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We present a method for local estimation of the signal-dependent noise level
in magnetic resonance images. The procedure uses a multi-scale approach to
adaptively infer on local neighborhoods with similar data distribution. It exploits a
maximum-likelihood estimator for the local noise level. The validity of the method
was evaluated on repeated diffusion data of a phantom and simulated data using
T1-data corrupted with artificial noise. Simulation results are compared with a re-
cently proposed estimate. The method was applied to a high-resolution diffusion
dataset to obtain improved diffusion model estimation results and to demonstrate
its usefulness in methods for enhancing diffusion data.

1 Introduction

Noise in Magnetic Resonance Imaging (MRI) affects data analysis in neuroscientific problems
or clinical applications. For example, in functional MRI it is directly related to the sensitivity of the
experiment [Worsley et al., 2002]. In diffusion MRI it leads to variability and, even more impor-
tant, to a bias of diffusion model parameter estimates [Pierpaoli and Basser, 1996, Basser and
Pajevic, 2000, Jones and Basser, 2004]. Consequently, quantification of the noise is required to
measure of the quality of MRI data. Furthermore, estimates of the standard deviation of the MR
signal are directly used in a number of data enhancing methods to discriminate noise variation
from structural differences, see e.g. Aja-Fernández et al. [2008], Coupé et al. [2008], Becker
et al. [2012], Rajan et al. [2012], Becker et al. [2014], Haldar et al. [2013] or the citations in the
latter paper for a more comprehensive list.

MR magnitude image reconstruction from Fourier transformed k-space data of a single receiver
coil leads to Rician distributed data [Gudbjartsson and Patz, 1995]. For most parallel imaging
methods the distribution depends on the reconstruction algorithm but is mostly approximated by
the more general non-central χ-distribution [Aja-Fernández et al., 2013]. The scale parameter
σ of these distributions is determined by the noise variation of the complex valued noise in
k-space, the local coil sensitivities and signal correlations between coils [Aja-Fernández and
Tristán-Vega, 2012, Aja-Fernández et al., 2011]. Accordingly, the noise level is generally not a
global quantity over the MR image, but varies locally.

Almost all estimation methods for σ rely on the properties of the noise in the image background,
i.e., in the absence of a signal, see e.g. Aja-Fernández et al. [2009a] for a comprehensive list
of procedures. Only a few methods have been developed that are suitable for the estimation of
the noise power also in the presence of an MR signal [Sijbers et al., 1998, Aja-Fernández et al.,
2009b, 2013].

In this work we present a novel method for the local estimation of the noise power σ in the
presence of a signal, i.e., within tissue regions. The procedure is based on the propagation

1



separation approach [Polzehl and Spokoiny, 2006] adapted for non-central χ-distributed three-
dimensional data. The method searches locally for maximal neighborhoods of a voxel with sim-
ilar data distribution. This information can be used to infer on the noise parameter through
maximum-likelihood estimation, cf. Sijbers et al. [1998] for Rician distributed data.

We demonstrate the effectiveness of the method in a) diffusion weighted data of a diffusion
phantom measured repeatedly for a single diffusion gradient direction, b) simulated T1-data
corrupted with artificial noise, and c) a diffusion MRI dataset. For the latter we additionally
demonstrate how the result of the local noise estimation can be used to obtain an improved
and unbiased estimate for the parameters of the diffusion tensor model [Basser et al., 1994a,b].
Finally, we demonstrate how the local estimate of the noise power can be used to improve
the results of a recently developed method for noise reduction in diffusion MRI data [msPOAS,
Becker et al., 2014].

2 Theory

2.1 Noise distribution in multiple-coil MR acquisition

An MR image is acquired in frequency or k-space and has to be transferred to the common
image domain via inverse Fourier transform [Callaghan, 1991]. The noise present in k-space
data of a single coil can be modeled as a complex additive Gaussian variable with zero expec-
tation and homogeneous standard deviation σ. For a single-coil acquisition the local signal of
the magnitude image in the spatial domain then follows a Rician distribution [Gudbjartsson and
Patz, 1995]. For a multiple-channel RF coils [Roemer et al., 1990] the data from all L coils is
used in the reconstruction of the image data. In case of a sum-of-squares image reconstruc-
tion, the standardized signal Si/σ at the spatial position xi of voxel i is usually considered to be
non-central χ distributed with 2L degrees of freedom and non-centrality parameter θi [Constan-
tinides et al., 1997]. Another special reconstruction method SENSE1 [Sotiropoulos et al., 2013b]
used in the Human Connectome Project leads to L = 1 and hence to a Rician distribution as
for single coil acquisitions. With other parallel imaging methods like GRAPPA a non-central χ
distribution with adjusted, location dependent distribution parameters serves as a valid approxi-
mation of the true data distribution [Aja-Fernández et al., 2011].

