxk
0

. (7.3)

The process X is obviously a time-inhomogeneous affine process under every IP
x

k . More precisely,
we have the following result which follows directly from Proposition 4.5.

Corollary 7.1. The process X is a time-inhomogeneous affine process under the measure IP
x

k , for
every x ∈ X , k ∈ Kx, with

IE
x

k

[
e〈w,Xt〉

]
= exp

(
φ
k,x

t (w) + 〈ψk,xt (w), X0〉
)
, (7.4)

where

φ
k,x

t (w) := φt
(
ψTN−t(v

x
k) + w

)
− φt

(
ψTN−t(v

x
k)
)
, (7.5a)

ψ
k,x

t (w) := ψt
(
ψTN−t(v

x
k) + w

)
− ψt

(
ψTN−t(v

x
k)
)
, (7.5b)

for every w ∈ Ik,x with

Ik,x :=
{
w ∈ Rd : ψTN−t(v

x
k) + w ∈ IT

}
. (7.6)

Next, we define the function f : Rd
>0 → R by

f(y) =

q∑
i=p+1

exp
(
φTN−Tx

p
(vxi−1) + 〈ψTN−Tx

p
(vxi−1), y〉

)
−

q∑
i=p+1

Kx exp
(
φTN−Tx

p
(uxi ) + 〈ψTN−Tx

p
(uxi ), y〉

)
. (7.7)

This function determines the exercise boundary for the price of the swaption, as will become clear be-
low. Since we cannot compute the characteristic function of f(XTx

p
) explicitly, we will follow Singleton

and Umantsev (2002) and approximate f by a linear function.

Approximation (S). We approximate

f(XTx
p
) ≈ f̃(XTx

p
) := A + 〈B, XTx

p
〉, (7.8)

where the constants A, B are determined according to the linear regression procedure described in
Singleton and Umantsev (2002, pp. 432-434). The line 〈B, XTx

p
〉 = −A approximates the exercise

boundary, hence A,B are strike-dependent.

The following assumption will be used for the pricing of swaptions and basis swaptions.

Assumption (CD). The cumulative distribution function of Xt is continuous for all t ∈ [0, TN ].

Let =(z) denote the imaginary part of a complex number z ∈ C. Now, we state the main result of this
subsection.
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Proposition 7.2. Assume that A,B are determined by Approximation (S) and that Assumption (CD)
is satisfied. The price of a payer swaption with strike K , option maturity T xp , and swap maturity T xq , is
approximated by

S̃+
0 (K, T xpq) = B(0, TN)

q∑
i=p+1

M
vxi−1

0

1

2
+

1

π

∞∫
0

=
(
ξ̃xi−1(z)

)
z

dz


−Kx

q∑
i=p+1

B(0, T xi )

1

2
+

1

π

∞∫
0

=
(
ζ̃xi (z)

)
z

dz

 , (7.9)

where ζ̃xi and ξ̃xi are defined by (7.13) and (7.14) respectively.

Proof. Recall that the price of a swaption is provided by (7.1). Using (4.1) and (4.2) and the definition
of f in (7.7), we can express the swaption price as follows

S+
0 (K, T xpq) = B(0, TN) IEN

[(
q∑

i=p+1

M
vxi−1

Tx
p
−

q∑
i=p+1

KxM
uxi
Tx
p

)
1{f(XTx

p
)≥0}

]

= B(0, TN)

(
q∑

i=p+1

IEN

[
M

vxi−1

Tx
p

1{f(XTx
p

)≥0}

]
−Kx

q∑
i=p+1

IEN

[
M

uxi
Tx
p
1{f(XTx

p
)≥0}

])
.

Moreover, using the relation between the terminal measure IPN and the measures IPx
k and IP

x

k in (4.8)
and (7.3), we get that

S+
0 (K, T xpq) = B(0, TN)

q∑
i=p+1

M
vxi−1

0 IE
x

i−1

[
1{f(XTx

p
)≥0}

]
−Kx

q∑
i=p+1

B(0, T xi ) IEx
i

[
1{f(XTx

p
)≥0}

]
. (7.10)

In addition, from the inversion formula of Gil-Pelaez (1951) and using Assumption (CD), we get that

IEx
i

[
1{f(XTx

p
)≥0}
]

=
1

2
+

1

π

∞∫
0

=(ζxi (z))

z
dz, (7.11)

IE
x

i

[
1{f(XTx

p
)≥0}
]

=
1

2
+

1

π

∞∫
0

=(ξxi (z))

z
dz, (7.12)

for each i ∈ Kx, where we define

ζxi (z) := IEx
i

[
exp

(
izf(XTx

p
)
)]

and ξxi (z) := IE
x

i

[
exp

(
izf(XTx

p
)
)]
.
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However, the above characteristic functions cannot be computed explicitly, in general, thus we will
linearize the exercise boundary as described by Approximation (S). Therefore, we approximate the
unknown characteristic functions with ones that admit an explicit expression due to the affine property
of X under the forward measures. Indeed, from (7.8), Proposition 4.5 and Corollary 7.1 we get that

ζxk (z) ≈ ζ̃xk (z) := IEx
k

[
exp

(
izf̃(XTx

p
)
)]

= exp
(

izA + φk,xTx
p

(izB) +
〈
ψk,xTx

p
(izB), X0

〉)
, (7.13)

ξxk (z) ≈ ξ̃xk (z) := IE
x

k

[
exp

(
izf̃(XTx

p
)
)]