The probability density pS for the distribution PS of the signal Si generally depends on three
parameters θi, σi, Li and is given by

pS(Si; θi, σi, Li) =
SLii θ

(1−Li)
i

σ
(Li+1)
i

e
− 1

2

(
S2i
σ2
i

+θ2i

)
ILi−1

(
θiSi
σi

)
, (2.1)

where ILi−1 denotes the (Li− 1)-th order modified Bessel function of the first kind. The mean
µ and variance v of the distribution are given by

µ(θi, σi, Li) =σi

√
π

2
L(Li−1)

1/2

(
−θ

2
i

2

)
(2.2)

v(θi, σi, Li) =σ2
i

(
2Li + θ2i

)
− µ2(θi, σi, Li), (2.3)
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where L(L−1)
1/2 is a generalized Laguerre polynomial. In general, σi and Li vary smoothly with

location.

2.2 Estimating a local smooth noise standard deviation using adaptive
weights

We propose a method for estimation of the local scale parameter σi in two- or three dimensional
MR images. We assume the effective number of coils Li to be known and locally homogeneous.
The parameter σi = σ(xi) also generally depends on the coils sensitivity maps, noise corre-
lations between receiver coils’ and spatially slowly varying parameters in the reconstruction
algorithm, and is therefore assumed to be a smooth and slowly varying function of location.

The parameter function θi is supposed to be locally constant with xi [Becker et al., 2012, 2014].
This assumption is motivated by the observation that the expected signal intensity or equiva-
lently the non-centrality parameter θi relates to properties of the biological tissue. Then, θi is
approximately constant in regions with one type of tissue, while values for different tissue may
considerably differ. In the following the terms “homogeneity region” refers to this property of the
non-centrality parameter.

We use the propagation-separation approach [Polzehl and Spokoiny, 2006] to iteratively infer
on the non-centrality parameter θ and its homogeneity regions. The adaptive refinement of the
homogeneity regions can then be used to estimate the local scale parameter σi using weighted
maximum likelihood.

Let Kloc and Kad be two non-decreasing kernel function supported on the interval [0, 1), k∗

a pre-specified number of iteration steps and {h(k)}k∗k=0 a monotone sequence of bandwidths.
Let λ > 0, hmed > 0, N0 denote further parameters of the procedure, which are explained in
detail below.

We propose the following iterative algorithm:

� k = 0: Initialize σ̃(0)
i = σ̄ using a global initial estimate (or guess) for the noise standard

deviation. Set the initial estimate for the non-centrality parameter constant, i.e., θ̂(0)i = 1,

to enforce a non-adaptive weighting scheme w(1)
ij for the first iteration step, see below.

Set N (0)
i = 1 for all voxel i, cf. also below. Set k = 1.

� For each voxel i compute adaptive weights w(k)
ij =

Kloc

(‖xi − xj‖
h(k)

)
Kad

N (k−1)
i KL

(
PS

(
θ̂
(k−1)
i , σ̃

(k−1)
i

)
, PS

(
θ̂
(k−1)
j , σ̃

(k−1)
i

))
λ


(2.4)

and their sum N
(k)
i =

∑
j w

(k)
ij over all voxel j. Here, ‖·‖ denotes the Euclidean norm

to calculate the spatial distance between two voxel i and j. The first term of w(k)
ij defines

non-adaptive weights depending the location kernelKloc and the spatial distance of voxel
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i and j. The second term evaluates the statistical difference between the estimated non-
centrality parameters θ̂(k−1)i and θ̂(k−1)j from the previous iteration step to infer on the
homogeneity regions of θi.

The definition of w(k)
ij employs the Kullback-Leibler KL divergence between the proba-

bility distributions PS
(
θ̂
(k−1)
i , σ̃

(k−1)
i

)
and PS

(
θ̂
(k−1)
j , σ̃

(k−1)
i

)
, where we dropped the

dependence on the (homogeneous) L for brevity of the notation. Both distributions have
the same estimated scale parameter from the previous iteration step σ̃(k−1)

i which re-
flects the assumption that σi = σ(xi) is smooth and slowly varying, i.e., |σi − σj| is
small for ‖xi − xj‖ < h(k).

λ is the adaptation bandwidth of the procedure. It controls the amount of spatial adapta-
tion in the definition of the weights. In the extreme case of λ → ∞ the second term
equals to Kad(0), such that the weighting schemes w(k)

ij are fully non-adaptive. For

λ = 0 the weights w(k)
ij always vanish for i 6= j due to the bounded support of the

kernel function Kad. For a proper choice of λ (see below), w(k)
ij will, with high proba-

bility and increasing k, approach 1 or 0, depending on voxel i and j belonging to the
same homogeneity region or not, respectively. Thus, for large k, the weighting scheme
W

(k)
i = (w

(k)
i1 , · · · , w(k)

in ) describes the homogeneity region of voxel i.

� If N (k)
i :=

∑
j w

(k)
ij > N0 we obtain estimates for θ(xi) and σ(xi) by weighted log-

likelihood (
σ̂
(k)
i , θ̂

(k)
i

)
= argmax(θ,σ)

∑
j

w
(k)
ij log pS(Sj; θ, σ). (2.5)

Otherwise we set σ̃(k)
i := σ̃

(k−1)
i and θ̂(k)i :=

√(∑
j w

(k)
ij S

2
j /
∑

j w
(k)
ij − 2Li(σ̃

(k−1)
i )2

)
+

employing the moment equation (2.3). The adaptive weights enforce that observations Sj
follow a distribution with significantly different non-centrality parameter θ are not utilized in
the estimator above. Within the iteration process (for increasing k), the sum of all weights
N

(k)
i increases, the inference on the homogeneity regions will be more informed, and the

estimates above stabilize.

� If N (k)
i > N0 we stabilize the estimate of σ(xi) using the median filter

σ̃
(k)
i = medianj:‖xi−xj‖1<hmed

σ̂
(k)
j

over a cube of voxel centered in i. The median filter reduces the variability of the estimate.
The robustness of the median filter avoids a bias that may be caused by insufficient
adaptation in some voxel j.

� If k = k∗ stop, else increase k by 1 and continue with the second step, i.e., with the
definition of the weights.

The parameter N0 defines a minimal sum of weights N (k)
i before the initial guess for σi is

updated. N0 >> 1 guarantees the identifiability in (2.5) using observations from a sufficiently
large homogeneous vicinity of voxel i.
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2.3 Maximum Likelihood estimator for non-central χ-distribution

Given a sample S = (S1, . . . , Sn) a local weighted log-likelihood as used in the iterative
method described in the preceding section (up to terms that do not depend on the parameters
and hence will be irrelevant in the optimization and dropping the dependence on the iteration
step k and on i) takes the form, see Eq. (2.1),

l(S;Wi; θ, σ) =
∑
j

wij log pS (Sj; θ, σ)

=−Ni

(
(L+ 1) log σ + (L− 1) log θ +

θ2

2
+

ξ

2σ2

)
+
∑
j

wij log IL−1

(
θSj
σ

)
(2.6)

with Ni =
∑

j wij and ξ = 1
Ni

∑
j wijS

2
j . Here, we assumed the probability density ps to be

non-central χ with non-centrality parameter θ and 2L degrees of freedom. The locality of the
estimates is then realized by using this estimator at each voxel i.

In order to solve the optimization problem in Eq. (2.5) we take the derivatives with respect to θ2

and σ and set them to zero. This yields

σ

θ

∂l

∂σ
(S;Wi; θ, σ) =

−Ni

(
L+ 1

θ
− ξ

θσ2

)
−
∑
j

wij
IL

(
θSj
σ

)
+ IL−2

(
θSj
σ

)
2IL−1

(
θSj
σ

) Sj
σ

!
= 0

∂l

∂θ
(S;Wi; θ, σ) =

−Ni

(
L− 1

θ
+ θ

)
+
∑
j

wij
IL

(
θSj
σ

)
+ IL−2

(
θSj
σ

)
2IL−1

(
θSj
σ

) Sj
σ

!
= 0

By adding both equations and re-arranging the result we get

θ̂2 =
ξ

σ2
− 2L =

1

Niσ2

∑
j

wijS
2
j − 2L (2.7)

Substituting this into the local likelihood Eq. (2.6) and again removing the constant term that
does not depend on σ yields

l̆(S;Wi;σ) =−Ni

(
ξ/σ2 + 2 log σ +

L− 1

2
log (ξ − 2Lσ2)

)
+
∑
j

wij log IL−1

(
Sj
σ2

√
ξ − 2Lσ2

)
. (2.8)
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Figure 1 – 2D density of estimated parameters θ̂ and σ̂ obtained from simulating 1000 samples of

size 50 from a non-central χ-distribution with parameter θ = 0.75 (σ = 1) maximizing
the weighted likelihood in Eq. (2.5) (left) and marginal densities of estimates σ̂ for varying
non-centrality parameter θ ∈ (0, 4) (right).