= exp
(

izA + φ
k,x

Tx
p

(izB) +
〈
ψ
k,x

Tx
p

(izB), X0

〉)
. (7.14)

After inserting (7.11) and (7.12) into (7.10) and using (7.13) and (7.14) we arrive at the approximation
formula for swaptions (7.9). �

Remark 7.3. The pricing of swaptions is inherently a high-dimensional problem. The expectation in
(7.1) corresponds to a d-dimensional integral, where d is the dimension of the driving process. How-
ever, the exercise boundary is non-linear and hard to compute, in general. See, e.g. Brace et al. (1997),
Eberlein and Kluge (2006) or Keller-Ressel et al. (2013, §7.2, §8.3) for some exceptional cases that
admit explicit solutions. Alternatively, one could express a swaption as a zero strike basket option
written on 2(q − p) underlying assets and use Fourier methods for pricing; see Hubalek and Kallsen
(2005) or Hurd and Zhou (2010). This leads to a 2(q− p)-dimensional numerical integration. Instead,
the approximation derived in this section requires only the evaluation of 2(q − p) univariate integrals
together with the computation of the constants A,B. This reduces the complexity of the problem
considerably.

7.2. Approximation formula for basis swaptions. In this subsection, we derive an analogous ap-
proximate pricing formula for basis swaptions. Numerical results for this approximation will be reported
in section 8.4.

Similar to the case of swaptions, we define the function

g(y) =

q2∑
i=p2+1

exp
(
φTN−Tx2

p2
(vx2i−1) + 〈ψTN−Tx2

p2
(vx2i−1), y〉

)
−

q2∑
i=p2+1

exp
(
φTN−Tx2

p2
(ux2i ) + 〈ψTN−Tx2

p2
(ux2i ), y〉

)
−

q1∑
i=p1+1

exp
(
φTN−Tx1

p1
(vx1i−1) + 〈ψTN−Tx1

p1
(vx1i−1), y〉

)
+

q1∑
i=p1+1

Sx1 exp
(
φTN−Tx1

p1
(ux1i ) + 〈ψTN−Tx1

p1
(ux1i ), y〉

)
, (7.15)

which determines the exercise boundary for the price of the basis swaption. This will be approximated
by a linear function following again Singleton and Umantsev (2002).



22

Approximation (BS). We approximate

g(XT
x1
p1

) ≈ g̃(XT
x1
p1

) := C + 〈D, XT
x1
p1
〉, (7.16)

where C and D are determined via a linear regression.

Proposition 7.4. Assume that C,D are determined by Approximation (BS) and that Assumption
(CD) is satisfied. The price of a basis swaption with spread S, option maturity T x1p1 = T x2p2 , and swap
maturity T x1q1 = T x2q2 , is approximated by

B̃S
+

0 (S, T x1pq , T x2pq ) = B(0, TN)

q2∑
i=p2+1

M
v
x2
i−1

0

1

2
+

1

π

∞∫
0

=
(
ξ̃x2i−1(z)

)
z

dz


−

q2∑
i=p2+1

B(0, T x2i )

1

2
+

1

π

∞∫
0

=
(
ζ̃x2i (z)

)
z

dz


−B(0, TN)

q1∑
i=p1+1

M
v
x1
i−1

0

1

2
+

1

π

∞∫
0

=
(
ξ̃x1i−1(z)

)
z

dz

 (7.17)

+ Sx1

q1∑
i=p1+1

B(0, T x1i )

1

2
+

1

π

∞∫
0

=
(
ζ̃x1i (z)

)
z

dz

 ,
where ζ̃xli and ξ̃xli are defined by (7.18) and (7.19) for l = 1, 2.

Proof. Using the definition of g in (7.15) we can rewrite the price of a basis swaption (7.2) as follows:

BS+
0 (S, T x1pq , T x2pq ) =

= B(0, TN)

{
q2∑

i=p2+1

(
IEN

[
M

v
x2
i−1

T
x2
p2

1{g(Xx2
Tp2

)≥0}

]
− IEN

[
M

u
x2
i

T
x2
p2

1{g(Xx2
Tp2

)≥0}

])
−

q1∑
i=p1+1

(
IEN

[
M

v
x1
i−1

T
x1
p1

1{g(X
T
x1
p1

)≥0}

]
− Sx1IEN

[
M

u
x1
i

T
x1
p1

1{g(X
T
x1
p1

)≥0}

])}
.

Then we follow the same steps as in the previous section: First, we use the relation between the
terminal measure IPN and the measures IPx

k, IP
x

k to arrive at an expression similar to (7.10). Second,
we approximate g by g̃ in (7.16). Third, we define the approximate characteristic functions, which can
be computed explicitly:

ζ̃xli (z) := IExl
i

[
exp

(
izg̃(XT

xl
pl

)
)]

= exp
(

izC + φi,xlTpl
(izD) +

〈
ψi,xlTpl

(izD), X0

〉)
, (7.18)

ξ̃xli (z) := IE
xk
i

[
exp

(
izg̃(XT

xl
pl

)
)]

= exp
(

izC + φ
i,xl
Tpl

(izD) +
〈
ψ
i,xl
Tpl

(izD), X0

〉)
, (7.19)
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for l = 1, 2. Finally, putting all the pieces together we arrive at the approximation formula (7.17) for
the price of a basis swaption. �

8. NUMERICAL EXAMPLES AND CALIBRATION

The aim of this section is twofold: on the one hand, we demonstrate how the multiple curve affine
LIBOR model can be calibrated to market data and, on the other hand, we test the accuracy of the
swaption and basis swaption approximation formulas. We start by discussing how to build a model
which can simultaneously fit caplet volatilities when the options have different underlying tenors. Next,
we test numerically the swaption and basis swaption approximation formulas (7.9) and (7.17) using
the calibrated models and parameters. In the last subsection, we build a simple model and compute
exact and approximate swaption and basis swaption prices in a setup which can be easily reproduced
by interested readers.