Finally we get an estimator for σi as a solution of an optimization problem in the univariate
parameter σ:

σ̂i =

√
Ni

Ni − 1
argmaxσ l̆(S;Wi;σ). (2.9)

If in Eq. (2.7) ξi/σ2 − 2L ≤ 0 the optimization problem in Eq. (2.5) has no solution in the
interior of the parameter domain and θ̂i = 0, i.e., the χ-distribution is central. In Eq. (2.8) the
two terms containing the logarithm diverge and have to be specially handled. Recalling that

lim
z→0

IL−1(z) =
(z

2

)L−1
Γ(L)

we find that the problematic terms cancel and we get

l̆(S;Wi;σ) =−Ni

(
ξi/σ

2 + 2 log σ − log Γ(L)
)

+ (L− 1)
∑
j

wij log

(
Sj
2σ2

)
.

The estimator in Eq. (2.9) is biased for small values of θ/σ [Sijbers et al., 1998]. In particular,
its density has two modes, one arising from the estimates from the central χ-distribution case,
and one for the case where ξi/σ2 − 2L > 0. This effect is demonstrated in Fig. 1. Thus the
estimator causes problems in regions of the MR image, where the signal is very low or zero.
However, in this paper we are explicitly interested in the estimation of the noise parameter in
the region containing brain tissue and hence with sufficiently large signal. There exist a large
number of estimators for σ in the background, see e.g. Aja-Fernández et al. [2009a].
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2.4 Choice of parameters of the procedure

The specific choice for the kernel functions Kloc and Kad has only minor influence on the
estimation results, see, e.g., Section 6.2.3 in Scott [1992]. We choose them as:

Kloc(x) =

{
1− x2 x < 1
0 x ≥ 1

and Kad(x) =


1 x < 0.5
2− 2x 0.5 ≤ x < 1
0 x ≥ 1

for computational efficiency. We choose h(0) = 1. The monotone sequence {h(k)}k∗k=0 of band-
widths is chosen using only the non-adaptive part of the weights defined in Eq. (2.4):

ω̃
(k)
ij = Kloc

(‖xi − xj‖
h(k)

)
such that ∑

j(ω̃
(k−1)
ij )2

(∑
j ω̃

(k)
ij

)2
(∑

j ω̃
(k−1)
ij

)2∑
j(ω̃

(k)
ij )2

= ch.

This ensures an approximately constant variance reduction for the non-adaptive estimator from
step k − 1 to k. We choose ch = 1.25.

λ is the main parameter of the procedure as it controls the amount of adaptation of the method.
A reasonable value is λ = 5, see Figure 5.

We recommend k? = 20, N0 = 2 and hmed = 5. The mean number of effective coils L (or
L(xi)) needs to be specified by the user.

2.5 Application to an unbiased estimation of the diffusion tensor for DTI
data

Diffusion weighted imaging [dMRI; Jones, 2010] has become a widely used standard tool for
structural in-vivo examination of the brain in recent years. There, the application of an additional
diffusion weighting gradient in the magnetic field leads to a signal attenuation that is directly
related to the diffusion properties of the water in tissue along the considered gradient direction.
Additionally, at least one non-diffusion weighted image volume is acquired for comparison. Very
often in the Gaussian diffusion approximation, the directional dependence of the diffusion prop-
erties is described within the diffusion tensor model exploited in diffusion tensor imaging [DTI;
Basser et al., 1994a,b]. The physical model for DTI is formulated in terms of a noiseless situ-
ation. Let ζp,i denote the noiseless image value at voxel i for the p-th volume of the diffusion
weighted MRI dataset, corresponding to the diffusion weighting gradient in direction ~gp and the
b-value bp [Basser et al., 1994b]. This series also includes the non-diffusion weighted image
volumes. The diffusion tensor model then describes the data by a symmetric, positive definite
3× 3 matrix Di and a parameter ζ0i with

ζp,i = ζ0i exp(−bp~g>p Di~gp) ∀p. (2.10)
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Positive definiteness of the diffusion tensorDi can be enforced by re-parametrizingDi = R>i Ri

using an upper triangular matrix Ri, see Koay et al. [2006] or Ghosh et al. [2013].

Traditionally the diffusion tensor is estimated using nonlinear regression

(ζ̂0i , R̂i) = argmin
∑
p

(Si,p − ζi,p)2 (2.11)

thereby ignoring the difference between non-centrality parameter and expectation of a non-
central chi-distribution. For small SNR this causes a bias in the tensor estimate.

The log-likelihood function for the diffusion tensor model assuming a non-central χ distribu-
tion with 2Li degrees of freedom and non-centrality parameter ζp,i/σp,i for the standardized
observed image intensities Sp,i/σp,i is given by

l({Sp,i}p; {σp,i}p , Li; ζ0i , Ri) = (2.12)∑
p

[
log

(
SLip,iζ

(1−Li)
p,i

σ2
p,i

)
−1

2

(
S2
p,i + ζ2p,i
σ2
p,i

)
+ log

(
ILi−1

(
ζp,iSp,i
σ2
p,i

))]
,

where ζp,i is given by Eq. (2.10) and the re-parametrization in terms of the model parameters
ζ0i , Ri. Estimates are then obtained by maximizing the log-likelihood.