8.1. A specification with dependent rates. There are numerous ways of constructing models and
the trade-off is usually between parsimony and fitting ability. We opt here for a heavily parametrized
approach that focuses on the fitting ability, as we believe it best demonstrates the utility of our model.
In addition, it is usually easier to move from a complex specification towards a simpler one, than the
converse.

More precisely, we provide below a model specification where LIBOR rates are driven by common and
idiosyncratic factors, which is suitable for sequential calibration to market data. The starting point is to
revisit the expression for the LIBOR rates in (4.3):

1 + δxL
x
k(t) = M

vxk−1

t /M
uxk
t (8.1)

= exp
(
φTN−t(v

x
k−1)− φTN−t(uxk) +

〈
ψTN−t(v

x
k−1)− ψTN−t(uxk), Xt

〉 )
.

According to Proposition 4.2, when the dimension of the driving process is greater than one, then the
vectors vxk−1 and uxk are not fully determined by the initial term structure. Therefore, we can navigate
through different model specifications by altering the structure of the sequences (uxk) and (vxk).

Remark 8.1. The following observation allows to create an (exponential) linear factor structure for
the LIBOR rates with as many common and idiosyncratic factors as desired. Consider an Rd

>0-valued
affine process

X = (X1, . . . , Xd), (8.2)

and denote the vectors vxk−1, u
x
k ∈ Rd

>0 by

vxk−1 = (vx1,k−1, . . . , v
x
d,k−1) and uxk = (ux1,k, . . . , u

x
d,k). (8.3)

Select a subset Jk ⊂ {1, . . . , d}, set vxi,k−1 = uxi,k for all i ∈ Jk, and assume that {X i}i∈Jk are
independent of {Xj}j∈{1,...,d}\Jk . Then, it follows from (8.1) and Keller-Ressel (2008, Prop. 4.7) that
Lxk will also be independent of {X i}i∈Jk and will depend only on {Xj}j∈{1,...,d}\Jk .

Let x1, x2 ∈ X and consider the tenor structures T x1 , T x2 where T x2 ⊂ T x1 . The dataset under
consideration contains caplets maturing on M different dates for each tenor, where M is less than
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the number of tenor points in T x1 and T x2 . In other words, only M maturities are relevant for the
calibration. The dynamics of OIS and LIBOR rates are driven by tuples of affine processes

dX i
t = −λi(X i

t − θi)dt+ 2ηi
√
X i
tdW

i
t + dZi

t , (8.4)

dXc
t = −λc(Xc

t − θc)dt+ 2ηc
√
Xc
t dW

c
t , (8.5)

for i = 1, . . . ,M , where Xc denotes the common and X i the idiosyncratic factor (for the i-th matu-
rity). HereX i

0 ∈ R>0, λi, θi, ηi ∈ R>0 for i = c, 1, . . . ,M, andW c,W 1, . . . ,WM , are independent
Brownian motions. Moreover, Zi are independent compound Poisson processes with constant inten-
sity νi and exponentially distributed jumps with mean values µi, for i = 1, . . . ,M . Therefore, the full
process has dimension M + 1:

X =
(
Xc, X1, . . . , XM

)
. (8.6)

The affine processes Xc, X1, . . . , XM are mutually independent hence, using Proposition 4.7 in
Keller-Ressel (2008), the functions φ(Xc,Xi), respectivelyψ(Xc,Xi), are known in terms of the functions
φXc and φXi , respectively ψXc and ψXi , for all i ∈ {1, . . . ,M}. The latter are provided, for example,
by Grbac and Papapantoleon (2013, Ex. 2.3).

In order to create a ‘diagonal plus common’ factor structure, where each rate for each tenor is driven
by the common factor Xc and an idiosyncratic factor X i, we will use Remark 8.1. The proposed
structures for the ux1 ’s and vx1 ’s are described in Figures 8.4 and 8.5, where elements of ux1 below
a certain ‘diagonal’ are copied into vx1 . In particular, we start from the longest maturity and add one
independent factor at each caplet maturity date, i.e. at each `1(k), k = 1, . . . ,M . Here `1(k) :=
k/δx1 for k = 1, . . . ,M , i.e. this function maps caplet maturities into tenor points. Simultaneously,
the values of ux1 for the subsequent factor are ‘frozen’ to the latest-set value. The construction of vx1

is analogous, where now the ‘frozen’ values are copied from ux1 ; see again Remark 8.1. Moreover, all
elements in these matrices are non-negative and ux1Nx1 = vx1Nx1 = 0 ∈ RM+1.