This approach has been already considered in the literature for the estimation of the diffu-
sion tensor [Landman et al., 2009] or for the extended diffusion kurtosis model [Veraart et al.,
2011a,b, Ghosh et al., 2013, AndrÃl’ et al., 2014]. The procedure avoids the bias in the param-
eter estimation that is caused by the skewness of the χ distribution causing the deviation of its
expectation value from the non-centrality parameter in a noisy situation, see Eq. (2.2).

An alternative is provided by quasi-maximum likelihood, i.e., by minimizing the negative Gaus-
sian log-likelihood

R({Sp,i}p ; {σp,i}p , Li; ζ0i , Ri) =
∑
p

[
(Sp,i − µ(ζp,i/σp,i, σp,i, Li))

2

ν(ζp,i/σp,i, σp,i, Li)

]
(2.13)

using (2.2), (2.3), (2.10) and Di = R>i Ri, and effectively approximating the non-central χ
distribution by a Gaussian distribution with appropriate moments.

3 Materials and methods

3.1 Experimental data (Diffusion weighted images of a diffusion
phantom)

Data

Data were obtained from a DTI phantom with straight and crossing fibers assembled from parts
of the phantom published by Pullens et al. [2010]. Diffusion weighted images were acquired on
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a 7.0 Tesla 70/30 Bruker Biospec small animal MRI system with 450mT/m maximum gradient
amplitude and 4500T/m/s maximum slew rate. Radiofrequency power was transmitted by a
72mm diameter linear coil and picked up by a quadrature rat brain coil. We used a single-shot
spin-echo EPI sequence with echo and repetition times of TE = 46ms and TR = 2500ms,
respectively. Four slices in the x-y plane with matrix size 128 × 128 (resolution 0.2344 ×
0.2344mm2) and 2mm thickness were scanned without skip. The acquisition matrix size was
128 × 91 (partial Fourier overscan factor of 1.4). We acquired 10 images without diffusion
weighting and 1000 diffusion weighted images with diffusion gradient direction along the x-
direction. The diffusion gradient width was δ = 4.5ms and the spacing ∆ = 9.2ms, yielding
a b-value of 1000s/mm2. Effective b-values for the non-diffusion weighted and the diffusion
weighted scans were 2s/mm2 and 1031s/mm2, respectively. The total scan time for this scan
was 42min.

Analysis

We obtained, using Eqs. (2.2) and (2.3) and adjusting for trends over time, a local reference
estimates σ̃i from the 1000 replications. We then estimated σi for all images using the proposed
method, leading to estimates σ̂i,j in location xi and image j. The effective number of coils was
specified as L = 1 which is correct in this case. The other parameters of the procedure were
λ = 5, k? = 20, and hmed = 5.

3.2 Simulated data (T1 image)

Data

For the simulation experiments we used a 3D synthetic BrainWeb MR volume [Collins et al.,
1998]. Specifically, we generated a noise-free T1 image with 1mm slice thickness and 0% in-
tensity non-uniformity in the provided 12bit short raw format. The image intensity had a range
from 0 to 4096 with a median value of approximately 1800 for gray matter areas and 2400 for
white matter regions. To simulate a parallel imaging process we defined 8 artificial linear sen-
sitivity maps along the x- and y-axis and the diagonals, and created pseudo image acquisition
for each of the 8 simulated coils, see Fig. 2. We added complex Gaussian noise with standard
deviation σK = 50, 100, 200, 400, 800 in k-space, specifying a correlation between coils k and
l of ρ = 0.5(dkl) where dkl refers to a distance between the spherically arranged coils. The final
magnitude image was obtained using a SENSE1 reconstruction [Sotiropoulos et al., 2013b],
which is the standard imaging protocol used in the Human Connectome Project [Sotiropou-
los et al., 2013a]. The parameter σi in the resulting magnitude image ranges from 0.86σK to
2.73σK with maximum values in the center of the image, see Fig. 4g.

Analysis

We applied the method described in the Theory part of this paper to determine the noise pa-
rameter over the image within a brain mask covering most of the white and gray matter. The
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Figure 2 – For the generation of the simulated data a noise-free T1 image from the BrainWeb
[Collins et al., 1998] was used. By the use of 8 artificial linear sensitivity maps and adding
complex Gaussian noise to each image from the artificial coils and using the reconstruc-
tion method SENSE1 [Sotiropoulos et al., 2013b], we obtained noisy data with known
local noise standard deviation.

parameters of the procedure were λ = 5, k? = 20, hmed = 5 and L = 1. The analysis was
restricted to a white/gray matter mask.