The boxed elements are the only ones that matter in terms of pricing caplets, when these are not
available at every tenor date of T x1 . The role of the common factor is determined by the difference
between ṽx1k−1 and ũx1k . If we set ṽx1k−1 = ũx1k , it follows from (8.1) that Lx1k will be independent of
the common factor Xc and thus determined solely by the corresponding idiosyncratic factor X i, with
k = `1(i). If the values of ṽx1k and ũx1k are fixed a priori, the remaining values (ūx1k )k=1,...,Nx1 and
(v̄x1k )k=1,...,Nx1 are determined uniquely by the initial term structure of OIS and LIBOR rates; see again
Propositions 4.1 and 4.2. This model structure is consistent with vx1k−1 ≥ ux1k−1 ≥ ux1k if and only if
the sequences ũx1 and ūx1 are decreasing, ṽx1k ≥ ũx1k and v̄x1k ≥ ūx1k for every k = 1, . . . , Nx1 .
Moreover, this structure will be consistent with the ‘normal’ market situation described in Remark 4.4
if, in addition, ṽx1k ∈ [ũx1k , ũ

x1
k−1] and v̄x1k ∈ [ūx1k , ū

x1
k−1] for every k = 1, . . . , Nx1 .

The corresponding matrices for the x2 tenor are constructed in a similar manner. More precisely,
ux2 is constructed by simply copying the relevant rows from ux1 . Simultaneously, for vx2 the elements
(v̄x2k )k=0,...,Nx2 are introduced in order to fit the x2 initial LIBOR term structure, as well as the elements
(ṽx2k )k=0,...,Nx2 which determine the role of the common factor. We present only four rows from these
matrices in Figures 8.6 and 8.7, for the sake of brevity.

8.2. Calibration to caplet data. The data we use for calibration are from the EUR market on 27 May
2013 collected from Bloomberg. Bloomberg provides synthetic zero coupon bond prices for EURIBOR
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ux1`1(M) =
(
ũx1`1(M) 0 . . . 0 0 0 ūx1`1(M)

)
ux1`1(M)−1 =

(
ũx1`1(M)−1 0 . . . 0 0 0 ūx1`1(M)−1

)
ux1`1(M)−2 =

(
ũx1`1(M)−2 0 . . . 0 0 0 ūx1`1(M)−2

)
ux1`1(M)−3 =

(
ũx1`1(M)−3 0 . . . 0 0 0 ūx1`1(M)−3

)
ux1`1(M−1) =

(
ũx1`1(M−1) 0 . . . 0 0 ūx1`1(M−1) ūx1`1(M)−3

)
ux1`1(M−1)−1 =

(
ũx1`1(M−1)−1 0 . . . 0 0 ūx1`1(M−1)−1 ūx1`1(M)−3

)
ux1`1(M−1)−2 =

(
ũx1`1(M−1)−2 0 . . . 0 0 ūx1`1(M−1)−2 ūx1`1(M)−3

)
ux1`1(M−1)−3 =

(
ũx1`1(M−1)−3 0 . . . 0 0 ūx1`1(M−1)−3 ūx1`1(M)−3

)
ux1`1(M−2) =

(
ũx1`1(M−2) 0 . . . 0 ūx1`1(M−2) ūx1`1(M−1)−3 ūx1`1(M)−3

)
...

...
... . .

. ...
...

...

ux1`1(1) =
(
ũx1`1(1) ūx1`1(1) ūx1`1(2)−3 . . . ūx1`1(M−2)−3 ūx1`1(M−1)−3 ūx1`1(M)−3

)
...

...
...

...
...

...
...

...
ux11 =

(
ũx11 ūx11 ūx1`1(2)−3 . . . ūx1`1(M−2)−3 ūx1`1(M−1)−3 ūx1`1(M)−3

)
FIGURE 8.4. The sequence ux1 encompasses the proposed ‘diagonal plus common’
factor structure. In this particular example, x1 = 3 months and caplets mature on
entire years.

vx1`1(M) =
(
ṽx1`1(M) 0 . . . 0 0 0 v̄x1`1(M)

)
vx1`1(M)−1 =

(
ṽx1`1(M)−1 0 . . . 0 0 0 v̄x1`1(M)−1

)
vx1`1(M)−2 =

(
ṽx1`1(M)−2 0 . . . 0 0 0 v̄x1`1(M)−2

)
vx1`1(M)−3 =

(
ṽx1`1(M)−3 0 . . . 0 0 0 v̄x1`1(M)−3

)
vx1`1(M−1) =

(
ṽx1`1(M−1) 0 . . . 0 0 v̄x1`1(M−1) ūx1`1(M)−3

)
vx1`1(M−1)−1 =

(
ṽx1`1(M−1)−1 0 . . . 0 0 v̄x1`1(M−1)−1 ūx1`1(M)−3

)
vx1`1(M−1)−2 =

(
ṽx1`1(M−1)−2 0 . . . 0 0 v̄x1`1(M−1)−2 ūx1`1(M)−3

)
vx1`1(M−1)−3 =

(
ṽx1`1(M−1)−3 0 . . . 0 0 v̄x1`1(M−1)−3 ūx1`1(M)−3

)
vx1`1(M−2) =

(
ṽx1`1(M−2) 0 . . . 0 v̄x1`1(M−2) ūx1`1(M−1)−3 v̄x1`1(M)−3

)
vx1`1(M−2)−1 =

(
ṽx1`1(M−2)−1 0 . . . 0 v̄x1`1(M−2)−1 ūx1`1(M−1)−3 v̄x1`1(M)−3

)
...

...
... . .

. ...
...

...
vx1`1(1) =

(
ṽx1`1(1) v̄x1`1(1) ūx1`1(2)−3 . . . ūx1`1(M−2)−3 ūx1`1(M−1)−3 ūx1`1(M)−3

)
vx1`1(1)−1 =

(
ṽx1`1(1)−1 v̄x1`1(1) ūx1`1(2)−3 . . . ūx1`1(M−2)−3 ūx1`1(M−1)−3 ūx1`1(M)−3

)
...

...
...

...
...

...
...

...
vx11 =

(
ṽx11 v̄x11 ūx1`1(2)−3 . . . ūx1`1(M−2)−3 ūx1`1(M−1)−3 ūx1`1(M)−3

)
FIGURE 8.5. The sequence vx1 is constructed analogously to ux1 . In this particular
example, x1 = 3 months and caplets mature on entire years.
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ux2`2(M) =
(
ũx1`1(M) 0 . . . 0 0 ūx1`1(M)

)
ux2`2(M)−1 =

(
ũx1`1(M)−2 0 . . . 0 0 ūx1`1(M)−2

)
ux2`2(M−1) =

(
ũx1`1(M−1) 0 . . . 0 ūx1`1(M−1) ūx1`1(M)−3

)
ux2`2(M−1)−1 =

(
ũx1`1(M−1)−2 0 . . . 0 ūx1`1(M−1)−2 ūx1`1(M)−3

)
FIGURE 8.6. The first four rows of ux2 . In this particular example, x2 = 6 months and
caplets mature on entire years.

vx2`2(M) =
(
ṽx2`2(M) 0 . . . 0 0 v̄x2`2(M)

)
vx2`2(M)−1 =

(
ṽx2`2(M)−1 0 . . . 0 0 v̄x2`2(M)−1

)
vx2`2(M−1) =

(
ṽx2`2(M−1) 0 . . . 0 v̄x2`2(M−1) ūx1`1(M)−3

)
vx2`2(M−1)−1 =

(
ṽx2`2(M−1)−1 0 . . . 0 v̄x2`2(M−1)−1 ūx1`1(M)−3

)
FIGURE 8.7. The first four rows of vx2 . In this particular example, x2 = 6 months and
caplets mature on entire years.

0 2 4 6 8 10 12
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Initial Zero Coupon Rate

 

 
EONIA
3m EURIBOR
6m EURIBOR

FIGURE 8.8. Zero coupon rates, EUR market, 27 May 2013.

rates, as well as OIS rates constructed in a manner described in Akkara (2012). In our example, we
will focus on the 3 and 6 month tenors only. The zero coupon bond prices are converted into zero
coupon rates and plotted in Figure 8.8. Cap prices are converted into caplet implied volatilities using
the algorithm described in Levin (2012). The implied volatility is calculated using OIS discounting when
inverting the Black (1976) formula. The caplet data we have at our disposal correspond to 3- and 6-
month tenor structures. More precisely, in the EUR market caps written on the 3-month tenor are
quoted only up to a maturity of 2 years, while 6-month tenor caps are quoted from maturity 3 years
and onwards. Moreover, we have option prices only for the maturities corresponding to entire years
and not for every tenor point. We have a fixed grid of 14 strikes ranging from 1% to 10%. We calibrate
to caplet data for maturities 1, 2, . . . , 10 years and the OIS zero coupon bond B(·, 10.5) defines the
terminal measure1. We fix in advance the values of the parameters (ũxl) and (ṽxl), l = 1, 2, as well

1We found that the model performs slightly better in calibration using this numeraire, than when choosing 10 years as
the terminal maturity.
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as the parameters of Xc. The role of Xc is determined by the spread between ũx1`1(i) and ṽx1`1(i)−1,
and ũx2`2(i) and ṽx2`2(i)−1 respectively for the 3m and 6m tenor caplets, and we will simplify by setting
ũx11 = · · · = ũx1Nx1−1 = uc constant. Although uc, ṽ

x1
1 , . . . , ṽ

x1
Nx1 and ṽx21 , . . . , ṽ

x2
Nx2 are determined

by us, they cannot be chosen completely freely and one has to validate that the values of ux1k , u
x2
k

and vx1k , v
x2
k stemming from fitting the initial term structures satisfy the necessary inequalities, i.e.

vxk−1 ≥ uxk−1 ≥ uxk . Having this in mind, we chose these values in a manner such that Xc accounts
for approximately 50% of the total variance of LIBOR rates from maturity 4 till 10, and about 10% of the
total variance for maturities 1 till 3. We have verified through experimentation that this ad-hoc choice
of dependence structure does not have a qualitative impact on the results of the following sections.
Alternatively, these parameters could be calibrated to derivatives such as swaptions, basis swaptions
or other derivatives partly determined by the dependence structure of the LIBOR rates. However, since
interest rate derivative markets remain highly segmented and joint calibration of caplets and swaptions
is a perennial challenge, see e.g. Brigo and Mercurio (2006) or Ladkau, Schoenmakers, and Zhang
(2013), we will leave this issue for future research.

The model construction summarized in Figures 8.4–8.7 has the advantage that caplets can be cali-
brated sequentially one maturity at a time starting at the longest maturity and then moving backwards.
In the calibration procedure we fit the parameters of each idiosyncratic process X i to caplet prices
with maturity T xi while simultaneously choosing ux1i , u

x2
i and vx1i , v

x2
i to match the corresponding

values of the initial OIS and LIBOR rates. Caplets are priced using formula (6.5) and the parameters
are found using standard least-squares minimization between market and model implied volatility. The
results2 from fitting the caplets are shown in Figure 8.9. We can observe that the model performs very
well for different types of volatility smiles across the whole term structure, with only minor problems for
extreme strikes in maturities 1-3.