We also determined an estimate of σi by the method proposed in Aja-Fernández et al. [2013]
using a cube of 5× 5× 5 voxel centered in xi as a local neighborhood.

Additionally we investigated the quality of results depending on parameters λ, hmed and k∗.

3.3 Experimental data (diffusion weighted imaging)

MRI

We re-analyzed a dataset described already in Becker et al. [2012] and Becker et al. [2014].
Data were acquired from a whole body 7T MAGNETOM scanner (Siemens Healthcare) with
a maximum gradient amplitude of 70mT/m and a maximum slew rate of 200T/m/s (SC72,
Siemens Healthcare, Erlangen, Germany). The scan was performed using a single channel
transmit, 24-channel receive phased array head coil (Nova Medical, Wilmington, MA, USA).
An optimized monopolar Stejskal-Tanner sequence according to Morelli et al. [2010] together
with the ZOOPPA approach described in Heidemann et al. [2012] was used with TR 14.1s,
TE 65ms, BW 1132Hz/pixel, and ZOOPPA acceleration factor of 4.6. A total of 91 slices
with 10% overlap were acquired at a field-of-view (FoV) of 143 × 147mm2 resulting in an
isotropic high resolution of 800µm. Diffusion weighting gradients were applied along 60 differ-
ent directions at a b-value of 1000s/mm2. 7 interspersed non-diffusion weighted images were

10



acquired. The scan was repeated 4 times. The subject was a healthy adult volunteer after ob-
taining written informed consent in accordance with the ethical approval from the University of
Leipzig. Total acquisition time was 65min.

Analysis

We applied the procedure introduced in the Theory part to determine the local noise parameter
σp,i over all p = 1, . . . , 268 images (with and without diffusion weighting) within a brain mask.
The parameters of the procedure were λ = 5, k? = 16 (for reduced computational costs),
hmed = 5 and L = 1.

The data were then smoothed using a version of the msPOAS algorithm [Becker et al., 2014]
that has been adapted to use local estimates of σ as indicated there as well as using a global
estimate for σ.

Diffusion tensors where estimated using nonlinear regression (2.11) and the quasi-likelihood
(2.13) for both the original and smoothed data. Quasi-likelihood was used instead of the likeli-
hood (2.12) since it is suitable for both the original and the smoothed data.

3.4 Software

The new method for estimation the local noise parameter proposed in this paper is imple-
mented within our R-package dti [Tabelow and Polzehl, 2014] (version 1.2-0). This package
is freely available on CRAN (http://cran.r-project.org) and on NITRC (http:
//www.nitrc.org). The implementation uses FORTRAN and native R-code. The pack-
age also provides an implementation of the maximum-likelihood and quasi-maximum-likelihood
estimates of the diffusion tensor model parameters. We used the package for all calculations in
this paper.

4 Results

4.1 Experimental data (Diffusion weighted images of a diffusion
phantom)

In Fig. 3 we summarize the results obtained for the repeated diffusion weighted images of the
phantom. The relative mean absolute error

MRAE(xi) =
1

1000

∑
j

|σ̂ij − σ̃i|
σ̃i

,

the mean relative bias

RBias(xi) =
1

1000

∑
j

σ̂ij − σ̃i
σ̃i
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Figure 3 – Results for repeated diffusion weighted image. a) mean of 1000 dMRI images, b) vox-
elwise estimate of σ obtained from 1000 replicates, c) mean (over 1000 replicates) of
σ estimated using the proposed method, d) relative mean absolute error (MAE) of es-
timated σ, e) relative bias of estimated σ, f) relative standard deviation of estimated σ.
d)-f) are associated by scale information and density plots in g)-h), respectively.
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Original σK = 50 σK = 100 σK = 200 σK = 400 σK = 800

a) b) c) d) e) f)

g) h) i) j) k) l)

0.86 -48% -47% -35% -37% -47%×σK 2.73 94% 88% 55% 59% 88%

m) n) o) p) q)

Figure 4 – Simulation results for a slice of the BrainWeb MR volume. a) Original slice. b)-f)
Slice after adding complex Gaussian noise with varying standard deviation using a
SENSE1 Sotiropoulos et al. [2013b] reconstruction. g) image of locally varying effec-
tive σi parameters, h)-l) relative error of local estimates σ̂i using the method proposed
in this paper. m)-q) relative error of local estimates σ̂i using the method described in
Aja-Fernández et al. [2013]. The errors are given on a log-scale.

and the relative standard deviation

RSD(xi) =
sdj σ̂ij
σ̃i

are defined considering the estimates σ̃i obtained from the 1000 replicates as ground truth.
Results refer to the region inside the phantom.

4.2 Simulated data (T1 image)

In Fig. 4 summarizes the results of the noise estimation for an arbitrarily selected slice (Fig. 4a)
of the simulated T1 data. Figs. 4b)-f) show the same slice corrupted with complex Gaussian
noise with standard deviation σK = 50, 100, 200, 400, 800 using artificial sensitivity maps,
correlation between coils and a SENSE1 reconstruction [Sotiropoulos et al., 2013a], cf. Fig. 2.
This leads to a location dependent parameter σ as shown in Fig. 4g. In Figs. 4h)-l) we show
the logarithmic ratio of the local estimated noise parameter and its theoretical value (Fig. 4g)
for all five noise levels. The color scale is defined such that green refers to the ideal log-ratio
of 0. The range of the log-ratio varies with the noise level and is given below the color scale.

13



3 4 5 6 7 8 9 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

lambda

M
ea

n 
re

la
tiv

e 
ab

so
lu

te
 e

rr
or

Mean relative absolute error, hsig=5, kstar=20

AWS sigma=50
AWS sigma=100
AWS sigma=200
AWS sigma=400
AWS sigma=800
AF13 h=2 sigma=50
AF13 h=2 sigma=100
AF13 h=2 sigma=200
AF13 h=2 sigma=400
AF13 h=2 sigma=800

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

hsig

M
ea

n 
re

la
tiv

e 
ab

so
lu

te
 e

rr
or

Mean relative absolute error, lambda=5, kstar=20

AWS sigma=50
AWS sigma=100
AWS sigma=200
AWS sigma=400
AWS sigma=800
AF13 h=2 sigma=50
AF13 h=2 sigma=100
AF13 h=2 sigma=200
AF13 h=2 sigma=400
AF13 h=2 sigma=800

5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

kstar

M
ea

n 
re

la
tiv

e 
ab

so
lu

te
 e

rr
or

Mean relative absolute error, lambda=5, hsig=5

AWS sigma=50
AWS sigma=100
AWS sigma=200
AWS sigma=400
AWS sigma=800
AF13 h=2 sigma=50
AF13 h=2 sigma=100
AF13 h=2 sigma=200
AF13 h=2 sigma=400
AF13 h=2 sigma=800

Figure 5 – Influence of parameters on the estimation quality for the BrainWeb MR volume. Mean
relative absolute error of estimated σ as function of parameters λ, hmed and k∗.

In Figs. 4m)-q) we show the corresponding results for the method proposed in Aja-Fernández
et al. [2013].

Fig. 5 provides the mean relative absolute error as a function of the parameters λ, hmed and
k∗ and the five noise levels. The mean relative absolute error for the method proposed in Aja-
Fernández et al. [2013] is given as a comparison. The profiles indicate a stable behavior of the
procedure with respect to the chosen parameters. Large values of hmed and k∗ provide slight
improvements at the cost of significantly higher numerical effort. Improvements are mainly due
to a reduced variability of the estimates. The parameter λ steers the adaptation to the structure
in the non-centrality parameter of the χ-distribution leading to a balance between excluding
observations from the tails of the noncentral χ-distribution when the non-centrality parameters
coincide (same homogeneity region), and including observations with different non-centrality
parameters (distinct regions). The optimal balance depends on the SNR and the homogeneity
structure, with inadequate choice resulting in a bias of the estimates. Our recommendation
λ = 5 serves as a good compromise, with slightly smaller / larger values being preferable in
high / low SNR situations.

4.3 Experimental data (diffusion weighted imaging)

In Fig. 6 we illustrate the results for the diffusion weighted dataset. In a) and d) we show the
mean, over all gradients, estimated σi for one slice of the non-diffusion weighted images and
the diffusion weighted images, respectively. Figs. 6 b) and e) provide the ratio of the standard
deviation sdj σ̂ij over all gradients, and the mean estimated σi while c) and f) show densities of
the values in b) and e). Note that the standard deviation sdj σ̂ij reflects both the variability of the
true σi over the consecutively acquired images and the variability of the individual estimates.
Images in b) and e) and densities in c) and f) therefore provide upper bounds of the relative
error.

Our last result concerns the effect using the locally estimated σi on estimates of the Fractional
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Figure 6 – Results for the diffusion weighted dataset. Mean estimated σ over all a) non-diffusion
weighted and d) diffusion weighted images. Ratio of the standard deviation of the es-
timated σ over all b) non-diffusion weighted and e) diffusion weighted images to the
corresponding mean estimate. c) and f) show the corresponding densities of this relative
error.