8.3. Swaption price approximation. The next two sections are devoted to numerically testing the
validity of the swaption and basis swaption price approximation formulas derived in Sections 7.1 and
7.2. We will run a Monte Carlo study comparing the true price with the linear boundary approximation
formula. The model parameters used stem from the calibration to the market data described in the
previous section.

Let us denote the true and the approximate prices as follows:

S+
0 (K, T xpq) = B(0, TN) IEN

[(
q∑

i=p+1

M
vxi−1

Tx
p
−

q∑
i=p+1

KxM
uxi
Tx
p

)
1{f(XTx

p
)≥0}

]
,

S̃+
0 (K, T xpq) = B(0, TN) IEN

[(
q∑

i=p+1

M
vxi−1

Tx
p
−

q∑
i=p+1

KxM
uxi
Tx
p

)
1{f̃(XTx

p
)≥0}

]
,

2All calibrated and chosen parameter values as well as the calibrated matrices uxj , vxj for j = 1, 2 are available from
the authors upon request.
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FIGURE 8.9. Market and model implied volatility for caplets written on 3 (1–2 year
maturity) and 6 (2–9 year maturity) month tenor EURIBOR.

where f and f̃ were defined in (7.7) and (7.8) respectively. The Monte Carlo (MC) estimator3 of
S+

0 (K, T xpq) is denoted by Ŝ+
0 (K, T xpq) and we will refer to it as the ‘true price’. Instead of comput-

ing S̃+
0 (K, T xpq) using Fourier methods, we will form another MC estimator

ˆ̃S
+

0 (K, T xpq). This has the
advantage that, when the same realizations are used to calculate both MC estimators, the difference

Ŝ+
0 (K, T xpq)−

ˆ̃S
+

0 (K, T xpq) will be an estimate of the error induced by the linear boundary approxima-
tion which is minimally affected by simulation bias.

Swaption prices vary considerably across strike and maturity, thus we will express the difference be-
tween the true and the approximate price in terms of implied volatility (using OIS discounting), which
better demonstrates the economic significance of any potential errors. We price swaptions on three
different underlying swaps. The results for the 3m underlying tenor are exhibited in Figure 8.10. The
corresponding results for the 6m tenor swaptions have errors which are approximately one half the
level in the graphs shown here and have been omitted for brevity.

On the left hand side of Figure 8.10, implied volatility levels are plotted for the true and the approximate
prices. The strikes are chosen to range from 60% to 200% of the spot value of the underlying fair swap

3We construct the Monte Carlo estimate using 5 million paths of X with 10 discretization steps per year. In each
discritization step the continuous part is simulated using the algorithm in Glasserman (2003, §3.4.1) while the jump part is
handled using Glasserman (2003, pp. 137–139) with jump size distribution changed from log-normal to exponential.
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FIGURE 8.10. Implied volatility and absolute errors for 3m swaptions.

rate, which is the normal range the products are quoted. The right hand side shows the difference
between the two implied volatilities in basis points (i.e. multiplied by 104). As was also documented
in Schrager and Pelsser (2006), the errors of the approximation usually increase with the number of
payments in the underlying swap. This is also the case here, however the level of the errors is in all
cases very low. In normal markets, bid-ask spreads typically range from 10 to 300 bp (at the at-the-
money level) thus even the highest errors are too small to be of any economic significance. This is true
even in the case of the 2Y8Y swaption which contains 32 payments.

8.4. Basis swaption price approximation. In order to test the approximation formula for basis swap-
tions, we will follow the same methodology as in the previous subsection. That is, we calculate MC
estimators for the following two expectations:

BS+
0 (S, T x1pq , T x2pq ) = B(0, TN) IEN

[(
q2∑

i=p2+1

(
M

v
x2
i−1

T
x2
p2

−Mu
x2
i

T
x2
p2

)
−

q1∑
i=p1+1

(
M

v
x1
i−1

T
x1
p1

− Sx1M
u
x1
i

T
x1
p1

))
1{g(XTp2

)≥0}

]
,
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FIGURE 8.11. Prices in basis points, absolute and relative errors for 3m–6m basis swaptions.

B̃S
+

0 (S, T x1pq , T x2pq ) = B(0, TN) IEN

[(
q2∑

i=p2+1

(
M

v
x2
i−1

T
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−Mu
x2
i
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−

q1∑
i=p1+1
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T
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− Sx1M
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T
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))
1{g̃(XTp2

)≥0}

]
,

where Sx1 = 1− δx1S, while g and g̃ were defined in (7.15) and (7.16). Using the same realizations,
we plot the level, absolute and relative differences between both prices measured in basis points as
a function of the spread for three different underlying basis swaps. The spreads are chosen to range
from 50% to 200% of the at-the-money level, i.e. the spread that sets the underlying basis swap to a
value of zero, see again (6.4):

SATM := S0(T x1pq , T x2pq ).

The numerical results can be seen in Figure 8.11. We have chosen these maturities to be represen-
tative of two general patterns. The first is that the errors tend to increase with the length of the basis
swap, which is exemplified by comparing errors for the 2Y8Y, 5Y5Y and 6Y2Y contracts. The second
pattern relates to when the majority of payments in the contract are paid out. We can notice that the
errors for the 2Y2Y contract are much larger than for the corresponding 6Y2Y, even though both con-
tain the same number of payments. Furthermore, we can also see that the 2Y2Y contract has larger
errors than the 2Y8Y even though both have the same maturity and the latter has more payments. This
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anomalous result can be explained by the convexity of the term structure of interest rates. In Figure
8.8 we can notice that the majority of the payments of the 2Y2Y contract fall in a particularly curved
region of the term structure. This will result in an exercise boundary which is also more nonlinear, thus
leading to the relative deterioration of the linear boundary approximation. However, it must be em-
phasized that the errors are still at a level easily deemed economically insignificant with a maximum
relative error of 0.4% in a spread region where the price levels are particularly low.

8.5. A simple example. The purpose of this section is to test the approximation for swaptions and
basis swaptions in a fully constructed and more manageable example than the one in Sections 8.3
and 8.4. We start by choosing a simple two factor model X = (X1, X2) with

dX i
t = −λi(X i

t − θi)dt+ 2ηi
√
X i
tdW

i
t + dZi

t , , i = 1, 2, (8.7)

where we set

i X i
0 λi θi ηi νi µi

1 0.5000 0.1000 1.5300 0.2660 0 0
2 9.4531 0.0407 0.0591 0.4640 0.0074 0.2499

The initial term structures are constructed from a Nelson–Siegel parametrization of the zero coupon
rate R(t)

R(T ) = β0 + β1
1− e−γT

γT
+ β2

(
1− e−γT

γT
− e−τT

)
. (8.8)

We limit ourselves to two tenors, x1 corresponding to 3 months and x2 corresponding to 6 months.
We construct the initial curves from the following parameters

Curve β0 β1 β0 γ
OIS 0.0003 0.01 0.07 0.06
3m 0.0032 0.01 0.07 0.06
6m 0.0050 0.01 0.07 0.06

The zero coupon rates can then be converted to zero coupon bond prices and LIBOR rates through
the relation B(0, T ) = exp(−R(T )). We construct the matrices uxj and vxj in the following simple
manner

ux1k = (uc ūx1k ), k = 1, . . . , Nx1 (8.9)

ux2k = ux1kδx2/δx1
, k = 1, . . . , Nx2 (8.10)

vx1k = (ṽx1c v̄x1k ), k = 0, . . . , Nx1 − 1 (8.11)

vx2k = (ṽx2c v̄x2k ), k = 0, . . . , Nx2 − 1 (8.12)

and ux1Nx1 = ux2Nx2 = 0, where ū
xj
k , v̄

xj
k ∈ R>0 for j = 1, 2. The bond B(·, 4.5) defines the terminal

measure, thus Nx1 = 18 and Nx2 = 9. We set uc = 0.0065, ṽx1c = 0.007 and ṽx2c = 0.0075. The
remaining values can then be determined uniquely using equations (4.4) and (4.6), i.e. by fitting the
initial term structures. We get that
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k ux1k vx1k ux2k vx2k
0 - 0.008966 - 0.009035
1 0.008638 0.008641 0.008286 0.008358
2 0.008286 0.008289 0.007505 0.007577
3 0.007908 0.007911 0.006625 0.006697
4 0.007505 0.007507 0.005652 0.005725
5 0.007077 0.007079 0.004591 0.004664
6 0.006625 0.006627 0.003447 0.003520
7 0.006150 0.006152 0.002225 0.002298
8 0.005652 0.005654 0.000929 0.001003
9 0.005132 0.005135 0 -
10 0.004591 0.004594
11 0.004029 0.004032
12 0.003447 0.003450
13 0.002847 0.002848
14 0.002225 0.002228
15 0.001586 0.001589
16 0.000929 0.000932
17 0.000254 0.000257
18 0 -

We can observe that all sequences uxj , vxj for j = 1, 2 are decreasing, which corresponds to the
‘normal’ market situation; see again Remark 4.4.

8.5.1. Swaption approximation. Let us consider a 2Y2Y swaption on 3 month LIBOR rates, i.e. a
swaption in the notation of Section 7.1 with p = 8 and q = 16. We run a Monte Carlo study equivalent
to the one in Section 8.3 and the results are reported for four different strikes:

Strike (K) Ŝ+
0 Error IV (%) IV Error A B

0.013238 176.17 2.06e-08 30.38 2.326e-10 -5.5403 (1.1596 1)
0.023535 52.214 4.31e-08 26.78 1.818e-10 -10.2982 (1.1605 1)
0.033831 9.7898 4.09e-08 24.82 2.971e-10 -15.0481 (1.1615 1)
0.044128 1.4016 7.90e-09 23.72 2.016e-10 -19.7899 (1.1625 1)

where

� Ŝ+
0 = Ŝ+

0 (K, T x18,16) and IV denote the MC estimator of the price (in basis points) and the
implied volatility (with OIS discounting) using the true exercise boundary defined in (7.7).

� Error = |Ŝ+
0 (K, T x18,16)− ˆ̃S

+

0 (K, T x18,16)|, where
ˆ̃S

+

0 (K, T x18,16) denotes the MC estimator of the
price (in basis points) using the approximate exercise boundary defined in (7.8).