Anisotropy (FA) in a tensor model. The locally estimated σi is employed in two different occa-
sions: for suitable standardization of the signal in our msPOAS smoothing algorithm [Becker
et al., 2014], and as a parameter in the quasi-likelihood function employed for estimating the
tensor parameters, see Eq. (2.13). Fig. 7 provides results in terms of estimated FA and esti-
mated main diffusion direction based on different estimates of the diffusion tensor, Dorignlreg and

DlocPOASnlreg employing Eqn. (2.11) on the original data and data smoothed by msPOAS [Becker

et al., 2014] (16 steps) using local estimates σi, respectively, and Dorigqlike and DlocPOASqlike where
the quasi-likelihood Eq. (2.13) was used instead of non-linear regression. For comparison we
also computed an estimate DglPOASqlike using Eq. (2.13) and data smoothed by msPOAS (16
steps) employing a global estimate of σ.

Fig. 7a) provides the estimated FA obtained from DlocPOASqlike . Fig. 7 b), d) and e) show color

coded FA obtained from the quasi-likelihood estimatesDorigqlike,DglPOASqlike andDlocPOASqlike , respec-
tively. We observe a clearly improved color coded FA in e) compared to b) (original data) and
d) where the inadequate global σ in msPOAS leads to a spatially varying quality of the result.
Fig. 7 c) and f) reflect the change in FA when employing quasi-likelihood instead of nonlinear
regression for the original and the smoothed (local σ) data, respectively. The FA-differences
are provided on a color scale with green referring to a zero difference. Both plots indicate a
FA-dependent bias of the regression estimate, with the effect being much more prominent and
stable for the smoothed data.
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Figure 7 – Fractional anisotropy (FA) maps for the first repetition of the diffusion weighted
dataset. a) FA grayscale image, and e) corresponding color-coded FA image from data
smoothed by msPOAS with local variance estimates. d) Color-coded FA estimates from
data smoothed by msPOAS with a single global estimate of σ. b) Result for origi-
nal (unsmoothed) data. a), b), d), and e) provide results obtained using the quasi-
likelihood (2.13). c) and f) refer to the local differences for the FA estimates when the
“correct” quasi-likelihood is used compared to the ”biased” nonlinear regression estimate
Eq. (2.11).
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5 Discussion and Conclusion

We developed a novel method for the local estimation of the noise parameter in magnetic reso-
nance imaging in the presence of an MR signal. The method can thus be applied to estimate the
noise level in regions with tissue, which is not accessible by methods that rely on the background
distribution, see e.g. the comprehensive list of methods in Aja-Fernández et al. [2009a].

The method assumes the standardized MR signal to follow a non-central χ distribution with
a locally constant non-centrality parameter, and spatially slowly varying noise parameter and
number of degrees of freedom. The procedure is based on the propagation-separation ap-
proach [Polzehl and Spokoiny, 2006] to infer on local homogeneity regions of the non-centrality
parameter of the signal distribution. Then a local weighted Maximum Likelihood estimator (over
these regions) is used to obtain local estimates for the noise parameter. The parameters of the
method influence the smoothness of the resulting estimate (e.g. hmed) or reduce the potential
bias due to mis-specification of the homogeneity regions (e.g. λ).

In this paper we demonstrated for real and simulated data the robustness and validity of the
method comparing it to the ground truth. Furthermore, we compared its performance with the
intriguingly simple and fast method proposed by Aja-Fernández et al. [2013].

Noise estimation for magnetic resonance imaging data is often essential to evaluate image qual-
ity and to successfully run image enhancing methods like noise reduction. We showed in this
paper, that local estimation of the noise estimation outperforms the use of a global parame-
ter in the noise reduction method msPOAS [Becker et al., 2014] as an example. However, this
improvement will also apply to other denoising methods, see e.g., Aja-Fernández et al. [2013].

An often underestimated fact is the bias introduced in parameter estimates of diffusion models
for dMRI data like DTI or DKI at low SNR, see e.g. Jones and Basser [2004]. We also demon-
strated, that the estimation of the model parameters (for DTI) will benefit from the local deter-
mination of the noise as proposed, see e.g. also Landman et al. [2009], Veraart et al. [2011a],
Veraart et al. [2011b], or Ghosh et al. [2013] for related ideas. While the diffusion model param-
eter estimation using maximum likelihood based on the non-central χ distribution is valid for the
original unsmoothed data, data processed by non-local noise reduction methods like msPOAS
follows a different signal distribution, such that a quasi-likelihood formulation of the estimation
problem is preferable.

The package primarily used for the analysis in this paper is freely available: dti [Tabelow and
Polzehl, 2014].
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