� IV Error = |IV − ĨV|, where ĨV denotes the implied volatility (with OIS discounting) calculated

from
ˆ̃S

+

0 (K, T x18,16).
� A ∈ R and B ∈ R2 are calculated using the linear regression procedure described in Singleton

and Umantsev (2002, pp. 432–434).
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8.5.2. Basis swaption approximation. Let us also consider a 2Y2Y basis swaption. This is an option
to enter into a basis swap paying 3 month LIBOR plus spread S and receiving 6 month LIBOR, which
starts at year 2 and ends at year 4. Once again we conduct a Monte Carlo study equivalent to Section
8.4, and get that

Spread (S) B̂S
+

0 Price Error C D

0.0010945 13.778 2.103e-06 -7.7191 (1 5.7514)
0.0019458 3.7972 4.784e-05 -14.0029 (1 5.7694)
0.0027971 0.64406 9.364e-05 -20.2158 (1 5.7868)
0.0036484 0.080951 5.852e-05 -26.3597 (1 5.8037)

where

� B̂S
+

0 = B̂S
+

0 (S, T x18,16, T x24,8 ) denotes the MC estimator of the price (in basis points) using the
true exercise boundary defined in (7.15).

� Price Error = |B̂S
+

0 (S, T x18,16, T x24,8 )− ˆ̃BS
+

0 (S, T x18,16, T x24,8 )|, where similarly
ˆ̃BS

+

0 (K, T x18,16, T x24,8 )
denotes the MC estimator of the price (in basis points) using the approximate exercise boundary
defined in (7.16).

� C ∈ R and D ∈ R2 are calculated using the linear regression procedure described in Singleton
and Umantsev (2002, pp. 432–434).

These simple examples highlight once again the accuracy of the linear boundary approximations de-
veloped in Sections 7.1 and 7.2.

APPENDIX A. TERMINAL CORRELATIONS

This appendix is devoted to the computation of terminal correlations. The expression ‘terminal corre-
lation’ is used in the same sense as in Brigo and Mercurio (2006, §6.6), i.e. it summarizes the degree
of dependence between two LIBOR rates at a fixed, terminal time point. Here the driving process is a
general affine process and not just an affine diffusion as in section 5.4.

We start by introducing some shorthand notation

Φx
k(t) := φTN−t(v

x
k−1)− φTN−t(uxk),

Ψx
k(t) := ψTN−t(v

x
k−1)− ψTN−t(uxk),

Φx1,x2
k1,k2

(t) := Φx1
k1

(t) + Φx2
k2

(t),

Ψx1,x2
k1,k2

(t) := Ψx1
k1

(t) + Ψx2
k2

(t),

where k ∈ Kx and kl ∈ Kxl for l = 1, 2. Then, we have from (4.3) that

1 + δxlL
xl
kl

(Ti) = M
v
xl
kl−1

Ti
/M

u
xl
kl

Ti
= exp

(
Φxl
kl

(Ti) +
〈
Ψxl
kl

(Ti), XTi

〉)
, (A.1)

for l = 1, 2 and Ti ≤ T x1k1−1 ∨ T
x2
k2−1. We also denote the moment generating function of XTi under

the measure IPN as follows

ΘTi(z) = IEN

[
e〈z,XTi

〉] = exp
(
φTi(z) + 〈ψTi(z), X0〉

)
. (A.2)
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Therefore we get that

IEN

[
M

vxk−1

Ti
/M

uxk
Ti

]
= eΦx

k(Ti)ΘTi

(
Ψx
k(Ti)

)
, (A.3)

IEN

[(
M

vxk−1

Ti
/M

uxk
Ti

)2
]

= e2Φx
k(Ti)ΘTi

(
2Ψx

k(Ti)
)
, (A.4)

IEN

[
M

v
x1
k1−1

Ti
/M

u
x1
k1

Ti
·M

v
x2
k2−1

Ti
/M

u
x2
k2

Ti

]
= eΦ

x1,x2
k1,k2

(Ti)ΘTi

(
Ψx1,x2
k1,k2

(Ti)
)
. (A.5)

Finally, the formula for terminal correlations follows after inserting the expressions above in the defini-
tion of correlation and doing some tedious, but straightforward, computations

CorrTi
[
Lx1k1 , L

x2
k2

] (A.1)
= Corr

[
M

v
x1
k1−1

Ti
/M

u
x1
k1

Ti
,M

v
x2
k2−1

Ti
/M

u
x2
k2

Ti

]
=

ΘTi

(
Ψx1,x2
k1,k2

(Ti)
)
−ΘTi

(
Ψx1
k1

(Ti)
)
ΘTi

(
Ψx2
k2

(Ti)
)√

ΘTi

(
2Ψx1

k1
(Ti)

)
−ΘTi

(
Ψx1
k1

(Ti)
)2
√

ΘTi

(
2Ψx2

k2
(Ti)

)
−ΘTi

(
Ψx2
k2

(Ti)
)2
.
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D. Duffie, D. Filipović, and W. Schachermayer. Affine processes and applications in finance. Ann.

Appl. Probab., 13:984–1053, 2003.
E. Eberlein and W. Kluge. Exact pricing formulae for caps and swaptions in a Lévy term structure

model. J. Comput. Finance, 9:99–125, 2006.
E. Eberlein and W. Kluge. Calibration of Lévy term structure models. In M. Fu, R. A. Jarrow, J.-Y. Yen,

and R. J. Elliott, editors, Advances in Mathematical Finance: In Honor of Dilip B. Madan, pages
155–180. Birkhäuser, 2007.

E. Eberlein, K. Glau, and A. Papapantoleon. Analysis of Fourier transform valuation formulas and
applications. Appl. Math. Finance, 17:211–240, 2010.



35
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D. Filipović. Term-Structure Models: A Graduate Course. Springer, 2009.
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